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Abstract. In this article the bottom part in the hierarchy of climate models -
energy balance models - is revisited by a mathematician working in stochastic
dynamics. The review of mostly deterministic 0- to 2- dimensional models fo-
cuses on the mathematical problems of equilibria, stability and bifurcations.
Stochastic extensions can profit from the availability of well developed math-
ematical theories. To give an example, we review an approach of stochastic
resonance from the theory of large deviations for dynamical systems. Stochas-
tic resonance was born in the area of energy balance models, in an attempt
to find a simple explanation of glaciation cycles. It still plays a role, as is
shown by very recent applications to the ENSO system in another simple
two-dimensional model.

1. Introduction

Energy balance models are at the bottom end of the hierarchy of climate models.
Since the climate system is probably the most complex system physical and math-
ematical theories are tried on, this hierarchy consists of a big number of models of
highly different complexity. General circulation models at the top end are based on
most of our knowledge about physical and chemical processes in the atmosphere,
the oceans, and their interface, we can describe in mathematical equations. Of
course, using the increasing power of modern computational facilities, there is no
way to do more realistic simulations and climate predictions than by using these
models.

However, even the virtual reality thus created is hard to interpret and un-
derstand for the human mind. And this is the very reason why there is need for
simpler models. We might be able to distill essentials of real or even only virtual
phenomena by cutting out details of the model equations, and retaining only sim-
ple, but mathematically to a satisfactory degree feasible equations. Especially if
one is interested in qualitative features, as for example the presence of non-linear
phenomena such as attractors or bifurcations, and not so much in their precise
structure, or their exact place of occurence, one may catch these features already
in a significant simplification of the model equations. As we shall see, nonlinear
phenomena are observed already in the simplest energy balance models.
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When introducing stochastic processes or just noise in climate models, one
follows in principle the same philosophy, as is more precisely discussed elsewhere
in this volume. Hasselmann’s idea to represent fast fluctuating processes such as
wind above the ocean surface as stochastic processes, could be paraphrased very
roughly by saying that many complex details on fast scales are concentrated into
a few parameters, by applying arguments of mixing, ergodic theory and central
limit theorems. This way, complex sets of equations may be replaced by rather
simple ones containing stochastic forcing terms.

So the idea of stepping down in the hierarchy of climate models, and of
including stochasticity, originates in the same desire of focusing on some qualitative
principles. It is therefore not surprising that also in simple energy balance models
it makes sense to include stochastic input.

This paper is written not by a specialist in the field of climate dynamics, but
by a mathematician trying to read and understand specialists’ papers and books.
The process of understanding usually goes hand in hand with a transscription of
the readings into one’s own language. In this sense the part of the paper in which I
review energy balance models from the point of view of a mathematician working
in the area of stochastic differential equations and random dynamical systems, is
written mostly for mathematicians who have, as I still do, the need to getting used
to an unfamiliar world. Stochastic analysis and stochastic dynamics is not lacking
very good paradigms from many areas - from the semimartingale in the popular
area of stochastic finance to the Ising model in statistical physics. One aim of
this paper is to look for good paradigms in the area of climate models, preferrably
simple mathematically feasible models for which the tools developed in the last two
decades in this dynamical area are well suited. In this sense the paper, especially
the part on the possible extensions of deterministic results into stochastics, and on
the approach of the problem of stochastic resonance by large deviations, is written
also for physicists curious to hear about some new mathematical developments
which could be interesting for them.

The organization of the paper is as follows.

In section 2, we introduce the simplest energy balance models by revisiting
one of the early paradigms of the area: the example of the glaciation cycles which
initiated the discovery of stochastic resonance.

In section 3 we review mathematical results about deterministic energy bal-
ance models. We start with the 0-dimensional toy models, discuss them focussing
on questions of stochastic dynamics such as equilibria, stability and bifurcations.
We then carry this discussion over by analogy to the more complex 1- and 2-
dimensional energy balance models.

Section 4 is devoted to state a few possible extensions of the problems of the
preceding section to the setting in which there is additional stochastic forcing in
the model equations.

In section 5, we present an approach of stochastic resonance initiated by the
Freidlin-Wentzell theory of large deviations for dynamical systems perturbed by
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noise, described in diffusion equations. We explain how the optimal tuning effect
responsible for stochastic resonance can be understood in mathematical rigor. In
the first two subsections, we exploit the asymptotics of exit times due to Freidlin-
Wentzell, to get a lower bound for the good tuning parameter. In the third sub-
section, for an embedded Markov chain also upper bounds for optimal tuning are
deduced which are believed to remain correct for the diffusion.

2. The paradigm of stochastic resonance

We begin this review of energy balance models with an example which for some
time played the role of an important paradigm. It stimulated research not only in
the area of simple climate models, but was at the cradle of a research direction
in physics which subsequently took important examples from various domains of
biology, chemistry and neurology: it was one of the first examples for which the
phenomenon now well known under the name of stochastic resonance was used to
explain transitions between different stable states of physical systems. For a good
overview of this rapidly growing area see Gammaitoni et al. [22] or Jung [40].

In the end of the 70’s, Nicolis [53] and Benzi et al. [9] almost simultaneously
tried stochastic resonance as a rough and qualitative explanation for the glaciation
cycles in earth’s history. They were looking for a simple mathematical model ap-
propriate to explain experimental findings according to which the earth has seen
ten ice ages during the last million years, alternating with warm ages rather reg-
ularly in periods of about 10° years. Mean temperature shifts between warm and
ice age are reported to be of the order of 10 K, and relaxation times, i.e. transition
times between two relatively stable mean temperatures as rather short, of the or-
der of only 100 years. Mathematically, their explanation was based on an equation
stating the global energy balance in terms of the average temperature T'(t), where
the global average is taken meridionally (i.e. over all latitudes), zonally (i.e. over
all longitudes), and annually around time ¢. The global energy change at time ¢
is equated to the difference between incoming solar (short wave) radiative energy
R;, and outgoing (long wave) radiative energy Ryy:-

R;,, is proportinal to the global average of the solar constant Q(t) at ¢t. To
model the periodicity in the glaciation cycles, one assumes that () undergoes pe-
riodic variations due to one of the so-called Milankovich cycles, which is based on
a periodic eccentricity of the earth’s orbit around the sun of a period of, indeed,
about 10° years, and is caused by gravitational influences of other planets of our
solar system. In formulas, () was assumed to be of the form

Q(t) = Qo + b sinwt,

with some constants Qg, b and a frequency w = 10_5%].
The other component determining the absorbed energy R;, is a rough and
difficult to model averaged surface albedo of the earth, i.e. the proportion of the

solar energy absorbed. It is supposed to be just (average) temperature dependent.
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For temperatures below T, for which the surface water on earth is supposed to have
turned into ice, and the surface is thus constantly bright, the albedo is assumed to
be constantly equal to a, for temperatures above T, for which all ice has melted,
and the surface constantly brown, it is assumed to be given by a constant @ < a.
For temperatures between T and T, the two constant values a and @ are simply
linearly interpolated. The rough albedo function has therefore the ramp function
shape depicted in Figure 1.

a

[~
i

FIGURE 1

For R,y:, the earth is simply assumed to behave approximately as a black
body radiator, for which the energy is given by the Stefan-Boltzmann law. Ac-
cording to this basic law, the emitted power is proportional to the energy of the
electromagnetic field in equilibrium, which is given by vT*(t), with a constant -y
proportional to the Stefan constant.

Hence the simple energy balance equation with periodic input @ on which
the model is built is given by
dT (t)

c—— = Q) (1-a(T(1) -7 T ()", (1)
where the constant ¢ describes a global thermal inertia. According to (1), (qua-
si-) stationary states of average temperature should be given by the solutions of
%Et) = 0. If the model is good, they should reasonably well interpret ice and warm
age temperatures. Graphically, they are given by the intersections of the curves of

absorbed and emitted energy.
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As we shall more carefully explain in section 5, the lower (71(t)) and up-
per (T3(t)) quasi-equilibria are stable, while the middle one (7»(¢)) is unstable.
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T, (t) should represent an ice age temperature, T5(t) a warm age, while T5(t) is
not observed over noticeably long periods. In their dependence on ¢ they should
describe small fluctuations due to the variations in the solar constant. But here
one encounters a serious problem with this purely deterministic model.

If the fluctuation amplitude of @) is small, then we will observe the two disjoint
branches of stable solutions T and T3.

Ts(t)

Ty (t)

: ‘ ‘ time [y]
10° 2-10°
FIGURE 4

But for both branches alone - besides being unrealistically low or high - the
difference between minimal and maximal temperature can by no means account
for the observed shift of about 10 K, and also the relaxation times are much too
long. But the most important shortcoming of the model is the lacking possibility
of transitions between the two branches.

If we allow the fluctuation amplitude b to be large, the picture is still very
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FIGURE 5

There are intervals during which one of the two branches T; or T3 vanishes
completely, and transitions are still impossible, unless one is willing to accept
discontinuous behaviour.

For this reason, Nicolis [53] and Benzi et al. [9] proposed to add a noise term
in (1). Despite the fact that then negative temperatures become possible, they
worked with the equation

dT(t .
O _ Q) (- () -7 (0" + Ve Wi, ®)
€ > 0, where W is a white noise. Passing to (2) immediately makes transitions
between the metastable states T4 (t) and T3(t) possible, due to the unboundedness
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of the Wiener process W. In fact, the random hopping between the metastable
states immediately exhibits two features which make the model based on (2) much
more attractive for a qualitative explanation of glaciation cycles: a) the transitions
between 77 and T3 allow for far more realistic temperature shifts, b) relaxation
times are random, but very short compared to the periods the process solving (2)
spends in the stable states themselves.

But now a new problem arises, which actually provided the name stochastic
resonance.

If, seen on the scale of the period of @, € is too small, the solution may be
trapped in one of the states 7 or 73. By the periodic variation of (), there are
well defined periodically returning time intervals during which T (¢) is the more
probable state (see section 5 for a more careful explanation in terms of diffusions
with potential drift), while T3(¢) takes this role for the rest of the time. So if € is
small, the process, initially in 77, may for example fail to leave this state during
a whole period while the other one is more probable. The solution trajectory may
then look as in Figure 6.

T3(t) A

Ti(t)

T T T time [y]
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100 2-10°
FIGURE 6
If, on the other hand, € is too large, the big random fluctuation may lead
to eventual excursions from the actually more probable equilibrium during its
domination period to the other one. The trajectory then typically looks like this:

T5(t) 1

Ti(t) W
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FIGURE 7
In both cases it will be hard to speak of a random periodic curve. Good
tuning with the periodic forcing by @ is destroyed by a random mechanism being

too slow or too fast to follow. It turned out in numerous simulations in a number
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of similar systems that there is, however, an optimal parameter value e for which
the solution curves are well tuned with the periodic input. A typical well tuned
curve is shown in Figure 8.
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The optimally tuned system is then said to be in stochastic resonance. From
the point of view of mathematical rigor, this notion is still poorly understood. In
section 5, we shall give an overview of the main ideas of a mathematically sound
treatment based on the methods of large deviations for random dynamical systems
in the framework of the Freidlin-Wentzell theory.

Summarizing, Nicolis [53] and Benzi et al. [9], by tuning the noise parameter
€ to appropriate values, were able to give qualitative explanations for glaciation
cycles based on the phenomenon of stochastic resonance.

3. Deterministic Energy Balance Models

By far the biggest part of the mathematical work on EBM done so far is using a
deterministic framework. In this section we shall briefly review this work, while
focusing on particular mathematical questions belonging to the core of the areas of
(random) dynamical systems and their asymptotics: invariant measures, stability,
and bifurcations (see Arnold [1], Freidlin and Wentzell [20] for an overview). We
shall come back to stochastic models in the following section, to present possible
extensions of the problems of the deterministic setting. To be able to reason by
easy analogy arguments in the multidimensional setting, we first present the ideas
in the very simple framework of 0-dimensional (toy) models.

3.1. 0-dimensional deterministic models

The paradigm presented in the previous section belongs to this class of models, if
noise is turned off. In fact, these simple models differ from the deterministic (1) just
by some refinements of the appearing functions in the balanced energies R;, and
Ryyi- They were introduced by Budyko [11] and Sellers [66] around 70, and then
intensively studied towards the end of the 70’s by many authors: Bar-Eli, Field
[6], Bhattacharya et al. [10], Fraedrich [16], [17], Ghil [24], [25], Ghil and Childress
[23], Frankignoul, Hasselmann [18] Hasselmann [27], Held, Suarez [28], Hetzer [32],
Hetzer et al. [33], Nicolis [50], [51], [52], [53], Nicolis, Nicolis [54], [55], North [57],
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[58], North et al. [59], Olbers [60]. For a still more detailed list of references we
refer to the book of Ghil and Childress [23], the presentation of which we shall
partially follow here. In many of the papers, the crucial dependence of R;, on the
solar constant, appearing as a periodic function Q(t) above, is parametrized in the
following way:

T — 4o (1~ a(T®) ~ 9T ) T(V)" Q
The explicit time dependence of Q(t) disappears as it is replaced by uQo.The
main reason for this is of mathematical nature and will emerge in the following.
For different values of p the system will have different sets of equilibria (climates)
with different stability properties. As u varies, the structural stability of the system
changes. Essential changes in the stability picture are considered as bifurcations
of the climate system, originally formulated in the context of early catastrophe
theory (see Fraedrich [16], [17]).

Qo is a time independent basic solar constant. The new function g (consid-
ered as constant in the preceding section) is supposed to model a temperature
dependent greyness factor in the black body radiation law, which takes into ac-
count phenomena such as the greenhouse effect, i.e. reduced emission of radiative
energy due, for example, to higher CO» concentration in the atmosphere going
along with higher temperatures.

c

We shall next briefly summarize the main variants for the different ingredient
functions in (3) as used in the literature.

The most frequently used variants for the albedo function date back to the
early models by Budyko [11] and Sellers [66]. They employ either the ramp function
albedo discussed before, or a still simpler one in which the linear interpolation of
the ramp function is replaced by a piecewise constant function taking the values
a and @ each for the left half and the right half of the interval between T and T
(To = 5 (T+T)):

o(T)
a

a |

} } }
T Ty T T
FIGURE 9

In other variants (see Fraedrich [17]) for more local questions in restricted
ranges of temperatures simple linear or quadratic feedback functions are used,
formally given by a(T) = a; — ax T or a(T) = by — by T? with positive constants
A1y eeey bo.

It is easy to imagine that the complex surface structure of earth makes it
very hard to design a realistic albedo function. The up to date still unsatisfactory
knowledge of the relationship between albedo and cloud formation adds another
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difficulty. One effect of cloud formation is included in an interesting variant of the
albedo function presented in Bhattacharya et al. [10]. It is experimentally observed
that near the ice margin there is an increasing cloudiness due to the formation of
mid-latitude storms. This effect is taken into account by adding a piecewise linear
kink into the albedo function near T. The resulting albedo function is shown in

Figure 10.

T T T
FIGURE 10

a(T)

Variants of the greyness function g modelling the greenhouse effect considered
in the literature range from a constant in the simplest models, via local definitions
with quadratic temperature dependence g(T') = ¢; — ¢ T? (see Fraedrich [17]) to

the most frequently accepted function g(T) =1 —m tanh(%
and Tp. Since we are mainly interested in mathematical qualitative results, we shall
not specify the values of various physical constants, and argue with dimension free

variables.

) with constants m

So the mathematical essence of 0-dimensional deterministic energy balance
models is given by a parametrized ordinary differential equation of the form
dT'(t)
— = = f(p,T(t), (4)
dt
with a parameter p ranging in some real interval, and a continuous function f for
example of the form appearing in (3). The main mathematical questions which
one can expect to yield some interesting qualitative features of real behaviour of
the climate system are the following:

(Q1) What are the possible equilibria (climates) T;(u) of (4)7

(Q2) Are the T;(u) stable/unstable?

(Q3) What can be said about the structural stability of the system described by
(4) as p varies? At which values of u does the stability structure change,
in other words does the system exhibit bifurcations?

In the framework of 0-dimensional models these questions are easy to treat. Our
presentation of the key points in their treatment just aims at setting the stage for
a simple presentation of the multi-dimensional case in the following subsection.
We focus on the ramp function albedo, and suppose that the greenhouse effect is
described by the most popular (tanh —)variant.

Concerning (Q1), we can refer to the remarks made in section 2. In the
usual range of u, we obtain three equilibrium temperatures: T1(u), the deep freeze



10 P. Imkeller

temperature, T3(u), the warm age temperature, and the intermediate temperature
T (p)-

To formulate the problem of determining stability of equilibria mathemati-
cally, we consider the linearization of the parametrized ODE (4) near the equilibria
T;(u) for some small variation § =T — T;(u) of temperatures:

B _ 10, 73()) 610, (5)

dt
It is immediate from (5) that stability/instability of the equilibria are completely
determined by the sign of f'(u, T;(p)). For the purposes of a smoother presentation
later, we reformulate this simple fact as a trivial eigenvalue problem

', Ti(w) ¢ = A, (6)

for some nontrivial ’eigenvector’ 1. In these terms the solutions of (5) are given
by

8(t) = 6o exp(\t).

Hence the sign of A; = f'(u, T;(n)) determines the stability of the equilibria: A; < 0
means that T;(u) is stable, A;(1) > 0 means that it is unstable. Looking at Figure
2, we see that the slope of f(u,.) at T;(u) is negative for ¢ = 1,3 and positive for
i = 2. This way we found the precise justification of the above mentioned fact that
equilibria T;(u) is stable for ¢ = 1,3 and unstable for i = 2.

To approach (Q3), imagine p to vary in (4). For the curve of the absorbed
energy this just means to lower and lift the plateaus given by the constance inter-
vals of the albedo function. Remember that the equilibria are just the intersections
of the curves. So, as p increases, T5(u) moves to the right, while 77 (u) and To(u)
move in opposite directions and approach each other:

1t increases 1 decreases

> 4_‘3 ' —— }—> 4—‘;
T Ty T; T T T;
FIGURE 11 FIGURE 12

As p decreases, T1(p) moves to the left, whereas T»(u) and T3(u) move in
opposite directions and approach each other.

So if we plot the equilibria against p, we obtain the following branches of
graphs:
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Putting them together, we obtain the following S-shaped curve

equilibria

i T iz
H1 H2

FIGURE 15

in which the two turning points u1, us mark critical parameter values for which
branches of equilibria meet and vanish. To the left of u;, only the branch T (i), the
deep freeze temperature, persists. Therefore, u1 deserves the name of deep freeze
bifurcation. To the right of us, only the branch T5(u) survives. This is why us is
also called desert heat bifurcation point.

So the bifurcation scenario of the ramp function albedo has two main bifur-
cation points of three different climates. For the other possible albedo functions,
more climates and correspondingly more bifurcations are possible. For example,
for the function of Figure 6 with the increasing cloudiness effect near the ice mar-
gin, two more bifurcation points appear (see Ghil and Childress [23], or Fraedrich

[16)).

3.2. Multi-dimensional deterministic models

In the toy models of the preceding subsection, the surface temperature of the
earth was globally averaged. Still keeping several considerable oversimplifications,
we shall now let this and other quantities of our models depend on a position
parameter on the earth’s surface. Continuing to work with non-dimensional vari-
ables, we shall idealize the surface by the unit sphere S2, and introduce for z € S?
the zonal component § and the meridional component ¢.

We first have to take into account that measurements for the zonal averages
of the energy components in the energy budget appearing in our EBM indicate
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that a third term has to be included into our equation: a heat diffusion term
which is due to net energy transport from the equator to the poles, caused by an
asymmetry in the balance of absorbed and emitted radiative energy. Due to the
decreasing angle of incidence the absorption of radiation from the sun decreases
rapidly when passing from the equator to the poles. The meridional dependence
of long wave emitted radiation is far less pronounced. The schematic picture is
Figure 16.

energy
absorbed

emitted

¢
T T 1
5 (south pole) 0 % (north pole)

FIGURE 16

The net heat flux from the equator to the poles is reflected in form of a diffu-
sion term in our EBM. In the great variety of 1- and 2-dimensional models studied
since the early 80’s, another important effect not present in the 0-dimensional
models is taken into account. In particular in the albedo function, but also in the
thermal inertia coefficient time delay influences have to be considered. The delay
factor is mostly modeled by means of a memory function 5(s), —to < s <0, where
B(s) describes the weight given to time point s in the past from some oldest mem-
ory time —to up to the present. If T'(¢,z) denotes the (still eventually temporally
averaged) temperature at x € S2,t > 0, the delay factor is then given by

Ds(T(t,)) = | B(s)T(t+s,.)ds.

_to

Then multi-dimensional deterministic EBM are described by the equation

c(xz, Dg(T(t,x)) %T(t, x) (7

= div(k(.) gradT'(¢,.))(x)
+pQo(z) [1 —alz, T(t,x), Da(T(t,x))] — 9(T(t,x)) T(t,x)*,

t > 0,z € S?. Some more comments on quantities appearing in (7) are in order.
k is a space dependent diffusion coefficient. The albedo function a this time may
depend on space, temperature and delay, the thermal inertia coefficient ¢ on space
and delay, and the solar constant () on space. The dependence on the delay factor
in many papers is supposed to model delayed responses of the functions due to the
big heat storage capacities of continental and polar ice sheets, sea ice etc. In the big
number of mathematical papers written on models described by (7) the structure
of the model functions T, a, ¢, and k propagates along the lines of increasing
complexity. For example, T is first supposed to depend besides time ¢ just on the
meridional variable ¢, while it is zonally averaged. This leads to 1-dimensional
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deterministic models. As for a for example, first the dependence on x and D may
be suppressed, then first z (or just ¢) is allowed, finally delay factors with memory
functions of different complexity are admitted. Besides part of the papers already
mentioned in the preceding subsection we refer to the following main contributions:
Ghil [26], [24], Hetzer [29], [30], [31], [32], Hetzer et al. [33], Hetzer, Schmidt [34],
[35], [36], Lions et al. [44], [45], [46], B. Schmidt [71], Wang [76], [77].

The mathematical essence of (7) is a possibly delayed, parametrized quasi-
linear partial differential equation on a compact manifold, also known under the
notion reaction-diffusion equation. Its general form is given more concisely by

S(w) = LT( )+ [ T0,2)), ®

t >0,z € S2. L is a second order linear diffusion operator, f a non-linear contin-
uous function of space, temperature and possibly delay describing the difference
of absorbed and emitted radiative energy.

As in the 0O-dimensional case, we shall now sketch the mathematical ap-
proaches presented in the literature of questions (Q1)-(Q3) formulated above. Not
to overload this survey, we shall cut out the delay effects, and focus on the better
known methods of classical reaction-diffusion equations, following the exposition
mainly of the nice survey paper by Hetzer [30] (see also Ghil [26], and Ghil and
Childress [23]). We shall illustrate the mathematical results obtained by one par-
ticular main theorem, which appears in numerous variations in numerous papers.

First of all, for (Q1)-(Q3) to have a precise meaning, one needs a good exis-
tence/uniqueness theory for (8). Denote by M = S? the unit sphere, and by C(M)
the continuous functions on M, by Cy (M) the nonnegative ones among them. Let
(S¢)¢>0 be the semigroup of bounded linear operators on C'(M) associated with L
as an infinitesimal generator (S; = exp(—t L)). Then the so-called mild solutions
of (8) are given under simple assumptions on f by the generalized variation of
constants formula

t
1%)2&%+A&sﬂmﬂwnw (9)

where T} is an initial temperature distribution. Under further simple assumptions
on f and L one has uniqueness and boundedness results for the solutions (9).

Here is the approach of (Q1)-(Q3). We consider climates, i.e. equilibria of (8)
as pairs (u,T) € Ry x C(M). They are defined by satisfying the equilibrium
equation

i.e. they describe the set
C={(uT)e Ry xCp(M):(u,T) solves (10)}. (11)

It may well happen that C has more than one connected component. We are
interested in the unbounded one among them, which we call P. In the spirit of
our treatment of the O-dimensional case, the essential answers to (Q1)-(Q3) will
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be contained in statements about the S-shapedness of P, or rather a reasonable
translation of this notion to the framework given here.

Let now an equilibrium (u,T) € P be given. Information on the stability of
T = T(u) will be given by studying again the linearization of the PDE near T'(u).
This leads us to the equation

0 0
—(t) = Ly(t) + — T)(t). 12
S0 = LY + 5 (1, T) ¥() (12)
Still as before, discussing the stability of solutions % to (12) leads us to consider
the eigenvalues of the elliptic operator

0
L+ %f(/%TL (13)

given as solutions of the elliptic eigenvalue problem

L4+ 2TV = N4, (14)

for nontrivial eigenfunctions ¢ € C; (M). The infinite dimensional elliptic operator
(13) is compact and therefore has a - say monotonically decreasing - sequence of
eigenvalues (\;(u,T) : ¢ > 0) with limit —oco. Only finitely many of them will
therefore be positive. It is clear that the condition A;(u,T) < 0 for all ¢ > 0
characterizes stability of (u,T). It is therefore plausible that in order to obtain
reasonable answers to (Q2), (Q3), which will be expressed in terms of the S-
shapedness of P, one has to work under the following mathematical structural
hypotheses

(H1) Xo(p, T) = 0 for only finitely many (u,T) € P,
(H2) A (p,T) <0 for all (u,T) € P.

Under these hypotheses, the essential result on S-shapedness takes the following
typical form. For a function -y with values in a product space with two components
we denote by ~y; the projection onto the first coordinate etc.

Theorem 3.1. Under the structural hypotheses (H1), (H2), and some technical as-
sumptions concerning the functions c,a, ..., g we have:

a) P is the trace of a Jordan curve in Ry x C (M), i.e. there exists a C'-
homeomorphism v : Ry — P such that v'(p) # 0 for p > 0,

b) P is S- shaped, i.e. y1(p) = oo for p = 0o, 11 has an even number of
local extrema,

c) for (u,T) € P, T is asymptotically stable (unstable) iff

N, T)) > 0(< 0).

In particular, the bifurcation points of the equation are given by those
p = v1(p) for which v (v *(u,T)) = 0. The following sketch illustrates the bi-
furcation scenario
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FIGURE 17

4. Stochastic extensions of EBM

Apart from the stochastic resonance example in section 1, we have so far been dis-
cussing purely analytical models. According to Hasselmann’s approach (see Arnold
[2] in this volume), fast fluctuating variables in processes in atmosphere and ocean
(or even in the solar atmosphere) may be modeled as stochastic forcing. Taking
effects like this into account would make the model equations studied in section 3
stochastic equations. We write would because though the mathematical tools are
available, the stochastic input into the theory of EBM is rather restricted so far
(see, however, Olbers [60], Wolf-Gladrow [79]). Hence this is a section essentially
on (mathematically) open problems. We outline the equations to be investigated,
the methods involved, starting again with the toy 0-dimensional model.

Instead of (4), we now write an equation which includes periodic effects, and
allows a parameter:
dT'(t)

—a =t T®) +o(T(1) X, (15)

with, e.g.
P, T) = <[ Q) (1 = a(T) - g(T) T,
a,g as above, and
Q(t) = Qo + bsinwt,

t > 0,Qo,b constants. In the terminology of stochastic analysis, (15) is a parame-
trized one-dimensional diffusion equation or stochastic differential equation with
periodic coefficient. It is not so easy to make realistic assumptions about the right
source of noise, and its coupling function ¢. In the spirit of the central limit type
arguments leading to the replacement of fast fluctuating terms by random noise one
might be tempted to choose a Gaussian noise X.In papers on stochastic resonance
(see Jung [40], Freund et al. [21] in this volume), the noise source chosen is often
parametrized white noise X = o . We shall come back to this problem from the
point of view of large deviations theory in the following section.
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In the multi-dimensional case, instead of (8) we should consider the stochastic
partial differential equation

o .
5L () =[LTE)+ f(u,t,T(,.))]dt +o(T(t.)) X(2,.), (16)
a type of stochastic reaction-diffusion equation, possibly a functional equation, if
delay factors are allowed. Here X is a space-time noise field, for example a tempo-

rally d—correlated Gaussian field with a spatially smoother correlation function.

Mathematical tools for dealing with equations of this type are readily avail-
able, due for example to the rapid development of the area of stochastic partial
differential equations. See for example the survey of Zabczyk [81] in this volume, or
da Prato, Zabczyk [63], [64], Walsh [73], Rozovskii [65], or Holden et al. [37]. Quasi-
linear stochastic partial differential equations like the above stochastic reaction-
diffusion equations have recently been investigated by means of the theory of
backwards stochastic differential equations (see Pardoux, Peng [61]).

To deal with stochastic versions of the basic mathematical questions (Q1)-
(Q3) of section 3, mathematical tools are provided or are being developed in several
areas of stochastic analysis and random dynamical systems.

Instead of deterministic equilibria we will have to look for invariant measures,
both in the sense of invariant measures of Markovian semigroups associated with
the evolution equations, or in the pathwise sense of random invariant measures of
associated stochastic cocycles (see Arnold [1], where also the distinction between
invariant measures of semigroups and random invariant measures of cocycles is
thoroughly investigated).

In the stochastic setting, Lyapunov exponents take the role of eigenvalues of
deterministic matrices (operators), as is made precise in the multiplicative ergodic
theory due to Oseledets (see Arnold [1]).

Structural stability and bifurcations of deterministic systems have their sto-
chastic counterparts in the up to date partly developed theory of stochastic bi-
furcations (see Arnold [1] for a survey on the state of the art). The concept of
stochastic bifurcations promises to be essentially more complex than its deter-
ministic counterpart. For example, one has to distinguish two different types of
bifurcations: P-bifurcations, i.e. critical changes of the geometry of the invariant
measure of the Markovian semigroup, and D-bifurcations, i.e. essential changes of
the set of random invariant measures of the random cocycle. P-bifurcations can
be seen as critical changes on the level of the laws of the solutions, whereas D-
bifurcations describe critical changes in the behaviour of the solution trajectories
of our equations.

Questions of the asymptotics of random dynamical systems relevant for the
concepts just discussed are still under intensive investigation. We quote some of
a big number of papers: Arnold et al. [3], Baxendale [5], [7], Baxendale, Stroock
[8], Crauel [12], Crauel et al. [13], [14], Ebeling [15], Horsthemke, Lefever [3§],
Imkeller, Schmalfuss [39], Keller, Ochs [41], Khasminskii [42], Mohammed [48],
Mohammed, Scheutzow [49], Namachchivaya [56], Schenk-Hoppé [67], [68], [69],
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Schmalfuss [70], Wihstutz [78]. For a more complete list of references see Arnold

[1].

5. Stochastic resonance: Freidlin’s approach

In this final section we shall sketch the main ideas of a rigorous mathematical
approach of the phenomenon of stochastic resonance which is heavily based on
the Freidlin-Wentzell theory of large deviations. Freidlin [20] is able to formulate
Kramers’ [43] very old seminal approach mathematically rigorously in a very gen-
eral setting, and this way provides a lower estimate for the good tuning. See also
the numerical results by Tretyakov [72]. To obtain an upper estimate, we finally ar-
gue by embedding time discrete Markov chains into the diffusion processes, which
promises to yield optimal tuning results also in the time continuous case.

To describe the idea of the approach, let us briefly return to the situation of
section 2. Recall that the function f(¢,7T) described a multiple of R;;, — Rout, and
its periodicity in ¢t was created by the assumption on the solar constant Q(t) =
Qo +b sinwt. Let us compare this quantity, sketched in Figure 3 schematically for
two times, say t1,t2 such that () takes its minimum at ¢; and its maximum at t-.
Then the graph of f moves periodically between the two extreme positions given
by the following sketches.

f f Q(ta)
ja) }

!

FIGURE 18 FIGURE 19

We now turn to a more general context, still focusing on a situation as simple
as possible. We consider a potential function U such that

f(t) = =50, £20,

then U will oscillate between the two extreme positions depicted schematically in
the following sketches.

Ficure 20 FiGure 21
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In Figure 20, the potential well on left hand side is higher than on the right
hand side, in Figure 21 the role of the deeper well has changed. As ¢ varies, we
will observe a smoothly time dependent potential with two wells of periodically
and smoothly fluctuating relative depth. Just the function describing the position
of the deepest well will in general be discontinuous. It will play a crucial role in
the analysis now sketched.

We assume in the sequel that U(t,z),t > 0,z € R, is a smooth function such
that for all ¢ > 0 U(¢,.) has exactly two minima, one at zo < 0, the other at
yo > 0, and that the two wells at 2y and yy are separated by the saddle 0, where
U(t,.) is assumed to take the value 0. Two moment pictures of the potential may
look like this:

U(tla ) U(t27 )

\ Yo ?”“ P
AN

FIGURE 22 FIGURE 23

We further assume that
Uft,.) Uit+1,.),
f(ta ) _%U(ta )

The period of the periodic input will be denoted by some positive number 7. We
therefore consider the stochastic differential equation

9 x; = 1k, x0) + vews, (17)
with a one-dimensional Wiener process W (white noise W). In section 2, we de-
scribed the problem of stochastic resonance like this: given T' (w = %), find the
parameter € = €(T') such that X¢ is optimally tuned with the periodic input f(%,.).
We now pose the problem in the following (almost equivalent) way: given € > 0,
find the good scale T = T'(e) such that optimal tuning of X¢ with the periodic
input is given, at least in the limit ¢ — 0.

5.1. Time independent potential

We first study the case, in which U(t, .) is given by some time independent potential
function U for all t. Following Freidlin and Wentzell [20], the description of the
asymptotics contained in the large deviations principle requires the crucial notion
of action functional. It is defined for T > 0 and absolutely continuous functions
¢ :[0,T] = R with derivative ¢ by

T
Sur@) =3 [ 16— (~gp )@ ds.
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By means of the action functional we can define the pseudopotential function

V(w7y) = lnf{SOT(¢) : ¢0 =7, ¢T = yJT > 0}7

for z,y € R. Intuitively, V(z,y) describes the minimal work to be done in the
potential landscape given by U to pass from z to y. Keeping this in mind, the
relationship between U and V is easy to understand. If z and y are in the same
potential well, we have

V(z,y) =2(U(y) - U(@))", (18)

where b™ = bV 0 denotes the positive part of a real number b. In particular, if
U(y) < U(z), then V(z,y) = 0, i.e. going downhill in the landscape does not
require work. If, however, z and y are in different potential wells, we have (recall
U(0) =0)

V(z,y) = —2U(x). (19)

This equation reflects the fact that the minimal work to do to pass to y consists
in reaching the saddle 0, since then one just can go downbhill.

FIGURE 24 FIGURE 25

Rudiments of the following arguments can also be found in the explanation
of stochastic resonance by Mc Namara, Wiesenfeld [47]. The main ingredient is
the ezit time law by Freidlin and Wentzell [20]. For y € R, e > 0 the first time y is
visited is defined by

7, =inf{t > 0: Xy = y}.
If P, denotes the law of the diffusion (Xf);>o started at z, the exit time law states
Theorem 5.1. For any 6 > 0 we have
1 1
Palexp( [V(@,y) — 8)) < 75 < exp( [V, 9) +]) = 1

as € = 0.

In other words, in the limit ¢ — 0, the process started at x takes approxi-
mately time exp(@) to reach y, or more roughly

elnt, =V(z,y)

as € = 0. As a consequence, one finds that as e — 0, on time scales T'(¢) at least
as long as exp(@) or such that

elnT(e) > V(z,y),
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we may expect with P, —probability close to 1 that the process Xr}(e) . has reached
y by time 1. Remembering (18) and (19) one obtains the following theorem stated
much more generally by Freidlin.

Theorem 5.2. Suppose
11_1}1(1)6 InT(e) > 2 max{-U(zg),—-U(yo)}, (20)
and U(xo) < U(yo). Then the Lebesgue measure of the set
{t €[0,1] : [ X{p(y — To| > 6}
tends to 0 as € — 0 in Py-probability, for any § > 0.

In other words, the process X¢, run in a time scale T'(¢) large enough, will
spend most of the time in the deeper potential well. Excursions to the other well
are exponentially negligible on this scale, as € — 0. The picture is roughly this:

Y

X(

irlont

T t
1

FIGURE 26

5.2. Periodic step potentials
As a rough approximation of temporally continuously varying potential functions
we consider periodic step function potentials such as
Ui, te€[kk+1if
Ut,.) = ’ ’ 2b
(,) {U27 tE[k-l-%,k'—f—].[,
We assume that both U; and U, are of the type described above, and that U; has

a deeper well at zg, Us at yo. Then it is plausible that Theorem 5.2 generalizes to
the following theorem of Freidlin

keZ,. (21)

Theorem 5.3. Suppose

lime InT'(¢) > 2 max{~Ui(0), ~U1(y0), =U2(0), =V (o)}, (22)
and Uy (zo) < Ui (yo),Ua(x¢) > Us(yo). Define
_ Zg, te[k,k,‘+%,
ole) = { Yo, t€[k+3,k+1] ke€Zy.

Then the Lebesgue measure of the set
{t €[0,1]: [X{p(y — ()| > 6}
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tends to 0 as € — 0 in Py-probability, for any § > 0.

Again, this just means that the process X¢, run in a time scale T'(¢) large
enough, will spend most of the time in the deepest potential well which this time
is a function ¢ of time. Excursions to the other well are exponentially negligible on
this scale, as € — 0. The picture is typically this:

3 i

I I I I t
0.5 1 15 2

FIiGURE 27

Since the function ¢ appearing in the theorem is already discontinuous, it is
plausible that the step function potential is in fact a reasonable approximation of
the general case of continuously and periodically changing potential functions. It
is clear how the result has to be generalized to this situation. One has to define the
periodic function ¢ denoting the deepest well position in dependence on t. Then,
in a scale large enough, given in terms of the maximal potential depth, the process
X ¢ will spend most of the time near ¢ for small e.

Do Theorems 5.2 and 5.3 explain stochastic resonance? The problem is obvi-
ous. They just give lower bounds for the scale T'(¢) for which noise strength € leads
to random switches between the most probable potential wells near the (periodic)
deterministic times when the role of the deepest well switches. But if T'(¢) is too
big, occasional excursions into the higher well will destroy a truely periodic tun-
ing with the potential (see Figure 27). Just the duration of the excursions, being
exponentially smaller than the periods of dwelling in the deeper well, will not be
noticed by the criteria of the Theorems. We therefore also need an upper bound
for possible scales. In order to find this optimal tuning scale, we first have to mea-
sure goodness of periodic tuning of the trajectories of the solution. The physical
literature knows several notions of goodness, for example the signal-to-noise ratio,
or the amplitude of the first harmonic in the Fourier decomposition of the solution
(see Jung [40], or Gammaitoni et al. [22]). We shall work with the also well known
and frequently studied notion of spectral power amplification.

5.3. Embedded Markov chain

We shall restrict to the crucial case of periodic step potentials, and approximate
our diffusion processes by embedded Markov chains which are able to commute
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between the two positions of potential wells. For simplicity of exposition, we shall

assume

a

Ul(iUO) = —%,U1(yo) = —g,UQ(xo) = —g,U2(y0) = —5

with 0 < 8 < a. With the prefactors p,q,0 < p,q < 1 we define two possible
transition matrices

1—pe < e«

P = [ p_é P _B

ge” < 1—qge -«

o
[ I |

_8 _8
Q = 1-— ge e ge < |
pe e 1—pe =<

For the dynamics of the embedded Markov chain, a transition governed by P
happens in a period in which U; is switched on, while a transition governed by Q
happens when U, is on. To make the transition mechanism periodic, we have to
set

[P 0<k<n-1,

P(k)_{ Q n<k<2n—1,

periodically continued with period 2n. Period length 2n corresponds to the scale
T in the continuous time model (see (17)).

Let (Xk)r>0 be the corresponding Markov chain. We next have to define the
goodness measure for periodic tuning with the input frequency 5- L for the Markov
chain. For n € N, e > 0 let

1 2n—1

L
€)=l 2 € Ep(X

where p is the invariant measure of the chain, considered as a time homogeneous
Markov chain on the enlarged state space {zo,y0} X {0,...,2n — 1}. n(n,€) is the
expected spectral power corresponding to the frequency 21n Now we can formulate
our task precisely: find the scale n = n(e) such that 7n(n, €) is maximal. Then the
following basic result on optimal tuning holds (joint work with Ilya Pavlyukevitch)

Theorem 5.4. As ¢ — 0 n(n,€) has a uniqgue mazimum at

__ﬁ?\/i

1(n(6),0) = 5.

Optimal tuning curves can be exhibited and are just as expected from physical
papers (see Jung [40]).

The optimal tuning parameter also seems to be characterized by the minimum
of the entropies of the invariant measures p = p(n) of the Markov chain. This very
interesting observation seems to indicate that nature itself looks for good tuning.

Many interesting questions, however, still remain open:

and we have
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1) does the result of Theorem 5.4 persist when passing from the embedded
Markov chain to the diffusion process? How do we have to choose the
prefactors p, q for this passage?

2) how does the result have to be modified as one passes from a potential
step function to continuously varying periodic potentials?

3) what can be said about different goodness measures such as the signal-to-
noise ratio? Can we work with pathwise spectral power functions instead
of the expected one studied above?

4) can we generalize results to dimension > 27

Stochastic resonance recently proved to be relevant in other elementary cli-
mate models than the primitive one of section 2. In Penland et al. [62], Wang et al.
[74], [75], a two-dimensional stochastic model for a qualitative explanation of the
ENSO (El Nino Southern Oscillation) phenomenon leads to stochastic resonance
effects: for certain parameter ranges the model exhibits random tuned transitions
between two stable sea surface temperatures.
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