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A misspecified optimization problem |

A prototypical misspecified* convex program where 0* € R™ is misspecified:

C(07) mir)(ien)w(ize f(x,0")

Generally, 0* captures problem characteristics that may require estimation.
» Parameters of cost/price functions
» Efficiencies
» Representation of uncertainty

Generally, this is part of the model building process.

» Traditionally, a dichotomy in the roles of statisticans and optimizers

1. Statisticians Learn — (Build model, estimate parameters)
2. Optimizers Search — (Use model/parameters to obtain solution)

» Increasingly, the serial nature cannot persist.

*This is parametric misspecification (as opposed to model misspecification)



Offline learning |

» One avenue lies in collecting observations a priori
» Learning problem £, unaffected by the computational problem C(6*):

Lo minimize a9(h)

Concerns:
» Exact solutions generally unavailable in finite time; solution error can be
bounded in expected-value sense (at best) in stochastic regimes

» Premature termination of learning process leads to 9; Error cascades into
computational problem; R
X € SOL(C(0)).

» Unclear how to develop? implementable scheme that produces x*:

» (First-order) schemes that produce x* and 6* asymptotically
> Non-asymptotic error bounds

2 Note that schemes that produce approximations are available based on Lipschitzian properties
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Data-driven stochastic programming |

» Consider the following static stochastic program
min - E[f(x, & ()] (o)

where f : R" x RY = R, &~ : Q — R? and (Q, F,Py~) represents the
probability space.

» Traditionally, the parameters of this distribution are estimated a priori (by
MLE approaches for instance). Often a challenging problem (such as
covariance selection)



Misspecified production planning problems |

» The production planner solves the following problem:

min chﬁ Xf)

f=1 i=1
subjectto x5 < capy, forall f, i, (1)
N
foi =d,.
f=1
» Machine type f’s production cost at nodeic},)(x,, )attimel,/=1,...,T:

I ) N\2 I /
e (x") = di(x")? + hix)) + €

» The planner will solve the following problem to estimate ds and hy;:

N
/) (/) () ( (N2
W SIS )~ )

=1 f=1 =1
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A framework for learning and computation |

Cc(07) minimize f(x,6%)

Lo mlrglerglze g(6)

Our focus is on general purpose algorithms that jointly generate sequences
{xx} and {6«} with the following goals:

klim Xx = x* and klim Ok =0 (Global convergence)
—00 —00
[[f(xk,0k) — f(x™,07)|| < O (h(K)), (Rate statements)

where h(K) specifies the rate.
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A serial approach

1. Compute a solution & to (L)
2. Use solution to solve (C(f))
Challenges:

» Given the stage-wise nature, step 1. needs to provide accurate/exact d in
finite time; possible for small problems;

» In stochastic regimes, solution bounds available in expected-value sense:
E[[|0x — 0"|I°] < O(1/K).

» In fact, unless the learning problem is solvable via a finite termination
algorithm, asymptotic statements are unavailable
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A complementarity approach

» A direct variational approach: under convexity assumptions, equilibrium
conditions are given by VI(Z, H) where

H(z) 2 (gg’;(‘?)) and Z 2 X x ©.

Challenges:

» Problem rarely monotone and low-complexity first-order projection/stochastic
approximation schemes cannot accommodate such problems.
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Research questions

» First-order schemes available for solution of deterministic/stochastic con-
vex optimization and monotone variational problems

» Can we develop analogous schemes that guarantee global/a.s. conver-
gence’

» Can rate statements be provided for such schemes:

> Are the original rates preserved?
» What is the price of learning in terms of the modification/degradation in rates?

Tnot immediate since problems can be viewed as non-monotone Vis/SVIs.
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Outline

Part I: Deterministic problems:
» Gradient methods for smooth/nonsmooth and strongly convex/convex op-
timization
» Extragradient and regularization methods for monotone variational in-
equality problems
Part 1l: Stochastic problems:

» Stochastic approximation schemes for strongly convex/convex stochastic
optimization with stochastic learning problems

» Regularized stochastic approximation for monotone stochastic variational
inequality problems with stochastic learning problems
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Literature Review

Static decision-making problems with perfect information

» Optimization: convex programming [BNOO03], integer programming [NW99],
stochastic programming [BL97]

» Variational inequality problems [FP03a]

Learning

» Linear and nonlinear regression, support vector machines (SVMs), etc. [HTF01]

Joint schemes for related problems:

» Adaptive control [AW94], Iterative learning (tracking) control [Mo093]
» Bandit problems [Git89], regret problems [Zin03]

» Relatively less on joint schemes focusing on stylized problems in revenue
management [CHAMKO06, HKZ, CHdMK12]
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Misspecified deterministic optimization

Consider the static misspecified convex optimization problem (C(6™)):

min £(x,07), c©))

where x € R", f: X x © — R is a convex function in x for every § € © C R".
Suppose 6* denotes the solution to a convex learning problem denoted by (£):

min g(0), (£)

where g : R™ — R is a convex function in 6 and is defined on a closed and
convex set ©.
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A joint gradient algorithm

Algorithm 1 (Joint gradient scheme)
Given xq € X and 6y € © and sequences s x, g,k

o

X1 = Mx (Xk — 1, Vxf( Xk, Ok)) » vk
9k+1 =Tlg (91( - ’Yg,kveg(ak)) 5 vk

) (Opt(6x))
0. (Learn)

v v
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Assumptions

Assumption 1
The function f(x, 0) is continuously differentiable in x for all 6 € © and
function g is continuously differentiable in 6.
Assumption 2
The gradient map Vxf(x; 0) is Lipschitz continuous in x with constant Gy x
uniformly over 6 € © or

||fo(X179)—fo(X279)|| < Gf,xHX1 —Xg”, VX17X2 E)(7 Vo € ©.

Additionally, the gradient map Vg is Lipschitz continuous in 6 with constant
Gg.

Assumption 3
Let {~+«} and {~g.x} be diminishing nonnegative sequences chosen such

o0
that 332 ik = 00, Yooy Vik < 005 Doy Yok = 00, ande Vo < 0.
=1



Constant steplength schemes for strongly convex problems |

Assumption 4

The function f is strongly convex in x with constant n; for all @ € © and the
function g is strongly convex with constant ng.

Assumption 5
The gradient Vxf(x*, 0) is Lipschitz continuous in 6 with constant Ly.

Proposition 1 (Rate analysis in strongly convex regimes)

Let Assumptions 1, 2, 4 and 5 hold. In addition, assume that v¢ and ~4 are
chosen such that s < min(2n/G? ,,1/Ls) andvg < 2/Gg. Let {xk, 0k} be
the sequence generated by Algorithm 1. Then for every k > 0, we have the
following:

X1 = X[ < @ 1% — X7 || + ke g 160 — 67,

where gx = (1 ++7GZ, — 2vmr)'/?, Qo = yrLo, Gy = (1 +43G5 — 279m9)" /%,
and g = max(gx, gg)-
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Constant steplength schemes for strongly convex problems |l

Remark: Notably, learning leads to a degradation in the convergence rate
from the standard linear rate to a sub-linear rate. Furthermore, it is easily
seen that when we have access to the true 6*, the original rate may be recov-

ered.
i
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Figure 1 : Strongly convex problems and learning: Constant steplength (I) and Dimin-
ishing steplength (r)
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Constant steplength schemes for strongly convex problems |l
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Figure 2 :  Strongly convex optimization and learning: Impact on rate (I) and empirical
vs. theor. rate (r)

* We provide some numerics on a small production planning problem with 5 plants with capacity
and ramping requirements. We assume that either cost is misspecified (Opt) or demand is misspec-
ified (Vls).
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Misspecified convex optimization |

Assumption 6

The function f is convex in x with constant n; for all & € © and the function g
is strongly convex with constant nyg.

Assumption 7

(a) The sets X and © are compact and sup,.y ||x|| < C, where C is a con-
stant.

(b) The gradient map Vxf(x;6) is uniformly Lipschitz continuous in 6 with
constant Grg:

||fo(x,91) —fo(X792)|| < Gf,9H91 _GZH, V91792 c @,X e X.

Assumption 8

There exists a constant Ly o such that
‘f(X7 01) — f(X7 92)| < Lf,0||91 — (92H7 V91,92 c @,X e X.
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Misspecified convex optimization Il

Proposition 2 (Constant steplength scheme with averaging)

Let Assumptions 1, 2, 6, 7 and 8 hold and stepsizes ~; x and g4 «x be fixed at
constants s and -y so that0 < g < 2/Gy and 0 < ¢ < 1/Gy «. Let the
sequence {xx, 6x} be generated by Algorithm 1 and suppose X\ is defined as

k—
E Xit1
i=0

ko

X &2 =

Then the following hold:

(i) In adolition, if &, = X07"I° 2, £ |1y — o7, and by £
following holds:

ch 0

, then the

b,
I (Rk, ) — F(x™,07)] < 2 % X +ap <?9+Lf,9q§>,

(i) lim £ (Xk, 0) = F(x",0%).
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Misspecified convex optimization Il

Remarks:

» Unlike in the case of strongly convex optimization, there is no degradation
in the standard rate of convergence in function values which is O(1/K).

» Contribution from learning is given by

* b@
oo 0" Leaci + 22).

» Some intuition:

» The first term arises from the effort to learn the correct 6*

> The second term is an interaction term between x and ¢ through L; 4 and is
mitigated by averaging

> Both terms are scaled by ||6y — 6*||.

» The overall rate does not degrade (but gets modified)
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Misspecified convex optimization [V
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Nonsmooth convex optimization |

Assumption 9

The function g is continuously differentiable in 0, strongly convex, and the
gradient map V¢g(0) is Lipschitz continuous in 6 with constant Gg.

Assumption 10 (Subgradient boundedness)

There exists an M > 0 such that ||dk|| < M for all di € df(x«, 6x) and for all
Ok € ©.

Assumption 11

There exists a constant L o such that
[f(x,01) — f(x,02)| < Lfgl|01 — 62]] V61,0, € ©,x € X.
We consider the following subgradient-based analog of Algorithm 1:

Algorithm 2 (Joint subgradient scheme)
Given an xo € X and a 6y € © and sequences {¢, vq.x}, then

X1 := Mx (X — vr,k0k) , Vk >0, (nsOpt(6k))
0k+1 =e (Gk = ’)/gkaQQ(@k)), Vk > 0, (Learn)

where dx € Of(Xk, k).
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Nonsmooth convex optimization

Proposition 3 (Rate analysis with averaging)
Let Assumptions 9, 10, and 11 hold. Let 4k be fixed at vy such that
O<y <2 / Ggy. Consider the sequence {xx, 0x} generated by Algorithm 2

and x, £ w Then the following hold:

i—0 Yf
(i) If ¢k is defined based on Assumption 3 with ~so < 21/ G}“’X and vg <
2/Gg, then
lim |f(Xk,0k) — f(x*,0)| = 0.
k— oo

(i) Suppose Algorithm 2 is to be terminated after K iterations and ~: (the
optimal constant steplength) is defined as ¢ k= %%H , then

- 5 e dy K Co )
f(Xk,0k) — f(x",07)| < adp (L —_— |,
|( K K) ( )| \/m+ 0( f,9qg+(K+1)

where dx = M||xo — x™||, dp = ||60 — 0™||, and cy = 2L; /(1 — qg).
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Nonsmooth convex optimization Il|

Remark: Standard subgradient methods for convex optimization display a
convergence rate of O(1/+/K) in function value [BV04] using optimal con-
stant steplength [SDR09]

» Joint scheme shows no degradation in the rate, not even in a constant
factor sense.

» Modification in the rate is given by
* K b9
o0 =071 (Lradl + 52 ).

» |dentical to the smooth case
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Nonsmooth convex optimization IV

60 .
— Theoretical error
% 50 - - -Emprirical error |}

°
>
c
ke}
=
3]
c
S
2
£
o
i

0 T T

5000 10000 15000
Iteration

28/57



Misspecified variational inequality problems |

The misspecified optimization problem is now generalized to a variational in-
equality problem:

(v —x)"F(x;6%) >0, Vy € X. V()

Assumption 12
(a) The function g is differentiable, strongly convex with constant ng, and
Lipschitz continuous in gradient with constant Gg.
(b) The map F is monotone in x and uniformly Lipschitz continuous in x and
0 with constants Lr x and Lr ¢, respectively:
HF(X1;9) — F(X2,9)|| < LF,XHX1 — X2H VX1,X2 S X, Vo € @,
IF(x,601) — F(x,02)|| < Lrg|l61 — 02| V61,0 €0, VxeX.
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Extragradient schemes |

Algorithm 3 (A joint extragradient scheme)
Given an xo € X and a 6, € © and a steplength r,

Zkq 1= nx(Xk = TF(Xk; (9;()) Vk > 07 (ExtraX(Qk))
Xk4+1 1= rlx(Xk = TF(Zk+1 ; 9;()) Vk > 0, (Extraz(ek))
Oks1 = ne(ek — ’ygVQQ(Qk)) Vk > 0. (Learn)

Theorem 1 (Convergence of extragradient scheme)

Let Assumption 12 holds and © is bounded. In addition, assume that
stepsize g is fixed at g, where vg < G%, Let {x«, 0} be the sequence
generated by Algorithm 3 with

7'2 < !
T L2+ Lrollfo — 07|

Then, {xx} converges to a point in X* and {6} converges to 6* € © as
k — oo.

30/57



Extragradient schemes |l

Remark:

» Standard extragradient methods require that = < ﬁ (cf. [FPO3b]).

» This variant requires that

]
T < .
- \/L%X + Lsol/00 — 0~

» When 6, = 0%, we recover the original result.
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Iteratively (Tikhonov) regularized schemes |

>

>

>

Tikhonov regularization techniques [Tik63, TA76, FP03b] have proved
useful in solving monotone variational inequality problems.
Specifically, such techniques construct a sequence {xx} where

Xk = Mx(Xk — v (F(Xk) + exxx)), Yk>0

implying that x, € SOL(X, F+exl), where {ex} — 0and {xx} — x* € X*.
Challenge: obtaining xx requires solving a strongly monotone VI exactly
(or with increasing accuracy) at every step

An alternative lies in using iterative Tikhonov regularization where a pro-
jected gradient step is taken at every step [Pol87, KS10]

X1 = NMx (X — v(F(Xk) + exxk)), Yk > 0.

Under suitable assumptions of {~«, ex }, convergence can be recovered.
We consider an extension of this scheme to the misspecified regime.

Algorithm 4 (A regularized projection scheme)
Given an xo € X and 6y € © and sequences {~:,} and {ex},

Xk+1 = lMx (Xk — ’Yf’k(F(Xk, 0k) - €ka)) vk > 0, (Var(@k, ek))
Ok+1 = Mo (Ox — 79,k Vo9(0k)) vk > 0. (Learn)




Iteratively (Tikhonov) regularized schemes Il
In our analysis, we consider two auxiliary sequences {x}} and {z}}, defined
as follows:

Xi = Mx(Xk — v k(F(Xk, 0k) + exxk)) Yk >0, (Tik(0k))
zt = Nx(zk — yrk(F(2,07) + exzk)) Vk > 0. (Tik(6%))

» {z}} is the Tikhonov trajectory under perfect information (6* is known)
» {x}} is the Tikhonov trajectory under belief 6

» Proof of convergence shows that ||xc — x| — 0 as k — oo and ||x} —
zt|| — 0 as k — oo.

» Crucial Lemma:

Lemma 1

Let Assumptions 12, 13 and 14(d) hold. Suppose x} and x}_, are defined
by Tik(6x) and Tik(0x_1) respectively. Then, we have that ||x} — x}_,|| can be
bounded as follows:

LFygqlg(i1 Cg

1% = X1l <
ek

M
+ i‘ek—‘] - €k|7
€k
where qg = (/1 — 2vgng + v2G2, Cg = ||60 — 0% /(1 + qq), and M is the

constant defined in Assumption13. 19,0



Iteratively (Tikhonov) regularized schemes |

Assumption 13

The set X is compact and sup, . ||x|| < M, where M is a constant.
Assumption 14

The following hold:

(a) 0 < Yt k S ﬁﬁ % fora/lk,'

(b) ~rkex < 1 and 372, yrkek = 00;

; lek—1—ekl _ Q.
(C) I|mk—>oo "/f,ke;z( = O,

(d) Yok 2 g Such that vg < 21g/G2 and limk_, e }7 = 0, where gy 2

\/1 — 27919 + 72 4 G3-

Theorem 2 (Convergence of regularized scheme)

Let Assumptions 12, 13 and 14 hold. Consider the sequence {x, 0x}
generated by Algorithm 4. Then, {xx} converges to x* as k — oo, where x*
denotes the least-norm solution of X* and {6x} converges to 6* € ©.
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Introduction of uncertainty |

» Computational problem: We consider the stochastic generalization of op-
timization/variational inequality problems.

» Specifically, such a problem requires an x* € X such that
(x = x")E[F(x"0",6w)] =0,  Vx € X, (Px(67))

where € : Q -+ R?, F: X x RY - R", X C R”, and (Q, F, P) denotes the
probability space

» Learning problem: The vector 6* lies in the solution set of (Py):

min g(6), where g(¢) = E[g(6; n)]. (Po)
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: Stochastic Optimization Problem

Algorithm 5 (Coupled SA schemes for stochastic opt. problems)

Step 0. Given xp € X, 6y € © and sequences { vk x,Vk,6}, K :=0
Step 1.

XK= M (65— e (TR 65) + wh)) k>0 (Opte)
01 =N (0K — 0(Vg(65) +v9)) | k=0 (Learny)

wk £ W, f(xK; 0K, £K) — W f(xK; 0K) and vK £ Vyg(0%; nk) — Vog(0).
Step 2. If k > K, stop; else k : k+ 1, go to Step. 1.
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Assumptions

Assumption 1 (Problem properties, A1-1)
Suppose the following hold:

(i) Forevery 6 € ©, f(x; 0) is strongly convex (ux) and continuously differentiable with
Lipschitz continuous gradients (Lx) in x.

(i) For every x € X, the gradient Vxf(x; 0) is Lipschitz continuous in 6 with constant
Le.

(iii) The function g(0) is strongly convex and continuously differentiable with Lipschitz
continuous gradients in 6 with convexity constant g and Lipschitz constant Cy,
respectively.

Assumption 2 (Steplength requirements, A2-1)

Let {vk,x} and {0} be chosen such that >-2 ; vk x = 00, D2, 'y,%’x < oo and
V0 = Vhx L5/ (xtio)-

Assumption 3 (A3)

§ Let the following hold: E[wk | ] = 0 and E[vk | Fx] = 0 a.s. for all k. Furthermore,
E[||wk||? | Fx] < v2 and E[||vk||2 | F¢] < v2 a.s. for all k.

§We define a new probability space (Z, F, P), where Z L2axAFLEFx Fp and P 2 py x Pg. We use F to denote
the sigma-field generated by the initial points (xo, 90) and errors (Wl, vl) for/ =0,1,---,k —1ie, Fy = {(XO, 00)} and

Fg = {(xo, 90), ((w’, v’), I=0,1,--+ ,k— 1)} for k > 1. We make the following assumptions-on the filtration and-errors. PESHE



Main results

Proposition 4 (Almost-sure convergence under strong convexity
of f)

Suppose (A1-1), (A2-1) and (A3) hold. Let {x*, 6} be computed via
Algorithm 5. Then, x* — x* and 6% — 0* a.s. as k — oo, where x* denotes
the unique solution to (Px(6*)).

» Proof relies on super-martingale convergence theorem
» Surpising aspects:
» The steplength sequences run on the same timescale; merely scaled variants
> The overall variational problem in (x, #) is not necessarily monotone but can
be solved¥; what does this suggest regard the solution of more general com-
plementarity/equilibrium/variational problems

9No available schemes for solving non-monotone stochastic variational inequality problems 2930



Weakening strong convexity of (Px)

Assumption 4 (A1-2)

Suppose the following holds in addition to (A1-1 (ii)) and (A1-1 (iii)) For every 6 € ©,
f(x; 0) is convex and continuously differentiable with Lipschitz continuous gradients in
x with Lipschitz constant Ly.

Furthermore, we make the following assumptions on the steplength sequences
employed in the algorithm.

Assumption 5 (A2-2)

Let {7k x}, {7k,0} and some constant 7 € (0, 1) be chosen such that >~ wfjf < o0
Vi
2%k,0 b0 {0as

and 3732, ’7/3,9 < 00, Y k20 Ykx = 00 and 37p2 0 k0 = 00, Bk =
k — oco.
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Proceeding as in the previous result, we present a convergence result under
these weakened conditions.

Theorem 2 (Almost-sure convergence under convexity of f)
Suppose (A1-2), (A2-2) and (A3) hold. Suppose X is bounded and the
solution set X* of (Px(0*)) is nonempty. Let {x*, 0¥} be computed via
Algorithm 5. Then, 0k — 0* a.s. as k — oo, and x* converges to a random
point in X* a.s. as k — oo.

Notably, in merely convex regimes, ~x,x and ¢ are run at differing timescales;
specifically, v« x — 0 at a faster rate than ~, ¢ — O.

A0/57



Rate estimates |

Proposition 5 (Rate estimates for strongly convex f)
Suppose (A1-1) and (A3) hold.2 Let {x*, 0¥} be computed via Algorithm 5. Then, the
following hold:

0¥ — %171 < 2229 ang e - xjy < 2

where Qy (o) 2 max { \3M3(2uo Ao — 1)~ E[l0" — 6|21},

)

Oc(Ax) 2 max { MR (suxAe — 1) ElIx" = x|},

~ / 12 A
and M & M2 + M.
Mx)\x

2Suppose vy k = Ax/k and vg k = Ag/k with Ax > 1/ux and Xg > 1/(2ug). Let E[|| Vxf(x; 0%) +
wh|12] < M? and E[||V g(6%) + vK||?] < M3 forall xK € X and 6% € ©.

» Under strong convexity, optimization and learning recovers optimal rate
of SA

» Naturally, when 6y = 6*, we recover the original optimization result

A1 /57



Rate estimates Il

Theorem 3 (Rate estimates under convexity of f)

Suppose (A1-2) and (A3) hold.2 Let {x*, #¥} be computed via Algorithm 5.5Then the
following holds for 1 < i < k:

v/ Qo(Xo) Do + Cj k~/Bk
‘\/R k)
where C; x = 15 and B, = (4D% + L3Quy(\o)(1 + Ink))(M? + M2).

E[|f(%;x; 0F) — f(x*;07)[] <

aSuppose E[||xK — x*||2] < M2, E[||Vxf(x¥; 0K) + wK||?] < M? and E[||V9(6%) + vK|12] < M3 for all
xK € Xand 6% € @.
Tx,t < A

bFor 1 < i, t < k, we define v; £ K , Xik = ZL,» vix! and Dy £ maxye x [|x — x! ||. Suppose for
—j IX,S
s=i %

4D2 412 Qy (A g)(1+IN k)
it Gl B UASA2AS Al s 2 2 -t 1 %2
(M2 M2 )k » where Qg (Xg) = max {AsMe(&LeAe )7L E[lle7 — o~ ]},

and vg k = Ag/kwith Xg > 1/(2ug).

1<t<ky=

» Averaging in stochastic convex optimization leads to O(1/v'k)
» Averaging with learning leads to bound given loosely by O (\/In(k)/\/@ .

» Degradation in learning is O( In(k)).
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Constant steplength error bounds
In many multiagent systems, constant steplengths (or gain sequences) are
convenient; can one quantify these errors?

Proposition 6
Suppose (A3) holds. Suppose vy k = Vx,k := 7. Suppose E[||x* — x*||3] < M2 and
E[||Vxf(xk; 0K) + wk|[2] < M2 for all xk € X. Suppose A, £ J|[xk — x*||? and
ax 2 E[Ak]. Let {x, 6K} be computed via Algorithm 5.
Suppose (A1-1) holds. Then, the following holds:
2

i » 1 VR + Lg ",’1/92
imsupax < —~ e
k—soo 2px 2u2 (2119 —7C3)

Suppose (A1-2) holds. Then, the following holds:

lim sup |E[f(x¥; 6¥) — f(x*;6%)]| < 17/\//2 + 171—71\45
k— oo 2 2

212 2
L T, W e W
4po —27Ch 2p0 —7C3

Degradation from learning

where 0 < 7 < 1.

» Utility of this result; we've set 7x = 79; But we may optimize this error

bound in the choices of steplengths
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Summary of rate statements

Computation

Computation & Learning

Det. Strongly convex/diff. Linear Sublinear
Det. convex/diff. O(1/K) O(1/K + g¥)
Det. convex/nonsmooth. | O(1/vK) | O(1/VK)+O(1/K + qy)
Stoch. Strongly convex o(1) o)
Stoch. Convex o) (ﬁ) o) < %k)>




: Stochastic variational inequality problem

Algorithm 6 (Coupled SA schemes for Stochastic variational

probs.)
Step 0. Given xp € X, 6y € © and sequences {vk x,Vk,0}, K :=0
Step 1.

X = T (X6 — i (F(xK; 0F) + wh)) (Compy)
ot =g (Gk — Y,0(G(6%) + Vk)) : (Learng)

where wk & F(xk; ok k) — F(xk; 0K) and vk £ G(0K; nk) — G(0%).
Step 2. If k > K, stop; else k := k + 1, go to Step. 1.

We begin by stating an assumption similar to (A1-1) on the mapping F.

Assumption 6 (A1-3)
(Identical to A1-1) with V£(x; 0) replaced by F(x; 6)
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Main results |

Proposition 7 (Almost-sure convergence under strongly

monotone F)
Suppose (A1-3), (A2-1) and (A3) hold. Let {x, 6} be computed via Algorithm 6.
Then, x¥ — x* a.s. and 0¥ — 6* a.s. as k — oo, where x* is the unique solution to

VI(X, F(e;0%)).

» Result is similar to that for strongly convex problems

46/57



Main results

Algorithm 7 (Coupled regularized SA schemes for stochastic Vis)

Step 0. Given xo € X, 6y € © and sequences {vk x,Vk,0, €k}, K :==0
Step 1.

X =y | XK — e (FOXK 6K+ eexd 4wk (Compy)

Tikhonov regular.

04+ 1= Mo (6% — 1 0(G(6%) + V9)) , (Learny)

where wk 2 F(xk; 0k ¢k) — F(xk; 6%) and vk & G(6%; n*) — G(6¥).
Step 2. If k > K, stop; else k : k + 1, go to Step. 1.

» Unlike in optimization, we need to employ a Tikhonov regularizer, inspired
by past work [KNS13]
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Assumptions

The following assumptions will be made on both the decision variable and
parameter.

Assumption 7 (A1-4)
(Similar to A1-3)

We also make the following assumptions on the steplength sequences em-
ployed in the algorithm.

Assumption 8 (A2-3)
Let {vk.x}: {70}, {ex} and some constant 7 € (0, 1) be chosen such that:

. o
(i) DoR0Tex <ooand Y227k 4 < oo,

(i) 32020 Yk x€k = 0o and 32 k.0 = 00,

(iii) By = 27:k§ue l0ask — 0.

(lV) Eo (exk—1—¢€k) < oo.

=0 X
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Main results

Theorem 4

Suppose (A1-4) , (A2-3) and (A3) hold. Suppose X is bounded and the solution set X*
of VI(X, F(e, 6*)) is nonempty. Let {x*, 0¥} be computed via Algorithm 7. Then,

0k — 6* a.s. as k — oo, and x¥ converges to the least norm solution in X* a.s. as

k — oo.

» Again, vk x and -, ¢ are decreased at different rates
» Unlike in the optimization setting, we recover the least-norm solution
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Rate estimates |

» In the strongly monotone regime, we may recover the optimal rate of SA

» Without strong monotonicity, one avenue lies in averaging and working
in a weak sharp regime; specifically, we assume that VI(X, E[F(e; 0", £)])
possesses the MPS property, which is introduced in the following lemma.

Lemma 3

[Mar93] Let H : X — R" be a mapping that is monotone over the compact polyhedral

set X. Let X* be the solution set of VI(X, H)!l and there exists a positive number « s.t.
(x — x*)TH(x*) > a dist(x, X*), Vx € X, Vx*eX*,

where dist(x, X*) £ miny«cx= [|x — x*||.



Rate estimates Il

Theorem 5 (Rate estimates under monotonicity of F)

Suppose (A1-4) and (A3) hold.2 Let {x*, 0¥} be computed via Algorithm 6. © Then
there exists a positive number « such that for 1 < i < k:

E [ dist(%; k, X*)] < Cj 1/ %,

where G« = - and By = (4D% + L3Qs(Xo)(1 + IN K))(M? + M2).

@Suppose E[[|x* — x*[|2] < M2, E[|| F(x¥; 6%) + wk||?] < M? and E[||G(6%) + v¥||2] < M2 forall xK € X
and 6X € ©. Suppose X is a compact polyhedral set, the solution set X™* of VI(X, E[F(e; 6™, £)]) is nonempty, and
x* is a pointin X*. Suppose VI(X, E[F(e; 6*, £)]) possesses the MPS property.

. " v, ~
bFor1 < it < k, we define v £ — X":X ~ Kk & ok vixtand Dy £ maxycx [|Ix — x'||. Suppose for
s=i X%

4D2 412 Qg (A g)(1+IN k)
i’ Gl B A S Al 2 2 2 -1 1 %2
(M2 +M2)k » where Qg (Xg) = max {AeMe(EHeM) )7L E[ll67 — 0% ]},

and vg k = Ag/kwith Xg > 1/(2ug).

1<t <k =

» Akin to merely convex regimes, averaging allows for prescribing rates
» Degradation from learning is O (\/In(k)).

I1f the VI(X, H) possesses the minimum principle sufficiency (MPS)property
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Constant steplength errors

Proposition 8

E[F(xk; 0%) + wk|[2] < M? for all x¥ € X. Suppose A £ 1||x¥ — x*||2 and
ax = E[Ax]. Suppose X is a compact polyhedral set, the solution set X* of
VI(X, F(e,0*)) is nonempty, and x* is a point in X*. Suppose VI(X, F(e,6*))
possesses the MPS property. Let {x*, 6¥} be computed via Algorithm 5.

Suppose (A1-3) holds. Then, the following holds:

1 12
limsupax < —yM? + —2 Lz
k—o0 2px 2u% 2pp — vC2

Suppose (A1-4) holds. Then, there exists a positive number « such that:

T 2L2
lim sup E[dist(x*, x*)]<1 Loy Ly 5
27 4pg — 2yC2

b
k— o0 2

where 0 < 7 < 1.

Suppose (A3) holds. Suppose vy k = Vx,k := Vx. Suppose E[||x¥ — x*||3] < M2 and




Diminishing steplength

Table 1 : Distributed scheme for learning x* and 6* in a stochastic regime: & ~
Ul—-6*/2,0*/2]

N ow | OB ERR IE[R — 0% |]] ERR
THIX* A+ [[x* ] 1+][0* 110
10 2 7.4%10—2 1.2x1010 47x10—2 5.0x10%
10 4 65x10 2 23x1010 3.7x10 2 5.1x10%
10 6 58x10 2 3.8x1010 29%x10—2 5.1%10%
10 | 8 58x10—2 6.9x1010 22x10—2 6.4%10%
10 [ 10 6.7x10 2 1.1x1011 19%x10~2 75x10%

> i =10/k and vx o = 10/k.
> K = 10000.

> ERR : theoretical error in Proportion 5.



Averaging

Table 2 : Distributed scheme for learning x* and 6* in a stochastic regime: ¢ ~

U[—6*/2,0% /2]

W | w | E0Gy ko) =27 ERR B

THZ7] T | ™
10 | 2 1.2x10 1 1.7x10° 68
10 4 1.9%10~ 1 2.1%10° 92
10 6 1.1x10 1 1.2x10° 127
10 8 1.2x10~ 1 1.5%10° 152
10 [ 10 1.4%10 1 2.4x10° 161

> ko = 10/K, 2° = f(x*;0%).

> K = 10000.

» ERR : theoretical error in Theorem 3.



Regret

L L L I L L
0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 4 : Computing x* and learning 6* (¢ ~ U[—0*/2,0* /2], N =5, W =5)

> qkx = k708 ke = 10/k, 2 = f(x*; 0™).
> K = 10000.

> ERR : theoretical error in Theorem ??2.
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Concluding remarks

A broad framework for resolving misspecified stochastic optimization/variational
problems:

» Asymptotics for gradient/subgradient/extragradient/iterative regularization
schemes for deterministic problems

» (a.s.) Asymptotics for stochastic approximation (and regularized counter-
parts) for stochastic problems

» Rate statements for gradient/subgradient schemes with quantification of
impact; Similar statements for mean-squared error for stochastic approx-
imation schemes

Key findings:
» Natural extensions of gradient-type schemes are provably convergent

» Recover optimal rates upto constant factor modifications in some regimes;
degradation in other regimes.

» Seemingly non-monotone problems in full-space can be solved via
first order schemes with modest rate degradation at worst

Ongoing work:
» Misspecified Markov Decision Processes (as an alternative to Q-learning)
where transition matrices need to be learnt
» Consensus (distributed optimization) under imperfect information
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