Recall

Last week we saw Schlessinger's conditions \((H_1, \ldots, H_4)\) on a functor \(F: \text{Art}_k \to \text{Sets}\) with \(F(a)\) a point.

Schlessinger's Theorem (which we will start proving next week), says \(F\) is pro-representable when \((H_1, \ldots, H_4)\) are satisfied.

The goal of this week is to get a feel for Schlessinger's Conditions. We are first going to prove that the Picard functor

\[
\text{Pic}_M: \text{Art}_k \to \text{Sets}
\]

satisfies the Schlessinger conditions.

Picard Functor

Let \(X\) be a scheme, \(M \in \text{Pic}(X) \cong H^1(X, \mathcal{O}_X^*)\). For \(A \in \text{Art}_k\), the Picard functor \(\text{Pic}_M \in \text{Fun}\) is defined by

\[
\text{Pic}_M(A) := \{ \xi \in \text{Pic}(X_A) : L \otimes k = M \}
\]

Recall that \(X_A := X \times \text{Spec} A\)

For any morphism \(A \to B\) in \(\text{Art}_k\), there is a pullback induced

\[
\text{Pic}(X_A) = H^1(X_A, \mathcal{O}_A^*) \to \text{Pic}(X_B) = H^1(X_B, \mathcal{O}_B^*)
\]
For \(L \in \text{Pic}(X_A) \), we denote the pull-back of \(L \) as \(L \otimes_A B \). In the definition of \(\text{Pic}_m(A) \) above, \(k \) is the residue field \(A/\mathfrak{m}_A \).

We will make throughout the following 2 assumptions on \(X \)

Assumptions:

1. \(H^0(X, \mathcal{O}_X) \cong k \)
2. \(\dim_k H^1(X, \mathcal{O}_X) < \infty \)

For instance, if \(X \) is a proper algebraic variety then the assumptions are satisfied.

We will first show that \(\text{Pic}_m \) satisfies conditions \(CH_1 \) and \(CH_2 \). Recall their definition:

- Let \(A' \to A \), \(A'' \to A \in \text{Art}_k \) and \(F \in \text{Fun} \).

- There is a natural map \(F(A' \times_A A'') \to F(A') \times F(A'') \).

\(F \) satisfies \(CH_1 \) if:

- \(F: A' \to A \in \text{Art}_k \) and any "principal small extension" \(A'' \to A \) (Case) is surjective.

\(F \) satisfies \(CH_2 \) if:

- For \(A = k \), \(A'' = k[[E]] \) the dual numbers \(CE \) is bijective.

Recall: \(A'' \to A \) principal small extension if

\[
\mathfrak{m}_{A''}, (\text{Ker} f) = 0 \quad \text{and} \quad \dim_{A''/\mathfrak{m}_{A''}} \text{Ker} f = 1
\]
We will firstly show that Picm satisfies (C1), (C2).

We start with a lemma.

Lemma 1

Let \(A \) be a ring, \(J \subseteq A \) a nilpotent ideal, and \(\psi : M \rightarrow N \) a morphism of \(A \)-modules such that \(N \) is flat over \(A \).

Assume \(\overline{\psi} : M/\overline{J}M \rightarrow N/\overline{J}N \) is an isomorphism.

Then \(\psi : M \rightarrow N \) is also an isomorphism.

Proof (PF)

Let \(K = \ker \psi \); this is an \(A \)-module.

We have \(M \rightarrow N \rightarrow K \rightarrow 0 \).

Tensor this sequence of \(A \)-modules by \(A/\overline{J} \); as tensoring is right exact, there is an exact sequence \(M/\overline{J}M \rightarrow N/\overline{J}N \rightarrow K/\overline{J}K \rightarrow 0 \).

By assumption \(\overline{\psi} \) is an isomorphism, so \(K/\overline{J}K = 0 \).

Thus \(K = \overline{J}K = J^nK \cap N \).

\(\Rightarrow K = 0 \) as \(J \) is nilpotent.

Hence \(\psi \) is surjective, let \(H = \ker (\psi) \).
We have a short exact sequence of A-modules:
$$0 \to H \to M \xrightarrow{u} N \to 0.$$ Since N is flat over A, after tensoring by A/\mathfrak{m} we get a short exact sequence:
$$0 \to H/\mathfrak{m}H \to M/\mathfrak{m}M \xrightarrow{\bar{u}} N/\mathfrak{m}N \to 0.$$ Thus $H/\mathfrak{m}H = 0 \Rightarrow H = \mathfrak{m}H = 0 \Rightarrow u$ is an isomorphism.

Exercise
Using the lemma above show that if A, A', A'' are complete local Noetherian rings, and M is flat over A then M is in fact free. We also need

Lemma 2
Support we have a Cartesian diagram of rings $A' \leftarrow A \rightarrow A''$

![Diagram](image)

as well as a Cartesian diagram of B modules:

![Diagram](image)
Assume in addition M' resp. M'' resp M are also A' resp. A'' resp. A modules, and that the ring and module morphisms above are compatible. Assume M' is free over A' and M'' is flat over A''.

Further suppose:

(i) There is a nilpotent ideal $S \subseteq A''$ s.t.
\[A''/S \cong A. \]

(ii) u' resp. u'' induces
\[M' \otimes_A A' \cong M \text{ (iso of A modules)} \]
\[M'' \otimes_A A'' \cong M. \]

Then, N is flat over B and p' resp. p'' induces $N \otimes_B A' \cong M'$ resp. $N \otimes_B A'' \cong M''$.

pf Choose a basis (X_i) for M' as an A' module.

By assumption (i) $(u'(X_i))$, $i \in I$, is a basis for M' as an A module.

By assumptions (i) and (ii)
\[N \otimes_B A' \cong M' \otimes_A A' \cong M. \]

Choose $X_i \in M''$ s.t.
\[u''(X_i) = u'(X_i). \]

This gives a morphism $\otimes_{A''} A' X_i \twoheadrightarrow M''$ of A'' module.
which is an iso. after tensoring by $A^\times 3$
($A = A^\times 3$ module).
As S is nilpotent, Lemma 1 \Rightarrow (x_1') is a
basis for M' as an A' module.
From the property $u''(x_1) = u'(x_1')$, we have that $M' \times M''$ is free with basis
$X_1' \times X_2''$ as a B-module.
(Exercise! Convince yourself that this is true.)
Thus $N = M' \times M''$ is flat over B.
The morphism $N \otimes_A A' \rightarrow M'$ induced by p' is
just the iso $X_1' \times X_2'' \rightarrow X_1'$. Hence, the
morphism $N \otimes_A A'' \rightarrow M''$ induced by p'' is an isomorphism.

Corollary: Let

$$
\begin{array}{ccc}
M' \times M'' & \rightarrow & M'' \\
p' & \downarrow & u'' \\
M' & \rightarrow & M
\end{array}
$$

be a commutative diagram as above and assume we have a B-module L and a commutative
diagram

$$
\begin{array}{ccc}
L & \rightarrow & M'' \\
q' & \downarrow & u'' \\
M' & \rightarrow & M
\end{array}
$$
By the universal property of fibre product, there is an induced morphism \(u: L \to N \) giving a commutative diagram:

```
\[ \begin{array}{ccc}
L & \xrightarrow{u} & N \\
\downarrow{q} & \nearrow{p} & \downarrow{e} \\
M' & \to & M'' \\
\downarrow{m} & & \downarrow{m''} \\
M & & M
\end{array} \]
```

Assume \(q' \) induces an isomorphism \(L \otimes_B A' \cong M' \).

Then \(u: L \to N \) is an iso.

Proof: We have a Cartesian diagram:

```
\begin{array}{ccc}
B & \to & A'' \\
\downarrow{L} & \nearrow{J} & \downarrow{\text{blue } J \subseteq A'' \text{ nilpotent}} \\
A' & \to & A' = A''/J
\end{array}
```

Exercise (very easy):
Using the explicit construction of fibre products of rings, show \(A' \cong B/J' \), where \(J' \) is nilpotent.

By Lemma 2, \(p' \) induces an iso \(\overline{N} \otimes_B A' \cong M' \).

By the assumption on \(q' \), we see that \(u \) induces an iso \(L \otimes_B A' \cong \overline{N} \otimes_B A' \).

Feeding \(N \) is flat over \(B \) by Lemma 2.
\[
A' \cong B'/j' \text{ for } j' \text{ nilpotent, by the exercise, so } u \text{ is an iso by lemma 1.}
\]

We are finally ready to prove our first result.

Proposition 1

Let \(A'' \to A \) be any surjection in \(\mathcal{A}^f_k \).

Then the natural morphism

\[
\text{Pic}_m (A' \times_k A'') \to \text{Pic}(A') \times \text{Pic}(CA'')
\]

is an isomorphism, for any \(A' \to A \) in \(\mathcal{A}^f_k \).

In particular, \(\text{Pic}_m \) satisfies Schlessinger's conditions \((C_1)\) and \((C_2)\).

To ease notation, write \(S \) for \(\text{Pic}_m \mathcal{E}_{\text{Fun.}} \).

Let \((L', L'') \in \text{Pic}(A') \times \text{Pic}(CA'')\).

and let \(L = L' \circ_A A = L'' \circ_{A'} A \) be the pull-back of \(L'' \).

Let \(B = A' \times_{A''} A \).

For any \(A' \to A \), the underlying topological space of \(A \) is a point (as \(\text{Spec } A \) is nilpotent by the Artinian hypothesis \(\implies \text{Spec } A = \text{Spec } A_{\text{nil}} \)).

Let \(L_X \) denote the underlying topological space of \(X \).
We have a commutative diagram

\[
\begin{array}{ccc}
\mathcal{O} & \xrightarrow{X_B} & \mathcal{O} \\
\downarrow \mathcal{O} & & \downarrow \mathcal{O} \\
\mathcal{O} & \xrightarrow{X_{A'}} & \mathcal{O} \\
\downarrow \mathcal{O} & & \downarrow \mathcal{O} \\
\mathcal{O} & \xrightarrow{X_{A''}} & \mathcal{O}
\end{array}
\]

of sheaves on \(X \), which induce a canonical morphism \(\mathcal{O} \to \mathcal{O} \) of sheaves on \(X \), by definition, for any open \(U \subseteq X \)

\[
\mathcal{O}(U) = \mathcal{O}(U) \otimes \mathcal{O}(U)
\]

As \(A'' \to A \) is surjective, \(A \cong A'' / S \), where \(S = \ker(A'' \to A) \) is nilpotent.

Thus Cor 3.6 applies and shows that we have a canonical \(\mathcal{O} \to \mathcal{O} \) of sheaves (or \(B \) modules) on \(X \), other varying from sheaves to modules.

Thus \(\mathcal{N} := \mathcal{L} \times \mathcal{L}'' \) is an immediate sheaf on \(X \).

Lemma 2 immediately implies that we have isomorphisms

\[
\mathcal{O} \otimes_B A' \cong \mathcal{L}' \quad \text{and} \quad \mathcal{O} \otimes_B A'' \cong \mathcal{L}''
\]
Thus $N \in \mathcal{P}(\mathcal{B})$ is mapped to $\mathcal{P}(\mathcal{A}^f) \times \mathcal{P}(\mathcal{A})$

and $\mathcal{P}(\mathcal{B}) \to \mathcal{P}(\mathcal{A}^f) \times \mathcal{P}(\mathcal{A})$ is surjective.

It remains to verify injectivity. So, let M be an invertible sheaf on X and assume that there are isomorphisms

$$M \cong A^f \otimes L', \quad M \cong A^f \otimes L''.$$

Precomposing with the morphisms $M \to M \otimes A^f$ and $M \to M \otimes A^f''$ (induced from $B \otimes A^f$ resp. $B \otimes A^f''$) we get morphisms $\varphi : M \to L'$, $\varphi' : M \to L''$ fitting into a diagram

$$
\begin{array}{ccc}
M & \xrightarrow{\varphi} & L' \\
\downarrow{\varphi'} & & \downarrow{a'} \\
L & \xrightarrow{a} & L''
\end{array}
$$

where Θ is the automorphism of L given by $L \xrightarrow{\Theta} L \otimes_A A \xrightarrow{\varphi} L'$.

Now recall that we have assumed that the natural morphism $L \to H^0(C, \Theta)$ is an isomorphism.
This implies that the natural morphism
\[A \to \text{ho}(X_A, \Phi_A, \Theta_A) = \text{ho}(X \otimes A) \]
is an isomorphism by the following exercise.

Exercise!
Prove that for any \(k \)-module of finite length \(M \) (i.e. finite-dim vector space) the morphism
\[M \to \text{ho}(X, \Theta \otimes M) \]
is an isomorphism, under the assumptions \(\Theta \neq \text{ho}(\Phi \otimes) \).

Third: use induction on length and the S-lemma.

Thus \(\Theta \) is multiplication by a unit \(\alpha \in A \).

Since \(A^* \to A \) is a surjection, we may lift \(\alpha \) to \(\alpha^* \) in \(A^* \) and then replace \(\alpha^* \) with \(\alpha^* \alpha^* \alpha \). This allows us to assume \(\Theta \) is the identity \(\alpha^* = \alpha^* \).

But then Lemma 2 applies to show
\[M = N, \]
\[P(A^*) \to P(A^*) \] is surjective.

Next week: show Pic\(_m\) also satisfies
\((C_2), (C_4) \). Begin the proof of Schlesinger's Thm.