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Introduction

The“Lower-Level” Problem/Variational Inequality

Typical Variational Problems of Interest

Contact problems in mechanics/free boundary problems

Phase-field models with obstacle/nonsmooth potentials

Volatility calibration in American options (Black-Scholes model)

Parameter identification in image processing
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Introduction

The“Upper-Level” Problem/MPEC

How do we...

Bilevel Programming/Optimal Control/Parameter ID Problem

Contact problems in mechanics/free boundary problems
...choose the applied force to achieve a desired state?

Phase-field models with obstacle/nonsmooth potentials
...control the fluid to force a desired separation of phases?

Volatility calibration in American options (Black-Scholes model)
...determine the true volatility based on market measurements?

Parameter identification in image processing:
...obtain a robust (wrt stochasticity) or “distributed” regularization
parameter?
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Introduction

General Modeling Framework

Consider VIs of the type:

Find y ∈ V : ϕ(y ′) ≥ ϕ(y) + 〈u + f − Ay , y ′ − y〉, ∀y ′ ∈ V ,

where (amongst other assumptions) ϕ : V → R is convex.

V reflexive Banach space, A : V → V ∗ strongly monotone
=⇒

Solution mapping V ∗ 3 u 7→ y (denoted S(u)) is Lipschitz.

For parameter ID usually much less continuity (loc. Lipschitz, Hölder,...).
For today: We consider the Lipschitz case.
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Introduction

Implicit Programming vs. MPCC

General Modeling Framework: Implicit Programming

min J(u, y) over (u, y) ∈ H × V ,
s.t. y = S(Bu).

Other approaches:

“MPCC” Replace y = S(Bu) by introducing slack/KKT-multiplier
consider MPCC (assuming complementarity conditions can be written!)

“Adapted Penalty” Smooth and regularize the variational inequality,
consider sequence of related control problems.
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Sensitivity and B-Stationarity

(Differential) Sensitivity of the Solution Map I

How smooth is S?

In n-dimensions: S (loc.) Lipschitz ⇒ S almost everywhere C 1

(Rademacher).

In ∞-dimensions: S (loc.) Lipschitz ⇒ S Gâteaux differentiable up to
”small” sets (Aronszajn, Preiss, Zaijcek, et al.)

In general, we cannot rule out these “exceptional” set.
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Sensitivity and B-Stationarity

(Differential) Sensitivity of the Solution Map II

Case 1. ϕ(y) := iM(y) (Variational Inequalities of the First Kind)

M 6= ∅ closed, convex subset of refl. Banach space V

iM is the usual indicator

Here, S : V ∗ → V is the solution mapping of

A(y) + NM(y) 3 w

with w ∈ V ∗. We let B ∈ L(H,V ∗), e.g., an embedding. H refl. B. sp.
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Sensitivity and B-Stationarity

(Differential) Sensitivity of the Solution Map II

Theorem

If M is “polyhedric” in the sense of Mignot/Haraux and A : V → V ∗ is
strongly monotone, Fréchet differentiable, and A(0) = 0, then

1 The solution mapping S of the VI is Hadamard directionally differentiable.

2 d = S ′(Bu,Bh) is the unique solution of the VI:

Find d ∈ K : 〈A′(y)d − Bh, z − d〉 ≥ 0,∀z ∈ K.

K := TM(y) ∩ {w − A(y)}⊥ (”critical cone”)

Proof.

1 Use Mignot/Haraux (1976/1977), Levy & Rockafellar (1994). Allows one
to “differentiate” the subdifferential ∂ϕ.

2 S Lipschitz ⇒ generalized derivative ≡ Hadamard directional derivative.

A(0) = 0 ⇒ A′(y) coercive (elliptic). E.g., Linear op., p-Laplacian (p > 2).
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Sensitivity and B-Stationarity

(Differential) Sensitivity of the Solution Map III

Case 2. ϕ(y) :=
∫

Ω
|(Gy)(x)|n,mdx (Variational Inequalities of the Second Kind)

Ω ⊂ Rn open and bounded, n ∈ N
G : V → L2(Ω)n,m bounded and linear.

| · |n,m : abs. val. (n = m = 1), Euclid. (n > 1, m = 1), Frob. (n,m > 1)

Here, S : V ∗ → V is the solution mapping of

A(y) + G∗∂‖ · ‖L1 (Gy) 3 w

with w ∈ V ∗. We let B ∈ L(H,V ∗), e.g., an embedding. H refl. B. sp.
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Sensitivity and B-Stationarity

(Differential) Sensitivity of the Solution Map III

Examples

Mechanics: 2D-(very!)-Simplified Friction

ϕ(·) := || · ||L1(Ω), B := EL2↪→H−1 , A = −∆, G = βId .

Petroleum Engineering: Steady-State Laminar Flow of Bingham Fluid

ϕ(·) := ||∇ · ||L1(Ω), B := EL2↪→H−1 , A = −∆, G = ∇.

Digital Image Processing: Approximation of TV-Regularized Problem

ϕ(·) := β||∇ · ||L1(Ω), B := K∗, A = −α∆ + K∗K , G = ∇.
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Sensitivity and B-Stationarity

(Differential) Sensitivity of the Solution Map III

Theorem

If n = m = 1 and A : V → V ∗ is strongly monotone, Fréchet differentiable, and
A(0) = 0, then

1 The solution mapping S of the VI is Hadamard directionally differentiable.

2 d = S ′(Bu,Bh) is the unique solution of the VI:

Find d ∈ K : 〈A′(y)d − Bh, z − d〉 ≥ 0,∀z ∈ K.

K is a type of “generalized critical cone.”
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Sensitivity and B-Stationarity

(Differential) Sensitivity of the Solution Map III

Generalized Critical Cone

Given u, y = S(Bu), q ∈ ∂|| · ||L1 (Gy). Define the biactive and strongly active
sets by

A0 := {x ∈ Ω ||(Gy)(x)| = 0, |q(x)| = 1} ,
A+ := {x ∈ Ω ||(Gy)(x)| = 0, |q(x)| < 1} .

Then

K :=

{
w ∈ V

∣∣∣∣ (Gw)(x) = 0, a.e. x ∈ A+,
(Gw)(x) ∈ cone(q(x)), a.e. x ∈ A0.

}
Here, q(x) ∈ [−1, 1] we can split A0 into two further subsets:

A0,1 :=
{

x ∈ A0 |q(x) = 1
}
, A0,−1 :=

{
x ∈ A0 |q(x) = −1

}
.

The cone constraints become:

(Gw)(x) ≥ 0, a.e. x ∈ A0,1, (Gw)(x) ≤ 0, a.e. x ∈ A0,−1.
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Sensitivity and B-Stationarity

(Differential) Sensitivity of the Solution Map III

But what about n > 1?

∞-dimensions:

Formulae for generalized derivatives available. Difficult to use in numerics.

N-dimensions

After discretization, much more possible if G and Vh := span{ψ1, . . . , ψN}
”second-order compatible.”

d = S ′h(u; w) given as the (unique) solution of the following variational
inequality of the first kind:

Find d ∈ Kh : 0 ≥ 〈Bhw − A′h(y)d −Qh(y)d , d ′ − d〉, ∀d ∈ Kh,

where Qh(y) is the gradient associated with a positive semidefinite quadratic
form.
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General Concept for Bundle-Free Method

Model MPEC

Assumptions

min J(u, y) over (u, y) ∈ H × V ,
s.t. y = S(Bu).

V and H are Hilbert spaces

V ↪→ H ≡ H∗ ↪→ V ∗ represents a Gelfand triple

J : H × V → R is continuously Fréchet, bounded from below

S is (Lipschitz, Hadamard dir. diff.) solution operator S : V ∗ → V for VI

B ∈ L(H) with B compact from H to V ∗

J(·, S(B·)) : H → R is coercive and weakly lower semi-continuous
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General Concept for Bundle-Free Method

B-Stationarity

Theorem

If (u, y) ∈ H × V is a (locally) optimal solution of the MPEC, then

〈∇yJ(u, y), d〉V∗,V + 〈∇uJ(u, y),w〉H∗,H ≥ 0, ∀(w , d) ∈ Gph S ′(Bu; B·)

How can we use B-stationarity for a numerical method?
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General Concept for Bundle-Free Method

Towards a Conceptual Algorithm

Form Regularized Auxiliary Problem (RAP)

Let y = S(Bu), define RAP:

min F (h) := 1
2
b(h, h) + Jy (u, y)S ′(Bu; Bh) + Ju(u, y)h over h ∈ H. (RAP)

b(h, h) := (Qh, h)H coercive (elliptic) and bounded quadratic form (h ∈ H).

RAP characterizes Solutions/B-stationarity

If (u, y) solves the MPEC, then 0 ∈ H solves the RAP

Descent Directions

If (u, y) not a solution, then solution h of RAP is a proper descent direction of
reduced objective J (u) := J(u, S(Bu)).
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General Concept for Bundle-Free Method

A Conceptual Algorithm

Algorithm 1 Conceptual Algorithm

Input: u0 ∈ H; ε ≥ 0; k := 0
1: Set y0 = S(Bu0).
2: Solve (RAP) with (u, y) = (u0, y0) to obtain h0.
3: while ||hk ||H > ε do
4: Compute uk+1 := uk + tkhk , tk > 0, via a line search.
5: Set yk+1 = S(Buk+1).
6: Solve (RAP) with (u, y) = (uk+1, yk+1) to obtain hk+1.
7: Set k := k + 1.
8: end while

In general, this is an intractable method: (RAP) is an MPEC! But...
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General Concept for Bundle-Free Method

Obtaining Descent Directions

Exploiting the Sensitivity Analysis

Formulae for S ′(Bu; Bh)⇒ S is Gâteaux differentiable if meas(A0) = 0.

Smooth case: m(A0) = 0 (no biactivity)

1 Explicit formula for S ′(Bu; Bh) allows us to calculate a descent direction
of J (adjoint state exists!)

2 Obtain the gradient ∇uJ (u) by solving adjoint equation.

Nonsmooth case: m(A0) > 0 (biactivity present)

1 Approximate the VI associated with S ′(Bu; Bh).

2 ∃γ > 0 (finite penalty parameter):

hγ := Q−1(B∗pγ −∇uJ(u, y)),

is a proper descent direction for J .

3 pγ solves linearization of the approximation of S ′(Bu; 0).
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Applications and Implementation

Applying the Idea

Optimal Control of a VI of Second Kind

min J(u, y) := 1
2
||y − yd ||2L2 + α

2
||u||2L2 over (u, y) ∈ L2(Ω)× H1

0 (Ω),

s.t. y = argmin
{

1
2

∫
Ω
|∇z |2dx −

∫
Ω

(u + f )zdx +
∫

Ω
|Gz |dx

}
.

(1)

Here, Ω ⊂ Rn, n ∈ {1, 2, 3}, is open and bounded; α > 0; f , yd ∈ L2(Ω); and
G ∈ L(H1

0 (Ω), L2(Ω)). B is the canonical embedding.

Same arguments for control of the obstacle problem
(need a few assumptions about the active sets).

The Directional Derivative of the Solution Map

For each u ∈ L2(Ω) & y = S(u) S ′(u; h) = d ; the unique solution of QP:

min 1
2

∫
Ω
|(∇w)(x)|2dx −

∫
Ω

h(x)w(x)dx over w ∈ H1
0 (Ω)

s.t. (Gw)(x) = 0, a.e. x ∈ A+, (Gw)(x) ≥ 0, a.e. x ∈ A0,1

(Gw)(x) ≤ 0, a.e. x ∈ A0,−1
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Applications and Implementation

Obtaining Descent Directions

Smooth case: m(A0) = 0 (no biactivity)

1 h = Q−1(p − αu) is a proper descent direction.

2 p solves the adjoint variational equation: (Gp)(x) = 0, a.e. x ∈ A and∫
Ω

∇p ·∇ψdx =

∫
Ω

(yd−y)ψdx , ∀ψ ∈ H1
0 (Ω) : (Gψ)(x) = 0, a.e. x ∈ A.

Nonsmooth case: m(A0) > 0 (biactivity present)

1 Approximate the VI associated with S ′(u; h).

2 ∃γ > 0 (finite penalty parameter):

hγ := Q−1(pγ − αu),

is a proper descent direction for J .

3 pγ solves linearization of the approximation of S ′(u; 0).
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Applications and Implementation

Obtaining Descent Directions in Nonsmooth Case

1 For some penalty map, e.g., β(r) := max(0, r), approximate S′(u; h) by dγ (h), the solution of

− ∆d + γG∗
[
χA+Gd + χA0,1β(Gd)− β(−Gd)

]
= h.

2 Consider smoothed RAP (assume (u, y) not B-stationary):

min Fγ (h) :=
1

2
b(h, h) + α(u, h)

L2 + (y − yd , dγ (h))
L2 , over h ∈ L2(Ω). (2)

hγ := −∇hFγ (0) 6= 0 is a proper descent direction of Fγ at zero. Here:

hγ = Q−1(pγ − αu).

where −∆pγ + γG∗
[
χA+Gpγ

]
= yd − y.

3 Moreover: dγ (·)
H1

0→ S′(u; ·) as γ → +∞.

4 Once γ fulfills ||dγ (hγ )− S′(u; hγ )||
L2 <

1

||y − yd ||L2

·
c1

4
||hγ ||2L2 , (3)

then hγ is a descent direction of J (u)!
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Applications and Implementation
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Applications and Implementation

Algorithm I: A Descent Method for MPECs

Input: u0 ∈ L2(Ω); γ0 > 0; ε ≥ 0; k := 0; ρ1 > 1, ρ2 > 1;
Set y0 := S(u0), y∗0 := G∗q0 with q0 ∈ ∂|| · ||L1 (Gy0).
while stopping criterion not fulfilled do

if no biactivity then

Set hk = Q−1(pk − αuk ), pk solves adjoint eq.
else

Set hk = Q−1(pk − αuk ), where pk solves approx. adj. eq.
while (3) fails do

Choose γ̃k > ρ1γk .

Set hk = Q−1(pk − αuk ), where pk solves approx. adj. eq.
Set γk = γ̃k .

end while
Compute uk+1 = uk + tkhk , tk > 0, via a line search.
Set yk+1 := S(uk+1), y∗k+1 := G∗qk+1 with qk+1 ∈ ∂|| · ||L1 (Gyk+1).
Choose γk+1 > ρ2γk .

end if
Set k := k + 1.

end while

Theoretical convergence proofs imply C-stationarity
⇒

Stop when C-stationarity holds (up to a small tolerance).
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Applications and Implementation

Details of Implementation I

Obtaining a feasible pair (u, y)

We solve the VI by rewriting as nonsmooth equation:

−∆y + G∗q = u + f ,

Gy = max(0, q + Gy − 1) + max(0,−(1 + q + Gy)).

Use semismooth Newton (locally superlinearly convergent on each mesh).

Obtaining dγ(h)

Use smoothed max-function βε(r) and solve

−∆d + γG∗ [χA+ Gd + χA0,1βε((Gd)− βε((−Gd)] = h

with standard Newton method.

The line search

Simple backtracking, Armijo-type...But what about Q?!
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Applications and Implementation

Details of Implementation II

1 Ω = [0, 1]× [0, 1]

2 −∆ discretized via finite differences, standard 5-point stencil

3 Overall method implemented within a nested-grid strategy: Solve on
coarse grid, prolongate (9-point-star), solve on next finer grid.

4 Discrete L2-norms used for residuals (OK considering regularity theory for
the PDEs and VIs).
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Applications and Implementation

Examples

Example (Large Biactive Set, No Strongly Active Set, Discontinuous q)

Define

y†(x1, x2) = βε((−∆)−1(µ sin((x1 − 0.5)(x2 − 0.5)))),

q†(x1, x2) = χ{y†>0}(x1, x2)− χ{y†≤0}(x1, x2) + χ[0.5,1]×[0,0.5](x1, x2),

where µ = 1E3, ε = 1E-2,

{y† > 0} :=
{

(x1, x2) ∈ Ω
∣∣∣y†(x1, x2) > 0

}
,

{y† ≤ 0} :=
{

(x1, x2) ∈ Ω
∣∣∣y†(x1, x2) ≤ 0

}
.

Moreover, we set

f = −∆y† − y† + q†, yd = y† − q† − α∆y†.

In addition, α = 1, u0 = 0.
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Applications and Implementation

Examples

Example (Large Biactive Set, Large Strongly Active Set, Discontinuous q)

Define

y†(x1, x2) = βε((−∆)−1(10 sin(5x1)cos(4x2))),

q†(x1, x2) = χ{y†>0}(x1, x2)− χ{y†<0}(x1, x2) + χ{y†==0}(x1, x2),

where ε = 1E-2, and {y† > 0}, {y† < 0}, and {y† = 0} are defined as in
Example 4. We again set

f = −∆y† − y† + q†, yd = y† − q† − α∆y†.

and α = 1, u0 = 0.
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Applications and Implementation

Results Q = Id

Example 1

DoF k Final ||hk ||L2 Lin. Solves ns s τmin ALSM

49 42 9.7193e-05 283 43 0 0.03125 6.7381
225 2 6.6522e-05 41 3 0 1 20.5
961 1 5.3036e-06 41 2 0 1 41∗

3969 1 2.9248e-05 31 2 0 1 31∗

16129 160 9.9635e-05 1063 161 0 0.015625 6.6438
65025 1 3.0284e-08 58 2 0 1 58∗

261121 1 1.9197e-06 99 2 0 1 99∗

Example 2

DoF k Final ||hk ||L2 Lin. Solves ns s τmin ALSM

961 528 9.9895e-05 2703 529 0 0.0019531 5.1193
3969 69 9.95832e-05 431 70 0 0.0039062 6.2463

16129 4 9.3982e-05 68 5 0 0.0625 17
65025 223 9.9525e-05 1254 224 0 0.0019531 5.6233

261121 378 9.9820e-05 2037 379 0 0.0019531 5.3889
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Applications and Implementation

Adaptively Choosing Q = ℵk Id

A Two-Point/Barzilai-Borwein-Type Approach

Input: (u0, y0, q0), (u1, y1, q1, h1); γ1 > 0; ε ≥ 0; k := 1; ρ1 > 1, ρ2 > 1; ℵ0 = 1.
while stopping criterion not fulfilled do

if no biactivity then
Set hk+1 = pk − αuk pk solves adj. eq.

Set uk+1 = uk + ℵ−1
k

hk+1.
else

Set hk+1 = pk − αuk , where pk solves approx. adj. eq.
while (3) fails do

Choose γ̃k > ρ1 > 1γk .
Set hk+1 = pk − αuk , where pk solves approx. adj. eq.
Set γk = γ̃k .

end while
Set uk+1 = uk + ℵ−1

k
hk+1

Set yk+1 := S(uk+1), y∗k+1 := G∗qk+1 with qk+1 ∈ ∂|| · ||L1 (Gyk+1).
Choose γk+1 > ρ2γk .

end if

Set ℵk+1 = −
(uk+1 − uk , hk+1 − hk )

L2

||uk+1 − uk ||2L2

Set k := k + 1.

end while

No theory yet, need to ensure {ℵk}k is bounded.
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Applications and Implementation

Results Q = ℵk Id
Example 1

DoF k Final ||hk ||L2 Lin. Solves ns s ℵmin ℵmax

49 3 8.464e-06 13 4 0 0.99993 1.0266
225 2 5.9638e-05 16 3 0 1 1.033
961 1 5.3777e-06 19 2 0 1 1.0001

3969 1 1.4151e-05 14 2 0 0.99999 1
16129 1 4.1134e-07 31 2 0 1 1.0002
65025 1 2.9916e-08 42 2 0 1 1.0001

261121 1 2.6744e-06 40 2 0 0.9874 1

Example 2

DoF k Final ||hk ||L2 Lin. Solves ns s ℵmin ℵmax

49 2 8.464e-06 12 3 0 1 1.0001
225 3 5.9638e-05 12 4 0 1 1.358
961 1 5.3777e-06 9 2 0 1 1

3969 16 1.4151e-05 51 17 0 0.96857 18.3984
16129 4 4.1134e-07 27 5 0 1 3.2726
65025 2 2.9916e-08 19 3 0 1 2.1232

261121 2 2.6744e-06 25 3 0 1 1.3604
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Applications and Implementation

Results Q = ℵk Id

Figure: Optimal Controls u for Example 1 (l.) and 2 (r.)
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Applications and Implementation

Results Q = ℵk Id

Figure: (l.) Subgradient q and (r.) State y for Example 1
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Figure: (l.) Subgradient q and (r.) State y for Example 2
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Figure: Biactive sets A0,−1 (lighter region) in Examples 1 (l.) and 2 (r.)
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