Bundle-Free Implicit Programming Approaches for the Optimal Control of Variational Inequalities of the First and Second Kind

Thomas M. Surowiec

Humboldt-Universität zu Berlin
Department of Mathematics
Joint Work with M. Hintermüller.

August 8, 2014

The "Lower-Level" Problem/Variational Inequality

Typical Variational Problems of Interest

- Contact problems in mechanics/free boundary problems
- Phase-field models with obstacle/nonsmooth potentials
- Volatility calibration in American options (Black-Scholes model)
- Parameter identification in image processing

The "Upper-Level" Problem/MPEC

How do we...

Bilevel Programming/Optimal Control/Parameter ID Problem

- Contact problems in mechanics/free boundary problems ...choose the applied force to achieve a desired state?
- Phase-field models with obstacle/nonsmooth potentials ...control the fluid to force a desired separation of phases?
- Volatility calibration in American options (Black-Scholes model) ...determine the true volatility based on market measurements?
- Parameter identification in image processing:
...obtain a robust (wrt stochasticity) or "distributed" regularization parameter?

General Modeling Framework

Consider VIs of the type:
Find $y \in V: \varphi\left(y^{\prime}\right) \geq \varphi(y)+\left\langle u+f-A y, y^{\prime}-y\right\rangle, \forall y^{\prime} \in V$, where (amongst other assumptions) $\varphi: V \rightarrow \mathbb{R}$ is convex.
V reflexive Banach space, $A: V \rightarrow V^{*}$ strongly monotone \Longrightarrow
Solution mapping $V^{*} \ni u \mapsto y$ (denoted $S(u)$) is Lipschitz.

For parameter ID usually much less continuity (loc. Lipschitz, Hölder,...). For today: We consider the Lipschitz case.

Implicit Programming vs. MPCC

General Modeling Framework: Implicit Programming

$$
\begin{aligned}
& \min J(u, y) \text { over }(u, y) \in H \times V \\
& \text { s.t. } y=S(B u)
\end{aligned}
$$

Other approaches:

- "MPCC" Replace $y=S(B u)$ by introducing slack/KKT-multiplier consider MPCC (assuming complementarity conditions can be written!)
- "Adapted Penalty" Smooth and regularize the variational inequality, consider sequence of related control problems.

(Differential) Sensitivity of the Solution Map I

How smooth is S ?

- In n-dimensions: S (loc.) Lipschitz $\Rightarrow S$ almost everywhere C^{1} (Rademacher).
- In ∞-dimensions: S (loc.) Lipschitz $\Rightarrow S$ Gâteaux differentiable up to "small" sets (Aronszajn, Preiss, Zaijcek, et al.)

In general, we cannot rule out these "exceptional" set.

(Differential) Sensitivity of the Solution Map II

Case 1. $\varphi(y):=i_{M}(y)$ (Variational Inequalities of the First Kind)

- $M \neq \emptyset$ closed, convex subset of refl. Banach space V
- i_{M} is the usual indicator

Here, $S: V^{*} \rightarrow V$ is the solution mapping of

$$
A(y)+N_{M}(y) \ni w
$$

with $w \in V^{*}$. We let $B \in \mathcal{L}\left(H, V^{*}\right)$, e.g., an embedding. H refl. B. sp.

(Differential) Sensitivity of the Solution Map II

Theorem

If M is "polyhedric" in the sense of Mignot/Haraux and $A: V \rightarrow V^{*}$ is strongly monotone, Fréchet differentiable, and $A(0)=0$, then
(1) The solution mapping S of the VI is Hadamard directionally differentiable.
(2) $d=S^{\prime}(B u, B h)$ is the unique solution of the VI:

$$
\begin{aligned}
& \text { Find } d \in \mathcal{K}:\left\langle A^{\prime}(y) d-B h, z-d\right\rangle \geq 0, \forall z \in \mathcal{K} . \\
& \mathcal{K}:=T_{M}(y) \cap\{w-A(y)\}^{\perp}(\text { "critical cone") }
\end{aligned}
$$

Proof.

(1) Use Mignot/Haraux (1976/1977), Levy \& Rockafellar (1994). Allows one to "differentiate" the subdifferential $\partial \varphi$.
(2) S Lipschitz \Rightarrow generalized derivative \equiv Hadamard directional derivative ${ }_{\square}$
$A(0)=0 \Rightarrow A^{\prime}(y)$ coercive (elliptic). E.g., Linear op., p-Laplacian $(p>2)$.

(Differential) Sensitivity of the Solution Map III

Case 2. $\varphi(y):=\int_{\Omega}|(G y)(x)|_{n, m} d x$ (Variational Inequalities of the Second Kind)

- $\Omega \subset \mathbb{R}^{n}$ open and bounded, $n \in \mathbb{N}$
- $G: V \rightarrow L^{2}(\Omega)^{n, m}$ bounded and linear.
- | $\left.\cdot\right|_{n, m}:$ abs. val. $(n=m=1)$, Euclid. $(n>1, m=1)$, Frob. $(n, m>1)$

Here, $S: V^{*} \rightarrow V$ is the solution mapping of

$$
A(y)+G^{*} \partial\|\cdot\|_{L^{1}}(G y) \ni w
$$

with $w \in V^{*}$. We let $B \in \mathcal{L}\left(H, V^{*}\right)$, e.g., an embedding. H refl. B. sp.

(Differential) Sensitivity of the Solution Map III

Examples

- Mechanics: 2D-(very!)-Simplified Friction

$$
\varphi(\cdot):=\|\cdot\|_{L^{1}(\Omega)}, B:=E_{L^{2} \hookrightarrow H^{-1}}, A=-\Delta, G=\beta I d
$$

- Petroleum Engineering: Steady-State Laminar Flow of Bingham Fluid

$$
\varphi(\cdot):=\|\nabla \cdot\|_{\mathbb{L}^{1}(\Omega)}, \quad B:=E_{L^{2} \hookrightarrow H^{-1}}, \quad A=-\Delta, \quad G=\nabla .
$$

- Digital Image Processing: Approximation of TV-Regularized Problem

$$
\varphi(\cdot):=\beta\|\nabla \cdot\|_{\mathbb{L}^{1}(\Omega)}, \quad B:=K^{*}, \quad A=-\alpha \Delta+K^{*} K, \quad G=\nabla
$$

(Differential) Sensitivity of the Solution Map III

Theorem

If $n=m=1$ and $A: V \rightarrow V^{*}$ is strongly monotone, Fréchet differentiable, and $A(0)=0$, then
(1) The solution mapping S of the VI is Hadamard directionally differentiable.
(2) $d=S^{\prime}(B u, B h)$ is the unique solution of the VI:

$$
\text { Find } d \in \mathcal{K}:\left\langle A^{\prime}(y) d-B h, z-d\right\rangle \geq 0, \forall z \in \mathcal{K}
$$

\mathcal{K} is a type of "generalized critical cone."

(Differential) Sensitivity of the Solution Map III

Generalized Critical Cone

Given $u, y=S(B u), q \in \partial\|\cdot\|_{L^{1}}(G y)$. Define the biactive and strongly active sets by

$$
\begin{aligned}
\mathcal{A}^{0} & :=\{x \in \Omega| |(G y)(x)|=0,|q(x)|=1\} \\
\mathcal{A}^{+} & :=\{x \in \Omega \|(G y)(x)|=0,|q(x)|<1\}
\end{aligned}
$$

Then

Here, $q(x) \in[-1,1]$ we can split \mathcal{A}^{0} into two further subsets:

$$
\mathcal{A}^{0,1}:=\left\{x \in \mathcal{A}^{0} \mid q(x)=1\right\}, \quad \mathcal{A}^{0,-1}:=\left\{x \in \mathcal{A}^{0} \mid q(x)=-1\right\}
$$

The cone constraints become:

$$
(G w)(x) \geq 0, \quad \text { a.e. } x \in \mathcal{A}^{0,1}, \quad(G w)(x) \leq 0, \quad \text { a.e. } x \in \mathcal{A}^{0,-1}
$$

(Differential) Sensitivity of the Solution Map III

But what about $n>1$?

(Differential) Sensitivity of the Solution Map III

But what about $n>1$?

∞-dimensions:

Formulae for generalized derivatives available. Difficult to use in numerics.

N-dimensions

After discretization, much more possible if G and $V_{h}:=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}$ "second-order compatible."
$d=S_{h}^{\prime}(u ; w)$ given as the (unique) solution of the following variational inequality of the first kind:

Find $d \in \mathcal{K}_{h}: 0 \geq\left\langle B_{h} w-A_{h}^{\prime}(y) d-\mathcal{Q}_{h}(y) d, d^{\prime}-d\right\rangle, \forall d \in \mathcal{K}_{h}$,
where $\mathcal{Q}_{h}(y)$ is the gradient associated with a positive semidefinite quadratic form.

Model MPEC

Assumptions

$$
\begin{aligned}
& \min J(u, y) \text { over }(u, y) \in H \times V, \\
& \text { s.t. } y=S(B u) .
\end{aligned}
$$

- V and H are Hilbert spaces
- $V \hookrightarrow H \equiv H^{*} \hookrightarrow V^{*}$ represents a Gelfand triple
- $J: H \times V \rightarrow \mathbb{R}$ is continuously Fréchet, bounded from below
- S is (Lipschitz, Hadamard dir. diff.) solution operator $S: V^{*} \rightarrow V$ for VI
- $B \in \mathcal{L}(H)$ with B compact from H to V^{*}
- J($\cdot, S(B \cdot)): H \rightarrow \mathbb{R}$ is coercive and weakly lower semi-continuous

B-Stationarity

Theorem

$$
\begin{aligned}
& \text { If }(u, y) \in H \times V \text { is a (locally) optimal solution of the MPEC, then } \\
& \qquad\left\langle\nabla_{y} J(u, y), d\right\rangle_{V^{*}, v}+\left\langle\nabla_{u} J(u, y), w\right\rangle_{H^{*}, H} \geq 0, \forall(w, d) \in \operatorname{Gph} S^{\prime}(B u ; B \cdot)
\end{aligned}
$$

How can we use B-stationarity for a numerical method?

Towards a Conceptual Algorithm

Form Regularized Auxiliary Problem (RAP)

Let $y=S(B u)$, define RAP:

$$
\min F(h):=\frac{1}{2} b(h, h)+J_{y}(u, y) S^{\prime}(B u ; B h)+J_{u}(u, y) h \text { over } h \in H
$$

$b(h, h):=(Q h, h)_{H}$ coercive (elliptic) and bounded quadratic form $(h \in H)$.

RAP characterizes Solutions/B-stationarity

If (u, y) solves the MPEC, then $0 \in H$ solves the RAP

Descent Directions

If (u, y) not a solution, then solution h of RAP is a proper descent direction of reduced objective $\mathcal{J}(u):=J(u, S(B u))$.

A Conceptual Algorithm

Algorithm 1 Conceptual Algorithm
Input: $u_{0} \in H ; \epsilon \geq 0 ; k:=0$
1: Set $y_{0}=S\left(B u_{0}\right)$.
2: Solve (RAP) with $(u, y)=\left(u_{0}, y_{0}\right)$ to obtain h_{0}.
3: while $\left\|h_{k}\right\|_{H}>\epsilon$ do
4: Compute $u_{k+1}:=u_{k}+t_{k} h_{k}, t_{k}>0$, via a line search.
5: \quad Set $y_{k+1}=S\left(B u_{k+1}\right)$.
6: \quad Solve (RAP) with $(u, y)=\left(u_{k+1}, y_{k+1}\right)$ to obtain h_{k+1}.
7: \quad Set $k:=k+1$.
8: end while

In general, this is an intractable method: (RAP) is an MPEC! But...

Obtaining Descent Directions

Exploiting the Sensitivity Analysis

Formulae for $S^{\prime}(B u ; B h) \Rightarrow S$ is Gâteaux differentiable if meas $\left(\mathcal{A}^{0}\right)=0$.

Smooth case: $m\left(\mathcal{A}^{0}\right)=0$ (no biactivity)
(1) Explicit formula for $S^{\prime}(B u ; B h)$ allows us to calculate a descent direction of \mathcal{J} (adjoint state exists!)
(2) Obtain the gradient $\nabla_{u} \mathcal{J}(u)$ by solving adjoint equation.

Nonsmooth case: $m\left(\mathcal{A}^{0}\right)>0$ (biactivity present)
(1) Approximate the VI associated with $S^{\prime}(B u ; B h)$.
(2) $\exists \gamma>0$ (finite penalty parameter):

$$
h_{\gamma}:=Q^{-1}\left(B^{*} p_{\gamma}-\nabla_{u} J(u, y)\right)
$$

is a proper descent direction for \mathcal{J}.
(3) p_{γ} solves linearization of the approximation of $S^{\prime}(B u ; 0)$.

Applying the Idea

Optimal Control of a VI of Second Kind

$$
\begin{aligned}
& \min J(u, y):=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}}^{2} \operatorname{over}(u, y) \in L^{2}(\Omega) \times H_{0}^{1}(\Omega), \\
& \text { s.t. } \quad y=\operatorname{argmin}\left\{\frac{1}{2} \int_{\Omega}|\nabla z|^{2} d x-\int_{\Omega}(u+f) z d x+\int_{\Omega}|G z| d x\right\} .
\end{aligned}
$$

Here, $\Omega \subset \mathbb{R}^{n}, n \in\{1,2,3\}$, is open and bounded; $\alpha>0 ; f, y_{d} \in L^{2}(\Omega)$; and $G \in \mathcal{L}\left(H_{0}^{1}(\Omega), L^{2}(\Omega)\right) . B$ is the canonical embedding.

Same arguments for control of the obstacle problem (need a few assumptions about the active sets).

The Directional Derivative of the Solution Map

For each $u \in L^{2}(\Omega) \& y=S(u) S^{\prime}(u ; h)=d$; the unique solution of QP:

$$
\begin{aligned}
& \min \frac{1}{2} \int_{\Omega}|(\nabla w)(x)|^{2} d x-\int_{\Omega} h(x) w(x) d x \text { over } w \in H_{0}^{1}(\Omega) \\
& \text { s.t. }(G w)(x)=0, \quad \text { a.e. } x \in \mathcal{A}^{+}, \quad(G w)(x) \geq 0 \text {, a.e. } x \in \mathcal{A}^{0,1} \\
& \quad(G w)(x) \leq 0, \quad \text { a.e. } x \in \mathcal{A}^{0,-1}
\end{aligned}
$$

Obtaining Descent Directions

Smooth case: $m\left(\mathcal{A}^{0}\right)=0$ (no biactivity)

(1) $h=Q^{-1}(p-\alpha u)$ is a proper descent direction.
(2) p solves the adjoint variational equation: $(G p)(x)=0$, a.e. $x \in \mathcal{A}$ and

$$
\int_{\Omega} \nabla p \cdot \nabla \psi d x=\int_{\Omega}\left(y_{d}-y\right) \psi d x, \forall \psi \in H_{0}^{1}(\Omega):(G \psi)(x)=0, \text { a.e. } x \in \mathcal{A}
$$

Nonsmooth case: $m\left(\mathcal{A}^{0}\right)>0$ (biactivity present)
(1) Approximate the VI associated with $S^{\prime}(u ; h)$.
(2) $\exists \gamma>0$ (finite penalty parameter):

$$
h_{\gamma}:=Q^{-1}\left(p_{\gamma}-\alpha u\right)
$$

is a proper descent direction for \mathcal{J}.
(3) p_{γ} solves linearization of the approximation of $S^{\prime}(u ; 0)$.

Obtaining Descent Directions in Nonsmooth Case

(1) For some penalty map, e.g., $\beta(r):=\max (0, r)$, approximate $S^{\prime}(u ; h)$ by $d_{\gamma}(h)$, the solution of

$$
-\Delta d+\gamma G^{*}\left[\chi_{\mathcal{A}^{+}} G d+\chi_{\mathcal{A}^{0,1}} \beta(G d)-\beta(-G d)\right]=h .
$$

Obtaining Descent Directions in Nonsmooth Case

(1) For some penalty map, e.g., $\beta(r):=\max (0, r)$, approximate $S^{\prime}(u ; h)$ by $d_{\gamma}(h)$, the solution of

$$
-\Delta d+\gamma G^{*}\left[\chi_{\mathcal{A}^{+}} G d+\chi_{\mathcal{A}^{0,1}} \beta(G d)-\beta(-G d)\right]=h
$$

(2) Consider smoothed RAP (assume (u, y) not B-stationary):

$$
\begin{equation*}
\min F_{\gamma}(h):=\frac{1}{2} b(h, h)+\alpha(u, h)_{L^{2}}+\left(y-y_{d}, d_{\gamma}(h)\right)_{L^{2}}, \text { over } h \in L^{2}(\Omega) \tag{2}
\end{equation*}
$$

$h_{\gamma}:=-\nabla_{h} F_{\gamma}(0) \neq 0$ is a proper descent direction of F_{γ} at zero. Here:
where

$$
\begin{gathered}
h_{\gamma}=Q^{-1}\left(p_{\gamma}-\alpha u\right) . \\
-\Delta p_{\gamma}+\gamma G^{*}\left[\chi_{\mathcal{A}^{+}} G p_{\gamma}\right]=y_{d}-y
\end{gathered}
$$

Obtaining Descent Directions in Nonsmooth Case

(1) For some penalty map, e.g., $\beta(r):=\max (0, r)$, approximate $S^{\prime}(u ; h)$ by $d_{\gamma}(h)$, the solution of

$$
-\Delta d+\gamma G^{*}\left[\chi_{\mathcal{A}^{+}} G d+\chi_{\mathcal{A}^{0,1}} \beta(G d)-\beta(-G d)\right]=h
$$

(2) Consider smoothed RAP (assume (u, y) not B-stationary):

$$
\begin{equation*}
\min F_{\gamma}(h):=\frac{1}{2} b(h, h)+\alpha(u, h)_{L^{2}}+\left(y-y_{d}, d_{\gamma}(h)\right)_{L^{2}}, \text { over } h \in L^{2}(\Omega) \tag{2}
\end{equation*}
$$

$h_{\gamma}:=-\nabla_{h} F_{\gamma}(0) \neq 0$ is a proper descent direction of F_{γ} at zero. Here:

$$
h_{\gamma}=Q^{-1}\left(p_{\gamma}-\alpha u\right)
$$

where

$$
-\Delta p_{\gamma}+\gamma G^{*}\left[\chi_{\mathcal{A}}+G p_{\gamma}\right]=y_{d}-y
$$

(3) Moreover: $d_{\gamma}(\cdot) \xrightarrow{H_{0}^{1}} S^{\prime}(u ; \cdot)$ as $\gamma \rightarrow+\infty$.

Obtaining Descent Directions in Nonsmooth Case

(1) For some penalty map, e.g., $\beta(r):=\max (0, r)$, approximate $S^{\prime}(u ; h)$ by $d_{\gamma}(h)$, the solution of

$$
-\Delta d+\gamma G^{*}\left[\chi_{\mathcal{A}^{+}} G d+\chi_{\mathcal{A}^{0,1}} \beta(G d)-\beta(-G d)\right]=h .
$$

(2) Consider smoothed RAP (assume (u, y) not B-stationary):

$$
\begin{equation*}
\min F_{\gamma}(h):=\frac{1}{2} b(h, h)+\alpha(u, h)_{L^{2}}+\left(y-y_{d}, d_{\gamma}(h)\right)_{L^{2}}, \text { over } h \in L^{2}(\Omega) . \tag{2}
\end{equation*}
$$

$h_{\gamma}:=-\nabla_{h} F_{\gamma}(0) \neq 0$ is a proper descent direction of F_{γ} at zero. Here:

$$
h_{\gamma}=Q^{-1}\left(p_{\gamma}-\alpha u\right) .
$$

where

$$
-\Delta p_{\gamma}+\gamma G^{*}\left[\chi_{\mathcal{A}^{+}} G p_{\gamma}\right]=y_{d}-y .
$$

(3) Moreover: $d_{\gamma}(\cdot) \xrightarrow{H_{0}^{1}} S^{\prime}(u ; \cdot)$ as $\gamma \rightarrow+\infty$.
(4) Once γ fulfills

$$
\begin{equation*}
\left\|d_{\gamma}\left(h_{\gamma}\right)-S^{\prime}\left(u ; h_{\gamma}\right)\right\|_{L^{2}}<\frac{1}{\left\|y-y_{d}\right\|_{L^{2}}} \cdot \frac{c_{1}}{4}\left\|h_{\gamma}\right\|_{L^{2}}^{2}, \tag{3}
\end{equation*}
$$

then h_{γ} is a descent direction of $\mathcal{J}(u)$!

Algorithm I: A Descent Method for MPECs

```
Input: \(u_{0} \in L^{2}(\Omega) ; \gamma_{0}>0 ; \varepsilon \geq 0 ; k:=0 ; \rho_{1}>1, \rho_{2}>1\);
    Set \(y_{0}:=S\left(u_{0}\right), y_{0}^{*}:=G^{*} q_{0}\) with \(q_{0} \in \partial\|\cdot\|_{L}\left(G y_{0}\right)\).
    while stopping criterion not fulfilled do
        if no biactivity then
            Set \(h_{k}=Q^{-1}\left(p_{k}-\alpha u_{k}\right), p_{k}\) solves adjoint eq.
        else
            Set \(h_{k}=Q^{-1}\left(p_{k}-\alpha u_{k}\right)\), where \(p_{k}\) solves approx. adj. eq.
            while (3) fails do
            Choose \(\tilde{\gamma}_{k}>\rho_{1} \gamma_{k}\).
            Set \(h_{k}=Q^{-1}\left(p_{k}-\alpha u_{k}\right)\), where \(p_{k}\) solves approx. adj. eq.
            Set \(\gamma_{k}=\tilde{\gamma}_{k}\).
            end while
            Compute \(u_{k+1}=u_{k}+t_{k} h_{k}, t_{k}>0\), via a line search.
            Set \(y_{k+1}:=S\left(u_{k+1}\right), y_{k+1}^{*}:=G^{*} q_{k+1}\) with \(q_{k+1} \in \partial\|\cdot\|_{L^{1}}\left(G y_{k+1}\right)\).
            Choose \(\gamma_{k+1}>\rho_{2} \gamma_{k}\).
    end if
    Set \(k:=k+1\).
    end while
```


Theoretical convergence proofs imply C-stationarity \Rightarrow

Stop when C-stationarity holds (up to a small tolerance).

Details of Implementation I

Obtaining a feasible pair (u, y)

We solve the VI by rewriting as nonsmooth equation:

$$
\begin{aligned}
-\Delta y+G^{*} q & =u+f \\
G y & =\max (0, q+G y-1)+\max (0,-(1+q+G y))
\end{aligned}
$$

Use semismooth Newton (locally superlinearly convergent on each mesh).

Obtaining $d_{\gamma}(h)$

Use smoothed max-function $\beta_{\varepsilon}(r)$ and solve

$$
-\Delta d+\gamma G^{*}\left[\chi_{\mathcal{A}^{+}} G d+\chi_{\mathcal{A}^{0,1}} \beta_{\varepsilon}\left((G d)-\beta_{\varepsilon}((-G d)]=h\right.\right.
$$

with standard Newton method.

The line search

Simple backtracking, Armijo-type...But what about Q ?!

Details of Implementation II

(1) $\Omega=[0,1] \times[0,1]$
(2) $-\Delta$ discretized via finite differences, standard 5-point stencil
(3) Overall method implemented within a nested-grid strategy: Solve on coarse grid, prolongate (9 -point-star), solve on next finer grid.
(9) Discrete L^{2}-norms used for residuals (OK considering regularity theory for the PDEs and VIs).

Examples

Example (Large Biactive Set, No Strongly Active Set, Discontinuous q)

Define

$$
\begin{aligned}
& y^{\dagger}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\beta_{\varepsilon}\left((-\Delta)^{-1}\left(\mu \sin \left(\left(\mathbf{x}_{1}-0.5\right)\left(\mathbf{x}_{2}-0.5\right)\right)\right)\right) \\
& q^{\dagger}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\chi_{\left\{y^{\dagger}>0\right\}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-\chi_{\left\{y^{\dagger} \leq 0\right\}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)+\chi_{[0.5,1] \times[0,0.5]}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
\end{aligned}
$$

where $\mu=1 \mathrm{E} 3, \varepsilon=1 \mathrm{E}-2$,

$$
\begin{aligned}
\left\{y^{\dagger}>0\right\} & :=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \Omega \mid y^{\dagger}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)>0\right\} \\
\left\{y^{\dagger} \leq 0\right\} & :=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \Omega \mid y^{\dagger}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \leq 0\right\}
\end{aligned}
$$

Moreover, we set

$$
f=-\Delta y^{\dagger}-y^{\dagger}+q^{\dagger}, \quad y_{d}=y^{\dagger}-q^{\dagger}-\alpha \Delta y^{\dagger}
$$

In addition, $\alpha=1, u_{0}=0$.

Examples

Example (Large Biactive Set, Large Strongly Active Set, Discontinuous q)

Define

$$
\begin{aligned}
& y^{\dagger}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\beta_{\varepsilon}\left((-\Delta)^{-1}\left(10 \sin \left(5 \mathbf{x}_{1}\right) \cos \left(4 \mathbf{x}_{2}\right)\right)\right) \\
& q^{\dagger}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\chi_{\left\{y^{\dagger}>0\right\}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-\chi_{\left\{y^{\dagger}<0\right\}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)+\chi_{\left\{y^{\dagger}==0\right\}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right),
\end{aligned}
$$

where $\varepsilon=1 \mathrm{E}-2$, and $\left\{y^{\dagger}>0\right\},\left\{y^{\dagger}<0\right\}$, and $\left\{y^{\dagger}=0\right\}$ are defined as in Example 4. We again set

$$
f=-\Delta y^{\dagger}-y^{\dagger}+q^{\dagger}, \quad y_{d}=y^{\dagger}-q^{\dagger}-\alpha \Delta y^{\dagger}
$$

and $\alpha=1, u_{0}=0$.

Results $Q=/ d$

Example 1

DoF	k	Final $\left\\|h_{k}\right\\|_{L^{2}}$	Lin. Solves	ns	s	$\tau_{\min }$	ALSM
49	42	$9.7193 \mathrm{e}-05$	283	43	0	0.03125	6.7381
225	2	$6.6522 \mathrm{e}-05$	41	3	0	1	20.5
961	1	$5.3036 \mathrm{e}-06$	41	2	0	1	41^{*}
3969	1	$2.9248 \mathrm{e}-05$	31	2	0	1	31^{*}
16129	160	$9.9635 \mathrm{e}-05$	1063	161	0	0.015625	6.6438
65025	1	$3.0284 \mathrm{e}-08$	58	2	0	1	58^{*}
261121	1	$1.9197 \mathrm{e}-06$	99	2	0	1	99^{*}

Example 2

DoF	k	Final $\left\\|h_{k}\right\\|_{L^{2}}$	Lin. Solves	ns	s	$\tau_{\min }$	ALSM
961	528	$9.9895 \mathrm{e}-05$	2703	529	0	0.0019531	5.1193
3969	69	$9.95832 \mathrm{e}-05$	431	70	0	0.0039062	6.2463
16129	4	$9.3982 \mathrm{e}-05$	68	5	0	0.0625	17
65025	223	$9.9525 \mathrm{e}-05$	1254	224	0	0.0019531	5.6233
261121	378	$9.9820 \mathrm{e}-05$	2037	379	0	0.0019531	5.3889

Adaptively Choosing $Q=\aleph_{k} / d$

A Two-Point/Barzilai-Borwein-Type Approach

```
Input: \(\quad\left(u_{0}, y_{0}, q_{0}\right),\left(u_{1}, y_{1}, q_{1}, h_{1}\right) ; \gamma_{1}>0 ; \varepsilon \geq 0 ; k:=1 ; \rho_{1}>1, \rho_{2}>1 ; \aleph_{0}=1\).
    while stopping criterion not fulfilled do
    if no biactivity then
            Set \(h_{k+1}=p_{k}-\alpha u_{k} p_{k}\) solves adj. eq.
            Set \(u_{k+1}=u_{k}+\aleph_{k}^{-1} h_{k+1}\).
    else
            Set \(h_{k+1}=p_{k}-\alpha u_{k}\), where \(p_{k}\) solves approx. adj. eq.
            while (3) fails do
                Choose \(\tilde{\gamma}_{k}>\rho_{1}>1 \gamma_{k}\).
                Set \(h_{k+1}=p_{k}-\alpha u_{k}\), where \(p_{k}\) solves approx. adj. eq.
                Set \(\gamma_{k}=\tilde{\gamma}_{k}\).
            end while
            Set \(u_{k+1}=u_{k}+\aleph_{k}^{-1} h_{k+1}\)
            Set \(y_{k+1}:=S\left(u_{k+1}\right), y_{k+1}^{*}:=G^{*} q_{k+1}\) with \(q_{k+1} \in \partial\|\cdot\|_{L}\left(G y_{k+1}\right)\).
            Choose \(\gamma_{k+1}>\rho_{2} \gamma_{k}\).
    end if
    Set \(\aleph_{k+1}=-\frac{\left(u_{k+1}-u_{k}, h_{k+1}-h_{k}\right)_{L^{2}}}{\left\|u_{k+1}-u_{k}\right\|_{L^{2}}^{2}}\)
    Set \(k:=k+1\).
    end while
```

No theory yet, need to ensure $\left\{\aleph_{k}\right\}_{k}$ is bounded.

Results $Q=\aleph_{k} / d$

Example 1										
DoF	k	Final $\left\\|h_{k}\right\\|_{L^{2}}$	Lin. Solves	ns	s	$\aleph_{\text {min }}$	$\aleph_{\text {max }}$			
49	3	8.464 e	13	4	0	0.99993	1.0266			
225	2	$5.9638 \mathrm{e}-05$	16	3	0	1	1.033			
961	1	$5.3777 \mathrm{e}-06$	19	2	0	1	1.0001			
3969	1	$1.4151 \mathrm{e}-05$	14	2	0	0.99999	1			
16129	1	$4.1134 \mathrm{e}-07$	31	2	0	1	1.0002			
65025	1	$2.9916 \mathrm{e}-08$	42	2	0	1	1.0001			
261121	1	$2.6744 \mathrm{e}-06$	40	2	0	0.9874	1			
Example 2										
DoF	k	Final $\left\\|h_{k}\right\\| \\|_{L^{2}}$	Lin. Solves	ns	s	$\aleph_{\text {min }}$	$\aleph_{\text {max }}$			
49	2	$8.464 \mathrm{e}-06$	12	3	0	1	1.0001			
225	3	$5.9638 \mathrm{e}-05$	12	4	0	1	1.358			
961	1	$5.377 \mathrm{e}-06$	9	2	0	1	1			
3969	16	$1.4151 \mathrm{e}-05$	51	17	0	0.96857	18.3984			
16129	4	$4.1134 \mathrm{e}-07$	27	5	0	1	3.2726			
65025	2	$2.9916 \mathrm{e}-08$	19	3	0	1	2.1232			
261121	2	$2.6744 \mathrm{e}-06$	25	3	0	1	1.3604			

Applications and Implementation

Results $Q=\aleph_{k} / d$

Figure: Optimal Controls u for Example 1 (I.) and 2 (r.)

Applications and Implementation

Results $Q=\aleph_{k} / d$

Figure: (I.) Subgradient q and (r.) State y for Example 1

Applications and Implementation

Results $Q=\aleph_{k} / d$

Figure: (1.) Subgradient q and (r.) State y for Example 2

Applications and Implementation

Results $Q=\aleph_{k} / d$

Figure: Biactive sets $\mathcal{A}^{0,-1}$ (lighter region) in Examples 1 (I.) and 2 (r.)

