




Indeed, no ramification, just one maximal forest and a single bijection. Similarly, the
ghost loop

1

2
BD+ �

2E �
=

�
1

2
|1|2|

1

2
|1|1|1

� 

F +G




=
1

2



H +I


 =J . (103)

Finally,

1

2
BK+ �

2

�
1

2L
��

=

�
1

2
|
1

2
|2|

1

2
|
1

2
|1|1

� 

M +N




=
1

8



O +P




=
1

4



Q


 . (104)

A single bijection, no ramification and two maximal forests inR . This concludes

insertions intoS .

Insertions into 1
2B�+

We come to insertions into� .

1

2
B�+ �
� +� +�

�
=

�
1

2
|1|1|1|

1

3
|1|2

�

�
+

�
1

2
|1|1|1|

1

3
|1|1

�

�
=

1

3	 +
1

6
 . (105)

Indeed,� has three maximal forests, no ramification as there is only a single inser-

tion place and two of the three bijections lead to it, while one bijection leads to� ,

which also has three maximal forests.

1

2
B
+ �
Æ +� +� +� +� +�

�
=

�
1

2
|1|1|1|

1

3
|1|1

�
� +

�
1

2
|1|1|1|

1

2
|1|1

�

�
+

�
1

2
|1|1|1|

1

3
|1|2

� �

� +�
�

=
1

6� +
1

4�
+

1

3

�

� +� +

�
. (106)
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Note that� has three maximal forests and comes from one bijection,

�
has

two maximal forests and comes as well from one bijection, while each of� and

� come from two bijections and have three maximal forests.

1

2
B +

�
1

2

�
! +" +#

��
=

�
1

2
|
1

2
|1|1|

1

2
|1|1

�

$ +

�
1

2
|
1

2
|1|1|

1

3
|1|2

�

%
=

1

8& +
1

6' . (107)

This time,( has two maximal forests and comes from one bijection while)
has three maximal forests and the two remaining bijections are leading to it.

1

2
B*+ �
+ +, +- +. +/ +0

�
=

�
1

2
|1|1|1|

1

2
|1|2

� 

1 +2


 +

�
1

2
|1|1|1|

1

3
|1|2

�

3
=

1

2



4 +5


 +
1

36 . (108)

Indeed,7 and8 have both two maximal forests and two bijections leading to

them each, while9 has three maximal forests and is generated from two bijections.

Similarly for ghosts

1

2
B:+ �

; +< += +> +? +�
�

=

�
1

2
|1|1|1|

1

2
|1|2

� 

A +B


 +

�
1

2
|1|1|1|

1

3
|1|2

�

C
=

1

2



D +E


 +
1

3F . (109)

Now insertion of self-energies.

1

2
BG+

�
1

2H
�

=

�
1

2
|
1

2
|1|1|

1

3
|1|1

�
I =

1

12J , (110)

straightforward.

1

2
BK+

�
1

2L
�

=

�
1

2
|
1

2
|1|1|

1

2
|1|1

�

M =
1

8N , (111)
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dito. Next,

1

2
BO+ �
P

�
=

�
1

2
|1|1|1|1|1|1

�
Q =

1

2R (112)

and similar for the ghost-loop

1

2
BS+

�
1

2T
�

=

�
1

2
|1|1|1|1|1|1

�
U =

1

2V . (113)

This concludes insertions intoW .

Insertions into B�+ and B�+
It remain the insertions into� and� .

B�+
�
2�

�
=

�
1|1|2|

1

2
|
1

3
|2|1

�

� =
2

3� . (114)

Indeed, there are three maximal forests, a ramification index of two and just a single
bijection for each place.

Next

B	+
�
2


�
=

�
1|1|2|

1

2
|
1

2
|1|1

� �

� +�
�

=
1

2

�


 +Æ
�

. (115)

This time we have no ramification and two maximal forests.
Next the self-energy,

B�+
�
2� )

�
=

�
1|1|2|

1

2
|
1

2
|1|1

� 

� +

�





=
1

2



� +

�



 . (116)

Again, two maximal forests, single bijection and no ramification.
Finally, the ghosts bring nothing new:

B�+
�
2� )

�
=

�
1|1|2|

1

2
|
1

3
|2|1

�

� =
2

3� . (117)

And

B�+
�
2� )

�
=

�
1|1|2|

1

2
|
1

2
|1|1

� �

� +�
�

=
1

2

�

� +�
�

. (118)
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Also,

B�+ �
2 )

�
=

�
1|1|2|

1

2
|
1

2
|1|1

� 

! +"




=
1

2



# +$


 . (119)

3.3 Adding up

Now we indeed confirm that the results adds up to c%2 . Adding up, we indeed find

1

2

�

& +' +( +)
�

from (97) + (115)

+
1

2

�

* ++ +, +-
�

from (98) + (118)

+
1

2. from (99) + (105)

+
1

4/ from (100)

+
1

2

�

0 +1
�

from (100) + (106)

+
1

22 from (101) + (105)

+3 from (102)

+4 from (103)

+
1

45 from (106) + (110)

+
1

26
from (104) + (106)

+
1

47 from (107) + (111)

+
1

68 from (107)

+



9 +:


 from (108) + (116)

+



; +<


 from (109) + (119)

+

�

=
�

from (108) + (114)

+

�

>
�

from (109) + (117)
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+
1

2



?


 from (112)

+
1

2



�


 . from (113)

We indeed confirm that the result is

cA2 =
X

|Γ|=2

res(Γ)=B
Γ

sym(Γ)
, (120)

the sum over all graphs at the given loop order, divided by their symmetry factors. This
confirms the Hochschild theorem.

Furthermore, we find that

Δ′(cC2 ) =

�
2cD1 + 2cE1

�
⊗

1

2
BF+ (I) (121)

+

�
cG1 + cH1

�
⊗

1

2
BI+ (I) (122)

+

�
2cJ1 + 2cK1

�
⊗ BL+ (I) (123)

+

�
2cM1 + 2cN1

�
⊗ BO+ (I). (124)

We now impose the Slavnov–Taylor identity, which allows us to write the above as

[2ccoupl
1 − cP1 ] ⊗ B1,Q

+ , (125)

by expanding (80) to order g2. Vice versa, if we require that the coproduct defines a sub
Hopf algebra on the cr

j , we reobtain the Slavnov–Taylor identities

2cR1 + 2cS1 = cT1 + cU1 = 2cV1 + 2cW1 = 2cX1 + 2cY1 . (126)

Hence we recover the Slavnov Taylor identities for the couplings from the above require-
ment. Summarizing, we indeed find

Δ′(cZ2 ) =
h
2ccoupl

1 − c[1 i
⊗ c\1 . (127)

Note that the above indeed implies

bB1,℄
+

�
Γ^ [Xcoupl]

2
�

= 0, (128)

where

B1,_
+ =

1

2
B+̀ +

1

2
Ba+ + Bb+ + B
+ . (129)

22



3.4 Hochschild closedness

Finally, it is instructive to see how the Hochschild closedness comes about. Working out

the coproduct on say the combination 1
6d + 1

4e =: U we find

Δ(U) = U ⊗ 1 + 1 ⊗ U +
3

6

�
f ⊗g

�
+

1

4

�
h ⊗i

�

+
1

4

�
j ⊗k

�
(130)

On the other hand, looking at the definition of cl1 , we find a mixed term

1

2

�
m +n +o

�
⊗

1

2p , (131)

and we now see why we insist on a symmetric renormalization point.
Furthermore, we confirm

3z }| {

n

�

q ,r ,s
�

= (132)

2z }| {

top

�

t ,u ,v
�

1z }| {

ram

�

w ,x ,y
�

6z }| {

sym

�

z
�

sym
�
{

�

| {z }
2

sym
�
|

�

| {z }
2

,

as it must by our definitions.

4 Discussion

We have exhibited the inner workings of Hochschild cohomology in the context of the
Dyson–Schwinger equations of a generic non-abelian gauge theories. As a first combi-
natorial exercise we related the Slavnov–Taylor identities for the couplings to the very
existence of a sub Hopf algebra which is based on the sum of all graphs at a given loop
order. From [1] we know that the existence of this sub Hopf algebra is the first and crucial
step towards non-perturbative solutions of such equations. Further steps in that direction
are upcoming.

To prepare for this we finish the paper with a short discussion of some further prop-
erties of our set-up. This is largely meant as an outlook to upcoming results obtained
by combining the Hopf algebra approach to perturbation theory with the structure of
Dyson–Schwinger equations.

4.1 Locality and Finiteness

The first result concerns the proof of locality of counterterms and finiteness of renormalizad
Hopf algebra. The structure

Γr = 1 +
X

k

g2kBk;r
+ (Γr[Xcoupl]

k) (133)
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allows to prove locality of counterterms and finiteness of renormalized Green function
via induction over the augmentation degree, involving nothing more than an elementary
application of Weinberg’s theorem to primitive graphs [7]. It unravels in that manner the
source of equisingularity in the corresponding Riemann–Hilbert correspondences [8, 12].
For the DSE equations, this implies that we can define renormalized Feynman rules via the
choice of a suitable boundary condition. This leads to an analytic study of the properties
of the integral kernels of φ(Bk;r

+ (I)) to be given in future work. Furthermore, the sub
Hopf algebra of generators cr

k allows for recursions similar to the ones employed in [1],
relating higher loop order amplitudes to products of lower loop order ones. The most
crucial ingredient of the non-perturbative methods employed in that paper is now at our
disposal for future work.

4.2 Expansions in the conformal anomaly

The form of the arguments Xr,k = ΓrXk
coupl allows for a systematic expansion in the

coefficients of the β-function which relates the renormalization group to the lower central
series of the Lie algebra L. Indeed, if the β function vanishes Xcoupl is mapped under the
Feynman rules to a constant, and hence the resulting DSE become linear, by inspection.
One immediately confirms that the resulting Hopf algebra structure is cocommutative,
and the Lie algebra hence abelian [11, 3]. This should relate dilatations in quantum field
theory to the representation theory of that lower central series. It will be interesting to
compare the results here and more general in [13] with the ones in [15] from this viewpoint.

4.3 Central Extensions

The sub-Hopf algebras underlying the gauge theory theorem remain invariant upon ad-
dition of new primitive elements - beyond the one-loop level they obtain the form of a
hierarchy of central extensions, which clearly deserves further study. Indeed, if we were
to use only B1,r

+ instead of the full series of Hochschild one cocycles we would still obtain
the same sub Hopf algebra. Thus, this sub Hopf algebra and the structure of the DSEs is
universal for a chosen QFT in the sense of [11, 3].

4.4 Radius of convergence

The above structure ensures that the Green functions come as a solution to a recursive
equation which naturally provides one primitive generator in each degree. This has remark-
able consequences for the radius of convergence when we express perturbation theory as a
series in the coefficients cr

k, upon utilizing properties of generating functions for recursive
structures [9].

4.5 Motivic picture

The primitives themselves relate naturally to motivic theory [10]. Each primitive generator
is transcendentally distinguished, with the one-loop iterated integral providing the rational
seed of the game. The relation to algebraic geometry, motivic theory and mixed Hodge
structures coming from QFT as they slowly emerge in [10, 11, 12] are an encouraging sign
of the deep mathematical underpinnings of local interacting quantum fields.
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