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3 the equivalence of some PLCP algorithms
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Developments in the early 50s: The SDPA

E.M.L. BEALE,
An alternative method for linear programming,
Proceedings of the Cambridge Philosophical
Society 50 (1954), 513–523.

G.B. DANTZIG,
Composite Simplex-Dual Simplex Algorithm–I.
[Notes on Linear Programming: Part XI.]
The RAND Corp., 26 April 1954.

WM. ORCHARD-HAYS,
A composite simplex algorithm—II. RM-1275.
The RAND Corp. 1954.
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Developments in the early 60s

G.B. DANTZIG,
Linear Programming and Extensions,
Princeton University Press, 1963, pp. 245–247.

R.W. COTTLE
Nonlinear Programs with Positively Bounded Jacobians,
Ph.D. thesis, University of California, Berkeley, 1964.

C.E. LEMKE AND J.T. HOWSON, JR.
Equilibrium points of bimatrix games,
SIAM Journal on Applied Mathematics 12 (1964), 413–423.

C.E. LEMKE
Bimatrix equilibrium points and mathematical programming,
Management Science 11 (1965), 681–689.
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Developments in the late 60s

G.B. DANTZIG AND R.W. COTTLE
Positive (semi-)definite programming, in (J. Abadie, ed.)
Nonlinear Programming, North-Holland, 1967, pp. 55–73.

R.W. COTTLE AND G.B. DANTZIG
Complementary pivot theory of mathematical programming,
Linear Algebra and its Applications 1 (1968), 103–125.

R.W. COTTLE
The principal pivoting method of quadratic programming, in
(G.B. Dantzig and A.F. Veinott, Jr., eds.) Mathematics of the
Decision Sciences. Part 1 [Lectures in Applied Mathematics,
Volume 11], Providence, Rhode Island, 1968, pp. 144–162.
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Developments in the early 70s

S.R. MCCAMMON
Complementary Pivoting. Ph.D. thesis, Rensselaer Polytechnic
Institute, 1970.

K.G. MURTY
On the parametric complementarity problem, Engineering Summer
Conference Notes, University of Michigan. August, 1971.

A. RAVINDRAN
Computational aspects of Lemke’s complementary algorithm
applied to linear programs. Opsearch 7 (1970), 241–262.

C. VAN DE PANNE
A complementary variant of Lemke’s method for the linear
complementarity problem. Mathematical Programming 7 (1974),
283–310.
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Developments in the 80s

I.J. LUSTIG
Comparisons of Composite Simplex Algorithms, Ph.D. thesis,
Stanford University, 1987.
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LCP algorithms

•

•

SDPA

PPMP

Composite

PPMLS1

LS1P

•

•

•
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Primal LP as in SDPA

Dantzig (1963) considered the primal LP:

minimize 0T v + cT x
(P) subject to Iv + Ax = b A ∈ Rm×n

x ≥ 0, v ≥ 0

The identity matrix I is the initial basis in [ I A ].

Neither b nor c is assumed to be nonnegative.
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The dual of (P)

Let Ã = [ I A ] and c̃T = [ 0T cT ].

Then the dual of (P) would be

maximize ỹT b
(D) subject to ỹT Ã ≤ c̃T

ỹ free

A feasible ỹ must be nonpositive. The dual can be
rewritten in terms of y = −ỹ as

maximize −yT b
(D) subject to −yT A ≤ cT

y ≥ 0
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(D) subject to ỹT Ã ≤ c̃T
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Optimality conditions for (P)

The optimality conditions for (P) are:

u = c + AT y
v = b − Ax

u, v , x , y ≥ 0

xT u + yT v = 0

This can be viewed as a composite problem. It is also a
special LCP.
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Dantzig’s Primal LP as in SDPA

Dantzig (1963) formulated the self-dual parametric LP:

minimize 0T v + (c + d ′λ)T x
(P) subject to Iv + Ax = b + d ′′λ A ∈ Rm×n

x ≥ 0, v ≥ 0

The identity matrix I is the initial basis in [ I A ].

Neither b nor c is assumed to be nonnegative.

Parameter λ ∈ [0, λ̄], λ̄ = min {min{bi}, min{cj}} .

d ′ ≥ 0, c + d ′λ̄ ≥ 0 and d ′′ ≥ 0, b + d ′′λ̄ ≥ 0
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Tableau for SDPA

In tableau form, Dantzig’s (P) would be given as

−ζ v x 1

0 I A b

1 0T cT 0

where ζ denotes the value of the objective function.
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Tableau for the parametric algorithm

In tableau form, the parametric version of (P) would be

v x 1 λ

I A b d ′′

0T cT 0 0 1

0T d ′T 0 0 λ

The ζ-column has been omitted.

Assumption: For all λ ∈ [0, λ̄] the vector (c + d ′λ, b + d ′′λ) has at
most one zero component (and exactly one when λ = λ̄).
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The algorithmic concept

If b ≥ 0 and c ≥ 0, x = 0 and y = 0 are optimal
solutions of (P) and (D). Stop. Else λ̄ > 0.

If cr + d ′
r λ̄ = 0, attempt to perform (primal) a

simplex method pivot step in the column of xr .

If br + d ′′
r λ̄ = 0, attempt to perform a dual simplex

method pivot step in the row of vr .

If neither pivot is possible, stop. (P) has no optimal
solution.

Reduce λ to 0 or the next critical value. Repeat.
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Primal simplex pivots

If decreasing λ makes c̄r + d̄ ′
rλ = 0, we have d̄ ′

r > 0.

The method acts as though c̄r + d̄ ′
rλ < 0 (as it would be

for slightly smaller λ).

This is followed by a minimum ratio test. The variable xr

is increased as much as possible so as to maintain
primal feasibility:

xr ≤ min
i

{
b̄i

āir
: āir > 0

}
If āir ≤ 0 for all i , then (D) is infeasible. Stop.
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Dual simplex pivots

If decreasing λ makes b̄r + d̄ ′′
r λ = 0, we have d̄ ′′

r > 0.

The method acts as though b̄r + d̄ ′′
r λ < 0 (as it would

be for slightly smaller λ).

This is followed by a minimum ratio test. The variable yr

is increased as much as possible so as to maintain dual
feasibility:

yr ≤ min
j

{
c̄j

ārj
: ārj > 0

}
If ārj ≥ 0 for all j , then (P) is infeasible. Stop.
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The LCP (q, M) in dictionary form

The system equation w = q + Mz is represented in
dictionary form as

1 z1 z2 · · · zn

w1 q1 m11 m12 · · · m1n

w2 q2 m21 m22 · · · m2n
... ... ... ... ...

wn q2 mn1 mn2 · · · mnn
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The (Symmetric) Principal Pivoting Method (PPM): Generalities

General features:

Limited to “sufficient” matrices

Not parametric

Works with a sequence of major cycles, each of which is
associated with a distinguished basic variable

Each major cycle ends with the distinguished variable
becoming nonbasic or an unblocked driving (increasing
nonbasic) variable

Preserves complementarity of bases

Monotonically reduces the number of negative variables
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Principal pivoting

For M ∈ Rn×n with det(Mαα) 6= 0, the corresponding
principal pivotal transformation of M is the matrix
℘α(M) = M̄ such that[

M̄αα M̄αᾱ

M̄ᾱα M̄ᾱᾱ

]
=

[
M−1

αα −M−1
αα Mαᾱ

MᾱαM−1
αα Mᾱᾱ − MᾱαM−1

αα Mαᾱ

]
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The idea behind the PPM

w = q + Mz

Initially mij = ∂wi/∂zj and mii ≥ 0 for all i .

If qi < 0 and mii > 0, increasing zi makes wi increase.

If qk ≥ 0 and mki < 0, increase of zi could make wk decrease
to 0 (before wi increases to 0).

If M is sufficient, mii = 0, and mki < 0, then mik > 0, so the
increase of zk would make wi increase to zero.
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Steps of the (Symmetric) PPM (simple case)

Step 0. Input data, choose µ < min qi < 0

Step 1. Determine the distinguished variable, wν
r

Step 2. Determine the blocking variable, wν
s

Step 3. Pivot 〈ws, zr〉, return to Step 1

Many details have been omitted. The important features are:

If s = r and mν
rr > 0, pivot 〈wν

r , zν
r 〉

If s 6= r and mν
ss > 0, pivot 〈wν

s , zν
s 〉

If s 6= r and mν
ss = 0, pivot {〈wν

s , zν
r 〉, 〈wν

r , zν
s 〉}

23 / 55



Steps of the (Symmetric) PPM (simple case)

Step 0. Input data, choose µ < min qi < 0

Step 1. Determine the distinguished variable, wν
r

Step 2. Determine the blocking variable, wν
s

Step 3. Pivot 〈ws, zr〉, return to Step 1

Many details have been omitted.

The important features are:

If s = r and mν
rr > 0, pivot 〈wν

r , zν
r 〉

If s 6= r and mν
ss > 0, pivot 〈wν

s , zν
s 〉

If s 6= r and mν
ss = 0, pivot {〈wν

s , zν
r 〉, 〈wν

r , zν
s 〉}

23 / 55



Steps of the (Symmetric) PPM (simple case)

Step 0. Input data, choose µ < min qi < 0

Step 1. Determine the distinguished variable, wν
r

Step 2. Determine the blocking variable, wν
s

Step 3. Pivot 〈ws, zr〉, return to Step 1

Many details have been omitted. The important features are:

If s = r and mν
rr > 0, pivot 〈wν

r , zν
r 〉

If s 6= r and mν
ss > 0, pivot 〈wν

s , zν
s 〉

If s 6= r and mν
ss = 0, pivot {〈wν

s , zν
r 〉, 〈wν

r , zν
s 〉}

23 / 55



Bisymmetry

A matrix M ∈ Rn×n is bisymmetric if there exists an
n × n permutation matrix P such that

PMPT =

[
G −AT

A H

]
where G and H are symmetric.

Symmetry (M − MT = 0) and skew-symmetry
(M + MT = 0) are special cases of bisymmetry.
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Invariance under principal pivoting

If all principal pivotal transforms ℘α of all members M of
a class C of squares matrices belong to that class, the
class is said to be invariant under principal pivoting.

M ∈ C =⇒ ℘α(M) ∈ C
Examples of such classes are the positive semidefinite
matrices and the bisymmetric matrices.
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The LP case

The matrix M of an LCP (q, M) associated with a linear
program in nonnegative variables is

Skew-symmetric
Positive semidefinite
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On K (M) and its convexity

Given M ∈ Rn×n, the union of the corresponding
complementary cones is the closed cone

K (M)=
⋃
α

pos Bα, Bα := [I·ᾱ − M·α]

={q ∈ Rn : (q, M) has a solution }

The cone K (M) is convex if and only if for all q ∈ Rn,

FEA (q, M) 6= ∅ =⇒ SOL (q, M) 6= ∅

When this holds, we say M ∈ Q0.
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On the monotonicity of the parameter

Suppose the LCP (q, M) represents the optimality
conditions of an LP for which min qi < 0.

In these parametric methods (and LS1), the parameter
λ will first be increased to the value λ̄ > 0.

Several authors have established that λ does not
increase during the solution process.

Why should this be the case? It has to do with the
positive semi-definiteness of M and the invariance of
positive semi-definiteness under principal pivoting.
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Why the parameter does not increase in the LP case

Let (q, M) represent an LP and min qi < 0 for some i .

Let λ = min{λ ≥ 0 : FEA (q + dλ, M) 6= ∅}.
M is skew-symmetric
All skew-symmetric matrices are positive
semidefinite
All positive semidefinite matrices belong to P0∩Q0

K (M) is convex for all M ∈ Q0

q + dλ ∈ K (M) for all λ ∈ [λ, λ̄]

The positive semi-definiteness is invariant under
principal pivoting.
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Lemke’s Algorithm, Scheme 1 (LS1)

Step 0. Initialization. Input (q, d , M) with q + dz0 ≥ 0 for all
z0 ≥ z̄0 = max{−qi

di
: qi < 0}. Stop if q ≥ 0. Else some wr blocks z0.

Pivot 〈wr , z0〉 where = arg max {−qi
di

: qi < 0}.

Step 1. Finding blocking variable (if any). The new driving variable is the
complement of the last blocking variable. Increase the driving
variable. Stop if it is unblocked. (Interpret this outcome, if possible.)

Step 2. Pivoting. If z0 blocks the driving variable, pivot

〈z0, driving variable〉.

A solution has been found. Otherwise pivot

〈blocking variable, driving variable〉

and return to Step 1 with the complement of the blocking variable as
the new driving variable.
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Lemke’s Algorithm (Scheme 1) in parametric form (LS1P)

Step 0. Input (q, d , M) where d ≥ 0 covers q. If q ≥ 0, stop: z = 0 solves (q, M). Otherwise,
let z̄0 = maxi{−qi/di} and let r = arg maxi{−qi/di}. Set ν = 0 and define

(qν , dν , Mν) = (q, d , M), (wν , zν) = (w , z), zν
0 = z̄0.

Step 1. Define wν
r as the distinguished variable and its complement zν

r as the driving
variable. Apply LS1 on (qν , dν , Mν). This will yield either a solution of (qν , dν , Mν)
or termination on a ray (i.e., with an unblocked driving variable).

Step 2. If qν ≥ 0, decrease z0 to zero. Stop: a solution of (q, M) has been found.
If dν ≥ 0, stop. The algorithm terminates unsuccessfully (on a z0-ray). Otherwise
mini dν

i < 0 < maxi dν
i . Let zν−1

0 denote the current value of z0; it is either
max{−qν

i /dν
i : dν

i > 0} or min{−qν
i /dν

i : dν
i < 0}.

• If zν−1
0 = max{− qν

i
dν

i
: dν

i > 0}, set zν
0 = min{− qν

i
dν

i
: dν

i < 0};

• if zν−1
0 = min{− qν

i
dν

i
: dν

i < 0}, set zν
0 = max{− qν

i
dν

i
: dν

i > 0}.

(Put wν = qν + dνzν
0 .) Return to Step1 with the unique r = arg mini wν

i .
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Dantzig’s claim

Dantzig (1963)

SDPA
Lemke (1965) LS1
Question: How do the algorithms SDPA and LS1
compare when applied to the same LP?
Dantzig’s claim: They are equivalent
1970 Ravindran’s paper, McCammon’s thesis
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Ravindran’s paper

A. RAVINDRAN,
Computational aspects of Lemke’s complementary pivot algorithm
applied to linear programs, Opsearch 7 (1970), 241–262.

was published in the same year as McCammon’s Ph.D.
thesis (to be discussed shortly)

compares Dantzig’s SDPA with Lemke’s Scheme 1 on LPs

gives a parametric, structure-preserving variant of Lemke’s
Scheme 1 on LPs

does not establish the general equivalence of Lemke’s
Scheme 1 and its parametric form

establishes that the parameter z0 decreases monotonically
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Ravindran’s statement

Those who are familiar with the complementary pivot theory, can
easily see that in our algorithm we are essentially applying
Lemke’s method but to a reduced tableau, taking advantage of
M-structure.

Dantzig has claimed that the Lemke’s complementary pivot
method to solve linear programs is identical with respect to the
pivot steps to his self-dual parametric algorithm. Though this fact
is not very obvious to see, using our algorithm we can see that the
pivot steps are identical to those in the self-dual parametric
algorithm though Dantzig uses the idea of primal and dual simplex
method while we make use of complementarity between the
variables. Since our method is a condensed form of Lemke’s
method in some sense, we have shown that Dantzig’s claim may
be valid.
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McCammon’s thesis

S.R. MCCAMMON,
On Complementary Pivoting, Ph.D. thesis, Rensselaer Polytechnic
Institute, Troy, N.Y., 1970.

was supervised by Prof. Carleton E. Lemke

generalizes the covering vector for Lemke’s method

discusses a few standard matrix classes

develops the parametric version of Lemke’s algorithm
(replacing the “pseudo-variable” z0 by a parameter θ)

shows that the parametric pivoting algorithm and Lemke’s
algorithm are equivalent

discusses the principal pivoting method
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McCammon’s thesis (continued)

notes the strict decrease of z0 in the case where M is a
P-matrix

alludes to the fact that the choice of covering vector can
influence the number of iterations and the solution found

discusses the Dantzig’s SDPA for LP and the restoration of
skew symmetry after a principal block pivot of order 2

gives a direct numerical comparison of the SDPA and the
parametric pivoting method (LS1P)

the above comparison reaches a faulty conclusion which will
be illustrated here
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McCammon’s statement

At the time of initiating the study which culminated in this
dissertation, it was not clear what the relationship between the
principal pivoting method and Lemke’s method was, and it was felt
that an investigation would clarify the similarities and distinctions.
This dissertation, indeed, sheds light on this relationship. A related
study was generated by two remarks of Dantzig made to Professor
Lemke: in a letter to Lemke in 1965, Professor Dantzig expressed
the feeling that the use of one pseudo-vector, as in Lemke’s
method, was not the most efficient way to handle the problem.
This suggested the use of n pseudo-variables, and is considered
in this thesis. Professor Dantzig also remarked in a conversation
with Lemke in 1966 that the Lemke method when applied to the
linear programming problem was equivalent to the ‘self-dual
parametric algorithm’. This suggested the attempt to view Lemke’s
method as a ‘Parametric method’, and gave rise to the Parametric
Pivoting Method developed by the author.
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van de Panne’s paper

C. VAN DE PANNE,
A complementary variant of Lemke’s method for the linear
complementarity problem, Mathematical Programming 7 (1974),
283–310.

cites McCammon but not Ravindran

gives an algorithm that is related to McCammon’s (i.e.,
LS1P) but is multi-parametric

supposedly has the advantage of allowing for infeasibility
tests

asserts that the “complementary variant” and Lemke’s
method (LS1) are equivalent
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van de Panne’s statement

The complementary variant is related to the parametric pivot
method proposed by McCammon. . . . In the latter method only λ is
varied as a parameter, while in the complementary variant also a
number of nonbasic variables are varied as parameters.

Both McCammon’s method and the complementary variant are
equivalent to Lemke’s method in the sense that the same
successive solutions are generated . McCammon’s method and
the complementary variant are identical as long as no fixed
variables appear in the latter method.

McCammon’s statement . . . that this parametric pivoting method
and Dantzig’s self-dual parametric method for linear programming
are not necessarily equivalent is based on errors in his example;
Lemke’s method and consequently McCammon’s method and the
complementary variant applied to linear programming problems
are equivalent to Dantzig’s method.
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Lustig’s thesis

I.J. LUSTIG
Comparisons of Composite Simplex Algorithms,
Ph.D. thesis, Stanford University, 1987.

was supervised by Prof. George B. Dantzig

took note of Ravindran’s paper and McCammon’s thesis,
but not of van de Panne’s paper

compared the SDPA with LS1 (but not LS1P) applied to LP

noted strict decrease of the artificial variable z0 in LS1

commented on McCammon’s conclusion on Dantzig’s claim
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Lustig’s comments

McCammon (1970), in his Ph.D. thesis at Rensselaer Polytechnic Institute, considered Dantzig’s
claim as well. He presented his own parametric pivoting method for general linear complementarity
problems . . .
McCammon proved that his algorithm is equivalent to Lemke’s algorithm applied to the LCP (q, M).
McCammon, however, believed that the solution path of his algorithm did not correspond to that of
Dantzig’s self-dual algorithm. In the last section of Appendix II of his thesis, he applied his algorithm
and Dantzig’s algorithm to a numerical example in order to show that the two solution paths need
not correspond. A careful examination of his calculations indicates that he applied the two
algorithms to two different linear programs.

A short description of McCammon’s algorithm (without proof) is given by Lemke (1970), pp.
359–361. I find McCammon’s proof and the statement of his algorithm somewhat unclear. It is
possible that his algorithm is equivalent to Cottle’s (1972) parametric pivoting algorithm. Cottle’s
algorithm is well-defined when M has positive principal minors or M is positive semi-definite. If they
are equivalent, then it is not clear whether McCammon realized the necessity of having assumptions
on the properties of M in order to make his algorithm well-defined.
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Lustig’s result (paraphrased)

Theorem
Assume that Dantzig’s self-dual parametric algorithm is executed
on a linear program (in inequality form) and that Lemke’s algorithm
is executed on the corresponding LCP and an optimal solution is
found by the self-dual method in ` iterations. Then the pivots of
iteration t of the self-dual algorithm correspond in a precise way to
the pivots of iterations 2t − 1, 2t , and 2t + 1 of Lemke’s algorithm
for t = 1, 2, . . . , `.
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McCammon’s LP formulated and solved by SDPA

7. Dantzig’s self-dual parametric algorithm

Consider the problem

minimize 4x1 − 3x2 subject to

„
−1 1

1 −2

«„
x1
x2

«
=

„
−2

−1

«
,

x1 ≥ 0,
x2 ≥ 0.

The self-dual parametric method considers the problem:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
page 82

page 83

minimize 4x1 + (θ − 3x2) subject to

„
−1 1

1 −2

«„
x1
x2

«
=

„
θ−2

θ−1

«
,

x1 ≥ 0, x2 ≥ 0.
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McCammon’s LP: solved Dantzig-style in tableaux
1 2
3 4

y1 y2 x1 x2 1 θ
1 0 −1 1 −2 1 row1
0 1 1 −2 −1 1 row2
0 0 4 −3 0 0 1
0 0 0 1 0 0 θ

θ ≥ 3, 〈y1, x2〉(P)

y1 y2 x1 x2 1 θ
1 0 −1 1 −2 1 row1
2 1 −1 0 −5 3 row2
3 0 1 0 −6 3 1

−1 0 1 0 2 −1 θ

θ ∈ [2, 3], 〈x2, x1〉(D)
y1 y2 x1 x2 1 θ
−1 0 1 −1 2 −1 row1

1 1 0 −1 −3 2 row2
4 0 0 1 −8 4 1
0 0 0 1 0 0 θ

θ ∈ [ 3
2 , 2], 〈y2, x2〉(D)

y1 y2 x1 x2 1 θ
−2 −1 1 0 5 −3 row1
−1 −1 0 1 3 −2 row2

5 1 0 0 −11 6 1
1 1 0 0 −3 2 θ

θ ∈ [0, 3
2 ], ζ̂ = 11
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LS1P on McCammon’s LP: formulation of the model

McCammon formulated the system equation of a
parametric LCP for solving his LP as follows:

w =


4

−3
−2
−1

 +


0
1
1
1

 θ +


0 0 1 −1
0 0 −1 2

−1 1 0 0
1 −2 0 0

 z
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LS1P on McCammon’s LP: as he “solved” it in tableaux
1 2
3

1 θ z1 z2 z3 z4

w1 4 0 0 0 1 −1
w2 −3 1 0 0 −1 2
w3 −2 1 −1 1 0 0
w4 −1 1 1 −2 0 0

θ ≥ 3; r = 2; 〈w4, z2〉

1 θ z1 w4 z3 z4

w1 4 0 0 0 1 −1
w2 −3 1 0 0 −1 2
w3 −5/2 3/2 −1/2 −1/2 0 0
z2 −1/2 1/2 1/2 −1/2 0 0

θ ≥ 3; r = 2; 〈w2, z4〉

1 θ z1 w4 z3 w2

w1 5/2 1/2 0 0 1/2 −1/2
z4 3/2 −1/2 0 0 1/2 1/2
w3 −5/2 3/2 −1 1 0 0
z2 −1/2 1/2 1 −2 0 0

θ ∈ [ 5
3 ], 3]; r = 3; z3 ↑ ∞

OOPS!

How can this be?
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LS1P on McCammon’s LP: formulation of the model

Correct formulation of McCammon’s system equation of
a parametric LCP for solving his LP:

w =


4

−3
−2
−1

 +


0
1
1
1

 θ +


0 0 −1 1
0 0 1 −2
1 −1 0 0

−1 2 0 0

 z
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LS1P on McCammon’s LP: correctly solved in 7 tableaux

1 θ z1 z2 z3 z4

w1 4 0 0 0 −1 1
?w2 −3 1 0 0 1 −2

w3 −2 1 1 −1 0 0
w4 −1 1 −1 2 0 0

θ ≥ 3; r = 2; 〈w3, z2〉

1 θ z1 w3 z3 z4

w1 4 0 0 0 −1 1
?w2 −3 1 0 0 1 −2

z2 −2 1 1 −1 0 0
w4 −5 3 1 −2 0 0

θ ≥ 3; r = 2; 〈w2, z3〉
1 θ z1 w3 w2 z4

w1 1 1 0 0 −1 −1
z3 3 −1 0 0 1 2

?z2 −2 1 1 −1 0 0
w4 −5 3 1 −2 0 0

θ ∈ [2, 3]; r = 3; 〈w1, w2〉

1 θ z1 w3 w1 z4

w2 1 1 0 0 −1 −1
z3 4 0 0 0 −1 1

?z2 −2 1 1 −1 0 0
w4 −5 3 1 −2 0 0

θ ∈ [2, 3]; r = 3; 〈z2, z1〉
1 θ z2 w3 w1 z4

w2 1 1 0 0 −1 −1
z3 4 0 0 0 −1 1
z1 2 −1 1 1 0 0

?w4 −3 2 1 −1 0 0

θ ∈ [3/2, 2]; r = 4; 〈w2, z4〉

1 θ z2 w3 w1 w2

z4 1 1 0 0 −1 −1
z3 5 1 0 0 −2 −1
z1 2 −1 1 1 0 0

?w4 −3 2 1 −1 0 0

θ ∈ [3/2, 2]; r = 4; 〈w4, z2〉
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LS1P on McCammon’s LP: reformulated and solved

1 θ w4 w3 w1 w2

z4 1 1 0 0 −1 1
z3 5 1 0 0 1 −2

z1 5 −3 1 2 0 0
z2 3 −2 1 1 0 0

θ ∈ [0, 3/2]; solution: (z1, z2) = (5, 3)
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PPPM on LP is SDPA

Dantzig’s LP in tableau form

−ζ v x 1

0 I A b

1 0T cT 0

In dictionary form, the LCP for Dantzig’s LP is

1 x y

u c 0 AT

v b −A 0
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Primal pivot 〈vr , xs〉 in Dantzig’s tableau

After primal pivot 〈vr , xs〉, the Dantzig-style subtableau

vr xj xs 1

0 aij ais bi

1 arj ars br

0 cj cs 0

becomes

vr xj xs 1

−ais aijars − arjais 0 biars − br ais

1 arj ars br

−cs cjars − csarj 0 −br cs

× 1
ars
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Pivot 〈vr , xs〉 in LCP tableau

In the LCP subtableau

1 xj xs

vi bi −aij −ais

vr br −arj −ars

the pivot 〈vr , xs〉 produces

1 xj vr

vi biars − brais −aijars + arjais ais

xs br −arj −1
× 1

ars

This is the first half of the 2 × 2 block pivot
〈vr , xs〉, 〈us, yr〉.
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Pivot 〈us, yr〉 in LCP tableau

In the LCP subtableau

1 yi yr

uj cj a′ji a′jr
us cs a′si a′sr

A′ = AT (a′ji = aij)

the pivot 〈us, yr〉 produces

1 yi us

uj cja′sr − csa′jr a′jia
′
sr − a′jr a

′
si a′jr

yr −cs −a′si 1
× 1

a′sr

Since a′ji = aij for all i , j , the matrix resulting from 〈us, yr〉 is the
negative transpose of the one resulting from 〈vr , xs〉
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Comparison of SDPA and PPPM

SDPA

vr xj xs 1

−ais aijars − arjais 0 biars − br ais

1 arj ars br

−cs cjars − csarj 0 −br cs

× 1
ars

PPPM
1 xj vr

vi biars − br ais −aijars + arjais ais

xs br −arj −1
× 1

ars

1 yi us

uj cja′sr − csa′jr a′jia
′
sr − a′jr a

′
si a′jr

yr −cs −a′si 1
× 1

a′sr
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Further remarks

The conclusion is the same if the first pivot is of the
Dual Simplex type.
As applied to Linear Programming, the SDPA and
the PPPM are equivalent in terms of iterates,
space, and computational effort.
Question:

Did Dantzig realize this too?
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