


straightforward generalization top(γ1,X, γ)p to products of graphs X, where now p is an

appropriate set of chosen residues ∈ γ
[0]
1 ∪ γ

[1]
1,int.

For example if γ =

9
, γ1 =: , and p the vertex; in γ1, we have

top

 

< ,= ,

>
!

p

= 2. (45)

By definition, at a given place p,

top(γ1,X, γ)p = top(γ1, X̃, γ)p, (46)

for all pairs X, X̃ related by a permutation of external legs.

1.6 Ramification in graphs

Above, we have counted the number of ways top(γ1,X, γ)p how to glue graph(s) X into

a chosen single place p ⊂ γ
[0]
1 ∪ γ

[1]
1,int so as to obtain a given graph γ. Furthermore, there

might be various different places pi ∈ γ1 which provide a bijection for X such that the
same γ is obtained.

Let bij(γ1, γ2, γ) be the number of bijections between γ
[1]
2,ext and adjacent edges of places

p ∼ res(γ2) in γ1 such that γ is obtained.
A graph is described by vertices, edges and relations. For any bijection as above, we

understand that the relations in γ2, together with the relations in γ1 which remain after
removal of a chosen place, and the relations provided by the bijection combine to the
relations describing the graph γ.

We let {bij}(γ1, γ2, γ) be the set of all such bijections which allow to form γ from γ1

and γ2 and write, for each b ∈ {bij}(γ1, γ2, γ),

γ = γ1bγ2. (47)

We declare top(γ1, γ2, γ)p to be the number of such bijections restricted to a place p in
γ1.

We have a factorization into the bijections at a given place p, and the distinct bijections
which lead to the same result at that place:

bij(γ1, γ2, γ) = top(γ1, γ2, γ)ram(γ1, γ2, γ). (48)

Here, ram(γ1, γ2, γ) counts the numbers of different places p ∈ γ
[0]
1 ∪ γ

[1]
1,int which allow for

bijections such that
γ1bγ2 = γ. (49)

Note that for any two such places p, p̃ we find precisely top(γ1, γ2, γ) such bijections:

top(γ1, γ2, γ) := top(γ1, γ2, γ)p = top(γ1, γ2, γ)p̃. (50)

One immediately confirms that this number is indeed independent of the place p as
we can pair off the bijections at p with the bijections at p̃ for any places p, p ′, so that the
factorization (48) of bij(γ1, γ2, γ) is straightforward.

We call this integer ram(γ1, γ2; γ) the ramification index: it counts the degeneracy
of inserting a graph at different places - if the ramification index is greater than one, the
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same graph Γ can be obtained from inserting a graph γ2 into a graph γ1 at different places.
For example

ram

�

? ,� ,A
�

= 2, ram

�

B ,C ,D
�

= 1. (51)

The generalization replacing γ2 by a product of graphs X is straightforward. The moti-
vation of the name comes from a comparison with the situation in the study of number
fields which will be given in future work.

1.7 pre-Lie structure of graphs

The pre-Lie product we will use is a sum over all bijections and places of graph insertions.
Hence it gives the same result for the insertion of any two graphs related by permutation
of their external legs. One could formulate the Hopf and Lie structure hence on graphs
with amputated external legs, but we will stick with the usual physicists convention and
work with Feynman graphs which have external edges.

We define n(γ1,X,Γ) as the number of ways to shrink X to its residue (a set of one or
more places) in Γ such that γ1 remains.

We define a bilinear map

Γ1 ∗ Γ2 =
X

Γ

n(Γ1,Γ2,Γ)

|Γ2|∨
Γ. (52)

This is a finite sum, as on the rhs only graphs can contribute such that

|Γ| = |Γ1| + |Γ2|. (53)

We divide by the number of permutations of external edges |Γ2|∨ to eliminate the degen-
eracy in n(Γ1,Γ2,Γ), a number which is insensitive to the orientation of edges of Γ2. Note
that for Γa ∼perm Γb, we have Γ1 ∗ Γa = Γ1 ∗ Γb. Here, ∼perm indicates equivalence upon
permutation of external edges.

For example,

E ∗F = 2G . (54)

while

H ∗ (I +J ) =K +L +M +N . (55)

Proposition 3 This map is pre-Lie:

(Γ1 ∗ Γ2) ∗ Γ3 − Γ1 ∗ (Γ2 ∗ Γ3) = (Γ1 ∗ Γ3) ∗ Γ2 − Γ1 ∗ (Γ3 ∗ Γ2). (56)

Note that the graphs on the rhs have all the same residue as Γ1. The proof is analogous
to the one in [6]. For a product of graphs X we define similarly

Γ1 ∗ X =
X

Γ

n(Γ1,X,Γ)

|X|∨
Γ. (57)

This is a straightforward generalization of this map, but certainly not a pre-Lie product
in that generality.
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1.8 The Lie algebra of graphs

We let L be the corresponding Lie algebra, obtained by antisymmetrizing the pre-Lie
product:

[Γ1,Γ2] = Γ2 ∗ Γ1 − Γ1 ∗ Γ2. (58)

The bracket [, ] fulfils a Jacobi identity and we hence get a graded Lie algebra. Note that
the terms generated by the Lie bracket involve graphs of different residue.

1.9 The Hopf algebra of graphs

Let H be the corresponding Hopf algebra. Let us quickly describe how it is found. To L,
we assign its universal enveloping algebra

U(L) =

∞M

j=0

T (L)(j), (59)

where T (L)(j) = L⊗j is the j-fold tensorproduct of L. In U(L) we identify

Γ1 ⊗ Γ2 − Γ2 ⊗ Γ1 = [Γ1,Γ2], (60)

as usual. We let

hΓ1,Γ2i =

�
0, Γ1 6= Γ2

1, Γ1 = Γ2
. (61)

Here we understand that entries on the lhs of h·, ·i belong to the Lie algebra, entries on
the rhs to the Hopf algebra.

We compute the coproduct from this pairing requiring

h[Γ1,Γ2],Δ(Γ)i = hΓ1 ⊗ Γ2 − Γ2 ⊗ Γ1,Δ(Γ)i, (62)

and find the usual composition into subgraphs and cographs

Δ(Γ) = Γ ⊗ 1 + 1 ⊗ Γ +
X

γ

γ ⊗ Γ/γ. (63)

The antipode S : H → H is

S(Γ) = −Γ −
X

γ

S(γ)Γ/γ. (64)

The counit ē annihilates the augmentation ideal as usual [6, 7].
Furthermore, we define |Γ|aug to be the augmentation degree, defined via the projection

P into the augmentation ideal. Furthermore, for future use we let cr
k,s be the sum of graphs

with given residue r, loop number k and augmentation degree s. Hlin is the span of the
linear generators of H.

With the Hopf algebra comes its character group, and with it three distinguished
objects: the Feynman rules φ, the R̄ operation

φ̄ = m(Sφ
R ⊗ φP )Δ, (65)

(which is a character with regard to the double structure of Rota–Baxter algebras [5]) and
counterterm −Rφ̄.

Note that the forgetfulness upon insertion wrt the external legs (46) forces us to work
with a symmetric renormalization scheme

Sφ
R(Γ1) = Sφ

R(Γ2), (66)

11





for consistency, for all pairs Γ1,Γ2 which agree by a permutation of external edges.
Indeed, ∀γ and Γ1 ∼perm Γ2,

0 = γ ∗ Γ1 − γ ∗ Γ2 (67)

= φ̄(γ ∗ Γ1 − γ ∗ Γ2) (68)

= Sφ
R(Γ1 − Γ2)φ(γ), (69)

upon using (65) and as φ(γ ∗Γ1 − γ ∗Γ2) = 0, and similarly for all cographs of Γ1 and Γ2.

1.10 External structures

In later work it will be useful to disentangle Green functions wrt to their form-factor
decomposition. This can be easily achieved by the appropriate use of external structures
[6].

We hence extend graphs γ to pairs (γ,σ) where σ labels the formfactor and with a
forgetful rule

X

σ2

(Γ1,σ1) ∗ (Γ2,σ2) :=
X

Γ

n(Γ1,Γ2,Γ)

|Γ2|∨
(Γ,σ1). (70)

This allows to separate the form-factor decompositions as partitions of unity 1 =
P

σ2
in

computationally convenient ways for which we will use in future work. If we do not sum
over σ2 we can extend our notation to marked graphs as in [6].

2 The theorems

In this section we state the main result. It concerns the role played by the maps B k;r
+ to

be defined here: they provide the equations of motion, ensure locality, and lead us to the
Slavnov–Taylor identities for the couplings.

We start by defining a map

Bk;r
+ =

X

|γ|=k

|γ|aug=1

res(γ)=r

1

sym(γ)
Bγ

+, (71)

where Bγ
+ is a normalized generalization of the pre-Lie insertion into γ defined by requiring

Bk;r
+ to be Hochschild closed. To achieve this, we need to count the maximal forests of

a graph Γ. It is the number of ways to shrink subdivergences to points such that the
resulting cograph is primitive. To define it more formally, we use Sweedler’s notation to
write Δ(X) =

P
X ′⊗X ′′. If X =

Q
Γi is a Hopf algebra element with Γi graphs we write

Δ(X) = c(X ′,X ′′)cX ′ ⊗ cX ′′, (72)

which defines scalars c(X ′,X ′′). Here, cX ′ and cX ′′ are graphs and the section coefficients
of the Hopf algebra c(X ′,X ′,′) are explicitely spelled out.

We now set
maxf(Γ) =

X

|γ|aug=1

X
c(Γ′,Γ′′)hγ,Γ′′i. (73)

Note that this counts precisely the ways of shrinking subgraphs to points such that a
primitive cograph remains, as it should, using the pairing between the Lie and Hopf
algebra and summing over all Lie algebra generators indexed by primitive graphs γ.
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The same number can by definition be obtained from the section coefficients of the
pre-Lie algebra:

maxf(Γ) =
X

|γ|aug=1

X

|X|=|Γ|−|γ|

n(γ,X,Γ), (74)

as each maximal forest has a primitive cograph γ and some subdivergences X of loop
number |Γ| − |γ|.

We have defined the pre-Lie product so that

γ ∗ X =
X

Γ∈Hlin

n(γ,X,Γ)

|X|∨
Γ. (75)

Now we define

Bγ
+(X) =

X

Γ∈Hlin

bij(γ,X,Γ)

|X|∨

1

maxf(Γ)

1

[γ|X]
Γ, (76)

for all X in the augmentation ideal. Furthermore, Bγ
+(I) = γ.

Taking into account the fact that the pre-Lie product is a sum over all labelled com-
position of graphs and the fact that we carefully divide out the number of possibilities to
generate the same graph, we can apply the corresponding results for rooted trees [3]. One
concludes in analogy to Theorem 2:

Theorem 4 (the Hochschild theorem)

Γr ≡ 1 +
X

Γ∈Mr

Γ

sym(Γ)
= 1 +

∞X

k=1

gk
X

|γ|=k

|γ|aug=1

res(γ)=r

1

sym(γ)
Bγ

+(Xγ), (77)

where Xγ =
Q

v∈γ[0] Γv
Q

e∈γ
[1]
int

1/Γe.

For the next theorem, we have to define the Slavnov–Taylor identities for the coupling.
Consider

Xk,r = ΓrXk
coupl. (78)

We set

Xcoupl = 1 +
∞X

k=1

g2kccoupl
k , (79)

which determines the ccoupl
k as polynomials in the cr

j from the definition of Xcoupl below.
The Slavnov–Taylor identities for the couplings can be written as

ΓO
ΓP =

ΓQ
ΓR =

ΓS
ΓT =

ΓU
ΓV , (80)

which results in identities in every order in g2 and leads to define indeed a single coupling
Xcoupl which can be defined in four equal ways, each one corresponding to an interaction
monomial in the Lagrangian:

Xcoupl =
ΓW

ΓX p
ΓY =

ΓZ
Γ[ p

Γ\ =
Γ℄

[Γ^ ]3/2
=

q
Γ_

Γ` . (81)

Note that we read this identities as describing the kernel of the counterterm: they hold
under the evaluation of the indicated series of graphs by the corresponding character S φ

R.
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The following theorem follows on imposing these identities as relations between Hopf alge-
bra elements order by order in g2. On the other hand, if we assume the following theorem,
we would derive the existence of the Slavnov–Taylor identities from the requirement of the
existence of the grading sub Hopf algebra furnished by the elements cr

k.

Theorem 5 (the gauge theory theorem)

i) Γr ≡ 1 +
X

Γ∈Mr

Γ

sym(Γ)
= 1 +

∞X

k=1

gkBk;r
+ (Xk,r) (82)

ii) Δ(Bk;r
+ (Xk,r)) = I ⊗ Bk;r

+ (Xk,r) + (id ⊗ Bk;r
+ )Δ(Xk,r). (83)

iii) Δ(cr
k) =

kX

j=0

Polrj(c) ⊗ cr
k−j , (84)

where Polrj(c) is a polynomial in the variables cr
m of degree j, determined as the order j

coefficient in the Taylor expansion of Γr[Xcoupl]
j .

3 Two-loop Example

3.1 One-loop graphs

This section provides an instructive example. We consider our non-abelian gauge theory
and first list its one-loop graphs, which provide by definition maps from H → H lin.

The maps Bk,r
+ , we claim, furnish the Hochschild one-cocyles and provide the Dyson–

Schwinger equations, in accordance with the Hochschild and gauge theorems. We study
this for the self-energy of the gauge boson to two-loops. We want in particular exhibit the
fact that each such two-loop graph is a sum of terms each lying in the image of such a
map and want to understand the role of Hochschild cohomology.

We have for example

B1,�
+ =

1

2
B�+ +

1

2
B�+ + B�+ + B�+ . (85)

To find the one-loop graphs we simply have to apply these maps to the unit of the
Hopf algebra of graphs, which is trivial:

c�1 = B1,�
+ (I) = B�+ (I) +

1

2
B	+ (I) +

1

2
B
+ (I) + B�+ (I)

= � +
1

2
 +
1

2Æ +� (86)

and similarly

c�1 = B�+ (I) =� (87)

c�1 = B�+ (I) =� (88)

c�1 = B�+ (I) + B�+ (I) + B�+ (I)

+
1

2

"
B�+ (I) + B�+ (I) + B�+ (I)

#
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+ B�+ (I) + B�+ (I)

= � + +! +
1

2

h
"

+ # +$
i

+% +& (89)

c'1 = B(+ (I) + B)+ (I) + B*+ (I) + B++ (I)

+ B,+ (I) + B-+ (I) + B.+ (I) + B/+ (I)

+ B0+ (I) +
1

2

"
B1+ (I) + B2+ (I) + B3+ (I)

#

+ B4+ (I) + B5+ (I) + B6+ (I) + B7+ (I)

+ B8+ (I) + B9+ (I) + B:+ (I) + B;+ (I)

+ B<+ (I) + B=+ (I) + B>+ (I) + B?+ (I)

= � +A +B +C
+ D +E +F +G
+ H +

1

2

h
I +J +K

i

+ L +M +N +O
+ P +Q +R +S
+ T +U +V +W . (90)

3.2 Two-loop graphs

We now want to calculate

c�2 = B�+ (2c�1 + 2c�1 ) +
1

2
B�+ (2c�1 + 2c�1 )

+
1

2
B�+ (c	1 + c
1 ) + B�+ (2c�1 + 2c
1 ), (91)

upon expanding

X
Æ

=

�
Γ�

�2

h
Γ�

i2 , (92)

X
�

=
Γ�
Γ�

, (93)

X
�

=

�
Γ�

�2

h
Γ�

i2 , (94)
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X
�

=

�
Γ�

�2

h
Γ�

i2 , (95)

to order g2.
Let us do this step by step. Adding up the contributions, we should find precisely the

two-loop contributions to the gauge-boson self-energy, and the coproduct

Δ(c�2 ) = c�2 ⊗ I + I ⊗ c�2 + [2ccoupl
1 − c�1 ] ⊗ c�1 . (96)

The minus sign appears on the rhs due to our conventions in (34).

Insertions in 1
2B�+

Below, we will give coefficients like
�

1
2 |1|2|

1
2 |

1
2 |1|1

�
in the next equation, where the first

entry is the symmetry factor of the superscript γ of Bγ
+, the second entry the symmetry

factor of the graphs in the argument X, the third entry the integer weight of that argument,
the fourth entry the number of insertion places, the fifth entry the number of maximal
forests of the graphs Γ on the rhs, the sixth entry is top(γ,X,Γ) and the seventh entry is
ram(γ,X,Γ).

We start

1

2
B�+ �

2� + 2� �
=

�
1

2
|1|2|

1

2
|
1

2
|1|1

�

×

�

� +� +� +�
�

=
1

4

�

� +	 +
 +�
�

=
1

2

�

� +

�

, (97)

where indeed the symmetry factor forÆ is 1/2, the symmetry factor for the graphs
appearing as argument is 1, and they appear with weight two. We have two three-gluon
vertices in� , and hence two insertion places. Each graph on the right has two
maximal forests, and for each graph the inserted subgraph can be reduced in a unique way
to obtain� , so the ramification index is one, and the topological weight is unity as
well.

Similarly for ghosts

1

2
B�+ �

2� + 2� �
=

�
1

2
|1|2|

1

2
|
1

2
|1|1

�

×

�

� +� +� +�
�

=
1

4

�

� +� +� +�
�

=
1

2

�

� +�
�

. (98)

Next,

1

2
B�+ �

2� �
=

�
1

2
|1|2|

1

2
|
1

3
|1|2

�

 
=

1

3! . (99)
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This is more interesting. There are three maximal forests in" , a one-loop three-

point vertex-graph to the left and to the right, and also the four gluon propagators which

form the square give a one-loop log-divergent four-point graph. Also, we can form#
by inserting the argument into either vertex of$ , and hence the ramification index

is two. The topological index is 1. Note that the total weight 1/3 of the graph is not

its contribution to c%2 . We expect the same graph to be generated from inserting into

& , as we will confirm soon. This is generally true: only in the Hochschild closed sum

over insertions in all components of c'1 will we see the correct weights emerging.
We continue.

1

2
B(+ �

2

�
1

2) +
1

2* +
1

2+
��

=

�
1

2
|
1

2
|2|

1

2
|
1

2
|2|1

�

,
+

�
1

2
|
1

2
|2|

1

2
|
1

3
|1|2

� �

- +.
�

=
1

4

�

/
�

+
1

6

�

0 +1
�

. (100)

Here, the first graph2 on the rhs has two maximal forests, a ramification index of

two as the graph can be obtained by insertion in either vertex of3 , and4 is

generated by one bijection, while the other two graphs have three maximal forests, 1 as a
ramification index and 2 as a topological index: there are two different bijections leading
to each of them.

So far we inserted 3-point one-loop vertex corrections. Now we insert propagator
corrections.

1

2
B5+ �

2

�
1

26
��

=

�
1

2
|
1

2
|2|

1

2
|
1

3
|1|1

� 

7 +8




=
1

12



9 +:


 =
1

6; . (101)

Note that the graph allows for three maximal forests: apart from the inserted one-loop
self-energy graph it has two more maximal forests, corresponding to the two one-loop four-
point vertex-subgraphs in< , obtained by opening an internal edge in the subgraph.

Next we insert a fermion loop:

1

2
B=+ �

2> �
=

�
1

2
|1|2|

1

2
|1|1|1

� 

? +�




=
1

2



A +B


 =C . (102)
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Indeed, no ramification, just one maximal forest and a single bijection. Similarly, the
ghost loop

1

2
BD+ �

2E �
=

�
1

2
|1|2|

1

2
|1|1|1

� 

F +G




=
1

2



H +I


 =J . (103)

Finally,

1

2
BK+ �

2

�
1

2L
��

=

�
1

2
|
1

2
|2|

1

2
|
1

2
|1|1

� 

M +N




=
1

8



O +P




=
1

4



Q


 . (104)

A single bijection, no ramification and two maximal forests inR . This concludes

insertions intoS .

Insertions into 1
2B�+

We come to insertions into� .

1

2
B�+ �
� +� +�

�
=

�
1

2
|1|1|1|

1

3
|1|2

�

�
+

�
1

2
|1|1|1|

1

3
|1|1

�

�
=

1

3	 +
1

6
 . (105)

Indeed,� has three maximal forests, no ramification as there is only a single inser-

tion place and two of the three bijections lead to it, while one bijection leads to� ,

which also has three maximal forests.

1

2
B
+ �
Æ +� +� +� +� +�

�
=

�
1

2
|1|1|1|

1

3
|1|1

�
� +

�
1

2
|1|1|1|

1

2
|1|1

�

�
+

�
1

2
|1|1|1|

1

3
|1|2

� �

� +�
�

=
1

6� +
1

4�
+

1

3

�

� +� +

�
. (106)
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