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The SVI problem

(Ω,F ,P): a probability space

ξ: a random vector from Ω to a closed set Ξ ⊂ Rd

Consider1 a function F : Rn × Ξ→ Rn, with E‖F (x , ξ)‖ <∞ for
each x

Let f0(x) = E [F (x , ξ)] for each x

S = {x ∈ Rn | Ax ≤ b} = {x ∈ Rn | 〈ai , x〉 ≤ bi , i = 1, · · · ,m}

The SVI problem we study is to find x ∈ S such that

−f0(x) ∈ NS(x) (TRUE-VI)

where NS(x) is the normal cone to S at x and is defined as

NS(x) = {v ∈ Rn | 〈v , s − x〉 ≤ 0 for each s ∈ S}

1In papers we consider F : O × Ξ→ Rn with O being an open set in Rn
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Relation with stochastic optimization

A local minimizer x0 of the problem

min
x∈S

E [Φ(x , ξ)]

with Φ : Rn × Ξ→ R and S ⊂ Rn needs to satisfy

−E [∇xΦ(x0, ξ)] ∈ NS(x0)

if E [∇xΦ(x0, ξ)] = ∇xE [Φ(x0, ξ)] exists, where ∇x denotes the
gradient w.r.t x
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Example: a Nash equilibrium problem

m players of the game

xi : decision variable for player i , which takes values in a set Ki

θi : the profit of player i , a random function of x = (x1, · · · , xm)

Each player selects xi to maximize the expected profit E (θi )

An equilibrium is attained, when no player can increase his expected
profit by unilaterally changing his decision

Under mild conditions, the equilibrium problem can be formulated as

0 ∈ −E

∇x1θ1(x)
...

∇xmθm(x)

+ NK1×···×KN
(x)

ICCP 2014, Berlin, Aug 4 - Aug 8, 2014 Lu, UNC-CH



Introduction Confidence regions Confidence intervals A numerical example Summary

Example: a linear complementarity problem

Let F : R2 × R6 → R2 be defined by

F (x , ξ) =

[
ξ1 ξ2

ξ3 ξ4

] [
x1

x2

]
+

[
ξ5

ξ6

]
,

where ξ is a random vector uniformed distributed on

{ξ ∈ R6 | (0, 0, 0, 0,−1,−1) ≤ ξ ≤ (2, 1, 2, 4, 1, 1)}

Let S = R2
+. The SVI problem becomes

the following LCP:

−
[

1 1/2
1 2

]
x ∈ NR2

+
(x),

which has a unique solution x0 = 0
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The sample average approximation problem

In most problems of interest, f0 does not have a closed form
expression and requires a numerical approximation

Let ξ1, · · · , ξN be i.i.d. random variables with distribution same as ξ

Define fN : Rn × Ω→ Rn by fN(x , ω) = N−1
∑N

i=1 F (x , ξi (ω))

The SAA problem is to find x ∈ S such that

−fN(x , ω) ∈ NS(x) (SAA-VI)

For the LCP example, an SAA problem with N = 10 is given by

−
[

0.9292 0.5400
0.7536 2.1111

]
x +

[
0.1319
0.2906

]
∈ NR2

+
(x),

which has a unique solution x10 = (0.0782, 0.1097)
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From SAA solutions to the true solution

Under certain conditions, solutions to the SAA problems2

Almost surely converge to the solution of the true problem as N ↑ ∞

Follow certain asymptotic distribution around the true solution

Converge to the true solution in probability at an exponential rate

An expression for confidence regions of the true solution is readily
obtainable from the asymptotic distribution of SAA solutions. However,
it is not directly computable

We consider the normal map transformation of variational inequalities,
and propose methods to build asymptotically exact confidence
regions/intervals for the true solution of the transformed problem, that
are computable from SAA solutions

2See [King and Rockafellar 1993], [Gürkan, Özge and Robinson 1999],
[Demir 2000], [Shapiro, Dentcheva and Ruszczyński 2009], [Xu 2010] and
references therein
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The normal map formulation of variational inequalities3

The normal map induced by the function f0 and the set S is a function
(f0)S : Rn → Rn, defined as

(f0)S(z) = f0(ΠS(z)) + z − ΠS(z) for each z ∈ Rn

where ΠS(z) is the Euclidean projection of z on S

−f0(x) ∈ NS(x)
z = x − f0(x)

⇐⇒ (f0)S(z) = 0 (TRUE-NM)
x = ΠS(z)

In the LCP example, x0 = 0 is the unique solution for (TRUE-VI), so
z0 = x0 − f0(x0) = 0 is the unique solution for (TRUE-NM)

−fN(x) ∈ NS(x)
z = x − fN(x)

⇐⇒ (fN)S(z) = 0 (SAA-NM)
x = ΠS(z)

3For more on normal maps and normal manifolds, see [Robinson 1992],
[Ralph 1993], [Facchinei and Pang 2003], [Scholtes 2012] and references therein
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Two properties of the Euclidean projector

ΠS is piecewise affine: it coincides with an affine function on each
of finitely many full-dim polyhedrons whose union is Rn

Each such polyhedron is called an n-cell in the normal manifold of
S ; a k-dimensional face of it is a k-cell. The relative interiors of all
cells form a partition of Rn

ΠS is B-differentiable: at each z ∈ Rn, it has a B-derivative
dΠS(z), which is a positively homogeneous function from Rn to Rn

that approximates ΠS near z

For all points z in the relative interior of a cell, the B-derivative
dΠS(z) is the same; it changes abruptly across cells

Example: S = R2
+. Its normal manifold contains

the four orthants, on each of which ΠS coincides
with a distinct affine function. The B-derivative
dΠS(z) is the identity map at z ∈ int S , and is
piecewise linear with four pieces at z = 0
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Assumptions5

Assumption 1: 4 Implies the continuous differentiability of f0, the almost
sure convergence fN → f0 as an element of C 1(X ,Rn) for any compact
set X ⊂ Rn, and the weak convergence of

√
N(fN − f0)

(a) E‖F (x , ξ)‖2 <∞ for all x ∈ Rn.
(b) The map x 7→ F (x , ξ(ω)) is continuously differentiable for a.e. ω ∈ Ω.
(c) There exists a square integrable random variable C such that
‖F (x , ξ(ω))−F (x ′, ξ(ω))‖+‖dF (x , ξ(ω))−dF (x ′, ξ(ω))‖ ≤ C (ω)‖x−x ′‖,
for all x ′, x ∈ Rn and a.e. ω ∈ Ω.

Assumption 2: Guarantees the existence, local uniqueness, and stability
of the true solution under small perturbation of f0

Suppose that x0 solves (TRUE-VI). Let z0 = x0 − f0(x0), L = df0(x0),
K = TS(x0)∩ {z0 − x0}⊥, and assume that the normal map LK induced by
L and K is a homeomorphism from Rn to Rn

4In papers the assumptions are limited to x or x ′ in a set O ⊂ Rn

5Implications of the assumptions are obtained using tools from [Shapiro,
Dentcheva and Ruszczyński 2009], [Robinson 1995] and a functional CLT
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B-derivatives of the normal map

Recall that the normal map (f0)S is defined as

(f0)S(z) = f0(ΠS(z)) + z − ΠS(z) for each z ∈ Rn

Under Assumption 1, f0 is continuously differentiable on Rn

By the chain rule, (f0)S has a B-derivative at each z ∈ Rn, with

d(f0)S(z)(h) = df0(ΠS(z))(dΠS(z)(h))+h−dΠS(z)(h) for each h ∈ Rn

Discontinuity of dΠS(z) leads to discontinuity of d(f0)S(z): when z
moves from the interior of an n-cell to its boundary, d(f0)S(z)
changes abruptly

By the definitions of L and K in Assumption 2, we have
d(f0)S(z0) = LK
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Asymptotic distribution of SAA solutions

Under Assumptions 1 and 2:

For a.e. ω, (SAA-NM) has a locally unique solution zN for N large
enough, with limN→∞ zN = z0

Accordingly, (SAA-VI) has a locally unique solution xN = ΠS(zN)
that almost surely converges to x0

Let Σ0 be the covariance matrix of F (x0, ξ), and Y0 be a normal
r.v. in Rn with zero mean and covariance matrix Σ0. Then,

√
Nd(f0)S(z0)(zN − z0)⇒ Y0 (Conv-Dist)

Assuming Σ0 to be nonsingular6, the following set

{z ∈ Rn | N
[
d(f0)S(z0)(zN−z)

]T
Σ−1

0

[
d(f0)S(z0)(zN−z)

]
≤ χ2

n(α)} (CR0)

defines an asymptotically exact (1− α)100% confidence region for z0
7

6This assumption can be relaxed for confidence regions
7χ2

n(α) satisfies P(U > χ2
n(α)) = α for a χ2 r.v. U with n deg of freedom
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In the example: scatter plots for zN
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Left: solutions to 200 SAA problems with N = 10; Right: N = 30

Curves are boundaries of sets

{z ∈ R2 | N
[
d(f0)R2

+
(z0)(z − z0)

]T
Σ−1

0

[
d(f0)R2

+
(z0)(z − z0)] ≤ χ2

N(α)}

which contain zN with (approximately) probability 1− α for
α = 0.1, · · · , 0.9
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The challenge with computing confidence regions

The expression (CR0) is not directly computable as Σ0 and
d(f0)S(z0) are unknown

We can approximate Σ0 by ΣN , the sample covariance matrix of
{F (xN , ξ

i )}Ni=1, which converges to Σ0 almost surely

Recall from the chain rule

d(f0)S(z0)(h) = df0(x0)(dΠS(z0)(h))+h−dΠS(z0)(h) for each h ∈ Rn

We can approximate df0(x0) by dfN(xN), which converges to df0(x0)
almost surely

What to replace dΠS(z0) with?

dΠS(zN) does NOT converge to dΠS(z0) in prob due to the discontinuity
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Estimate dΠS(z0) using exponential convergence rate: 1
Under the additional Assumption 3 below, there exist positive real
numbers ε0, β0, µ0, M0 and σ0, such that

Prob {‖zN − z0‖ < ε} ≥ 1−β0 exp{−Nµ0}−
M0

εn
exp

{
−Nε2

σ0

}
(Conv-Prob)

for each ε ∈ (0, ε0] and each N.

(a) For each t ∈ Rn and x ∈ X , let Mx(t) = E
[

exp{〈t,F (x , ξ) − f0(x)〉}
]

be the moment generating function of F (x , ξ)− f0(x). Assume

1 There exists ζ > 0 such that Mx(t) ≤ exp{ζ2‖t‖2/2} for each (x , t).

2 There exists a nonnegative random variable κ such that
‖F (x , ξ(ω))− F (x ′, ξ(ω))‖ ≤ κ(ω)‖x − x ′‖ for all x , x ′ ∈ O and
almost every ω ∈ Ω.

3 The moment generating function of κ is finite valued in a
neighborhood of zero.

(b) Similar conditions on dxF .
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Estimate dΠS(z0) using exponential convergence rate: 2

Method 1: substitute dΠS(z0) by ΛN(zN), defined as a weighted
sum of all possible dΠS(z) for z ∈ Rn (there are only finitely many),
with weights depending on zN

8

Method 2: ΛN(zN) is chosen as dΠS(z ′), where z ′ is a point in the
relative interior of a cell that has the smallest dimension among all
cells within a distance of N−1/3 from zN

9

ΛN(zN) defined in either method 1 or method 2 is shown to be a
good estimator of dΠS(z0): there exists κ > 0 such that

lim
N→∞

Prob

[
sup
h∈Rn

‖ΛN(zN)(h)− dΠS(z0)(h)‖
‖h‖

<
κ

g(N)

]
= 1

(For method 2, κ is actually 0.)

8Methods 1 and 2 are from [Lu and Budhiraja, 2013] and [Lu 2012]
respectively

9The quantity N−1/3 can be generalized as 1/g(N) with g : N→ R+

satisfying limN→∞ g(N) = limN→∞
N

g(N)2 =∞ and other conditions
ICCP 2014, Berlin, Aug 4 - Aug 8, 2014 Lu, UNC-CH
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Confidence regions based on methods 1 and 2

For each N ∈ N, define a function ΦN(zN) : Rn → Rn by10

ΦN(zN)(h) = dfN(ΠS(zN))(ΛN(zN)(h)) + h − ΛN(zN)(h)

ΦN(zN) is then a good approximation of d(f0)S(z0) and can be used
as its substitute in (Conv-Dist) to get

√
NΦN(zN)(zN − z0)⇒ Y0

As a result, we have
√
NΣ
−1/2
N ΦN(zN)(zN − z0)⇒ N(0, In)

For each α ∈ (0, 1) the following set defines an asymptotically exact
(1− α)100% confidence region for z0

{z ∈ Rn | N
[
ΦN(zN)(zN−z)

]T
Σ−1

N

[
ΦN(zN)(zN−z)] ≤ χ2

n(α)} (CR-1&2)

10We suppressed ω in the definition here
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Confidence regions by the third method11

A key observation: zN in a neighborhood
of z0 satisfies

dΠS(z0)(zN − z0) + dΠS(zN)(z0− zN) = 0

This property holds, as long as z0 and zN
are contained in a common n-cell

The consequence: −
√
Nd(fN)S(zN)(z0 − zN)⇒ Y0

An asymptotically exact (1− α)100% confidence region for z0 (an
ellipsoid when d(fN)S(zN) is an invertible linear map, which occurs
with high probability):

{z ∈ Rn | N
[
d(fN)S(zN)(z−zN)

]T
Σ−1

N

[
d(fN)S(zN)(z−zN)] ≤ χ2

n(α)} (CR-3)

This method does not need the exponential convergence rate of zN

11Method 3 is from [Lu 2014]
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Computation of simultaneous confidence intervals

We compute simultaneous confidence intervals by finding edges of
the minimum bounding box of the confidence region

{z ∈ Rn | N
[
ΦN(zN)(zN−z)

]T
Σ−1

N

[
ΦN(zN)(zN−z)] ≤ χ2

n(α)} (CR-1&2)

{z ∈ Rn | N
[
d(fN)S(zN)(z−zN)

]T
Σ−1

N

[
d(fN)S(zN)(z−zN)] ≤ χ2

n(α)} (CR-3)

If d(f0)S(z0) is piecewise linear, then its estimator ΦN(zN) is with
high probability a piecewise linear function, in which case (CR-1&2)
is the union of fractions of ellipses

Even if d(f0)S(z0) is piecewise linear, d(fN)S(zN) is with high
probability a linear function, with (CR-3) being a single ellipsoid

In general, it is much more efficient to use (CR-3). If d(f0)S(z0) is
linear, all three methods coincide for large N
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Computation of individual confidence intervals: approach 1

We present three approaches to compute individual confidence
intervals that contain individual components with prescribed levels

Recall from (Conv-Dist) that
√
N(zN − z0)⇒ d(f0)S(z0)−1(Y0),

where Y0 ∼ N (0,Σ0)

Approach 1: use the following interval

(zN)i ± χ2
1(α)

√
(d(fN)S(zN)−1ΣNd(fN)S(zN)−T )jj/

√
N

as the (1− α)100% confidence interval of (z0)i

Advantage: easy to compute, supported by current numerical
tests, does not need the exponential convergence rate
Disadvantage: asymptotical exactness of the interval depends
on a restrictive assumption

The other two approaches use the estimator ΦN(zN) of d(f0)S(z0),
obtained under the exponential convergence rate
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Computation of individual confidence intervals: approach 2

Recall that
√
N(zN − z0)⇒ d(f0)S(z0)−1(Y0), where Y0 ∼ N (0,Σ0)

Approach 2: let Z ∼ N (0, In); find a number a such that12

Pr

(∣∣ (ΦN(zN)−1(Σ
1/2
N Z )

)
j

∣∣ ≤ a

)
= 1− α,

and use [(zN)j − aN−1/2, (zN)j + aN−1/2] as the (1− α)100%
confidence interval of (z0)j

13

Advantage: asymptotical exactness of the interval is justified
for general situations
Disadvantage: when ΦN(zN) is piecewise linear, computing a
requires enumerating all of its pieces

12Approaches 2 and 3 are from [Lamm, Lu and Budhiraja, 2014]
13In the implementation we allow for a choice in where the interval is

centered
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Computation of individual confidence intervals: approach 3

Recall
√
N(zN − z0)⇒ d(f0)S(z0)−1(Y0); let {K1, . . . ,Kl} be a

family of n-dim polyhedral convex cones whose union is Rn, such
that d(f0)S(z0) is represented by a different linear map on each Ki

Given zN , we can identify a cone K (ω) such that K (ω) belongs to
{K1, . . . ,Kl} and contains zN − z0 in its interior with high probability

Next, find a number a such that the conditional probability

Pr

(∣∣ (ΦN(zN)−1(Σ
1/2
N Z )

)
j

∣∣ ≤ a,ΦN(zN)−1(Σ
1/2
N Z ) ∈ K (ω)

)
Pr
(

ΦN(zN)−1(Σ
1/2
N Z ) ∈ K (ω)

) = 1−α,

and use [(zN)j − aN−1/2, (zN)j + aN−1/2] as the (1− α)100%
confidence interval for (z0)j

This approach focuses on a single K (ω) and avoids enumerating all
pieces of ΦN(zN), is much more efficient than approach 2
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confidence interval for (z0)j

This approach focuses on a single K (ω) and avoids enumerating all
pieces of ΦN(zN), is much more efficient than approach 2
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Confidence regions/intervals for x0

Once a confidence region for z0 is obtained, its projection onto the
set S gives a (conservative) confidence region for x0, since
x0 = ΠS(z0)

When S is a box, such a projection method is easy to implement to
compute both simultaneous and individual confidence intervals for x0

When S is not a box, then the above projection method is hard to
implement in general, and one needs to investigate the special
structures in application problems to transform confidence regions/
intervals for z0 into those of x0

For example, if each component of x0 depends on only one
component of z0 then this transformation could be easy to do

We provide a method to directly compute individual confidence
intervals of components of x in [Lamm et al., 2014]
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Estimators for the example

SAA solutions: x10 = (0.0782, 0.1097) and z10 = (0.0782, 0.1097)

In method 1, Φ10(z10)(·) is a piecewise linear map represented by matrices[
0.9437 0.4333
0.5989 1.8915

]
,

[
0.9437 0.1322
0.5989 1.2720

]
,

[
0.9839 0.4333
0.1710 1.8915

]
,

[
0.9839 0.1322
0.1710 1.2720

]
in orthants R2

+, R+ × R−, R− × R+ and R2
− respectively

In method 2, Φ10(z10)(·) is represented by[
0.9292 0.5400
0.7536 2.1111

]
,

[
0.9292 0
0.7536 1

]
,

[
1 0.5400
0 2.1111

]
,

[
1 0
0 1

]
in corresponding orthants

In method 3, the B-derivative d(f10)R2
+

(z10) is the linear map represented

by the matrix [
0.9292 0.5400
0.7536 2.1111

]
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Confidence regions for z0 computed from z10

×:
z10 = (0.0782, 0.1097)

+: z0 = 0

From the innermost to
outermost, the curves
enclose confidence
regions at levels
0.1, · · · , 0.9, computed
from (CR-1&2) or (CR-3)
with N = 10
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Confidence regions for z0, N = 10, method 1
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Confidence regions for z0 computed from z10

×:
z10 = (0.0782, 0.1097)

+: z0 = 0

From the innermost to
outermost, the curves
enclose confidence
regions at levels
0.1, · · · , 0.9, computed
from (CR-1&2) or (CR-3)
with N = 10
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Confidence regions for z0, N = 10, method 2
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Confidence regions for z0 computed from z10

×:
z10 = (0.0782, 0.1097)

+: z0 = 0

From the innermost to
outermost, the curves
enclose confidence
regions at levels
0.1, · · · , 0.9, computed
from (CR-1&2) or (CR-3)
with N = 10
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Confidence regions for z0, N = 10, method 3
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Confidence regions for z0 computed from z30

×:
z30 = (−0.048,−0.011)

+: z0 = 0

From the innermost to
outermost, the curves
enclose confidence
regions at levels
0.1, · · · , 0.9, computed
from (CR-1&2) or (CR-3)
with N = 30
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Confidence regions for z0, N = 30, method 1
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Confidence regions for z0 computed from z30

×:
z30 = (−0.048,−0.011)

+: z0 = 0

From the innermost to
outermost, the curves
enclose confidence
regions at levels
0.1, · · · , 0.9, computed
from (CR-1&2) or (CR-3)
with N = 30
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Confidence regions for z0, N = 30, method 2
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Confidence regions for z0 computed from z30

×:
z30 = (−0.048,−0.011)

+: z0 = 0

From the innermost to
outermost, the curves
enclose confidence
regions at levels
0.1, · · · , 0.9, computed
from (CR-1&2) or (CR-3)
with N = 30
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Confidence regions for z0, N = 30, method 2
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Confidence intervals

z10 z30

Est Sim CI Ind CI Est Sim CI Ind CI

(z0)1 0.08 [-0.52, 0.68] [-0.38, 0.54] -0.05 [-0.27, 0.17] [-0.21, 0.12]
(z0)2 0.11 [-0.16, 0.38] [-0.10, 0.32] -0.01 [-0.23, 0.21] [-0.18, 0.16]

Sim/ind confidence intervals for z0 of level 90%, method 3

N = 10 N = 30
α =0.1 0.05 0.01 α =0.1 0.05 0.01

Simultaneously for z0 171 180 187 184 192 197

Coverage of sim confidence intervals from 200 SAA problems, method 3
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Individual confidence intervals

Coverage of (z0)1 (left) and (z0)2 (right), α = .05, 200 SAA problems

Approach 1 2 3

N=50 91.5% 92.5% 92.5%

N=100 93.5% 94.5% 94%

N=200 97% 97% 97.5%

N=2,000 94.5% 94.5% 94.5%

Approach 1 2 3

N=50 94% 96.5% 94.5%

N=100 93.5% 96.5% 92.5%

N=200 96.5% 98% 97%

N=2,000 93.5% 95.5 % 94.5%

Coverage of (z0)2 and half-width by cone, N = 2, 000, α = .05

Coverage rate Average half-width
Cone (samples in cone) 1 2 3 1 2 3

R− × R−(44) 95.45 % 97.73% 95.45% .0253 .0246 .0253

R− × R+ (59) 88.14% 98.31% 89.83% .0127 .0246 .0133

R+ × R− (77) 94.81% 90.91% 96.10% .0358 .0246 .0379

R+ × R+ (20) 100 % 100% 100% .0239 .0246 .0106
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Evaluation of normality by χ2 plots (N=10)

(CR-1&2) are based on the fact

√
NΣ
−1/2
N ΦN(zN)(zN − z0)⇒ N(0, In)

(CR-3) is based on the fact

−
√
NΣ
−1/2
N d(fN)S(zN)(z0 − zN)⇒ N(0, In)

Horizontal axis: 100(j − 1/2)/200 quantiles
of the χ2 distribution with 2 degrees of
freedom, j = 1, · · · , 200

Vertical axis: 2-norms of the above random
vectors for 200 SAA solutions with N = 10,
ordered from smallest to largest

Slope > 1: the distances are too big
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χ2 plots, N = 10, method 1
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Evaluation of normality by χ2 plots (N=10)

(CR-1&2) are based on the fact

√
NΣ
−1/2
N ΦN(zN)(zN − z0)⇒ N(0, In)

(CR-3) is based on the fact

−
√
NΣ
−1/2
N d(fN)S(zN)(z0 − zN)⇒ N(0, In)

Horizontal axis: 100(j − 1/2)/200 quantiles
of the χ2 distribution with 2 degrees of
freedom, j = 1, · · · , 200

Vertical axis: 2-norms of the above random
vectors for 200 SAA solutions with N = 10,
ordered from smallest to largest

Slope > 1: the distances are too big
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χ2 plots, N = 10, method 2
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Evaluation of normality by χ2 plots (N=10)

(CR-1&2) are based on the fact

√
NΣ
−1/2
N ΦN(zN)(zN − z0)⇒ N(0, In)

(CR-3) is based on the fact

−
√
NΣ
−1/2
N d(fN)S(zN)(z0 − zN)⇒ N(0, In)

Horizontal axis: 100(j − 1/2)/200 quantiles
of the χ2 distribution with 2 degrees of
freedom, j = 1, · · · , 200

Vertical axis: 2-norms of the above random
vectors for 200 SAA solutions with N = 10,
ordered from smallest to largest

Slope > 1: the distances are too big
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χ2 plots, N = 10, method 3
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Evaluation of normality by χ2 plots (N=30)

Horizontal axis: the quantiles

Vertical axis: squared distances for
200 SAA problems with N = 30,
ordered from smallest to largest

Slope ≈ 1: indicates near normality
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χ2 plots, N = 30, method 1
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Evaluation of normality by χ2 plots (N=30)

Horizontal axis: the quantiles

Vertical axis: squared distances for
200 SAA problems with N = 30,
ordered from smallest to largest

Slope ≈ 1: indicates near normality
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χ2 plots, N = 30, method 2
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Evaluation of normality by χ2 plots (N=30)

Horizontal axis: the quantiles

Vertical axis: squared distances for
200 SAA problems with N = 30,
ordered from smallest to largest

Slope ≈ 1: indicates near normality
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Summary

Development and justification of methods to build asymptotically
exact and computable confidence regions for the true solution of the
normal map formulation of the SVI

Derivation of formulas and methods to compute simultaneous and
individual confidence intervals

Applied to a stochastic Cournot-Nash production/distribution
problem and statistical learning problems (the lasso and others)

Major assumptions:

Continuous differentiability of F (x , ξ) w.r.t. x

Local uniqueness of the solution to the true problem
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Estimate dΠS(z0) using exponential convergence rate

Write the k-cells as C k
1 , · · · ,C k

j(k). Define

dk
i (z) = minx∈C k

i
‖z − x‖

Define g : N→ R+, to satisfy

lim
N→∞

g(N) =∞, lim
N→∞

N

g(N)2
=∞, and other conditions

(Conv-Prob) implies the following for each N:

Prob

{
‖zN − z0‖ <

1

2g(N)

}
≥ 1−β0 exp{−Nµ0}−2nM0g(N)n exp

{
− N

4σ0g(N)2

}

With high probability, for N large enough,

dk
i (zN)

{
> 1/g(N) if C k

i does not contain z0

< 1/(2g(N)) if C k
i contains z0

Suppose that z0 ∈ riC
k(q)
i(q) ; then C

k(q)
i(q) has the smallest

dimension among all cells containing z0
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Approximate dΠS(z0): Single out C
k(q)
i(q)

Write Ψk
i = dΠS(z) for z ∈ riC k

i

For each N ∈ N and z ∈ Rn, define a function ΛN(z) : Rn → Rn

Definition 1 of ΛN(z): A weighted sum of Ψk
i

ΛN(z)(h) =
∑n

k=0

∑j(k)
i=1 [1/g(N)−min(dki (z),1/g(N))]kΨk

i (h)∑n
k=0

∑j(k)
i=1 [1/g(N)−min(dki (z),1/g(N))]k

As N →∞ the weight of Ψ
k(q)
i(q) in ΛN(zN) becomes dominant

Definition 2 of ΛN(z): Pick a single cell

ΛN(z)(h) = Ψk0
i0

(h) where C k0
i0

is a cell that has the smallest dimension

among all cells within a distance of 1/g(N) from z
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