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Abstract. This document collects formulas for negative continued fraction

expansions.

Let r ∈ Q be a negative rational number. Then there exist a unique way to write
r as

r = [r1, . . . , rn] := r1 −
1

r2 −
1

· · · −
1

rn
with integers r1 ≤ −1 and r2, . . . , rn ≤ −2. [r1, . . . , rn] is called the (negative)
continued fraction expansion of r.

For a given rational number its continued fraction expansion can be constructed
algorithmically by a slight variation of the Euclidean algorithm. This algorithm is
best understood in the following example for r = − 17

10 .

−17 = −2 · 10 + 3

−10 = −4 · 3 + 2

−3 = −2 · 2 + 1

−2 = −2 · 1 + 0

−17

10
= −2 + 2− 17

10
= −2−

1

−
10

3

= −2−
1

−4 + 4−
10

3

= −2−
1

−4−
1

−
3

2

= −2−
1

−4−
1

−2−
1

−2

Continued fractions appear for example in the transformation lemma in the study
of contact surgery. That is why I am mainly interested in continued fractions.

All formulas below where obtained by using the above mentioned algorithm and
can be proven easily by induction.

To find the correct pattern it is also often helpful to perform some computer
experiments, which can be also used to confirm the below formulas for finitely
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many values. My python code for getting negative continued fraction expansions is
here:

1 def negative_continued_fraction_expansion(p,q):

2 '''

3 Creates the ncfe of p/q, where p is negative and q positive.

4 '''

5 cont_fract=[]

6 while q!=0:

7 cont_fract.append(floor(p/q))

8 (p,q)=(-q,p % q)

9 return cont_fract

1. The formulas

All variables represent integers.
For n ≥ 1 we have

− n

n− 1
= [−2, . . . ,−2︸ ︷︷ ︸

n−1

].(1)

For n ≥ 1 we have

− n

n+ 1
= [−1,−(n+ 1)].(2)

For t ≤ −2 and q ≤ −1 we have

− qt− 1

q(t+ 1)− 1
=

[
−2, . . . ,−2︸ ︷︷ ︸

−t−2

,−3,−2, . . . ,−2︸ ︷︷ ︸
−q−2

]
.(3)

For t ≤ −1 and q ≥ 1 we have

− qt− 1

q(t+ 1)− 1
=

[
−2, . . . ,−2︸ ︷︷ ︸

−t−1

,−q − 1
]
.(4)

For t ≤ −1 and k ≥ 1 we have

−k(2− t) + 1

k(1− t) + 1
=

[
−2, . . . ,−2︸ ︷︷ ︸

1−t

,−k − 1
]
.(5)

For u ≤ −1 and k ≥ 1 we have

−−2k − u(k + 1) + 1

k − u(k + 1)
=

[
−2, . . . ,−2︸ ︷︷ ︸

−u

,−3,−2, . . . ,−2︸ ︷︷ ︸
k−1

]
.(6)

For u ≤ −1 and k ≥ 1 we have

−3k(2− u)− u− 1

3k(1− u)− u− 2
=

[
−2, . . . ,−2︸ ︷︷ ︸

−u

,−3,−2, . . . ,−2︸ ︷︷ ︸
k−2

,−4
]
.(7)

For n ≥ 1 and m ≥ 2 we have

− nm+ 1

(n− 1)m+ 1
=

[
−2, . . . ,−2︸ ︷︷ ︸

n−1

,−m− 1
]
.(8)
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For k ≥ 1 we have

−6k + 5

3k + 4
=

[
− 2,−k − 2,−2,−2

]
.(9)

For k ≥ 1 and u ≤ −3 we have

−−6k − 3ku+ 1

−9k − 3ku− u
=

[
−2, . . . ,−2︸ ︷︷ ︸

−u−3

,−k − 2,−2,−2
]
.(10)

For k ≥ 2, n ≥ 2 and x ≤ −1 we have

− (2n− 1)k(2− x)− nx+ 1

(2n− 1)k(1− x)− n(x+ 1) + 1
=

[
−2, . . . ,−2︸ ︷︷ ︸

−x

,−3,−2, . . . ,−2︸ ︷︷ ︸
k−2

,−3,−n
]
.(11)

For k ≥ 2 and t ≤ −1 we have

−2k − kt− 1

k − kt− 1
=

[
−2, . . . ,−2︸ ︷︷ ︸

−t

,−3,−2, . . . ,−2︸ ︷︷ ︸
k−2

]
.(12)

For k ≥ 2 and u ≤ −1 we have

−2k − ku+ u− 1

k − kt+ u
=

[
−2, . . . ,−2︸ ︷︷ ︸

−u+1

,−k
]
.(13)

For p > q > 0 let

− p

p− q
=

[
r1, . . . , rn].(14)

Then we have for any s ≥ 0

− p+ qs

(p+ qs)− q
=

[
−2, . . . ,−2︸ ︷︷ ︸

s

, r1, . . . , rn].(15)
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