Bundle-Free Implicit Programming Approaches for the Optimal Control of Variational Inequalities of the First and Second Kind

Thomas M. Surowiec

Humboldt-Universität zu Berlin Department of Mathematics Joint Work with M. Hintermüller.

August 8, 2014

Introduction

# The "Lower-Level" Problem/Variational Inequality

#### Typical Variational Problems of Interest

- Contact problems in mechanics/free boundary problems
- Phase-field models with obstacle/nonsmooth potentials
- Volatility calibration in American options (Black-Scholes model)
- Parameter identification in image processing

Introduction

# The "Upper-Level" Problem/MPEC

### How do we ...

#### Bilevel Programming/Optimal Control/Parameter ID Problem

- Contact problems in mechanics/free boundary problems ...choose the applied force to achieve a desired state?
- Phase-field models with obstacle/nonsmooth potentials ...control the fluid to force a desired separation of phases?
- Volatility calibration in American options (Black-Scholes model) ...determine the true volatility based on market measurements?
- Parameter identification in image processing: ...obtain a robust (wrt stochasticity) or "distributed" regularization parameter?

Introduction

## General Modeling Framework

Consider VIs of the type:

$$\mathsf{Find} \ y \in \mathsf{V}: \varphi(y') \geq \varphi(y) + \langle u + f - \mathsf{A} y, y' - y \rangle, \ \forall y' \in \mathsf{V},$$

where (amongst other assumptions)  $\varphi: V \to \mathbb{R}$  is convex.

V reflexive Banach space,  $A: V \to V^*$  strongly monotone  $\Longrightarrow$ Solution mapping  $V^* \ni u \mapsto y$  (denoted S(u)) is Lipschitz.

For parameter ID usually much less continuity (loc. Lipschitz, Hölder,...). For today: We consider the Lipschitz case.

# Implicit Programming vs. MPCC

General Modeling Framework: Implicit Programming

min J(u, y) over  $(u, y) \in H \times V$ , s.t. y = S(Bu).

Other approaches:

- "MPCC" Replace y = S(Bu) by introducing slack/KKT-multiplier consider MPCC (assuming complementarity conditions can be written!)
- "Adapted Penalty" Smooth and regularize the variational inequality, consider sequence of related control problems.

#### How smooth is S?

- In *n*-dimensions: S (loc.) Lipschitz ⇒ S almost everywhere C<sup>1</sup> (Rademacher).
- In ∞-dimensions: S (loc.) Lipschitz ⇒ S Gâteaux differentiable up to "small" sets (Aronszajn, Preiss, Zaijcek, et al.)

In general, we cannot rule out these "exceptional" set.

### Case 1. $\varphi(y) := i_M(y)$ (Variational Inequalities of the First Kind)

- $M \neq \emptyset$  closed, convex subset of refl. Banach space V
- *i<sub>M</sub>* is the usual indicator

Here,  $S: V^* \to V$  is the solution mapping of

$$A(y) + N_M(y) \ni w$$

with  $w \in V^*$ . We let  $B \in \mathcal{L}(H, V^*)$ , e.g., an embedding. *H* refl. B. sp.

#### Theorem

If M is "polyhedric" in the sense of Mignot/Haraux and  $A: V \to V^*$  is strongly monotone, Fréchet differentiable, and A(0) = 0, then

- **1** The solution mapping S of the VI is Hadamard directionally differentiable.
- 2 d = S'(Bu, Bh) is the unique solution of the VI:

Find  $d \in \mathcal{K}$ :  $\langle A'(y)d - Bh, z - d \rangle \ge 0, \forall z \in \mathcal{K}.$ 

$$\mathcal{K} := T_M(y) \cap \{w - A(y)\}^{\perp}$$
 ("critical cone")

#### Proof.

- **()** Use Mignot/Haraux (1976/1977), Levy & Rockafellar (1994). Allows one to "differentiate" the subdifferential  $\partial \varphi$ .
- 2 S Lipschitz  $\Rightarrow$  generalized derivative  $\equiv$  Hadamard directional derivative.

 $A(0) = 0 \Rightarrow A'(y)$  coercive (elliptic). E.g., Linear op., *p*-Laplacian (p > 2).

Case 2.  $\varphi(y) := \int_{\Omega} |(Gy)(x)|_{n,m} dx$  (Variational Inequalities of the Second Kind)

- $\Omega \subset \mathbb{R}^n$  open and bounded,  $n \in \mathbb{N}$
- $G: V \to L^2(\Omega)^{n,m}$  bounded and linear.

•  $|\cdot|_{n,m}$ : abs. val. (n = m = 1), Euclid. (n > 1, m = 1), Frob. (n, m > 1)

Here,  $S: V^* \to V$  is the solution mapping of

 $A(y) + G^* \partial \| \cdot \|_{L^1}(Gy) \ni w$ 

with  $w \in V^*$ . We let  $B \in \mathcal{L}(H, V^*)$ , e.g., an embedding. *H* refl. B. sp.

#### Examples

• Mechanics: 2D-(very!)-Simplified Friction

$$\varphi(\cdot):=||\cdot||_{\mathsf{L}^1(\Omega)}, \ B:=E_{L^2\hookrightarrow H^{-1}}, \ A=-\Delta, \ G=\beta Id.$$

• Petroleum Engineering: Steady-State Laminar Flow of Bingham Fluid

$$\varphi(\cdot):=||\boldsymbol{\nabla}\cdot||_{\mathbb{L}^1(\Omega)},\ B:=E_{L^2\hookrightarrow H^{-1}},\ A=-\Delta,\ G=\nabla.$$

• Digital Image Processing: Approximation of TV-Regularized Problem

$$\varphi(\cdot) := \beta || \nabla \cdot ||_{\mathbb{L}^1(\Omega)}, \ B := K^*, \ A = -\alpha \Delta + K^* K, \ G = \nabla.$$

#### Theorem

If n=m=1 and  $A:V\rightarrow V^*$  is strongly monotone, Fréchet differentiable, and A(0)=0, then

**1** The solution mapping S of the VI is Hadamard directionally differentiable.

2 d = S'(Bu, Bh) is the unique solution of the VI:

Find  $d \in \mathcal{K}$ :  $\langle A'(y)d - Bh, z - d \rangle \ge 0, \forall z \in \mathcal{K}.$ 

 ${\cal K}$  is a type of "generalized critical cone."

#### Generalized Critical Cone

Given  $u, y = S(Bu), q \in \partial || \cdot ||_{L^1}(Gy)$ . Define the **biactive** and **strongly active** sets by

$$\begin{split} \mathcal{A}^0 &:= \left\{ x \in \Omega \left| |(Gy)(x)| = 0, \ |q(x)| = 1 \right\}, \\ \mathcal{A}^+ &:= \left\{ x \in \Omega \left| |(Gy)(x)| = 0, \ |q(x)| < 1 \right\}. \end{split}$$

Then

$$\mathcal{K} := \left\{ w \in V \middle| \begin{array}{ll} (Gw)(x) & = & 0, & \text{a.e. } x \in \mathcal{A}^+, \\ (Gw)(x) & \in & \operatorname{cone}(q(x)), & \text{a.e. } x \in \mathcal{A}^0. \end{array} \right\}$$

Here,  $q(x) \in [-1,1]$  we can split  $\mathcal{A}^0$  into two further subsets:

$$\mathcal{A}^{0,1}:=\left\{x\in\mathcal{A}^0\,|\, q(x)=1\,
ight\},\quad \mathcal{A}^{0,-1}:=\left\{x\in\mathcal{A}^0\,|\, q(x)=-1\,
ight\}.$$

The cone constraints become:

$$(\mathit{Gw})(x)\geq 0, \hspace{0.2cm} ext{a.e.} \hspace{0.2cm} x\in \mathcal{A}^{0,1}, \hspace{0.2cm} (\mathit{Gw})(x)\leq 0, \hspace{0.2cm} ext{a.e.} \hspace{0.2cm} x\in \mathcal{A}^{0,-1}.$$

Sensitivity and B-Stationarity

# (Differential) Sensitivity of the Solution Map III

But what about n > 1?

### But what about n > 1?

#### $\infty$ -dimensions:

Formulae for generalized derivatives available. Difficult to use in numerics.

#### **N**-dimensions

After discretization, much more possible if G and  $V_h := \operatorname{span}\{\psi_1, \ldots, \psi_N\}$ "second-order compatible."

 $d = S'_h(u; w)$  given as the (unique) solution of the following variational inequality of the first kind:

Find 
$$d \in \mathcal{K}_h : 0 \ge \langle B_h w - A'_h(y)d - \mathcal{Q}_h(y)d, d' - d \rangle, \ \forall d \in \mathcal{K}_h,$$

where  $Q_h(y)$  is the gradient associated with a positive semidefinite quadratic form.

# Model MPEC

#### Assumptions

min 
$$J(u, y)$$
 over  $(u, y) \in H \times V$ ,  
s.t.  $y = S(Bu)$ .

- V and H are Hilbert spaces
- $V \hookrightarrow H \equiv H^* \hookrightarrow V^*$  represents a Gelfand triple
- $J: H \times V \to \mathbb{R}$  is continuously Fréchet, bounded from below
- S is (Lipschitz, Hadamard dir. diff.) solution operator  $S: V^* 
  ightarrow V$  for VI
- $B \in \mathcal{L}(H)$  with B compact from H to  $V^*$
- $J(\cdot, S(B \cdot)) : H \to \mathbb{R}$  is coercive and weakly lower semi-continuous

## **B-Stationarity**

#### Theorem

If  $(u, y) \in H \times V$  is a (locally) optimal solution of the MPEC, then

 $\langle \nabla_y J(u,y), d \rangle_{V^*,V} + \langle \nabla_u J(u,y), w \rangle_{H^*,H} \ge 0, \ \forall (w,d) \in \operatorname{Gph} S'(Bu; B \cdot)$ 

How can we use B-stationarity for a numerical method?

### Towards a Conceptual Algorithm

Form Regularized Auxiliary Problem (RAP)

Let y = S(Bu), define RAP:

 $\min F(h) := \frac{1}{2}b(h,h) + J_y(u,y)S'(Bu;Bh) + J_u(u,y)h \text{ over } h \in H.$  (RAP)

 $b(h,h) := (Qh,h)_H$  coercive (elliptic) and bounded quadratic form  $(h \in H)$ .

RAP characterizes Solutions/B-stationarity

If (u, y) solves the MPEC, then  $0 \in H$  solves the RAP

#### **Descent Directions**

If (u, y) not a solution, then solution h of RAP is a proper descent direction of reduced objective  $\mathcal{J}(u) := J(u, S(Bu))$ .

# A Conceptual Algorithm

Algorithm 1 Conceptual AlgorithmInput: $u_0 \in H$ ;  $\epsilon \ge 0$ ; k := 01:Set  $y_0 = S(Bu_0)$ .2:Solve (RAP) with  $(u, y) = (u_0, y_0)$  to obtain  $h_0$ .3:while  $||h_k||_H > \epsilon$  do4:Compute  $u_{k+1} := u_k + t_k h_k$ ,  $t_k > 0$ , via a line search.5:Set  $y_{k+1} = S(Bu_{k+1})$ .6:Solve (RAP) with  $(u, y) = (u_{k+1}, y_{k+1})$  to obtain  $h_{k+1}$ .7:Set k := k + 1.8:end while

In general, this is an intractable method: (RAP) is an MPEC! But...

General Concept for Bundle-Free Method

## **Obtaining Descent Directions**

#### Exploiting the Sensitivity Analysis

Formulae for  $S'(Bu; Bh) \Rightarrow S$  is Gâteaux differentiable if meas $(\mathcal{A}^0) = 0$ .

### Smooth case: $m(\mathcal{A}^0) = 0$ (no biactivity)

- Explicit formula for S'(Bu; Bh) allows us to calculate a descent direction of J (adjoint state exists!)
- **2** Obtain the gradient  $\nabla_u \mathcal{J}(u)$  by solving adjoint equation.

### Nonsmooth case: $m(\mathcal{A}^0) > 0$ (biactivity present)

- **1** Approximate the VI associated with S'(Bu; Bh).
- **2**  $\exists \gamma > 0$  (finite penalty parameter):

$$h_{\gamma} := Q^{-1}(B^*p_{\gamma} - \nabla_u J(u, y)),$$

is a proper descent direction for  $\mathcal{J}.$ 

**(3)**  $p_{\gamma}$  solves linearization of the approximation of S'(Bu; 0).

# Applying the Idea

#### Optimal Control of a VI of Second Kind

$$\begin{split} \min J(u,y) &:= \frac{1}{2} ||y - y_d||_{L^2}^2 + \frac{\alpha}{2} ||u||_{L^2}^2 \text{ over } (u,y) \in L^2(\Omega) \times H^1_0(\Omega), \\ \text{s.t.} \quad y &= \operatorname{argmin} \left\{ \frac{1}{2} \int_{\Omega} |\nabla z|^2 dx - \int_{\Omega} (u+f) z dx + \int_{\Omega} |Gz| dx \right\}. \end{split}$$
(1)

Here,  $\Omega \subset \mathbb{R}^n$ ,  $n \in \{1, 2, 3\}$ , is open and bounded;  $\alpha > 0$ ;  $f, y_d \in L^2(\Omega)$ ; and  $G \in \mathcal{L}(H_0^1(\Omega), L^2(\Omega))$ . *B* is the canonical embedding.

Same arguments for control of the obstacle problem (need a few assumptions about the active sets).

#### The Directional Derivative of the Solution Map

For each  $u \in L^2(\Omega)$  & y = S(u) S'(u; h) = d; the unique solution of QP:

$$\begin{array}{ll} \min \frac{1}{2} \int_{\Omega} |(\nabla w)(x)|^2 dx - \int_{\Omega} h(x) w(x) dx \text{ over } w \in H_0^1(\Omega) \\ \text{s.t. } (Gw)(x) &= 0, \quad \text{a.e. } x \in \mathcal{A}^+, \quad (Gw)(x) \ge 0, \text{ a.e. } x \in \mathcal{A}^{0,1} \\ (Gw)(x) &\leq 0, \quad \text{a.e. } x \in \mathcal{A}^{0,-1} \end{array}$$

## **Obtaining Descent Directions**

Smooth case:  $m(\mathcal{A}^0) = 0$  (no biactivity)

1  $h = Q^{-1}(p - \alpha u)$  is a proper descent direction.

2) p solves the adjoint variational equation: (Gp)(x) = 0, a.e.  $x \in \mathcal{A}$  and

$$\int_{\Omega} \nabla p \cdot \nabla \psi dx = \int_{\Omega} (y_d - y) \psi dx, \ \forall \psi \in H^1_0(\Omega) : (G\psi)(x) = 0, \ \text{a.e.} \ x \in \mathcal{A}.$$

Nonsmooth case:  $m(\mathcal{A}^0) > 0$  (biactivity present)

**1** Approximate the VI associated with S'(u; h).

**2**  $\exists \gamma > 0$  (finite penalty parameter):

$$h_{\gamma}:=Q^{-1}(p_{\gamma}-\alpha u),$$

is a proper descent direction for  $\mathcal{J}.$ 

**(3)**  $p_{\gamma}$  solves linearization of the approximation of S'(u; 0).

1 For some penalty map, e.g.,  $\beta(r) := \max(0, r)$ , approximate S'(u; h) by  $d_{\gamma}(h)$ , the solution of

$$-\Delta d + \gamma G^* \left[ \chi_{\mathcal{A}^+} G d + \chi_{\mathcal{A}^{0,1}} \beta(G d) - \beta(-G d) \right] = h.$$

1 For some penalty map, e.g.,  $\beta(r) := \max(0, r)$ , approximate S'(u; h) by  $d_{\gamma}(h)$ , the solution of

$$-\Delta d + \gamma G^* \left[ \chi_{\mathcal{A}^+} G d + \chi_{\mathcal{A}^{0,1}} \beta(G d) - \beta(-G d) \right] = h.$$

2 Consider smoothed RAP (assume (u, y) not B-stationary):

$$\min F_{\gamma}(h) := \frac{1}{2} b(h, h) + \alpha(u, h)_{L^{2}} + (y - y_{d}, d_{\gamma}(h))_{L^{2}}, \text{ over } h \in L^{2}(\Omega).$$
(2)

 $h_{\gamma} := -\nabla_h F_{\gamma}(0) \neq 0$  is a proper descent direction of  $F_{\gamma}$  at zero. Here:

$$h_{\gamma} = Q^{-1}(p_{\gamma} - \alpha u).$$
$$-\Delta p_{\gamma} + \gamma G^* [\chi_{\mathcal{A}^+} G p_{\gamma}] = y_d - y.$$

where

I For some penalty map, e.g.,  $\beta(r) := \max(0, r)$ , approximate S'(u; h) by  $d_{\gamma}(h)$ , the solution of

$$-\Delta d + \gamma G^* \left[ \chi_{\mathcal{A}^+} G d + \chi_{\mathcal{A}^{0,1}} \beta(G d) - \beta(-G d) \right] = h.$$

2 Consider smoothed RAP (assume (u, y) not B-stationary):

$$\min F_{\gamma}(h) := \frac{1}{2} b(h, h) + \alpha(u, h)_{L^{2}} + (y - y_{d}, d_{\gamma}(h))_{L^{2}}, \text{ over } h \in L^{2}(\Omega).$$
(2)

 $h_{\gamma} := -\nabla_h F_{\gamma}(0) \neq 0$  is a proper descent direction of  $F_{\gamma}$  at zero. Here:

$$\begin{split} h_{\gamma} &= Q^{-1}(p_{\gamma} - \alpha u). \end{split}$$
 where  $-\Delta p_{\gamma} + \gamma G^* \left[ \chi_{\mathcal{A}^+} G p_{\gamma} \right] = y_d - y. \end{split}$  3 Moreover:  $d_{\gamma}(\cdot) \stackrel{H_0^1}{\rightarrow} S'(u; \cdot) \text{ as } \gamma \to +\infty.$ 

I For some penalty map, e.g.,  $\beta(r) := \max(0, r)$ , approximate S'(u; h) by  $d_{\gamma}(h)$ , the solution of

$$-\Delta d + \gamma G^* \left[ \chi_{\mathcal{A}^+} G d + \chi_{\mathcal{A}^{0,1}} \beta(G d) - \beta(-G d) \right] = h.$$

2 Consider smoothed RAP (assume (u, y) not B-stationary):

$$\min F_{\gamma}(h) := \frac{1}{2} b(h, h) + \alpha(u, h)_{L^2} + (y - y_d, d_{\gamma}(h))_{L^2}, \text{ over } h \in L^2(\Omega).$$
(2)

 $h_{\gamma}:=abla_{h}F_{\gamma}(0)
eq0$  is a proper descent direction of  $F_{\gamma}$  at zero. Here:

 $h_{\gamma} = Q^{-1}(p_{\gamma} - \alpha u).$ where  $-\Delta p_{\gamma} + \gamma G^{*} \left[\chi_{\mathcal{A}^{+}} G p_{\gamma}\right] = y_{d} - y.$ Moreover:  $d_{\gamma}(\cdot) \xrightarrow{P} S'(u; \cdot) \text{ as } \gamma \to +\infty.$ Once  $\gamma$  fulfills  $||d_{\gamma}(h_{\gamma}) - S'(u; h_{\gamma})||_{L^{2}} < \frac{1}{||y - y_{d}||_{L^{2}}} \cdot \frac{c_{1}}{4} ||h_{\gamma}||_{L^{2}}^{2},$ (3)

then  $h_{\gamma}$  is a descent direction of  $\mathcal{J}(u)$ !

# Algorithm I: A Descent Method for MPECs

 $u_0 \in L^2(\Omega); \gamma_0 > 0; \varepsilon > 0; k := 0; \rho_1 > 1, \rho_2 > 1;$ Input: Set  $y_0 := S(u_0), y_0^* := G^* q_0$  with  $q_0 \in \partial || \cdot ||_{1}(Gy_0)$ . while stopping criterion not fulfilled do if no biactivity then Set  $h_k = Q^{-1}(p_k - \alpha u_k)$ ,  $p_k$  solves adjoint eq. else Set  $h_k = Q^{-1}(p_k - \alpha u_k)$ , where  $p_k$  solves approx. adj. eq. while (3) fails do Choose  $\tilde{\gamma}_{k} > \rho_{1} \gamma_{k}$ . Set  $h_k = Q^{-1}(p_k - \alpha u_k)$ , where  $p_k$  solves approx. adj. eq. Set  $\gamma_{\nu} = \tilde{\gamma}_{\nu}$ . end while Compute  $u_{k+1} = u_k + t_k h_k$ ,  $t_k > 0$ , via a line search. Set  $y_{k+1} := S(u_{k+1}), y_{k+1}^* := G^* q_{k+1}$  with  $q_{k+1} \in \partial || \cdot ||_{1} (Gy_{k+1}).$ Choose  $\gamma_{k+1} > \rho_2 \gamma_k$ . end if Set k := k + 1. end while

> Theoretical convergence proofs imply C-stationarity  $\Rightarrow$ Stop when C-stationarity holds (up to a small tolerance).

## Details of Implementation I

#### Obtaining a feasible pair (u, y)

We solve the VI by rewriting as nonsmooth equation:

$$-\Delta y + G^* q = u + f,$$
  
 $Gy = \max(0, q + Gy - 1) + \max(0, -(1 + q + Gy)).$ 

Use semismooth Newton (locally superlinearly convergent on each mesh).

### Obtaining $d_{\gamma}(h)$

Use smoothed max-function  $\beta_{\varepsilon}(r)$  and solve

$$-\Delta d + \gamma G^* \left[ \chi_{\mathcal{A}^+} G d + \chi_{\mathcal{A}^{0,1}} \beta_{\varepsilon} ((Gd) - \beta_{\varepsilon} ((-Gd)) \right] = h$$

with standard Newton method.

#### The line search

Simple backtracking, Armijo-type...But what about Q?!

## Details of Implementation II

- $\textcircled{0} \ \Omega = [0,1] \times [0,1]$
- 2  $-\Delta$  discretized via finite differences, standard 5-point stencil
- Overall method implemented within a nested-grid strategy: Solve on coarse grid, prolongate (9-point-star), solve on next finer grid.
- Obscrete L<sup>2</sup>-norms used for residuals (OK considering regularity theory for the PDEs and VIs).

# Examples

### Example (Large Biactive Set, No Strongly Active Set, Discontinuous q)

Define

$$\begin{split} y^{\dagger}(\mathbf{x}_{1},\mathbf{x}_{2}) &= \beta_{\varepsilon}((-\Delta)^{-1}(\mu\sin((\mathbf{x}_{1}-0.5)(\mathbf{x}_{2}-0.5)))), \\ q^{\dagger}(\mathbf{x}_{1},\mathbf{x}_{2}) &= \chi_{\{y^{\dagger}>0\}}(\mathbf{x}_{1},\mathbf{x}_{2}) - \chi_{\{y^{\dagger}\leq0\}}(\mathbf{x}_{1},\mathbf{x}_{2}) + \chi_{[0.5,1]\times[0,0.5]}(\mathbf{x}_{1},\mathbf{x}_{2}), \end{split}$$

where  $\mu = 1E3$ ,  $\varepsilon = 1E-2$ ,

$$\begin{split} \{y^{\dagger} > 0\} &:= \left\{ (\mathbf{x}_1, \mathbf{x}_2) \in \Omega \left| y^{\dagger}(\mathbf{x}_1, \mathbf{x}_2) > 0 \right. \right\}, \\ \{y^{\dagger} \le 0\} &:= \left\{ (\mathbf{x}_1, \mathbf{x}_2) \in \Omega \left| y^{\dagger}(\mathbf{x}_1, \mathbf{x}_2) \le 0 \right. \right\}. \end{split}$$

Moreover, we set

$$f = -\Delta y^{\dagger} - y^{\dagger} + q^{\dagger}, \quad y_d = y^{\dagger} - q^{\dagger} - \alpha \Delta y^{\dagger}.$$

In addition,  $\alpha = 1$ ,  $u_0 = 0$ .

### Examples

### Example (Large Biactive Set, Large Strongly Active Set, Discontinuous q)

Define

$$\begin{split} y^{\dagger}(\mathbf{x}_{1},\mathbf{x}_{2}) &= \beta_{\varepsilon}((-\Delta)^{-1}(10\sin(5\mathbf{x}_{1})\cos(4\mathbf{x}_{2}))), \\ q^{\dagger}(\mathbf{x}_{1},\mathbf{x}_{2}) &= \chi_{\{y^{\dagger}>0\}}(\mathbf{x}_{1},\mathbf{x}_{2}) - \chi_{\{y^{\dagger}<0\}}(\mathbf{x}_{1},\mathbf{x}_{2}) + \chi_{\{y^{\dagger}==0\}}(\mathbf{x}_{1},\mathbf{x}_{2}), \end{split}$$

where  $\varepsilon = 1$ E-2, and  $\{y^{\dagger} > 0\}, \{y^{\dagger} < 0\}$ , and  $\{y^{\dagger} = 0\}$  are defined as in Example 4. We again set

$$f = -\Delta y^{\dagger} - y^{\dagger} + q^{\dagger}, \quad y_d = y^{\dagger} - q^{\dagger} - \alpha \Delta y^{\dagger}.$$

and  $\alpha = 1, u_0 = 0$ .

# Results Q = Id

| Example 1 |     |                       |             |     |   |             |        |  |  |  |  |
|-----------|-----|-----------------------|-------------|-----|---|-------------|--------|--|--|--|--|
| DoF       | k   | Final $  h_k  _{L^2}$ | Lin. Solves | ns  | s | $	au_{min}$ | ALSM   |  |  |  |  |
| 49        | 42  | 9.7193e-05            | 283         | 43  | 0 | 0.03125     | 6.7381 |  |  |  |  |
| 225       | 2   | 6.6522e-05            | 41          | 3   | 0 | 1           | 20.5   |  |  |  |  |
| 961       | 1   | 5.3036e-06            | 41          | 2   | 0 | 1           | 41*    |  |  |  |  |
| 3969      | 1   | 2.9248e-05            | 31          | 2   | 0 | 1           | 31*    |  |  |  |  |
| 16129     | 160 | 9.9635e-05            | 1063        | 161 | 0 | 0.015625    | 6.6438 |  |  |  |  |
| 65025     | 1   | 3.0284e-08            | 58          | 2   | 0 | 1           | 58*    |  |  |  |  |
| 261121    | 1   | 1.9197e-06            | 99          | 2   | 0 | 1           | 99*    |  |  |  |  |
| Example 2 |     |                       |             |     |   |             |        |  |  |  |  |
| DoF       | k   | Final $  h_k  _{L^2}$ | Lin. Solves | ns  | s | $	au_{min}$ | ALSM   |  |  |  |  |
| 961       | 528 | 9.9895e-05            | 2703        | 529 | 0 | 0.0019531   | 5.1193 |  |  |  |  |
| 3969      | 69  | 9.95832e-05           | 431         | 70  | 0 | 0.0039062   | 6.2463 |  |  |  |  |
| 16129     | 4   | 9.3982e-05            | 68          | 5   | 0 | 0.0625      | 17     |  |  |  |  |
| 65025     | 223 | 9.9525e-05            | 1254        | 224 | 0 | 0.0019531   | 5.6233 |  |  |  |  |
| 261121    | 378 | 9.9820e-05            | 2037        | 379 | 0 | 0.0019531   | 5.3889 |  |  |  |  |

### Adaptively Choosing $Q = \aleph_k Id$

#### A Two-Point/Barzilai-Borwein-Type Approach

```
(u_0, y_0, q_0), (u_1, y_1, q_1, h_1); \gamma_1 > 0; \varepsilon \ge 0; k := 1; \rho_1 > 1, \rho_2 > 1; \aleph_0 = 1.
Input:
         while stopping criterion not fulfilled do
               if no biactivity then
                     Set h_{k+1} = p_k - \alpha u_k p_k solves adj. eq.
                     Set u_{k+1} = u_k + \aleph_k^{-1} h_{k+1}.
               else
                     Set h_{k+1} = p_k - \alpha u_k, where p_k solves approx. adj. eq.
                     while (3) fails do
                          Choose \tilde{\gamma}_k > \rho_1 > 1\gamma_k.
                          Set h_{k+1} = p_k - \alpha u_k, where p_k solves approx. adj. eq.
                          Set \gamma_k = \tilde{\gamma}_k.
                     end while
                     Set u_{k+1} = u_k + \aleph_k^{-1} h_{k+1}
                     Set y_{k+1} := S(u_{k+1}), y_{k+1}^* := G^* q_{k+1} with q_{k+1} \in \partial || \cdot ||_{1} (Gy_{k+1}).
                     Choose \gamma_{k\perp 1} > \rho_2 \gamma_k.
               end if
               Set \aleph_{k+1} = -\frac{(u_{k+1} - u_k, h_{k+1} - h_k)_{L^2}}{||u_{k+1} - u_k||_{L^2}^2}
               Set k := k + 1
         end while
```

No theory yet, need to ensure  $\{\aleph_k\}_k$  is bounded.

| Example 1 |    |                       |             |    |   |                  |                  |  |  |  |  |
|-----------|----|-----------------------|-------------|----|---|------------------|------------------|--|--|--|--|
| DoF       | k  | Final $  h_k  _{L^2}$ | Lin. Solves | ns | s | ℵ <sub>min</sub> | ℵ <sub>max</sub> |  |  |  |  |
| 49        | 3  | 8.464e-06             | 13          | 4  | 0 | 0.99993          | 1.0266           |  |  |  |  |
| 225       | 2  | 5.9638e-05            | 16          | 3  | 0 | 1                | 1.033            |  |  |  |  |
| 961       | 1  | 5.3777e-06            | 19          | 2  | 0 | 1                | 1.0001           |  |  |  |  |
| 3969      | 1  | 1.4151e-05            | 14          | 2  | 0 | 0.99999          | 1                |  |  |  |  |
| 16129     | 1  | 4.1134e-07            | 31          | 2  | 0 | 1                | 1.0002           |  |  |  |  |
| 65025     | 1  | 2.9916e-08            | 42          | 2  | 0 | 1                | 1.0001           |  |  |  |  |
| 261121    | 1  | 2.6744e-06            | 40          | 2  | 0 | 0.9874           | 1                |  |  |  |  |
| Example 2 |    |                       |             |    |   |                  |                  |  |  |  |  |
| DoF       | k  | Final $  h_k  _{L^2}$ | Lin. Solves | ns | s | ℵ <sub>min</sub> | ℵ <sub>max</sub> |  |  |  |  |
| 49        | 2  | 8.464e-06             | 12          | 3  | 0 | 1                | 1.0001           |  |  |  |  |
| 225       | 3  | 5.9638e-05            | 12          | 4  | 0 | 1                | 1.358            |  |  |  |  |
| 961       | 1  | 5.3777e-06            | 9           | 2  | 0 | 1                | 1                |  |  |  |  |
| 3969      | 16 | 1.4151e-05            | 51          | 17 | 0 | 0.96857          | 18.3984          |  |  |  |  |
| 16129     | 4  | 4.1134e-07            | 27          | 5  | 0 | 1                | 3.2726           |  |  |  |  |
| 65025     | 2  | 2.9916e-08            | 19          | 3  | 0 | 1                | 2.1232           |  |  |  |  |
| 261121    | 2  | 2.6744e-06            | 25          | 3  | 0 | 1                | 1.3604           |  |  |  |  |















Figure: Biactive sets  $A^{0,-1}$  (lighter region) in Examples 1 (I.) and 2 (r.)