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I Generalized Nash game formulation

I Parametric variational inequalities
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Generalized Nash Games
Problem Formulation

I Non-cooperative game played by n individuals
I Each player selects a strategy to optimize their objective
I Strategies for the other players are fixed

I Equilibrium reached when no improvement is possible

I Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x , y∗)

subject to c1(x , y∗) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x∗, y)

subject to c2(x∗, y) ≤ 0

I Many applications
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Generalized Nash Games
Complementarity Formulation

I Assume each optimization problem is convex
I f1(·, y) and c1(·, y) are convex for each y
I f2(x , ·) and c2(x , ·) are convex for each x
I c1(·, y) and c2(x , ·) satisfy constraint qualification

I Then the first-order conditions are necessary and sufficient

min
x≥0

f1(x , y∗)

subject to c1(x , y∗) ≤ 0
⇔ 0 ≤ x ⊥ ∇x f1(x , y∗) + λT1 ∇xc1(x , y∗) ≥ 0

0 ≤ λ1 ⊥ −c1(x , y∗) ≥ 0
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Generalized Nash Games
Complementarity Formulation

I Assume each optimization problem is convex
I f1(·, y) and c1(·, y) are convex for each y
I f2(x , ·) and c2(x , ·) are convex for each x
I c1(·, y) and c2(x , ·) satisfy constraint qualification

I Then the first-order conditions are necessary and sufficient

min
y≥0

f2(x∗, y)

subject to c2(x∗, y) ≤ 0
⇔ 0 ≤ y ⊥ ∇y f2(x∗, y) + λT2 ∇y c2(x∗, y) ≥ 0

0 ≤ λ2 ⊥ −c2(x∗, y) ≥ 0
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Generalized Nash Games
Complementarity Formulation

I Assume each optimization problem is convex
I f1(·, y) and c1(·, y) are convex for each y
I f2(x , ·) and c2(x , ·) are convex for each x
I c1(·, y) and c2(x , ·) satisfy constraint qualification

I Then the first-order conditions are necessary and sufficient

0 ≤ x ⊥ ∇x f1(x , y) + λT1 ∇xc1(x , y) ≥ 0
0 ≤ y ⊥ ∇y f2(x , y) + λT2 ∇yc2(x , y) ≥ 0
0 ≤ λ1 ⊥ −c1(x , y) ≥ 0
0 ≤ λ2 ⊥ −c2(x , y) ≥ 0

I Nonlinear complementarity problem
I Each solution is an equilibrium for the Nash game
I Other (better) formulations can be constructed
I Recommend using the MOPEC machinery
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Generalized Nash Games
A Simple Example

I First player

min
x≥0

1

2
x2 − x

subject to x + y ≥ 0

I Second player

min
y≥0

1

2
y2 − xy

I Complementarity problem

0 ≤ x ⊥ x − λ− 1 ≥ 0
0 ≤ y ⊥ −x + y ≥ 0
0 ≤ λ ⊥ x + y ≥ 0

I Notice that the first player constraint is redundant
I What structure do we need to identify to eliminate?
I What other operations can be done with this structure?
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Parametric Variational Inequalities
Definition

I Let F : <n → <n be continuously differentiable

I Let X (p) ⊆ <n be a closed convex set for each p

I Given p ∈ <n, find find x ∈ X (p) such that

〈F (x), y − x〉 ≥ 0 ∀ y ∈ X (p)

I Equivalent formulation is the generalized equation

0 ∈ F (x) + NX (p)(x)

where the normal cone to X (p) at x ∈ X (p) is

NX (p)(x) := {x̄ | 〈x̄ , y − x〉 ≤ 0 ∀ y ∈ X (p)}

I Special cases include
I Nonlinear equations when X = <n

I Nonlinear complementarity when X = <n
+

I Mixed complementarity when X = [l , u]n
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Parametric Variational Inequalities
Simplified Theory (based on Robinson)

I Let F : <n → <n, A ∈ <m×n, B ∈ <m×n, and b ∈ <m.

I If x and λ solve

0 ≤ x ⊥ F (x)− ATλ ≥ 0
λ Ax + Bp + b = 0

(1)

then
0 ∈ F (x) + NX (p)(x) (2)

where X = {x | x ≥ 0 and Ax + Bp + b = 0}.
I If x solves (2), then multipliers λ exist such that x and λ solve (1).

Note: X (p) and NX (p)(·) are geometric objects and we are free to choose
among equivalent algebraic representations.
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Preprocessing
Basic Methodology

I Given an arbitrary complementarity problem

I Discover parametric structure within the problem

I Convert the problem into parametric variational inequality

I Choose representation of the polyhedral constraint set
I Reduce model size and complexity
I Improve algorithm performance
I Detect unsolvable models

I Recover reduced complementarity problem
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Preprocessing
Discovering Structure

The structure we need to identify is

0 ≤ x ⊥ F (x , y)− ATλ ≥ 0
0 ≤ y ⊥ G (x , y) ≥ 0
0 ≤ λ ⊥ Ax + By + b ≥ 0

I Provided with a list of linear rows and columns for the problem
I For each linear column we perform the following

I Check that the row is linear
I Reject rows having a diagonal entry
I Ensure elements in common have opposite signs

I Can negate rows corresponding to equalities

0 ≤ x ⊥ x − λ+ 1 ≥ 0
0 ≤ y ⊥ x + y + 4 ≥ 0

λ −2x − 4y + 6 = 0

is equivalent to

0 ≤ x ⊥ x − λ+ 1 ≥ 0
0 ≤ y ⊥ x + y + 4 ≥ 0

λ x + 2y − 3 = 0
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Preprocessing
Assembling Sets

I Given eligible rows and columns

I Reject those requiring scaling or sign changes (can be relaxed)

I Use a greedy heuristic to assemble maximal polyhedral set
I Choose a remaining column
I Add next column sharing some nonzero entries if possible
I Continue adding columns until no more can be added
I Repeat to identify multiple polyhedral sets

I Structure can be conveyed to capable solvers
I A primal/dual structure recovered for optimization problems
I Parametric polyhedral variational inequalities for other problems
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Preprocessing
Possible Reductions

I Reductions on a single constraint include
I Singleton rows
I Doubleton rows with a column singleton
I Forcing conditions

I Reductions using polyhedral sets include
I Duplicate rows
I Implied variable bounds
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Example
Singleton Reduction

1. Complementarity problem

0 ≤ x ⊥ x − z − 1 ≥ 0
0 ≤ y ⊥ −x + y ≥ 0
0 ≤ z ⊥ x + y ≥ 0

2. Form equivalent polyhedral problem

0 ∈ x − 1 + NX (y)(x)
0 ∈ −x + y + N<+ (y)

where X = {x | x ≥ 0 and x + y ≥ 0} with y ≥ 0

3. Remove redundant inequality

4. Recover reduced complementarity problem

0 ≤ x ⊥ x − 1 ≥ 0
0 ≤ y ⊥ −x + y ≥ 0

with the solution x = 1 and y = 1

5. Compute multiplier z = 0
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Example
Forcing Condition

1. Complementarity problem

0 ≤ x ≤ 1 ⊥ x − z + 2
0 ≤ y ≤ 1 ⊥ −2x + y
0 ≤ z ⊥ x + y ≥ 2

2. Form equivalent polyhedral problem

0 ∈ x + 2 + NX (y)(x)
0 ∈ −2x + y + NY (y)

where X = {x | 0 ≤ x ≤ 1 and x + y ≥ 2} with 0 ≤ y ≤ 1

3. Eliminate x = 1 but need to leave remaining side constraint

4. Recover reduced complementarity problem

0 ≤ y ≤ 1 ⊥ y − 2
0 ≤ z ⊥ y ≥ 1

which has solution y = 1, z ≥ 0

5. Recover multiplier z ≥ 3
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Preprocessing
Block Structure

I Exploitation requires structural identification
x x 0 0 0 0 0
x x 0 0 0 0 0
x 0 x x x 0 0
x 0 x x x 0 0
x 0 x x x 0 0
0 0 0 0 0 x x
x 0 x x x x x

I Focus on small block sizes (at most 3× 3)
I Start from a single row
I Add constraints for variables
I Stop when no constraints to add or block too big
I Equations removed via Schur complement when possible

I Apply reductions
I Preblocks use uniqueness arguments
I Postblocks use existence arguments

I Matrix classes form the foundation for these methods
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Preprocessing
Embedded Blocks and Forcing Conditions

I Determine subproblems with unique solution
I Find a small index set α such that Mα,α is strictly semimonotone
I Determine possible right-hand sides Qα
I If Qα ≥ 0, then fix xα = 0 and eliminate

I All strictly semimonotone 2× 2 matrices
I Positive diagonal for singletons
I Positive diagonals with one positive off diagonal for doubletons
I Positive diagonals with positive determinant for doubletons

I Identification based the Jacobian structure

I Currently implemented only for singleton subproblems

40 / 43



.pdf

Preprocessing
Embedded Blocks and Forcing Conditions

I Determine subproblems with unique solution
I Find a small index set α such that Mα,α is strictly semimonotone
I Determine possible right-hand sides Qα
I If Qα ≥ 0, then fix xα = 0 and eliminate

I All strictly semimonotone 2× 2 matrices
I Positive diagonal for singletons
I Positive diagonals with one positive off diagonal for doubletons
I Positive diagonals with positive determinant for doubletons

I Identification based the Jacobian structure

I Currently implemented only for singleton subproblems

41 / 43



.pdf

Preprocessing
Embedded Blocks and Forcing Conditions

I Determine subproblems with unique solution
I Find a small index set α such that Mα,α is strictly semimonotone
I Determine possible right-hand sides Qα
I If Qα ≥ 0, then fix xα = 0 and eliminate

I All strictly semimonotone 2× 2 matrices
I Positive diagonal for singletons
I Positive diagonals with one positive off diagonal for doubletons
I Positive diagonals with positive determinant for doubletons

I Identification based the Jacobian structure

I Currently implemented only for singleton subproblems

42 / 43



.pdf

Summary and Status

I Parametric variational inequality structure is found in applications

I Uncovering the structure means that it can be exploited

I Modifications to standard preprocessor required
I Start from columns rather than rows
I Identify possible parametric reductions
I Not yet complete but not too difficult!

I Block reductions are implemented for small blocks
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