Revisiting Preprocessing for Generalized Nash Games

Todd Munson

Mathematics and Computer Science Division
Argonne National Laboratory

August 5, 2014

Outline

- Generalized Nash game formulation
- Parametric variational inequalities
- Preprocessing techniques

Generalized Nash Games

Problem Formulation

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible

Generalized Nash Games

Problem Formulation

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium $\left(x^{*}, y^{*}\right)$

Generalized Nash Games

Problem Formulation

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium $\left(x^{*}, y^{*}\right)$
- Many applications

Generalized Nash Games

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ and $c_{1}(\cdot, y)$ are convex for each y
- $f_{2}(x, \cdot)$ and $c_{2}(x, \cdot)$ are convex for each x
- $c_{1}(\cdot, y)$ and $c_{2}(x, \cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$\min _{x \geq 0}$	$f_{1}\left(x, y^{*}\right)$				
subject to	$c_{1}\left(x, y^{*}\right) \leq 0$	$\Leftrightarrow \quad$	$0 \leq x$	\perp	$\nabla_{x} f_{1}\left(x, y^{*}\right)+\lambda_{1}^{T} \nabla_{x} c_{1}\left(x, y^{*}\right) \geq 0$
:---	:---	:---			
$0 \leq \lambda_{1}$	\perp	$-c_{1}\left(x, y^{*}\right) \geq 0$			

Generalized Nash Games

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ and $c_{1}(\cdot, y)$ are convex for each y
- $f_{2}(x, \cdot)$ and $c_{2}(x, \cdot)$ are convex for each x
- $c_{1}(\cdot, y)$ and $c_{2}(x, \cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$\min _{y \geq 0}$	$f_{2}\left(x^{*}, y\right)$				
subject to	$c_{2}\left(x^{*}, y\right) \leq 0$	$\Leftrightarrow \quad$	$0 \leq y$	\perp	$\nabla_{y} f_{2}\left(x^{*}, y\right)+\lambda_{2}^{T} \nabla_{y} c_{2}\left(x^{*}, y\right) \geq 0$
:---	:---	:---	:---		
$0 \leq \lambda_{2}$	\perp	$-c_{2}\left(x^{*}, y\right) \geq 0$			

Generalized Nash Games

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ and $c_{1}(\cdot, y)$ are convex for each y
- $f_{2}(x, \cdot)$ and $c_{2}(x, \cdot)$ are convex for each x
- $c_{1}(\cdot, y)$ and $c_{2}(x, \cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$
\begin{array}{lll}
0 \leq x & \perp & \nabla_{x} f_{1}(x, y)+\lambda_{1}^{T} \nabla_{x} c_{1}(x, y) \geq 0 \\
0 \leq y & \perp & \nabla_{y} f_{2}(x, y)+\lambda_{2}^{T} \nabla_{y} c_{2}(x, y) \geq 0 \\
0 \leq \lambda_{1} & \perp & -c_{1}(x, y) \geq 0 \\
0 \leq \lambda_{2} & \perp & -c_{2}(x, y) \geq 0
\end{array}
$$

- Nonlinear complementarity problem
- Each solution is an equilibrium for the Nash game
- Other (better) formulations can be constructed
- Recommend using the MOPEC machinery

Generalized Nash Games

A Simple Example

- First player

$$
\begin{array}{ll}
\min _{x \geq 0} & \frac{1}{2} x^{2}-x \\
\text { subject to } & x+y \geq 0
\end{array}
$$

- Second player

$$
\min _{y \geq 0} \frac{1}{2} y^{2}-x y
$$

Generalized Nash Games

A Simple Example

- First player

$$
\begin{array}{ll}
\min _{x \geq 0} & \frac{1}{2} x^{2}-x \\
\text { subject to } & x+y \geq 0
\end{array}
$$

- Second player

$$
\min _{y \geq 0} \frac{1}{2} y^{2}-x y
$$

- Complementarity problem

$$
\begin{array}{lll}
0 \leq x & \perp & x-\lambda-1 \geq 0 \\
0 \leq y & \perp & -x+y \geq 0 \\
0 \leq \lambda & \perp & x+y \geq 0
\end{array}
$$

Generalized Nash Games

A Simple Example

- First player

$$
\begin{array}{ll}
\min _{x \geq 0}^{x \geq 0} & \frac{1}{2} x^{2}-x \\
\text { subject to } & x+y \geq 0
\end{array}
$$

- Second player

$$
\min _{y \geq 0} \frac{1}{2} y^{2}-x y
$$

- Complementarity problem

$$
\begin{array}{lll}
0 \leq x & \perp & x-\lambda-1 \geq 0 \\
0 \leq y & \perp & -x+y \geq 0 \\
0 \leq \lambda & \perp & x+y \geq 0
\end{array}
$$

- Notice that the first player constraint is redundant
- What structure do we need to identify to eliminate?
- What other operations can be done with this structure?

Parametric Variational Inequalities

Definition

- Let $F: \Re^{n} \rightarrow \Re^{n}$ be continuously differentiable
- Let $X(p) \subseteq \Re^{n}$ be a closed convex set for each p
- Given $p \in \Re^{n}$, find find $x \in X(p)$ such that

$$
\langle F(x), y-x\rangle \geq 0 \quad \forall y \in X(p)
$$

Parametric Variational Inequalities

Definition

- Let $F: \Re^{n} \rightarrow \Re^{n}$ be continuously differentiable
- Let $X(p) \subseteq \Re^{n}$ be a closed convex set for each p
- Given $p \in \Re^{n}$, find find $x \in X(p)$ such that

$$
\langle F(x), y-x\rangle \geq 0 \quad \forall y \in X(p)
$$

- Equivalent formulation is the generalized equation

$$
0 \in F(x)+N_{X(p)}(x)
$$

where the normal cone to $X(p)$ at $x \in X(p)$ is

$$
N_{X(p)}(x):=\{\bar{x} \mid\langle\bar{x}, y-x\rangle \leq 0 \forall y \in X(p)\}
$$

Parametric Variational Inequalities

Definition

- Let $F: \Re^{n} \rightarrow \Re^{n}$ be continuously differentiable
- Let $X(p) \subseteq \Re^{n}$ be a closed convex set for each p
- Given $p \in \Re^{n}$, find find $x \in X(p)$ such that

$$
\langle F(x), y-x\rangle \geq 0 \quad \forall y \in X(p)
$$

- Equivalent formulation is the generalized equation

$$
0 \in F(x)+N_{X(p)}(x)
$$

where the normal cone to $X(p)$ at $x \in X(p)$ is

$$
N_{X(p)}(x):=\{\bar{x} \mid\langle\bar{x}, y-x\rangle \leq 0 \forall y \in X(p)\}
$$

- Special cases include
- Nonlinear equations when $X=\Re^{n}$
- Nonlinear complementarity when $X=\Re_{+}^{n}$
- Mixed complementarity when $X=[I, u]^{n}$

Parametric Variational Inequalities

Simplified Theory (based on Robinson)

- Let $F: \Re^{n} \rightarrow \Re^{n}, A \in \Re^{m \times n}, B \in \Re^{m \times n}$, and $b \in \Re^{m}$.

Parametric Variational Inequalities

Simplified Theory (based on Robinson)

- Let $F: \Re^{n} \rightarrow \Re^{n}, A \in \Re^{m \times n}, B \in \Re^{m \times n}$, and $b \in \Re^{m}$.
- If x and λ solve

$$
\begin{array}{rll}
0 \leq x & \perp & F(x)-A^{T} \lambda \geq 0 \tag{1}\\
\lambda & & A x+B p+b=0
\end{array}
$$

then

$$
\begin{equation*}
0 \in F(x)+N_{X(p)}(x) \tag{2}
\end{equation*}
$$

where $X=\{x \mid x \geq 0$ and $A x+B p+b=0\}$.

Parametric Variational Inequalities

Simplified Theory (based on Robinson)

- Let $F: \Re^{n} \rightarrow \Re^{n}, A \in \Re^{m \times n}, B \in \Re^{m \times n}$, and $b \in \Re^{m}$.
- If x and λ solve

$$
\begin{array}{rll}
0 \leq x & \perp & F(x)-A^{T} \lambda \geq 0 \tag{1}\\
\lambda & & A x+B p+b=0
\end{array}
$$

then

$$
\begin{equation*}
0 \in F(x)+N_{X(p)}(x) \tag{2}
\end{equation*}
$$

where $X=\{x \mid x \geq 0$ and $A x+B p+b=0\}$.

- If x solves (2), then multipliers λ exist such that x and λ solve (1).

Parametric Variational Inequalities

Simplified Theory (based on Robinson)

- Let $F: \Re^{n} \rightarrow \Re^{n}, A \in \Re^{m \times n}, B \in \Re^{m \times n}$, and $b \in \Re^{m}$.
- If x and λ solve

$$
\begin{array}{rll}
0 \leq x & \perp & F(x)-A^{T} \lambda \geq 0 \tag{1}\\
\lambda & & A x+B p+b=0
\end{array}
$$

then

$$
\begin{equation*}
0 \in F(x)+N_{X(p)}(x) \tag{2}
\end{equation*}
$$

where $X=\{x \mid x \geq 0$ and $A x+B p+b=0\}$.

- If x solves (2), then multipliers λ exist such that x and λ solve (1).

Note: $X(p)$ and $N_{X(p)}(\cdot)$ are geometric objects and we are free to choose among equivalent algebraic representations.

Preprocessing

Basic Methodology

- Given an arbitrary complementarity problem

Preprocessing

Basic Methodology

- Given an arbitrary complementarity problem
- Discover parametric structure within the problem

Preprocessing

Basic Methodology

- Given an arbitrary complementarity problem
- Discover parametric structure within the problem
- Convert the problem into parametric variational inequality
- Choose representation of the polyhedral constraint set
- Reduce model size and complexity
- Improve algorithm performance
- Detect unsolvable models

Preprocessing

Basic Methodology

- Given an arbitrary complementarity problem
- Discover parametric structure within the problem
- Convert the problem into parametric variational inequality
- Choose representation of the polyhedral constraint set
- Reduce model size and complexity
- Improve algorithm performance
- Detect unsolvable models
- Recover reduced complementarity problem

Preprocessing

Discovering Structure

The structure we need to identify is

$$
\begin{array}{lll}
0 \leq x & \perp & F(x, y)-A^{T} \lambda \geq 0 \\
0 \leq y & \perp & G(x, y) \geq 0 \\
0 \leq \lambda & \perp & A x+B y+b \geq 0
\end{array}
$$

- Provided with a list of linear rows and columns for the problem
- For each linear column we perform the following
- Check that the row is linear
- Reject rows having a diagonal entry
- Ensure elements in common have opposite signs

Preprocessing

Discovering Structure

The structure we need to identify is

$$
\begin{array}{lll}
0 \leq x & \perp & F(x, y)-A^{T} \lambda \geq 0 \\
0 \leq y & \perp & G(x, y) \geq 0 \\
0 \leq \lambda & \perp & A x+B y+b \geq 0
\end{array}
$$

- Provided with a list of linear rows and columns for the problem
- For each linear column we perform the following
- Check that the row is linear
- Reject rows having a diagonal entry
- Ensure elements in common have opposite signs
- Can negate rows corresponding to equalities

$$
\begin{array}{lll}
0 \leq x & \perp & x-\lambda+1 \geq 0 \\
0 \leq y & \perp & x+y+4 \geq 0 \\
\lambda & & -2 x-4 y+6=0
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq x & \perp & x-\lambda+1 \geq 0 \\
0 \leq y & \perp & x+y+4 \geq 0 \\
\lambda & & x+2 y-3=0
\end{array}
$$

Preprocessing

- Given eligible rows and columns
- Reject those requiring scaling or sign changes (can be relaxed)
- Use a greedy heuristic to assemble maximal polyhedral set
- Choose a remaining column
- Add next column sharing some nonzero entries if possible
- Continue adding columns until no more can be added
- Repeat to identify multiple polyhedral sets

Preprocessing

Assembling Sets

- Given eligible rows and columns
- Reject those requiring scaling or sign changes (can be relaxed)
- Use a greedy heuristic to assemble maximal polyhedral set
- Choose a remaining column
- Add next column sharing some nonzero entries if possible
- Continue adding columns until no more can be added
- Repeat to identify multiple polyhedral sets
- Structure can be conveyed to capable solvers
- A primal/dual structure recovered for optimization problems
- Parametric polyhedral variational inequalities for other problems

Preprocessing

Possible Reductions

- Reductions on a single constraint include
- Singleton rows
- Doubleton rows with a column singleton
- Forcing conditions
- Reductions using polyhedral sets include
- Duplicate rows
- Implied variable bounds

Example

Singleton Reduction

1. Complementarity problem

$$
\begin{array}{lll}
0 \leq x & \perp & x-z-1 \geq 0 \\
0 \leq y & \perp & -x+y \geq 0 \\
0 \leq z & \perp & x+y \geq 0
\end{array}
$$

Example

Singleton Reduction

1. Complementarity problem

$$
\begin{array}{lll}
0 \leq x & \perp & x-z-1 \geq 0 \\
0 \leq y & \perp & -x+y \geq 0 \\
0 \leq z & \perp & x+y \geq 0
\end{array}
$$

2. Form equivalent polyhedral problem

$$
\begin{aligned}
& 0 \in x-1+N_{X(y)}(x) \\
& 0 \in-x+y+N_{\Re_{+}}(y)
\end{aligned}
$$

where $X=\{x \mid x \geq 0$ and $x+y \geq 0\}$ with $y \geq 0$

Example

Singleton Reduction

1. Complementarity problem

$$
\begin{array}{lll}
0 \leq x & \perp & x-z-1 \geq 0 \\
0 \leq y & \perp & -x+y \geq 0 \\
0 \leq z & \perp & x+y \geq 0
\end{array}
$$

2. Form equivalent polyhedral problem

$$
\begin{aligned}
& 0 \in x-1+N_{X(y)}(x) \\
& 0 \in-x+y+N_{\Re_{+}}(y)
\end{aligned}
$$

where $X=\{x \mid x \geq 0$ and $x+y \geq 0\}$ with $y \geq 0$
3. Remove redundant inequality
4. Recover reduced complementarity problem

$$
\begin{array}{lll}
0 \leq x & \perp & x-1 \geq 0 \\
0 \leq y & \perp & -x+y \geq 0
\end{array}
$$

with the solution $x=1$ and $y=1$

Example

Singleton Reduction

1. Complementarity problem

$$
\begin{array}{lll}
0 \leq x & \perp & x-z-1 \geq 0 \\
0 \leq y & \perp & -x+y \geq 0 \\
0 \leq z & \perp & x+y \geq 0
\end{array}
$$

2. Form equivalent polyhedral problem

$$
\begin{aligned}
& 0 \in x-1+N_{X(y)}(x) \\
& 0 \in-x+y+N_{\Re_{+}}(y)
\end{aligned}
$$

where $X=\{x \mid x \geq 0$ and $x+y \geq 0\}$ with $y \geq 0$
3. Remove redundant inequality
4. Recover reduced complementarity problem

$$
\begin{array}{lll}
0 \leq x & \perp & x-1 \geq 0 \\
0 \leq y & \perp & -x+y \geq 0
\end{array}
$$

with the solution $x=1$ and $y=1$
5. Compute multiplier $z=0$

Example

Forcing Condition

1. Complementarity problem

$$
\begin{array}{lll}
0 \leq x \leq 1 & \perp & x-z+2 \\
0 \leq y \leq 1 & \perp & -2 x+y \\
0 \leq z & \perp & x+y \geq 2
\end{array}
$$

Example

Forcing Condition

1. Complementarity problem

$$
\begin{array}{lll}
0 \leq x \leq 1 & \perp & x-z+2 \\
0 \leq y \leq 1 & \perp & -2 x+y \\
0 \leq z & \perp & x+y \geq 2
\end{array}
$$

2. Form equivalent polyhedral problem

$$
\begin{aligned}
& 0 \in x+2+N_{X(y)}(x) \\
& 0 \in-2 x+y+N_{Y}(y)
\end{aligned}
$$

where $X=\{x \mid 0 \leq x \leq 1$ and $x+y \geq 2\}$ with $0 \leq y \leq 1$

Example

Forcing Condition

1. Complementarity problem

$$
\begin{array}{lll}
0 \leq x \leq 1 & \perp & x-z+2 \\
0 \leq y \leq 1 & \perp & -2 x+y \\
0 \leq z & \perp & x+y \geq 2
\end{array}
$$

2. Form equivalent polyhedral problem

$$
\begin{aligned}
& 0 \in x+2+N_{X(y)}(x) \\
& 0 \in-2 x+y+N_{Y}(y)
\end{aligned}
$$

where $X=\{x \mid 0 \leq x \leq 1$ and $x+y \geq 2\}$ with $0 \leq y \leq 1$
3. Eliminate $x=1$ but need to leave remaining side constraint
4. Recover reduced complementarity problem

$$
\begin{array}{lll}
0 \leq y \leq 1 & \perp & y-2 \\
0 \leq z & \perp & y \geq 1
\end{array}
$$

which has solution $y=1, z \geq 0$

Example

Forcing Condition

1. Complementarity problem

$$
\begin{array}{lll}
0 \leq x \leq 1 & \perp & x-z+2 \\
0 \leq y \leq 1 & \perp & -2 x+y \\
0 \leq z & \perp & x+y \geq 2
\end{array}
$$

2. Form equivalent polyhedral problem

$$
\begin{aligned}
& 0 \in x+2+N_{X(y)}(x) \\
& 0 \in-2 x+y+N_{Y}(y)
\end{aligned}
$$

where $X=\{x \mid 0 \leq x \leq 1$ and $x+y \geq 2\}$ with $0 \leq y \leq 1$
3. Eliminate $x=1$ but need to leave remaining side constraint
4. Recover reduced complementarity problem

$$
\begin{array}{lll}
0 \leq y \leq 1 & \perp & y-2 \\
0 \leq z & \perp & y \geq 1
\end{array}
$$

which has solution $y=1, z \geq 0$
5. Recover multiplier $z \geq 3$

Preprocessing

Block Structure

- Exploitation requires structural identification

x	x	0	0	0	0	0
x	x	0	0	0	0	0
\times	0	x	x	x	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
0	0	0	0	0	x	x
x	0	x	x	x	x	x

Preprocessing

Block Structure

- Exploitation requires structural identification

x	x	0	0	0	0	0
x	x	0	0	0	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
0	0	0	0	0	x	x
x	0	x	x	x	x	x

- Focus on small block sizes (at most 3×3)
- Start from a single row
- Add constraints for variables
- Stop when no constraints to add or block too big
- Equations removed via Schur complement when possible

Preprocessing

Block Structure

- Exploitation requires structural identification

x	x	0	0	0	0	0
x	\times	0	0	0	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
0	0	0	0	0	x	\times
x	0	\times	x	x	x	x

- Focus on small block sizes (at most 3×3)
- Start from a single row
- Add constraints for variables
- Stop when no constraints to add or block too big
- Equations removed via Schur complement when possible
- Apply reductions
- Preblocks use uniqueness arguments
- Postblocks use existence arguments

Preprocessing

Block Structure

- Exploitation requires structural identification

x	x	0	0	0	0	0
x	\times	0	0	0	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
0	0	0	0	0	x	\times
x	0	\times	x	x	x	x

- Focus on small block sizes (at most 3×3)
- Start from a single row
- Add constraints for variables
- Stop when no constraints to add or block too big
- Equations removed via Schur complement when possible
- Apply reductions
- Preblocks use uniqueness arguments
- Postblocks use existence arguments
- Matrix classes form the foundation for these methods

Preprocessing

Embedded Blocks and Forcing Conditions

- Determine subproblems with unique solution
- Find a small index set α such that $M_{\alpha, \alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{α}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha}=0$ and eliminate

Preprocessing

Embedded Blocks and Forcing Conditions

- Determine subproblems with unique solution
- Find a small index set α such that $M_{\alpha, \alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{α}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha}=0$ and eliminate
- All strictly semimonotone 2×2 matrices
- Positive diagonal for singletons
- Positive diagonals with one positive off diagonal for doubletons
- Positive diagonals with positive determinant for doubletons
- Identification based the Jacobian structure

Preprocessing

Embedded Blocks and Forcing Conditions

- Determine subproblems with unique solution
- Find a small index set α such that $M_{\alpha, \alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{α}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha}=0$ and eliminate
- All strictly semimonotone 2×2 matrices
- Positive diagonal for singletons
- Positive diagonals with one positive off diagonal for doubletons
- Positive diagonals with positive determinant for doubletons
- Identification based the Jacobian structure
- Currently implemented only for singleton subproblems

Summary and Status

- Parametric variational inequality structure is found in applications
- Uncovering the structure means that it can be exploited
- Modifications to standard preprocessor required
- Start from columns rather than rows
- Identify possible parametric reductions
- Not yet complete but not too difficult!
- Block reductions are implemented for small blocks

