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Abstract

We exhibit the role of Hochschild cohomology in quantum field theory with particular
emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of
motion. These equations emerge from Hopf- and Lie algebra theory and free quantum
field theory only. In the course of our analysis we exhibit an intimate relation between the
Slavnov-Taylor identities for the couplings and the existence of Hopf sub-algebras defined
on the sum of all graphs at a given loop order, surpassing the need to work on single
diagrams.

0 Introduction

Over the last seven years many properties of the Hopf algebra structure of renormaliza-
tion have been investigated, mostly on the mathematical side, with at least one notable
exception [1] which showed how to solve a non-linear Dyson–Schwinger equation exactly,
as opposed to a mere perturbation expansion.

In this paper, we explore the elementary relations between a perturbative expansion
in quantum field theory, the corresponding Hochschild cohomology and the equations of
motion in the context of a generic gauge theory. A major feature underlying our analysis
is the emphasis on free quantum field theory and locality expressed through Hochschild co-
homology. Together they specify the interacting theory. The novel phenomenon we report
here is the interplay between the existence of a suitable sub Hopf algebra of perturbation
theory and the existence of internal symmetries: the Slavnov–Taylor identities which en-
sure equality of renormalized couplings are equivalent to the existence of forest formulas
indexed just by the loop number, the grading of the usual Hopf algebra of Feynman graphs.

0.1 The structure of Dyson Schwinger equations

If one ultimately wants to address non-perturbative quantum field theory one has to solve
the corresponding Dyson–Schwinger equations exactly. This looks prohibitively difficult.
But the recent progress with perturbative quantum field theory also points towards meth-
ods of solutions for Dyson–Schwinger equations [11, 1]. Let us review the current situation.
Detailed references can be found in [13].

Feynman graphs possess a Lie algebra structure which dually governs the structure of
renormalization, via the forest formula. The corresponding Hopf algebra furnishes one-
cocycles which ensure locality of counterterms. These one-cocycles allow to generate the
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one-particle irreducible Green functions and provide the skeletons underlying the pertur-
bative expansion. The one-cocycles correspond to primitive elements in the linear span
of generators of the Hopf algebra and are graded by the loop number. One gets a set of
embedded Hopf algebras from a hierarchy of Dyson Schwinger equations based on primi-
tive graphs up to n loops. Underlying this structure is a universal Hopf algebra structure
whose generators are given by the sum of all graphs with a given loop number. Let us
call this sub Hopf algebra the grading algebra [11, 3]. It is the existence of this grading
algebra which allows for the recursions which made the non-perturbative methods of [1]
feasible.

The purpose of the present paper is to exhibit this structure for the example of a
non-abelian gauge theory. In particular, we exhibit the grading algebra of this theory and
show that its existence is equivalent to the existence of the Slavnov–Taylor identities for
the couplings.

Dyson–Schwinger equations, illuminating recursive structure in Green functions, are
recently on the forefront again in different areas of field theory [14, 15, 16]. We expect
that our results are a starting point to understand these phenomena more systematically.
In particular, the representations of the rescaling group and hence the role of dilatations
in quantum field theory is intimately connected to the role of the Hochschild one-cocycles
above, and motivates our quest for understanding their role in non-perturbative quantum
field theory.

0.2 Interaction vertices from free quantum fields and local-

ity

We start with a free quantum field theory with free propagators given by the usual re-
quirements of free field theory for fermion and boson fields.

Before we discuss how locality determines the structure of the full Green functions we
look at the tree level first, for motivation. We want to emphasize in our approach the
known fact that the Feynman rules for tree-level graphs are determined by free quantum
field theory (which gives Feynman rules for the edges) and locality (which implies Feynman
rules for the vertices).

So let us first remind ourselves how the quest for locality determines the interaction ver-
tices in the context of renormalizable theories, without reference to a classical Lagrangian
at this stage.

We exhibit the argument for the example of the QED vertex. Thus we aim to infer
the local interaction vertex vµ(q, p) for the interaction of a photon, with four-momentum
p − q, with an e+e− pair, with four-momenta p and q.

We will infer the Feynman rule for the vertex from the knowledge of the free photon,
electron and positron propagator, and from the requirement that we should be able to
renormalize by local counterterms.

We start with an Ansatz that at tree-level the sought-after vertex must be of the form

vµ(q, p) =

12X

i=1

aif
[i]
µ = a1γµ + a2

q/qµ

q2
+ · · · , (1)

in accordance with Lorentz covariance, spin representations and dimensions of the free
propagators involved. Note that we can assume the coefficients ai above to be constants:
below we are only interested in the behaviour at large momentum transfer at each internal
vertex. In that limit, each ratio in

�
u =

q2

q2 + p2 + (p + q)2
, v =

p2

q2 + p2 + (p + q)2
, w =

(p + q)2

q2 + p2 + (p + q)2

�
(2)
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turns to zero or one, so that ai(u, v,w) turns to a constant indeed.
We can now determine vµ(q, p) as follows.
First, we note that free quantum field theory and the requirement for renormalizability

provide us with powercounting. We hence construct the 1PI graph with lowest non-
vanishing loop order corresponding to our interaction:

� .

This graph is log-divergent. If we demand to have a renormalizable theory, its coefficient
of log-divergence must be proportional to the sought after tree-level vertex. This is indeed
the well-known clue. By construction, the graph has no subdivergences and hence will
evaluate to an expression of the form

φ
�
�

�
∼ vµ(q, p) ln λ + finite terms, (3)

where we cut-off momentum integrals by λ. The important point is that the only part
of this vertex functions which is allowed to diverge with λ is the part proportional to the
sought-after tree-level vertex, if we are in a renormalizable theory.

Hence, we can write

vµ(q, p) ∼ lim
λ→+∞

1

ln λ

Z +λ

−λ
d4k

�
vσ(q, k)

1

k/ + q/
vµ(k + q, k + p)

1

k/ + p/
vρ(k, p)Dσρ(k)

�
. (4)

Inserting (1) we indeed find that
vµ(q, p) ∼ γµ, (5)

as was to be expected.
Note that this states the obvious: in a local renormalizable quantum field theory the

short-distance singularities can be absorbed by suitable modifications of parameters in the
given Lagrangian. Vice-versa, if we make locality the starting point and hence require that
short-distance singularities are self-similar to the tree-level terms, we obtain the interaction
part of the Lagrangian from this requirement.

There is a cute albeit obvious message hidden here: if we settle on a given set of free
fields and demand that they interact in a renormalizable manner, already the lowest loop
order scattering processes fix the form of the interaction vertices from the knowledge of
free quantum field theory and the requirement of locality, whilst the interaction part of the
Lagrangian appears as a derived quantity. In this spirit we will continue to explore what
we can learn about QFT, in particular about a gauge theory, starting from free covariances
and so-determined interaction terms, and the accompanying one-particle irreducible graphs
which go with them. Our guiding principle will still be locality, in its mathematical disguise
as Hochschild cohomology.

In particular, we are now interested in formal sums of graphs corresponding to a specific
instance of propagation or interaction: the sum of all 1PI graphs which constitute in
perturbative QFT the 1PI Green function for that amplitude. The sum over all such 1PI
Green functions furnishes then the effective action, by definition. We will study these 1PI
Green functions for a non-abelian gauge theory.

We hence wish to discuss the formal sums

Γr =
X

g2|Γ| Γ

sym(Γ)
. (6)

Here and in the following the superscript r specifies the Green function under considera-
tion, it can be regarded as a collective label for the quantum numbers at the external legs
of that function.
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Already at this level interesting structure emerges. Our main tool will be the ex-
ploration of the Hochschild cohomology of the Hopf algebra structure which comes with
such graphs. This Hochschild cohomology provides a mathematical precise formulation of
locality [7, 4, 3], and will carry us far in the understanding of the structure of the theory.

0.3 Quantum equations of motion from Hochschild Coho-

mology

Such Hopf algebras have marvelous properties which they inherit from the universal object
Hrt for such algebras: the commutative Hopf algebra of non-planar rooted trees [2].

In that context, it is beneficial to study Dyson–Schwinger equations as formal con-
structions based on the Hochschild cohomology of such Hopf algebras. Before we justify
the connection to Dyson–Schwinger equation through the study of a generic gauge theory
below, let us first describe the universal set-up on rooted trees [3].

First, we settle on say a suitable Hopf algebra A which can be Hrt or any suitable
sub-Hopf algebra A.

Let A then be any such connected graded Hopf algebra which is free or free commutative
as an algebra, and (Bdn

+ )n∈N a collection of Hochschild 1-cocycles on it. The Dyson-
Schwinger equation is

X = I +
∞X

n=1

αnwnBdn
+ (Xn+1) (7)

in A[[α]]. The parameter α plays the role of a coupling constant. The wn are scalars in k.
We decompose the solution

X =
∞X

n=0

αncn (8)

with cn ∈ A.

Lemma 1 The Dyson-Schwinger equation (7) has a unique solution described by c0 = I

and

cn =
nX

m=1

wmBdm
+




X

k1+...+km+1=n−m, ki≥0

ck1 . . . ckm+1



 . (9)

The cn, coefficients in the n-th term of the perturbative expansion have a very nice property
which we will rediscover in quantum field theory:

Theorem 2 The cn generate a Hopf subalgebra (henceforth called the grading algebra) of
A :

Δ(cn) =

nX

k=0

Pn,k ⊗ ck (10)

where the Pn,k are homogeneous polynomials of degree n − k in the cl, l ≤ n :

Pn,k =
X

l1+...+lk+1=n−k

cl1 . . . clk+1
. (11)

In particular, the Pn,k are independent of the wn and Bdn
+ .

In this paper we want to discuss this structure when we pass from the universal object
Hrt to the concrete Hopf algebra of say a generic gauge theory. We aim at insights into
the non-perturbative structure of QFT and also prepare for new methods of computation
in subsequent work. In particular we use the fact that the operadic proof of the above
theorem given in [3] extends to our case once the proper insertion maps for graph insertions
have been defined. To see the main point, we study first an elementary example.
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0.4 A toy Ward identity

Consider the following system of DSEs based on say four Hochschild one-cocycles.

X1 = 1 + αBa
+(X3X1) + Bb

+(X2
2 ) (12)

X2 = 1 + αBc
+(X2

2 ) (13)

X3 = 1 + αBd
+(X2

3 ). (14)

One immediately confirms that imposing the symmetry

X1X3 = X2
2 (15)

in the Hopf algebra is equivalent to giving the sub Hopf algebra, i ∈ {1, 2, 3},

Xi = 1 +
X

n

αnc(i)
n (16)

Δ(c(i)
n ) =

nX

k=0

P
(i)
n,k ⊗ c

(i)
n−k, (17)

where the polynomials P
(2)
n,k and P

(3)
n,k are easily determined as in (10). Similarly, upon

using the symmetry (15) we find a new equation for X1

X1 = 1 + α
h
Ba

+ + Bb
+

i
(X1Xc), (18)

where Xc := X3 = X2
2/X1, and all elements c

(1)
n are symmetric in exchange of labels a

and b. The existence of a sub Hopf algebra on the generators c
(i)
n is now straightforwatd

to establish as in [3].
We will now focus on the case of a generic non-abelian gauge theory, and exhibit how the

Hochschild cohomology of the Hopf algebra of its perturbative expansion, the equations of
motion and local gauge symmetry interfere. In particular, we will find a similar situation:
the existence of a sub Hopf algebra is equivalent to the existence of relations exhibiting
symmetries between Green functions.

To formulate our results we first introduce the pre-Lie algebra of Feynman graphs in
this context in the next section.

We then introduce our result and discuss it with the help of a completely worked out
two-loop example.

1 Graphs

In this section we first define graphs and the accompanying pre-Lie and Hopf algebras. The
material is a straightforward application of previous results to a generic gauge theory.

1.1 The set of graphs

All graphs we consider are built from the following set R of edges and vertices

R =
n
� ,� ,� ,� ,� ,� ,�

o
. (19)

We subdivide into edges and vertices,

RV =
n
� ,	 ,
 ,�

o
, (20)
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and
RE = {� , ,Æ } . (21)

Obviously, R = RE ∪ RV. We have included edges for the free propagation of the local
gauge field, corresponding ghost fields, and fermion fields as the only matter fields. We
exclude the discussion of scalar matter fields coupled to gauge fields which deserve a
separate discussion in future work. We thus include only the expected vertices in a generic
local gauge theory: triple and quartic self-interactions of the gauge field, an interaction of
the gauge field with its ghost field and minimal interaction between the gauge and matter
fields - RV is determined by RE and locality in the spirit of the argument in the previous
section.

We then define one-particle irreducible (1PI) graphs as usual: they remain connected
after removal of any one of the internal edges. For such a 1PI graph Γ we have external

legs Γ
[1]
ext, internal edges Γ

[1]
int and vertices Γ[0].

For any 1PI graph Γ we let res(Γ) be the graph when all its internal edges shrink to
a point

res(� ) =� . (22)

We call res(Γ) the residue of Γ to emphasize that a graph Γ provides a counterterm Sφ
R(Γ)

which contributes Sφ
R(Γ)φ(res(Γ)) to the Lagrangian

L =
X

r∈RE

1/φ(r) +
X

r∈RV

φ(r), (23)

where we note that for r ∈ RE we have 1/φ(r) as the inverse free propagator, as it should
be. We extend the notion of a residue of a graph to a product Πi(Γi) of graphs:

res (ΠiΓi) = Πires(Γi). (24)

Any element r in R has a superficial degree of divergence (sdd), w(r), given as follows

w(� ) = 1, w(� ) = 1, w(� ) = 2, w(� ) = 0,

w(� ) = 0, w(� ) = −1, w(� ) = 0. (25)

We introduce the loop number |Γ|,

|Γ| = rank(H1(Γ)), (26)

where H1(Γ) is the first homology group of Γ, and

�����
Y

i

Γi

����� =
X

i

|Γi|. (27)

For a 1PI graph Γ we let then its superficial degree of divergence w(Γ) be

w(Γ) = −4|Γ| +
X

p∈Γ
[1]
int∪Γ[0]

w(p). (28)

Note that all 1PI graphs which have sdd ≤ 0 have residue in the above finite set R - we
are dealing with a renormalizable theory. Here we are mainly interested in the structure
of superficially divergent graphs, and hence do not discuss graphs and Green functions
which are superficially convergent. For all r ∈ R, we let Mr be the set of graphs such that
res(Γ) = r.
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1.2 Isotopy classes of graphs

The symmetry factor of a graph Γ, sym(Γ), is defined as usual as the rank of the auto-
morphism group of Γ.

We consider graphs up to the usual isotopy, for fixed external legs:

� =� 6=� =� . (29)

This plays a role in the study of the pre-Lie structure on graphs below. Indeed, we note
that the symmetry factor of a sum of all graphs belonging to an isotopy class is the product
of the symmetry factor of the subgraphs times the symmetry factor of the cograph obtained
by shrinking the subgraphs. This ensures compatibility of symmetry factors under graph
insertions as in the following example.

sym

 

� +�
!

= 4 =

2z }| {
sym

�
�

�
×

2z }| {
sym

�
�

�
, (30)

so that
1

4

 

 +!
!

=
1

sym

�

"
�
# , (31)

with

sym

�

$
�

= sym

 

%
!

= 2. (32)

1.3 Combinatorial Green functions

We can now speak of the set of superficially divergent 1PI graphs and consider graphs
according to their residue and loop number |Γ|.

We define the formal sums

Γr = 1 +
X

Γ∈Mr

g2|Γ| Γ

sym(Γ)
, r ∈ RV , (33)

Γr = 1 −
X

Γ∈Mr

g2|Γ| Γ

sym(Γ)
, r ∈ RE . (34)

We let

cr
k =

X

|Γ|=k

res(Γ)=r

Γ

sym(Γ)
, r ∈ R, (35)

be the sum of graphs with given residue r ∈ R and loop number k. We have Γr =
1 +

P∞
k=1 g2kck, r ∈ RV and Γr = 1 −

P∞
k=1 g2kck, r ∈ RE .

We call these formal sums Γr combinatorial Green functions. Each term on their
rhs maps under the Feynman rules to a contribution in the perturbative expansion of the
Green functions of our gauge theory. Already the algebraic structure of these combinatorial
Green functions is rather interesting. Analytic consequences will be briefly discussed at
the end and explored in subsequent work.

Our task in this paper is to acquaint the reader with the structure of these sums, which
is amazingly rich even at this elementary combinatorial level.
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1.4 Insertion places

Each graph Γ has internal edges ∈ Γ
[1]
int and vertices ∈ Γ[0]. We call (subsets of) those

edges and vertices places of Γ. Note that each place provides adjacent edges: for a vertex
these are the edges attached to it, while each interior point of an edge defines two edges
adjacent edges for it: the two pieces of the edge on both sides of that point. In such places,
other graphs can be inserted, using a bijection between the external edges of those graphs
and the adjacent edges provided by these very places.

The first thing we need to do is to count the number of insertion places with respect
to the graphs to be inserted. Let X =

Q
i Γi be a disjoint union of graphs to be inserted.

Let us introduce variables ar for all r ∈ R. To X we assign the monomial

x :=
Y

i

ares(Γi). (36)

This monomial defines integers nX,s for all s ∈ R by setting

x =
Y

s∈R

a
nX,s
s . (37)

For example, if X =&' , then

n
X,( = 2, nX,s = 0, s 6=) . (38)

Furthermore, to a graph Γ assign the function bΓ, and integers mΓ,s by

bΓ :=
Y

v∈Γ[0]

av

Y

e∈Γ
[1]
int

1

1 − ae
=
Y

s∈RV

a
mΓ,s
s

Y

e∈RE

1

[1 − ae]mΓ,e
. (39)

Then, we define the number of insertion places for X in Γ, denoted Γ|X, by

Γ|X :=
Y

s∈RV

�
mΓ,s

nX,s

� Y

e∈RE

∂nX,e 1
[1−ae]

mΓ,e (0)

nX,e!
. (40)

A few examples:

* |+ = 3,, |- = 2,. |/0 = 1, (41)

1 |23 = 3, (42)

as, for the last case,

∂2
a4

1

[1 − a5 ]2
(0) = 6. (43)

1.5 Permutation of external edges

We call |Γ|∨ the number of distinct graphs Γ which are equal upon removal of the external
edges. For example ���6

���
∨

=
���7

���
∨

=
���8

���
∨

= 3. (44)

Such graphs can be obtained from each other by a permutation of external edges.
Furthermore for graphs γ1, γ2, γ we let top(γ1, γ2, γ)p be the number of bijections

between γ
[1]
2,ext and a chosen place p = res(γ2) ∈ γ

[0]
1 ∪ γ

[1]
1,int such that γ is obtained. This

counts the number of ways to glue γ2 into a chosen place ∈ γ1 to obtain γ. This has a
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