4-Manifolds and Kirby calculus

Exercise sheet 7

The Kirby diagram in Figure 1 shows the Akbulut-Kirby sphere W. Before Gompf showed that the Akbulut-Kirby sphere is diffeomorphic to S^{4}, it was long considered a potential counterexample to the smooth 4-dimensional Poincaré conjecture. The goal of this sheet is to understand this.

Abbildung 1: The Akbulut-Kirby sphere W.

Exercise 1.

(a) Show, by reading the Kirby diagram of the 2 -handlebody W_{2} as a a surgery diagram of ∂W_{2}, that ∂W_{2} is diffeomeorphic to S^{3}. So $W=W_{2} \cup h_{4}$ represents a smooth closed 4-manifold.
(b) Show that W is homeomorphic to S^{4}. To do this, show that W is simply connected and use Freedmann's theorem.

Exercise 2.

Next, consider for $n, k \in \mathbb{Z}$ the handlebodies $H_{n, k}$ given by the Kirby diagram in Figure 2 , Analogously to the first exercise, show that $H_{n, k} \cup h_{4}$ represents a smooth closed 4-manifold which is homeomorphic to S^{4}.

Exercise 3.

(a) Show that $H_{n, k}$ is diffeomorphic to $H_{-n-1, k}$. Thus, without restriction, we can assume $n \geq 0$.
(b) Show that $H_{0, k}$ is diffeomorphic to D^{4}.
(b) Perform a 2-handle slide of the two parallel strands of the 0 -framed 2-handle parallel over the (-1)-framed 2-handle, see Exercise $3(a)$ on Sheet 5 .

Abbildung 2: The handlebodies $H_{n, k}$.

Exercise 4.

(a) Show the equivalence of the Kirby diagrams in Figure 3
(b) Show that adding a $(+1)$-framed meridian to the top 1 -handle in Figure 2 is equivalent to inserting a canceling $2-/ 3$-handle pair.
Hint: Use Lemma 5.8 from the lecture for this.
(c) Use (b) and several times (a) to show that $H_{n, k}$ is diffeomorphic to $H_{n-1, k}$.
(d) Conclude that $H_{n, k} \cup h_{4}$ is diffeomorphic to S^{4}.

Abbildung 3: Two equivalent Kirby diagrams.

Challenge.

Show by 2 -handle slides that W is diffeomorphic to $H_{4,1} \cup h_{4}$ and conclude that the Akbulut-Kirby sphere is diffeomorphic to S^{4}.
Hint 1: It might be very helpful to download and using the Kirby calculator at
https://community.middlebury.edu/~mathanimations/klo/.
Hint 2: You can also have a look at R. Gompf, Killing the Akbulut-Kirby 4-sphere, with relevance to the Andrews-Curtis and Schoenflies problems, Topology 30 (1991), 97-115.

This sheet will be discussed on Friday 16.7. and should be solved by then.

