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A misspecified optimization problem I

A prototypical misspecified∗ convex program where θ∗ ∈ Rm is misspecified:

C(θ∗) minimize
x∈X

f (x , θ∗)

Generally, θ∗ captures problem characteristics that may require estimation.
I Parameters of cost/price functions
I Efficiencies
I Representation of uncertainty

Generally, this is part of the model building process.

I Traditionally, a dichotomy in the roles of statisticans and optimizers

1. Statisticians Learn – (Build model, estimate parameters)

2. Optimizers Search – (Use model/parameters to obtain solution)

I Increasingly, the serial nature cannot persist.

∗This is parametric misspecification (as opposed to model misspecification)



Offline learning I

I One avenue lies in collecting observations a priori
I Learning problem Lθ unaffected by the computational problem C(θ∗):

Lθ minimize
θ∈Θ

g(θ)

Concerns:
I Exact solutions generally unavailable in finite time; solution error can be

bounded in expected-value sense (at best) in stochastic regimes
I Premature termination of learning process leads to θ̂; Error cascades into

computational problem;
x̂ ∈ SOL(C(θ̂)).

I Unclear how to developa implementable scheme that produces x∗:
I (First-order) schemes that produce x∗ and θ∗ asymptotically
I Non-asymptotic error bounds

a Note that schemes that produce approximations are available based on Lipschitzian properties
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An example I
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An example II
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An example III
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Data-driven stochastic programming I

I Consider the following static stochastic program

min
x∈X

E[f (x , ξθ∗(ω))], (Cθ∗ )

where f : Rn × Rd → R, ξθ∗ : Ω → Rd and (Ω,F ,Pθ∗) represents the
probability space.

I Traditionally, the parameters of this distribution are estimated a priori (by
MLE approaches for instance). Often a challenging problem (such as
covariance selection)
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Misspecified production planning problems I

I The production planner solves the following problem:

min
xfi≥0

N∑
f =1

W∑
i=1

cfi (xfi )

subject to xfi ≤ capfi , for all f , i,
N∑

f =1

xfi = di .

(1)

I Machine type f ’s production cost at node i c(l)
fi (x (l)

fi ) at time l , l = 1, . . . ,T :

c(l)
fi (x (l)

fi ) = dfi (x (l)
fi )2 + hfix (l)

fi + ξ
(l)
fi

I The planner will solve the following problem to estimate dfi and hfi :

min
{dfi ,hf ,i}∈Θ

T∑
l=1

N∑
f =1

W∑
i=1

(dfi (x (l)
fi )2 + hfix (l)

fi − c(l)
fi (x (l)

fi ))2.
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A framework for learning and computation I

C(θ∗) minimize
x∈X

f (x , θ∗)

Lθ minimize
θ∈Θ

g(θ)

Our focus is on general purpose algorithms that jointly generate sequences
{xk} and {θk} with the following goals:

lim
k→∞

xk = x∗ and lim
k→∞

θk = θ∗ (Global convergence)

‖f (xK , θK )− f (x∗, θ∗)‖ ≤ O (h(K )) , (Rate statements)

where h(K ) specifies the rate.
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A serial approach

1. Compute a solution θ̃ to (Lθ)
2. Use solution to solve (C(θ̃))

Challenges:
I Given the stage-wise nature, step 1. needs to provide accurate/exact θ̃ in

finite time; possible for small problems;
I In stochastic regimes, solution bounds available in expected-value sense:

E[‖θK − θ∗‖2] ≤ O(1/K ).

I In fact, unless the learning problem is solvable via a finite termination
algorithm, asymptotic statements are unavailable
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A complementarity approach

I A direct variational approach: under convexity assumptions, equilibrium
conditions are given by VI(Z ,H) where

H(z) ,

(
F (x , θ)
∇θg(θ)

)
and Z , X ×Θ.

Challenges:
I Problem rarely monotone and low-complexity first-order projection/stochastic

approximation schemes cannot accommodate such problems.
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Research questions

I First-order schemes available for solution of deterministic/stochastic con-
vex optimization and monotone variational problems

I Can we develop analogous schemes that guarantee global/a.s. conver-
gence†

I Can rate statements be provided for such schemes:
I Are the original rates preserved?
I What is the price of learning in terms of the modification/degradation in rates?

†not immediate since problems can be viewed as non-monotone VIs/SVIs.
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Outline

Part I: Deterministic problems:
I Gradient methods for smooth/nonsmooth and strongly convex/convex op-

timization
I Extragradient and regularization methods for monotone variational in-

equality problems

Part II: Stochastic problems:
I Stochastic approximation schemes for strongly convex/convex stochastic

optimization with stochastic learning problems
I Regularized stochastic approximation for monotone stochastic variational

inequality problems with stochastic learning problems
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Literature Review

Static decision-making problems with perfect information

I Optimization: convex programming [BNO03], integer programming [NW99],
stochastic programming [BL97]

I Variational inequality problems [FP03a]

Learning

I Linear and nonlinear regression, support vector machines (SVMs), etc. [HTF01]

Joint schemes for related problems:
I Adaptive control [AW94], Iterative learning (tracking) control [Moo93]
I Bandit problems [Git89], regret problems [Zin03]
I Relatively less on joint schemes focusing on stylized problems in revenue

management [CHdMK06, HKZ, CHdMK12]

14 / 57



Misspecified deterministic optimization

Consider the static misspecified convex optimization problem (C(θ∗)):

min
x∈X

f (x , θ∗), (C(θ∗))

where x ∈ Rn, f : X ×Θ→ R is a convex function in x for every θ ∈ Θ ⊆ Rm.
Suppose θ∗ denotes the solution to a convex learning problem denoted by (L):

min
θ∈Θ

g(θ), (L)

where g : Rm → R is a convex function in θ and is defined on a closed and
convex set Θ.
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A joint gradient algorithm

Algorithm 1 (Joint gradient scheme)
Given x0 ∈ X and θ0 ∈ Θ and sequences γf ,k , γg,k ,

xk+1 := ΠX (xk − γf ,k∇x f (xk , θk )) , ∀k ≥ 0, (Opt(θk ))

θk+1 := ΠΘ (θk − γg,k∇θg(θk )) , ∀k ≥ 0. (Learn)

16 / 57



Assumptions

Assumption 1
The function f (x , θ) is continuously differentiable in x for all θ ∈ Θ and
function g is continuously differentiable in θ.

Assumption 2
The gradient map ∇x f (x ; θ) is Lipschitz continuous in x with constant Gf ,x

uniformly over θ ∈ Θ or

‖∇x f (x1, θ)−∇x f (x2, θ)‖ ≤ Gf ,x‖x1 − x2‖, ∀x1, x2 ∈ X , ∀θ ∈ Θ.

Additionally, the gradient map ∇θg is Lipschitz continuous in θ with constant
Gg .

Assumption 3
Let {γf ,k} and {γg,k} be diminishing nonnegative sequences chosen such

that
∑∞

k=1 γf ,k =∞,
∑∞

k=1 γ
2
f ,k <∞,

∑∞
k=1 γg,k =∞, and

∞∑
k=1

γ2
g,k <∞.
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Constant steplength schemes for strongly convex problems I

Assumption 4
The function f is strongly convex in x with constant ηf for all θ ∈ Θ and the
function g is strongly convex with constant ηg .

Assumption 5
The gradient ∇x f (x∗, θ) is Lipschitz continuous in θ with constant Lθ.

Proposition 1 (Rate analysis in strongly convex regimes)
Let Assumptions 1, 2, 4 and 5 hold. In addition, assume that γf and γg are
chosen such that γf ≤ min(2ηf/G2

f ,x , 1/Lθ) and γg ≤ 2/Gg . Let {xk , θk} be
the sequence generated by Algorithm 1. Then for every k ≥ 0, we have the
following:

‖xk+1 − x∗‖ ≤ qk+1
x ‖x0 − x∗‖+ kqθqk‖θ0 − θ∗‖,

where qx , (1 + γ2
f G2

f ,x − 2γfηf )
1/2, qθ , γf Lθ, qg , (1 + γ2

gG2
g − 2γgηg)1/2,

and q , max(qx , gg).
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Constant steplength schemes for strongly convex problems II

Remark: Notably, learning leads to a degradation in the convergence rate
from the standard linear rate to a sub-linear rate. Furthermore, it is easily
seen that when we have access to the true θ∗, the original rate may be recov-
ered.
‡
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Figure 1 : Strongly convex problems and learning: Constant steplength (l) and Dimin-
ishing steplength (r)
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Constant steplength schemes for strongly convex problems III
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Figure 2 : Strongly convex optimization and learning: Impact on rate (l) and empirical
vs. theor. rate (r)

‡We provide some numerics on a small production planning problem with 5 plants with capacity
and ramping requirements. We assume that either cost is misspecified (Opt) or demand is misspec-
ified (VIs).
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Misspecified convex optimization I

Assumption 6
The function f is convex in x with constant ηf for all θ ∈ Θ and the function g
is strongly convex with constant ηg .

Assumption 7

(a) The sets X and Θ are compact and supx∈X ‖x‖ ≤ C, where C is a con-
stant.

(b) The gradient map ∇x f (x ; θ) is uniformly Lipschitz continuous in θ with
constant Gf ,θ:

‖∇x f (x , θ1)−∇x f (x , θ2)‖ ≤ Gf ,θ‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ, x ∈ X .

Assumption 8
There exists a constant Lf ,θ such that
|f (x , θ1)− f (x , θ2)| ≤ Lf ,θ‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ, x ∈ X .
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Misspecified convex optimization II

Proposition 2 (Constant steplength scheme with averaging)
Let Assumptions 1, 2, 6, 7 and 8 hold and stepsizes γf ,k and γg,k be fixed at
constants γf and γg so that 0 < γg < 2/Gg and 0 < γf ≤ 1/Gf ,x . Let the
sequence {xk , θk} be generated by Algorithm 1 and suppose x̄k is defined as

x̄k ,

k−1∑
i=0

xi+1

k
.

Then the following hold:

(i) In addition, if ax = ‖x0−x∗‖2

2γf
, aθ , ‖θ0 − θ∗‖, and bθ ,

CGf ,θ
1−qg

, then the
following holds:

|f (x̄K , θK )− f (x∗, θ∗)| ≤ ax

K
+ aθ

(
bθ
K

+ Lf ,θq
K
g

)
.

(ii) lim
k→∞

f (x̄k , θk ) = f (x∗, θ∗).
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Misspecified convex optimization III

Remarks:
I Unlike in the case of strongly convex optimization, there is no degradation

in the standard rate of convergence in function values which is O(1/K ).
I Contribution from learning is given by

‖θ0 − θ∗‖
(

Lf ,θq
K
g +

bθ
K

)
.

I Some intuition:
I The first term arises from the effort to learn the correct θ∗
I The second term is an interaction term between x and θ through Lf ,θ and is

mitigated by averaging
I Both terms are scaled by ‖θ0 − θ∗‖.
I The overall rate does not degrade (but gets modified)
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Misspecified convex optimization IV
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Figure 3 : Convex optimization and strongly convex learning: Impact on rate (l) and
empirical vs. theor. (r)
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Nonsmooth convex optimization I

Assumption 9
The function g is continuously differentiable in θ, strongly convex, and the
gradient map ∇θg(θ) is Lipschitz continuous in θ with constant Gg .

Assumption 10 (Subgradient boundedness)
There exists an M > 0 such that ‖dk‖ ≤ M for all dk ∈ ∂f (xk , θk ) and for all
θk ∈ Θ.

Assumption 11
There exists a constant Lf ,θ such that
|f (x , θ1)− f (x , θ2)| ≤ Lf ,θ‖θ1 − θ2‖ ∀θ1, θ2 ∈ Θ, x ∈ X .

We consider the following subgradient-based analog of Algorithm 1:

Algorithm 2 (Joint subgradient scheme)
Given an x0 ∈ X and a θ0 ∈ Θ and sequences {γf ,k , γg,k}, then

xk+1 := ΠX (xk − γf ,k dk ) , ∀k ≥ 0, (nsOpt(θk ))

θk+1 := ΠΘ (θk − γg,k∇θg(θk )) , ∀k ≥ 0, (Learn)

where dk ∈ ∂f (xk , θk ).
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Nonsmooth convex optimization II

Proposition 3 (Rate analysis with averaging)
Let Assumptions 9 , 10, and 11 hold. Let γg,k be fixed at γg such that
0 < γg < 2/Gg . Consider the sequence {xk , θk} generated by Algorithm 2

and x̄k ,
∑k

i=0 γf ,i xi∑k
i=0 γf ,i

. Then the following hold:

(i) If γf ,k is defined based on Assumption 3 with γf ,0 ≤ 2ηf/G2
f ,x and γg ≤

2/Gg , then
lim

k→∞
|f (x̄k , θk )− f (x∗, θ∗)| = 0.

(ii) Suppose Algorithm 2 is to be terminated after K iterations and γf (the
optimal constant steplength) is defined as γf ,K = ‖x0−x∗‖

M
√

K +1
, then

|f (x̄K , θK )− f (x∗, θ∗)| ≤ dx√
K + 1

+ dθ
(

Lf ,θq
K
g +

cθ
(K + 1)

)
,

where dx = M‖x0 − x∗‖, dθ = ‖θ0 − θ∗‖, and cθ = 2Lf ,θ/(1− qg).
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Nonsmooth convex optimization III

Remark: Standard subgradient methods for convex optimization display a
convergence rate of O(1/

√
K ) in function value [BV04] using optimal con-

stant steplength [SDR09]
I Joint scheme shows no degradation in the rate, not even in a constant

factor sense.
I Modification in the rate is given by

‖θ0 − θ∗‖
(

Lf ,θq
K
g +

bθ
K

)
.

I Identical to the smooth case

27 / 57



Nonsmooth convex optimization IV
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Misspecified variational inequality problems I

The misspecified optimization problem is now generalized to a variational in-
equality problem:

(y − x)T F (x ; θ∗) ≥ 0, ∀y ∈ X . (V(θ∗))

Assumption 12

(a) The function g is differentiable, strongly convex with constant ηg , and
Lipschitz continuous in gradient with constant Gg .

(b) The map F is monotone in x and uniformly Lipschitz continuous in x and
θ with constants LF ,x and LF ,θ, respectively:

‖F (x1; θ)− F (x2; θ)‖ ≤ LF ,x‖x1 − x2‖ ∀x1, x2 ∈ X , ∀θ ∈ Θ,

‖F (x , θ1)− F (x , θ2)‖ ≤ LF ,θ‖θ1 − θ2‖ ∀θ1, θ2 ∈ Θ, ∀x ∈ X .
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Extragradient schemes I

Algorithm 3 (A joint extragradient scheme)
Given an x0 ∈ X and a θ0 ∈ Θ and a steplength τ ,

zk+1 := ΠX (xk − τF (xk ; θk )) ∀k > 0, (Extrax (θk ))

xk+1 := ΠX (xk − τF (zk+1; θk )) ∀k > 0, (Extraz(θk ))

θk+1 := ΠΘ(θk − γg∇θg(θk )) ∀k > 0. (Learn)

Theorem 1 (Convergence of extragradient scheme)
Let Assumption 12 holds and Θ is bounded. In addition, assume that
stepsize γg,k is fixed at γg , where γg ≤ 2

Gg
. Let {xk , θk} be the sequence

generated by Algorithm 3 with

τ 2 ≤ 1
L2

F ,x + LF ,θ‖θ0 − θ∗‖
.

Then, {xk} converges to a point in X∗ and {θk} converges to θ∗ ∈ Θ as
k →∞.
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Extragradient schemes II

Remark:
I Standard extragradient methods require that τ ≤ 1

Lf ,x
(cf. [FP03b]).

I This variant requires that

τ ≤
√

1
L2

f ,x + Lf ,θ‖θ0 − θ∗‖
.

I When θ0 = θ∗, we recover the original result.
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Iteratively (Tikhonov) regularized schemes I
I Tikhonov regularization techniques [Tik63, TA76, FP03b] have proved

useful in solving monotone variational inequality problems.
I Specifically, such techniques construct a sequence {xk} where

xk = ΠX (xk − γk (F (xk ) + εk xk )), ∀k ≥ 0

implying that xk ∈ SOL(X ,F +εk I), where {εk} → 0 and {xk} → x∗ ∈ X∗.
I Challenge: obtaining xk requires solving a strongly monotone VI exactly

(or with increasing accuracy) at every step
I An alternative lies in using iterative Tikhonov regularization where a pro-

jected gradient step is taken at every step [Pol87, KS10]

xk+1 := ΠX (xk − γk (F (xk ) + εk xk )), ∀k ≥ 0.

Under suitable assumptions of {γk , εk}, convergence can be recovered.
I We consider an extension of this scheme to the misspecified regime.

Algorithm 4 (A regularized projection scheme)
Given an x0 ∈ X and θ0 ∈ Θ and sequences {γf ,k} and {εk},

xk+1 := ΠX (xk − γf ,k (F (xk , θk ) + εk xk )) ∀k > 0, (Var(θk , εk ))

θk+1 := ΠΘ (θk − γg,k∇θg(θk )) ∀k > 0. (Learn)
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Iteratively (Tikhonov) regularized schemes II
In our analysis, we consider two auxiliary sequences {x t

k} and {z t
k}, defined

as follows:

x t
k := ΠX (x t

k − γf ,k (F (x t
k , θk ) + εk x t

k )) ∀k > 0, (Tik(θk ))

z t
k := ΠX (z t

k − γf ,k (F (z t
k , θ
∗) + εk z t

k )) ∀k > 0. (Tik(θ∗))

I {z t
k} is the Tikhonov trajectory under perfect information (θ∗ is known)

I {x t
k} is the Tikhonov trajectory under belief θk

I Proof of convergence shows that ‖xk − x t
k‖ → 0 as k → ∞ and ‖x t

k −
z t

k‖ → 0 as k →∞.
I Crucial Lemma:

Lemma 1
Let Assumptions 12, 13 and 14(d) hold. Suppose x t

k and x t
k−1 are defined

by Tik(θk ) and Tik(θk−1) respectively. Then, we have that ‖x t
k − x t

k−1‖ can be
bounded as follows:

‖x t
k − x t

k−1‖ ≤
LF ,θqk−1

g Cg

εk
+

M
εk
|εk−1 − εk |,

where qg ,
√

1− 2γgηg + γ2
gG2

g , Cg , ‖θ0 − θ∗‖(1 + qg), and M is the
constant defined in Assumption13.
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Iteratively (Tikhonov) regularized schemes III

Assumption 13
The set X is compact and supx∈X ‖x‖ ≤ M, where M is a constant.

Assumption 14
The following hold:

(a) 0 < γf ,k ≤ εk
(LF,x +εk )2≤

ε0
L2

F,x
for all k;

(b) γf ,kεk < 1 and
∑∞

k=1 γf ,kεk =∞;

(c) limk→∞
|εk−1−εk |
γf ,k ε

2
k

= 0;

(d) γg,k , γg such that γg ≤ 2ηg/G2
g and limk→∞

qk−1
g

γf ,k ε
2
k

= 0, where qg ,√
1− 2γg,kηg + γ2

g,k G2
g .

Theorem 2 (Convergence of regularized scheme)
Let Assumptions 12, 13 and 14 hold. Consider the sequence {xk , θk}
generated by Algorithm 4. Then, {xk} converges to x∗ as k →∞, where x∗

denotes the least-norm solution of X∗ and {θk} converges to θ∗ ∈ Θ.
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Introduction of uncertainty I

I Computational problem: We consider the stochastic generalization of op-
timization/variational inequality problems.

I Specifically, such a problem requires an x∗ ∈ X such that

( x − x∗ )TE[F (x∗; θ∗, ξ(ω))] ≥ 0, ∀ x ∈ X , (Px (θ∗))

where ξ : Ω→ Rd , F : X × Rd → Rn, X ⊆ Rn, and (Ω,F ,P) denotes the
probability space

I Learning problem: The vector θ∗ lies in the solution set of (Pθ):

min
θ∈Θ

g(θ), where g(θ) , E[g(θ; η)]. (Pθ)
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(Px ): Stochastic Optimization Problem

Algorithm 5 (Coupled SA schemes for stochastic opt. problems)
Step 0. Given x0 ∈ X , θ0 ∈ Θ and sequences {γk,x , γk,θ}, k := 0
Step 1.

xk+1 := ΠX

(
xk − γk,x (∇x f (xk ; θk ) + wk )

)
, k ≥ 0 (Optk )

θk+1 := ΠΘ

(
θk − γk,θ(∇θg(θk ) + vk )

)
, k ≥ 0 (Learnk )

wk , ∇x f (xk ; θk , ξk )−∇x f (xk ; θk ) and vk , ∇θg(θk ; ηk )−∇θg(θk ).
Step 2. If k > K , stop; else k : k + 1, go to Step. 1.
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Assumptions

Assumption 1 (Problem properties, A1-1)
Suppose the following hold:

(i) For every θ ∈ Θ, f (x ; θ) is strongly convex (µx ) and continuously differentiable with
Lipschitz continuous gradients (Lx ) in x .

(ii) For every x ∈ X , the gradient ∇x f (x ; θ) is Lipschitz continuous in θ with constant
Lθ .

(iii) The function g(θ) is strongly convex and continuously differentiable with Lipschitz
continuous gradients in θ with convexity constant µθ and Lipschitz constant Cθ ,
respectively.

Assumption 2 (Steplength requirements, A2-1)
Let {γk,x} and {γk,θ} be chosen such that

∑∞
k=0 γk,x =∞,

∑∞
k=0 γ

2
k,x <∞ and

γk,θ = γk,x L2
θ/(µxµθ).

Assumption 3 (A3)
§ Let the following hold: E[wk | Fk ] = 0 and E[vk | Fk ] = 0 a.s. for all k . Furthermore,
E[‖wk‖2 | Fk ] ≤ ν2

x and E[‖vk‖2 | Fk ] ≤ ν2
θ a.s. for all k .

§We define a new probability space (Z,F, P), where Z , Ω × Λ, F , Fx × Fθ and P , Px × Pθ . We use Fk to denote

the sigma-field generated by the initial points (x0, θ0) and errors (wl , vl ) for l = 0, 1, · · · , k − 1, i.e., F0 =
{

(x0, θ0)
}

and

Fk =
{

(x0, θ0),
(

(wl , vl ), l = 0, 1, · · · , k − 1
)}

for k ≥ 1.We make the following assumptions on the filtration and errors.
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Main results

Proposition 4 (Almost-sure convergence under strong convexity
of f )
Suppose (A1-1), (A2-1) and (A3) hold. Let {xk , θk} be computed via
Algorithm 5. Then, xk → x∗ and θk → θ∗ a.s. as k →∞, where x∗ denotes
the unique solution to (Px (θ∗)).

I Proof relies on super-martingale convergence theorem
I Surpising aspects:

I The steplength sequences run on the same timescale; merely scaled variants
I The overall variational problem in (x , θ) is not necessarily monotone but can

be solved¶; what does this suggest regard the solution of more general com-
plementarity/equilibrium/variational problems

¶No available schemes for solving non-monotone stochastic variational inequality problems
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Weakening strong convexity of (Px )

Assumption 4 (A1-2)
Suppose the following holds in addition to (A1-1 (ii)) and (A1-1 (iii)) For every θ ∈ Θ,
f (x ; θ) is convex and continuously differentiable with Lipschitz continuous gradients in
x with Lipschitz constant Lx .

Furthermore, we make the following assumptions on the steplength sequences
employed in the algorithm.

Assumption 5 (A2-2)
Let {γk,x}, {γk,θ} and some constant τ ∈ (0, 1) be chosen such that

∑∞
k=0 γ

2−τ
k,x <∞

and
∑∞

k=0 γ
2
k,θ <∞,

∑∞
k=0 γk,x =∞ and

∑∞
k=0 γk,θ =∞, βk =

γτk,x
2γk,θµθ

↓ 0 as
k →∞.
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Proceeding as in the previous result, we present a convergence result under
these weakened conditions.

Theorem 2 (Almost-sure convergence under convexity of f )
Suppose (A1-2), (A2-2) and (A3) hold. Suppose X is bounded and the
solution set X∗ of (Px (θ∗)) is nonempty. Let {xk , θk} be computed via
Algorithm 5. Then, θk → θ∗ a.s. as k →∞, and xk converges to a random
point in X∗ a.s. as k →∞.

Notably, in merely convex regimes, γk,x and γk,θ are run at differing timescales;
specifically, γk,x → 0 at a faster rate than γk,θ → 0.
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Rate estimates I

Proposition 5 (Rate estimates for strongly convex f )
Suppose (A1-1) and (A3) hold.a Let {xk , θk} be computed via Algorithm 5. Then, the
following hold:

E[‖θk − θ∗‖2] ≤
Qθ(λθ)

k
and E[‖xk − x∗‖2] ≤

Qx (λx )

k
,

where Qθ(λθ) , max
{
λ2
θM2

θ(2µθλθ − 1)−1,E[‖θ1 − θ∗‖2]
}
,

Qx (λx ) , max
{
λ2

x M̃2(µxλx − 1)−1,E[‖x1 − x∗‖2]
}
,

and M̃ ,

√
M2 +

L2
θQθ(λθ)

µxλx
.

aSuppose γx,k = λx/k and γθ,k = λθ/k with λx > 1/µx and λθ > 1/(2µθ). Let E[‖∇x f (xk ; θk ) +

wk‖2] ≤ M2 and E[‖∇θg(θk ) + vk‖2] ≤ M2
θ for all xk ∈ X and θk ∈ Θ.

I Under strong convexity, optimization and learning recovers optimal rate
of SA

I Naturally, when θ1 = θ∗, we recover the original optimization result
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Rate estimates II

Theorem 3 (Rate estimates under convexity of f )
Suppose (A1-2) and (A3) hold.a Let {xk , θk} be computed via Algorithm 5.bThen the
following holds for 1 ≤ i ≤ k :

E[|f (x̃i,k ; θk )− f (x∗; θ∗)|] ≤
√

Qθ(λθ)Dθ + Ci,k
√

Bk√
k

,

where Ci,k = k
k−i+1 and Bk = (4D2

X + L2
θQθ(λθ)(1 + ln k))(M2 + M2

x ).

aSuppose E[‖xk − x∗‖2] ≤ M2
x , E[‖∇x f (xk ; θk ) + wk‖2] ≤ M2 and E[‖∇θg(θk ) + vk‖2] ≤ M2

θ for all
xk ∈ X and θk ∈ Θ.

bFor 1 ≤ i, t ≤ k , we define vt ,
γx,t∑k

s=i γx,s
, x̃i,k ,

∑k
t=i vt x

t and DX , maxx∈X ‖x − x1‖. Suppose for

1 ≤ t ≤ k γx =

√
4D2

X +L2
θ

Qθ (λθ )(1+ln k)

(M2+M2
x )k

, where Qθ(λθ) , max
{
λ2
θM2
θ(2µθλθ − 1)−1, E[‖θ1 − θ∗‖2]

}
,

and γθ,k = λθ/k with λθ > 1/(2µθ).

I Averaging in stochastic convex optimization leads to O(1/
√

k)

I Averaging with learning leads to bound given loosely by O
(√

ln(k)/
√

k
)
.

I Degradation in learning is O
(√

ln(k)
)

.
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Constant steplength error bounds
In many multiagent systems, constant steplengths (or gain sequences) are
convenient; can one quantify these errors?

Proposition 6
Suppose (A3) holds. Suppose γθ,k = γx,k := γ. Suppose E[‖xk − x∗‖2] ≤ M2

x and
E[‖∇x f (xk ; θk ) + wk‖2] ≤ M2 for all xk ∈ X . Suppose Ak , 1

2‖x
k − x∗‖2 and

ak , E[Ak ]. Let {xk , θk} be computed via Algorithm 5.
Suppose (A1-1) holds. Then, the following holds:

lim sup
k→∞

ak ≤
1

2µx
γM2 +

L2
θ

2µ2
x

γν2
θ(

2µθ − γC2
θ

) .
Suppose (A1-2) holds. Then, the following holds:

lim sup
k→∞

|E[f (xk ; θk )− f (x∗; θ∗)]| ≤
1
2
γM2 +

1
2
γ1−τM2

x

+
γτν2

θL2
θ

4µθ − 2γC2
θ

+ Dθ

√
γν2
θ

2µθ − γC2
θ︸ ︷︷ ︸

Degradation from learning

where 0 < τ < 1.

I Utility of this result; we’ve set γx = γθ; But we may optimize this error
bound in the choices of steplengths
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Summary of rate statements

Computation Computation & Learning
Det. Strongly convex/diff. Linear Sublinear

Det. convex/diff. O(1/K ) O(1/K + qK
g )

Det. convex/nonsmooth. O(1/
√

K ) O(1/
√

K ) +O(1/K + qK
g )

Stoch. Strongly convex O
( 1

k

)
O
( 1

k

)
Stoch. Convex O

(
1√
k

)
O
(√

ln(k)
√

k

)
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(Px ): Stochastic variational inequality problem

Algorithm 6 (Coupled SA schemes for Stochastic variational
probs.)
Step 0. Given x0 ∈ X , θ0 ∈ Θ and sequences {γk,x , γk,θ}, k := 0
Step 1.

xk+1 := ΠX

(
xk − γk,x (F (xk ; θk ) + wk )

)
(Compk )

θk+1 := ΠΘ

(
θk − γk,θ(G(θk ) + vk )

)
, (Learnk )

where wk , F (xk ; θk , ξk )− F (xk ; θk ) and vk , G(θk ; ηk )− G(θk ).
Step 2. If k > K , stop; else k := k + 1, go to Step. 1.

We begin by stating an assumption similar to (A1-1) on the mapping F .

Assumption 6 (A1-3)
(Identical to A1-1) with ∇f (x ; θ) replaced by F (x ; θ)
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Main results I

Proposition 7 (Almost-sure convergence under strongly
monotone F )
Suppose (A1-3), (A2-1) and (A3) hold. Let {xk , θk} be computed via Algorithm 6.
Then, xk → x∗ a.s. and θk → θ∗ a.s. as k →∞, where x∗ is the unique solution to
VI(X ,F (•; θ∗)).

I Result is similar to that for strongly convex problems
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Main results II

Algorithm 7 (Coupled regularized SA schemes for stochastic VIs)
Step 0. Given x0 ∈ X , θ0 ∈ Θ and sequences {γk,x , γk,θ, εk}, k := 0
Step 1.

xk+1 := ΠX

xk − γk,x (F (xk ; θk ) + εk xk︸︷︷︸
Tikhonov regular.

+wk )

 (Compk )

θk+1 := ΠΘ

(
θk − γk,θ(G(θk ) + vk )

)
, (Learnk )

where wk , F (xk ; θk , ξk )− F (xk ; θk ) and vk , G(θk ; ηk )− G(θk ).
Step 2. If k > K , stop; else k : k + 1, go to Step. 1.

I Unlike in optimization, we need to employ a Tikhonov regularizer, inspired
by past work [KNS13]
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Assumptions

The following assumptions will be made on both the decision variable and
parameter.

Assumption 7 (A1-4)
(Similar to A1-3)

We also make the following assumptions on the steplength sequences em-
ployed in the algorithm.

Assumption 8 (A2-3)
Let {γk,x}, {γk,θ}, {εk} and some constant τ ∈ (0, 1) be chosen such that:

(i)
∑∞

k=0 γ
2−τ
k,x <∞ and

∑∞
k=0 γ

2
k,θ <∞,

(ii)
∑∞

k=0 γk,x ε
k =∞ and

∑∞
k=0 γk,θ =∞,

(iii) βk =
γτk,x

2γk,θµθ
↓ 0 as k → 0.

(iv)
∑∞

k=0
(εk−1−εk )

εk
<∞.
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Main results

Theorem 4
Suppose (A1-4) , (A2-3) and (A3) hold. Suppose X is bounded and the solution set X∗
of VI(X ,F (•, θ∗)) is nonempty. Let {xk , θk} be computed via Algorithm 7. Then,
θk → θ∗ a.s. as k →∞, and xk converges to the least norm solution in X∗ a.s. as
k →∞.

I Again, γk,x and γk,θ are decreased at different rates
I Unlike in the optimization setting, we recover the least-norm solution
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Rate estimates I

I In the strongly monotone regime, we may recover the optimal rate of SA
I Without strong monotonicity, one avenue lies in averaging and working

in a weak sharp regime; specifically, we assume that VI(X ,E[F (•; θ∗, ξ)])
possesses the MPS property, which is introduced in the following lemma.

Lemma 3
[Mar93] Let H : X → Rn be a mapping that is monotone over the compact polyhedral
set X . Let X∗ be the solution set of VI(X ,H)‖ and there exists a positive number α s.t.

(x − x∗)T H(x∗) ≥ α dist(x ,X∗), ∀x ∈ X , ∀x∗ ∈ X∗,

where dist(x ,X∗) , minx∗∈X∗ ‖x − x∗‖.
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Rate estimates II

Theorem 5 (Rate estimates under monotonicity of F )
Suppose (A1-4) and (A3) hold.a Let {xk , θk} be computed via Algorithm 6. b Then
there exists a positive number α such that for 1 ≤ i ≤ k :

E
[
α dist(x̃i,k ,X∗)

]
≤ Ci,k

√
Bk

k
,

where Ci,k = k
k−i+1 and Bk = (4D2

X + L2
θQθ(λθ)(1 + ln k))(M2 + M2

x ).

aSuppose E[‖xk − x∗‖2] ≤ M2
x , E[‖F (xk ; θk ) + wk‖2] ≤ M2 and E[‖G(θk ) + vk‖2] ≤ M2

θ for all xk ∈ X
and θk ∈ Θ. Suppose X is a compact polyhedral set, the solution set X∗ of VI(X , E[F (•; θ∗, ξ)]) is nonempty, and
x∗ is a point in X∗. Suppose VI(X , E[F (•; θ∗, ξ)]) possesses the MPS property.

bFor 1 ≤ i, t ≤ k , we define vt ,
γx,t∑k

s=i γx,s
, x̃i,k ,

∑k
t=i vt x

t and DX , maxx∈X ‖x − x1‖. Suppose for

1 ≤ t ≤ k γx =

√
4D2

X +L2
θ

Qθ (λθ )(1+ln k)

(M2+M2
x )k

, where Qθ(λθ) , max
{
λ2
θM2
θ(2µθλθ − 1)−1, E[‖θ1 − θ∗‖2]

}
,

and γθ,k = λθ/k with λθ > 1/(2µθ).

I Akin to merely convex regimes, averaging allows for prescribing rates

I Degradation from learning is O
(√

ln(k)
)

.

‖If the VI(X ,H) possesses the minimum principle sufficiency (MPS) property
51 / 57



Constant steplength errors

Proposition 8
Suppose (A3) holds. Suppose γθ,k = γx,k := γx . Suppose E[‖xk − x∗‖2] ≤ M2

x and
E[F (xk ; θk ) + wk‖2] ≤ M2 for all xk ∈ X . Suppose Ak , 1

2‖x
k − x∗‖2 and

ak , E[Ak ]. Suppose X is a compact polyhedral set, the solution set X∗ of
VI(X ,F (•, θ∗)) is nonempty, and x∗ is a point in X∗. Suppose VI(X ,F (•, θ∗))
possesses the MPS property. Let {xk , θk} be computed via Algorithm 5.

Suppose (A1-3) holds. Then, the following holds:

lim sup
k→∞

ak ≤
1

2µx
γM2 +

L2
θ

2µ2
x

γν2
θ

2µθ − γC2
θ

;

Suppose (A1-4) holds. Then, there exists a positive number α such that:

lim sup
k→∞

E[dist(xk ,X∗)] ≤
1
α

[
1
2
γM2 +

1
2
γ1−τM2

x +
γτν2

θL2
θ

4µθ − 2γC2
θ

]
,

where 0 < τ < 1.
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Diminishing steplength

Table 1 : Distributed scheme for learning x∗ and θ∗ in a stochastic regime: ξ ∼
U[−θ∗/2, θ∗/2]

N W E[‖xK−x∗‖]
1+‖x∗‖

ERR
1+‖x∗‖

‖E[θK−θ∗‖]
1+‖θ∗‖

ERR
1+‖θ∗‖

10 2 7.4×10−2 1.2×1010 4.7×10−2 5.0×104

10 4 6.5×10−2 2.3×1010 3.7×10−2 5.1×104

10 6 5.8×10−2 3.8×1010 2.9×10−2 5.1×104

10 8 5.8×10−2 6.9×1010 2.2×10−2 6.4×104

10 10 6.7×10−2 1.1×1011 1.9×10−2 7.5×104

I γk,x = 10/k and γk,θ = 10/k .

I K = 10000.

I ERR : theoretical error in Proportion 5.
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Averaging

Table 2 : Distributed scheme for learning x∗ and θ∗ in a stochastic regime: ξ ∼
U[−θ∗/2, θ∗/2]

N W
E[|f (x̃1,K ;θK )−z∗|]

1+‖z∗‖
ERR

1+‖x∗‖ γx

10 2 1.2×10−1 1.7×105 68

10 4 1.9×10−1 2.1×105 92

10 6 1.1×10−1 1.2×105 127

10 8 1.2×10−1 1.5×105 152

10 10 1.4×10−1 2.4×105 161

I γK ,θ = 10/K , z∗ = f (x∗; θ∗).

I K = 10000.

I ERR : theoretical error in Theorem 3.

54 / 57



Regret
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Figure 4 : Computing x∗ and learning θ∗ (ξ ∼ U[−θ∗/2, θ∗/2], N = 5, W = 5)

I γk,x = k−0.8, γk,θ = 10/k , z∗ = f (x∗; θ∗).

I K = 10000.

I ERR : theoretical error in Theorem ??.
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Concluding remarks
A broad framework for resolving misspecified stochastic optimization/variational
problems:

I Asymptotics for gradient/subgradient/extragradient/iterative regularization
schemes for deterministic problems

I (a.s.) Asymptotics for stochastic approximation (and regularized counter-
parts) for stochastic problems

I Rate statements for gradient/subgradient schemes with quantification of
impact; Similar statements for mean-squared error for stochastic approx-
imation schemes

Key findings:
I Natural extensions of gradient-type schemes are provably convergent
I Recover optimal rates upto constant factor modifications in some regimes;

degradation in other regimes.
I Seemingly non-monotone problems in full-space can be solved via

first order schemes with modest rate degradation at worst
Ongoing work:

I Misspecified Markov Decision Processes (as an alternative to Q-learning)
where transition matrices need to be learnt

I Consensus (distributed optimization) under imperfect information
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