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HOPF ALGEBRAS IN RENORMALIZATION THEORY: LOCALITY
AND DYSON-SCHWINGER EQUATIONS FROM HOCHSCHILD
COHOMOLOGY

C. BERGBAUER AND D. KREIMER

ABSTRACT. In this review we discuss the relevance of the Hochschiteowl-
ogy of renormalization Hopf algebras for local quantum figleories and their
equations of motion.
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INTRODUCTION AND ACKNOWLEDGMENTS

The relevance of infinite dimensional Hopf and Lie algeboagtie understand-
ing of local quantum field theory has been established inabedouple of years.
Here, we focus on the role of the 1-cocycles in the Hochsdultbmology of such
renormalization Hopf algebras.

After an introductory overview which recapitulates the Melown Hopf alge-
bra of rooted trees we exhibit the crucial connection betweeocycles in the
Hochschild cohomology of the Hopf algebra, locality and #teicture of the
guantum equations of motion. For the latter, we introducakmoatorial Dyson-
Schwinger equations and show that the perturbation ser@sdes Hopf subal-
gebras indexed only by the order of the perturbation. We thsouss assorted
applications of such equations which focus on the notionetiffsmilarity and

transcendence.
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This paper is based on an overview talk given by one of us ([p.d«tended by
a more detailed exhibition of some useful mathematical @spef the Hochschild
cohomology of the relevant Hopf algebras. It is a pleasurihaok the organiz-
ers of the75eme Rencontre entre Physiciensé®liciens et MatBmaticiensfor
organizing that enjoyable workshop. D. K. thanks Karen ¥éat discussions on
the transcendental nature of DSEs. C. B. acknowledges sulppthe Deutsche
Forschungsgemeinschaft under grant VO 1272/1-1. He adsdkghBoston Univer-
sity and the IHES for hospitality.

1. ROOTED TREES FEYNMAN GRAPHS, HOCHSCHILD COHOMOLOGY AND
LOCAL COUNTERTERMS

1.1. Motivation. Rooted trees store information about nested and disjobdisu
vergences of Feynman graphs in a natural way. This has bedratigeast implic-
itly since Hepp’s proof of the BPH subtraction formula [23]daZimmermann’s
forest formula [38]. However it was only decades later thatdlgebraic structure
of the Bogoliubov recursion was elucidated by showing thet €ssentially given
by the coproduct and the corresponding antipode of a Hopbaigon rooted trees
[25, 10]. The same result can be formulated more directlgrims of a very similar
Hopf algebra on 1PI Feynman graphs [11]. We start with therg#son in terms
of rooted trees which serves as a universal role model fdd@hf algebras of this
kind.

For instance, the subdivergences of #fediagram in six spacetime dimensions
I =

can be represented by the decorated tree

AN
Y2 T3
M= ) 72:_0_1 73:_<

Additional labelling (which we do not care about here) wobh&lneeded to keep
track of the actual insertion places. However, since ondlimately interested in
the sum of all Feynman graphs of a given order in perturbdtieory, for the pur-
pose of the Bogoliubov recursion all possible insertiong«0énd~; into +; can
be considered at the same time, when due care is given togbktien of graphs
with overlapping divergences into appropriate linear cimrations of trees.

where

In a moment we will need the trees
I’Yl and I’h
72 3
whose meaning should be clear: They represent the grafdr which v, or ~s,
respectively, is suitably inserted.
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Now how isT" renormalized? According to the Bogoliubov recursion, teor-
malized value is given by

on (/) = a-m (o (R ) - rotee () -

Y2 T3 Y2 T3, 73

W ~rofe,)0 ([1) = R0lon,0)-

(o) Rb(oy) — Bony) Rb(:,) ¢<-m>)

where¢ denotes the unrenormalized but possibly regularized (ilv@ot renor-
malize on the level of the integrand) contribution of thepdravhich a given tree
represents. For example, in dimensional regularizatide,a map into the algebra
V := Cle7!, ¢]] of Laurent series with finite pole part. The m&p: V — Vis a
renormalization scheme. For example, the minimal subtnactcheme is obtained
by defining R to be the projector onto the proper pole patte*) = fif k < 0
andR(e*) = 0 otherwise. We emphasize though that the use of a regulatdrea
avoided by defining a suitable renormalization scheme orethad of integrands.
Such an approach can then be directly formulated on thedétson—-Schwinger
equations, where the choice of a renormalization schembeaon-perturbatively
given as the choice of a boundary condition for the accomipgrintegral equa-
tion.

Now consider the polynomial algebfd generated by all decorated rooted trees
of this kind. There is a coproduct on it which disentangleggrinto subtrees and
thus divergences into subdivergences, as will be discusssgbsection 1.3. Us-
ing this coproduct;, the above algebrdl becomes a Hopf algebra. L8&tbe its
antipode. By definitionS satisfies the recursive relation (in Sweedler’s notation

Az)=I@z+2zI1+ > 2 ®")
S(r)=—x— ES(x')x”

It turns out that, if one similarly defines a "twisted antiedcﬂﬁ asamap{ —»V
by S%(1) = 1 and

Si(x) = R <¢<x> n isﬁu'w(x")) ,

then S%, provides the counterterm and the convoluti§i ¢ = my (Sg @ ¢)A

solves the Bogoliubov recursioip = S}é * ¢ [25, 10]. Using this algebraic ap-
proach to the combinatorial intricacies of renormalizaticmany important ques-
tions in perturbative and non-perturbative quantum fiedwtl can be treated from
a convenient conceptual point of view, some of which will beiewed in the fol-
lowing sections.

This picture translates rather easily to renormalizatiocaordinate space [1], as
will be briefly discussed in subsection 1.6.

Before continuing the discussion of renormalization, weoduce some key al-
gebraic notions. We will come back to the example of the giajdter on.
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1.2. Basic definitions and notation. Let k£ be a field of characteristic zero. We
considerk-bialgebrag A, m, I, A, ¢) that are graded connected, that is

A= @Any AO = k» AmAn c Am+n7 A(An) - @ Al X Am
n=0 l+m=n
By abuse of notation, we writé both for the unit and the unit map. Also, we
sometimes consideras a mapd — A,. We assume thah(I) = I ® L. It follows
thate(I) = 1 whilee(A,,) = 0forn # 0. The kernel ok is called the augmentation
ideal, and the ma® : A — A, P = id — ¢, is called the projection onto the
augmentation ideal. The coproduktgives rise to another coassociative may:
defined by
Alz)=A(z) -1z —z®L
Recall that elements in the kernel Afare calledprimitive. We will occasionally
use Sweedler's notatiaf (z) = " 2/ @ #” and alsoA (z) = > 2’ @ 2.

It is a well known fact that connected graded bialgebras apf ldlgebras. In-
deed, the sequence defined by the recursive relation

@) (@) = —x— 3 S()a" forw ¢ Ag, S(I) =1
converges in Eng A).

For a coalgebrg A, A) and an algebrd B,m), the vector spacélomy(A, B)
of linear mapsA — B is equipped with a convolution produetby (f,g) —
frxg=m(f ®g)A. Thus(f xg)(z) =>_ f(2')g(z"). Using the modified prod-
uctxp : (f,g9) — f*p g =m(f ® g)(id ® P)A, equations (2) can be rewritten

S(z) =—(S*pid)(z)forz & Ay, SO) =1
which will be convenient later on.

1.3. The Hopf algebra of rooted trees. Now we give a more detailed construc-
tion of the Hopf algebré&{ of rooted trees [25, 10] that is in the center of all our con-
siderations. An (undecorated, non-planar) rooted treecenaected contractible
finite graph with a distinguished vertex called the root. Bynention, we will
draw the root on top. We are only interested in isomorphisassgs of rooted trees
(an isomorphism of rooted trees being an isomorphism oftgrayghich maps the
root to the root) which we, by abuse of language, simply calted trees again. As
a graded algebrd{ is the free commutative algebra generated by trees (ingudi
the empty tree which we consider the ubiwith the weight grading: the weight
of a tree is the number of its vertices. For instance, thestoéeveight one to four

STRIRE

A product of rooted trees is called a forest — obviously thegtmeof a forest is the
sum of the weights of its trees. Otha coproductA is introduced by

3) A(T)=I®7+7®I+ Y Pu(r)® Re(r)

adm.c
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where the sum goes over alimissible cutef the treer. By a cut ofr we mean a
nonempty subset of the edgesrathat are to be removed. The product of subtrees
which “fall down” upon removal of those edges is called graned partand is
denotedP,(7), the part which remains connected with the root is dendted).
This makes sense only for certain "admissible” cuts: by d&im a cutc(r) is
admissible, if for each ledfof 7 it contains at most one edge on the unique path
from [ to the root. For instance,

(1) - ;\ S Qo

b eee]a A on

The coassociativity ofA is shown in [25]. H is obviously not cocommutative.
Since the coproduct is compatible with the gradifgjs a Hopf algebra. There
is an important linear endomorphism #f, the grafting operato3, defined as
follows:

ByI) = e
(4) Bi(r...7) = %\ for treesr;
T ... Tn

In words: B, creates a new root and connects it with each root of its arguriiée
special importance aB. will become evident in subsection 1.8, : H — H is
a closed but not exact Hochschild 1-cochain.

The Hopf algebréH is the dual of a Hopf algebra considered earlier by Grossman
and Larson [22], see [19]. It can also be described from e fire-Lie algebra on
one generator [8].

1.4. Tree-like structures and variations on a theme.

Tree-like structures From the Hopf algebré{, defined in the previous subsection,
several generalizations can be constructed: Hopf algeaifrdecorated trees, of
planar trees, etc. This can be phrased most elegantly froemeral point of view
in terms of "tree-like structures®, as for example introddcby Turaev in [37]:
Consider the category of rooted trees and embeddings (ardslimyr’ — 7 is
an isomorphism from’ to a subtree of). A rooted tree-structure is then defined
to be a contravariant functor from this category to the cate@f sets. For ex-
ample, decorated (labelled) trees can be described by tiooiup which maps
a tree onto a certain set its vertices and/or edges are dedosgth. Being con-
travariant,p maps embeddings of trees to the respective restrictionsaufrdtions.
Similarly, a planar structure is provided by a functomapping a tree to the set
of its topological embeddings into the real plane modul@mation-preserving
homeomorphisms dk? onto itself. Now lety be a rooted tree-structure. A rooted
¢-tree is a pail(r, s) wherer is a tree and is an element o (7). The notions of
isomorphisms and subtrees of rootedrees are immediate.
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Generalizations ofi{. Using this convenient framework, we have immediately
other Hopf algebras at hand: Létbe a set. The Hopf algebfd(S) is defined
as in the previous subsection, replacing the word treS-olgcorated tree (for our
purposes, we only decorate vertices, not edges). Simildtlyis the (noncommu-
tative) Hopf algebra of planar rooted trees. In particularthese Hopf algebras,
the proofs of the coassociativity & are verbatim the same. The planar Hopf al-
gebra and its decorated versioHs;(.S) were extensively studied by Foissy [19].
He showed that they are self-dual and constructed isonmsnzhto several other
Hopf algebras on trees that have appeared in the literature.

The Hopf algebra of Feynman graphgvhile rooted trees describe nested diver-
gences in an obvious manner, the resolutioowdrlappingdivergences into trees
requires some care [38, 26, 18]. This problem exists onlyomentum space. By
basing a Hopf algebra directly on Feynman graphs insteatcet these issues
can be avoided [26, 11]. As an algebra, #ét i be the free commutative algebra
on 1Pl Feynman graphs (of a given theory; the case of a ndargbaory requires
to take form factors (external structures) into accountciwhive avoid here). The
empty graph serves as a umitin the following, a product of graphs is identified
with the disjoint union of these graphs. On a graph, a coprodugiven [11] by

AT)=I@T+I®l+) y®I/y
Y&l
where the sum is over all 1PI superficially divergent propdygsaphsy of I'. A
few examples are given in [11].

Still, thanks to the universal property mentioned at the@rglbsection 1.5, Hopf

algebras of rooted trees serve as an excellent role modelafiwus questions

and, moreover, yield most interesting links to differeréiirhes of mathematics
[13, 21]. In the present paper, we will be mainly concernetthwopf algebras of

trees. In many cases, it is only a matter of notation to tedaghese results into the
Hopf algebra of Feynman graphs, easily achieved by theipoaer of QFT [4].

In view of the preceding paragraphs, the reader might wistyttw describeH ¢ x
as a Hopf algebra of suitable tree-like structures, usiegeikults of [26].

1.5. Hochschild cohomology of bialgebras.

Definition. Let A be a bialgebra. We consider linear maps: A — A®" as
n-cochains and define a coboundary operatoy

(5) bL = (id® L)A + > (—1)'A;L+ (-1)""L @1

i=1
whereA denotes the coproduct an; the coproductA applied to the-th factor
in A®™, The mapL ® I is given byz — L(z) ® L. It is essentially due to the
coassociativity ofA thatb squares to zero, which gives rise to a cochain complex
(C,b). Clearly (C,b) captures only information about the coalgebra structure of
A. The cohomology of(C,b), denotedH H?(A), is easily seen to be the dual
(A considered as a @module rather than a bimodule over itself) notion of the
Hochschild cohomology of algebras. Note that the right tniodule action is here
(id ® €) A which explains the last summand in (5) and the subscripf iA®.
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The role of H H!(H). Forn = 1, the cocycle conditioL = 0 reduces to, for
L:A— A,

(6) AL=(id® L)A+ L®L

Sometimes the following equivalent statement, using thp hais more conve-
nient:

() AL = (id ® L)A +id ® L(T).

Let us now try to understand the spaliéi () of "outer coderivations or.*
We first describe the 0-coboundaries ("inner coderivatiprighey are of the form

L(T) = Z OéT//T/ — OéT]I

in Sweedler’s notation, where, is an element of for each forest. For exam-
ple, L : 7 — Y 7/ —Iis a 0-coboundary. Note thdtis in the kernel of any
0-coboundary.

It is a crucial fact that the grafting operaté, , introduced in subsection 1.3, is
a 1-cocycle [10]:

PROPOSITIONL.

(9) AB, = (id ® By)A +id @ e.

Idea of proof: When looking at equation (9), the statement is rather imatedi
Let 7 be a forest. The first summand at the right side of (9) refecsite of B (1)
which affect at most all but one of the edges connecting theroet of B (1) to
the roots ofr, while the second summand takes care of the cut which conhplete
separates the root @ (7) from all its children. O

SinceB. is ahomogeneous linear endomorphism of degree 1, it is nobdOundary
— note that the coboundaries have no chance to increasedheedd husB, is a
generator (among others) &fH! (H).

When looking for other generatois of H H!(H), the cocycle conditions (6,7)
immediately yield the requirement thatl) be a primitive element (and zero if
is exact). Whilee is up to scalar factors obviously the only primitive element
degree 1, there are plenty of primitives in higher degreesekample,

(20) oo —2I

is a primitive element in degree 2. Foissy [19] showed that> L(I) is a sur-
jective mapH H!(H) —Prim(*) onto the set of primitive elements &f. In the
case of Hopf algebras of decorated rooted tfgeS) obviously any elemert € S
yields a homogeneous cocycle of degree 1 dendtgdvhich, applied to a forest,
connects its roots to a new root decorateds by

It should be clear that each 1Pl Feynman graph which is fremubflivergences
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is a primitive element of{cx. In general, there are primitive elements in higher
degrees too, for example, cf. (10), the linear combination

~( <~

in ¢3 theory in six dimensions.

Universal property. The category of object§A, L) consisting of a commutative
bialgebraA and a Hochschild 1-cocyclé on A with morphisms bialgebra mor-
phisms commuting with the cocycles has the initial obj@¢t B, ). This is a result

of [10]. Indeed, let A, L) be such a pair. The mgp: H — A is simply defined

by p(I) = T and pushing forward alon®, (and L) and the multiplication. The
fact thatp is a morphism of coalgebras is an easy consequence of (8).

Also it was shown in [1] that, conversely, the coproductof H is determined
if one requires the ma, to be a 1-cocycle. This may serve to find different
presentations off.

For anyH-bicomoduleB, the higher Hochschild cohomolog¥y H"(H, B), n >
2, is trivial [19], thus in particulatH H*(H) = 0.

1.6. Finiteness and locality from the Hopf algebra. We have now accumulated
enough algebraic notions to come back to the original phaysigplication already
sketched in subsection 1.1. Given a specific quantum fieloryhélopf algebras
H(S) andH ¢ i are determined by its perturbative expansion into Feynmaphs.
We denote this Hopf algebra generically by Every divergent graph without
subdivergences determines a Hochschild 1-cocygle and any relevant tree or
graph is in the range of a 1-cocycle of this kind. This enstirasany relevant term
in the perturbative expansion is in the image of a Hochsatild-cocycle. This
allows to prove locality: the all important Bogoliubd¥ operation on a character

o,
¢ — Rl¢] = m(S% @ ¢)(id @ P)A,

P the projector in the augmentation ideal ahdome Feynman rules has the prop-
erty that it only requires an overall Taylor subtraction dtxad renormalization
point to render it finite - implying that its divergences wiibt depend on loga-
rithms of kinematical variables.

Momentum spaceThe next step is to choose a target algebirand regularized
Feynman rules : H — V, and a renormalization schenie: V' — V. The map

¢ is supposed to be a (unital) algebra homomorphism. We sticke example
(V = Cle7!,€]], ¢) of dimensional regularization as in subsection 1.1, busstr
once more that the reader can find suitable generalizatiotisei literature [16].
The minimal subtraction scheme whekas the projector onto the proper pole part
is only one of many choices one can make. However, in any caseeguireR

to preserve the UV divergent structure (i. e. the pole part) ta satisfy the Rota-
Baxter equation

(11) R(zy) + R(z)R(y) = R(zR(y)) + R(R(z)y).
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It is easy to check that the minimal subtraction schemef&si¢ll). The Rota-
Baxter equation is the algebraic key to the link betweenmeatization and Birkhoff
decomposition, see for example [11, 15, 16]. It also guaemthat the renormal-
ized Feynman rules are again an algebra homomorphism [2&feathe unrenor-
malized rulesp. Now the twisted antipode is defined by

(12) S(r) = —R(S% xp ¢)(7) for 7 & Ho,  SH(I) = 1,
equivalently, in Sweedler’s notation

S%(r) = —R <¢(7) + Esg(f')gs(#')) forr ¢ Ho, SH(I) =1

where the term "twisted antipode” should be justified by angéaat the recursive
expression (2) for the regular antipode. The nﬁp as can be inferred from the
example in Figures 1-3, yields the countertermdoi he complete renormalized
evaluation function is then given by

(13) ¢r = Sp* .
One can find a non-recursive descriptionggf [25, 10] which shows the equiva-
lence with Zimmermann'’s forest formula [38].

Example.In order to understand the twisted antipode, we come badietexam-
ple of subsection 1.1. On the relevant trees, the coprodistes follows:

s(R) = 1o R+ R ot

Y2 T3 Y2 T3 Y2 T3
71 gas
(14) 1 oy, ®I T oy ® I T 0y, 043 K0y,
73 72
A(.’h‘) = I® o) +ey, & I

According to (12) and (13), the algorithm fei; consists of the following steps:

(F) Apply the coproduciA to the tree under consideration
(Cy) apply the magid @ P)A ® id®™ (for n = 1...) until each summand is of
theforml ® .. ..
(M) apply¢®" to go intoV®". As ¢(I) = S}é(]l) = 1, the first factorl of each
term is mapped to 1.
(C!) (for n = ...1) apply the map- Rm ® id®™ until we end up in//©2
(F') apply the mapn to get intoV.

For the tree/&y.l this algorithm is performed in Figures 1-3. While in our sienp

example of gﬁlly%fwo disjoint subdivergences, the Bogolutexursion could have
been performed by hand without using the Hopf algebra, wiémgo higher loop
orders, the Hopf algebra approach provides significant coatipnal advantage
[4, 5].

Locality of counterterms from Hochschild cohomologjoreover, the Hopf alge-
bra can be used to give a direct proof of finiteness of renoratgdn and locality
of counterterms from a purely algebraic point of view. Fomage toy model, this
has been done in a recent paper [28]. The basic observatibatighe fact that ev-
ery relevant tree or graph is in the range of a homogeneoukddhid 1-cocycle
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A TAN

Y2 T3
A
®2
= /\11 ®H+H®N T oy ®Iyl + o ®I% T 0z 0y D0y,
v2 s y2 ®v3 v3 Y2
(id® P)A®id
o®3 @3 71 o 7
— H I® +eo, & + o0, ® oy, 0, Qe QI
y2 3 v3 Y2
IR ey, 0y +0,, D0, + 0, Qo) R0,
(id® P) A®id®? +H®e,® I% +IRe, ® I’Yl
73 72
+1 summand done (was already of the fofm . . .)
¢® @4 g 7
— H I®e, ® 7<§§)]I+]I(g>oy3<g) ’Y®]I+]I®.w.%®.w®}1
3 2
+0,00,Q0, Ql+e, e, e, I
HRey, Qe Doy +IRQ e, ey, Qe
(id® P) A®id®3 +5 summands done
¢®5 @5
—H [@e), e, Qe [+IRe, Ve, Qe @I

+10 summands done

FIGURE 1. First part of the calculation afz. Apply A and then
(id ® P)A ® id®™ until each summand is of the forfng . . . .

of degree 1 allows for easy and clean inductive proofs ofowaristatements for
arbitrary loop number. This also holds on the level of graphg sum over all
primitive graphs of given loop ordet defines a 1-cocyclé3” such that every
graph is generated in the range of these 1-cocycles. Tluwsllas observed in
[29, 33], to prove locality in general.

Indeed, letB” be a 1-cocycle, and lgt, be the measure defined by thdoop
integrand of B (I). Let (B’ (X)) be a Feynman amplitude defined by insertion
of a collection of subdivergences into thosen-loop primitive graphs. We write
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—Rm®id?

&4

- V®4 _R¢(.’Y2) ® ¢(.’Ys) ® ¢('“{1) ®1-— R¢(°73) ® ¢(.’Y2) ® ¢('“{1) ®1

—Rm®id? +10 summands pending
o s oo w o (M) 01— Rote) 00 ([") 01
3 Y2
_R¢(.’y2.’¥3) ® ¢(°'yl) Q1+ R(Rﬁb("m)‘ﬁ('ws)) ® ¢('w1) ®1
+R(Rp(0q,)d(e,)) @ P(oy,) ® 1 — Ro(e,,) ® (e,,) @ IO
—Rm®id _RQS('“/S) ® ¢('“{2) ® ¢('“{1)
-+5 summands pending
%2 o2 R <R¢(.W)¢ (I’Yl)) 914 R <R¢(.%)¢ <Iv1>> o1
72

3

+R (Rp(0y,015)0(01,)) @1 — R(R(Rp(0,,)P(y3))¢(e,)) @ 1
—R (R(Rp(05)¢(05,))0(01)) © 1+ R (Rp(0r,)0(045)) @ p(e,)
Y2 Y

" FR(Ro (e )o(on.)) @ 000,) ~ o ([N ) @1

_RQS(QW 073) ® Eb(.’ﬂ) o R¢(°’Y2) ®¢ <I:::>

7

—Rp(e,) ® ¢ <I ) + 1 summand pending

72
FIGURE 2. Second part of the calculation ¢of;. Apply ¢©™ and

then—Rm ® id®™ until arrival in V2. Then applym to get into
V.

¢(BL(X)) = [ ¢(X)dp4, emphasizing that subgraphs become subintegrals un-
der the Feynman rules.

Recall thatP denotes the projection onto the augmentation ideal. Si{ég = 0,
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V. —R¢ < /;2\”_%> +R <R<Z3(‘vz)¢ @)) T <R¢('”)¢ (ID)
+R (R (0,015)8(0r,)) — R(R(Rp(91;)0(0r5))B(0r,))
—R(R(R9(0:)6(0:,))9(01)) + 6 (/\.) ~ folen)o (Dl)

~roto)0 ([7) = Rofone)o0er)

72
+R(Rp(0,)0(055)) P(041) + R (Rp(0r5)5(er,)) d(0r,)

FIGURE 3. Third part of the calculation afz. The reader should
compare the result with (1). Using the fact t@ is an algebra
homomorphism (ifR is a Rota-Baxter map), the last step (C3) in
Figure 1 and the first step (C3’) in Figure 2 could have been
avoided.

PBY = B", we can write

(S © GP)A(BLX)) = [ 8f 6(X)du.

This proves locality in a straightforward manner by indoctover the augmenta-
tion degree, i. e. using the coradical filtration of the Hdgkhra.

Coordinate spaceThe language of rooted trees is especially suited for descri
ing renormalization in coordinate space [1]. A particitappealing approach to
coordinate space renormalization is the work of Epstein@iager [17] (see also
[36, 7]) who, starting from ideas of Bogoliubov [3] and othegxtracted a set of ax-
ioms for time-ordered product and constructed such tindered products in terms
of rigorous functional analysis. The result is completagyigalent to momentum
space renormalization but has conceptual (albeit not ctatipnal) advantages. It
is no surprise that the Hopf algebra picture fits equally ite this framework
[1], if one takes into account the specific features of Eps&iaser renormaliza-
tion such as the absence of overlapping divergences antirgtion parameters.
In view of highly interesting mathematical ramificationlas a possible anal-
ogy to the Fulton-MacPherson compactification of configarespaces [20, 34], it
seems most appropriate to attack this problem using tréeatfter than coordinate
space Feynman diagrams.

If there are no subdivergences, Epstein-Glaser renoratiglizamounts to a Tay-
lor subtraction on test functions: L&t be a distribution on som&? — {0} with
singularity at0, for example’t = z~(¢*+1) In order to extendt onto all of R?,
consider

(15) t:f Ot (f > waaaf(0)>

lal<p
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wheref is a test function and the,, are auxiliary test functions witB%w,,(0) =
i p is large enough with respect to the degree of divergenc¥ af 0, the
modified distributiont is defined on all ofR¢. It is natural to consider the first
summand in (15) as the unrenormalized contribution andehersl summand as
the counterterm.

Epstein and Glaser describe how to take care of distribsitiinich may have an
overall divergence and subdivergences, i. e. distribati@hich are not only sin-
gular on the thin diagondlz; = ... = x,} of someM™ but on the fat diagonal
{z; = z; for somei, j}. The algorithm, with the above identification of unrenor-
malized part and counterterm, is structurally very simitathe Bogoliubov recur-
sion and can thus be described by a twisted antipode [1].

Using some techniques of [1], notably the "cut produet‘of certain linear en-
domorphisms or{ as a replacement for the convolution product, one can con-
struct the mapR as an algebra endomorphism on a Hopf algebra of trees with
decorated vertice’/({e, x}) and consider the "twisted antipode” defined$y =

—R(SrOpid), and the renormalization méffy; ®id. Starting from the tree/\ ,
the mapSyr @ id yields

A A A A A A

which should be compared to the last line in Figure 3 — vestioketypee mark
unrenormalized contributions, vertices of typé¢he corresponding counterterms.
These trees are then mapped into an appropriate space etapealued distri-
butions: the above example describes terms needed forrtbamalization of the
fourth order time-ordered product. Using this somewhatiffemtlapproach, where
the combinatorics happen entirely in the Hopf algebra (ae@d to between the
Hopf algebra and the target ring), checking locality simguigounts to calculating
the commutator obr © id and B, :

(Sp @ id)Bye = (id — R)Bye(Sg @ id).

Thus once the subdivergences are taken care of, it sufficetbtoact the superficial
divergence.

2. HOPF SUBALGEBRAS ANDDYSON-SCHWINGER EQUATIONS

Hopf subalgebras of the Hopf algebras of (decorated) rowés$ or Feynman
graphs are in close relationship with Dyson-Schwinger gous. Indeed, any
Dyson-Schwinger equation (to be defined below) gives rise topf subalgebra.
This is a statement about self-similarity: a 1-cocycle like ensures that a product
of trees is mapped to a tree, and this is a rather general pteran: the Green
functions appear as functionals of themselves, the fumatsobeing provided by
the Dyson skeleton graphs which appear as the integral ke’ (I)).

It will turn out in Theorem 3 that all Hopf subalgebras comingm a reasonably
general class of Dyson-Schwinger equations are in factosphic.
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2.1. Hopf subalgebras of decorated rooted treesFor simplicity, we start our
considerations in the Hopf algeb?& of undecorated rooted trees. A full classi-
fication of their Hopf subalgebras is far beyond reach. Herewe give a few
examples the last of which will be directly related to Dysechwinger equations.

Bounded fertility, finite parts, primitive elementsorn € N let H,, be the subal-
gebra ofH generated by trees whose vertices have fertility bounded &bove by
n. A glance at the definition of the coproduct (3) suffices to ¢, is a Hopf
subalgebra of{. In particular, the Hopf algebra{; with one generator in each
degree is known as the Hopf algebralafiders It is closely related to iterated
integrals [9, 27].

Similarly, the free commutative algebra generated by todadegree< n forms

a Hopf subalgebra for any since the coproduct respects the grading. Another
example where there is nothing to check are subalgebrasajedéy an arbitrary
collection of primitive elements dft.

The Connes-Moscovici Hopf subalgebr.less trivial example of a Hopf subal-
gebra ofH arose in the work of Connes and Moscovici on local index fdemdor
transversally hypoelliptic operators on foliations [18, 14]. In the case of a foli-
ation of codimension 1, the relevant Hopf algebta is defined by the generators
X,Y, o, for n € N, the relations

[X7 Y] = _X7 [X7 511] = 5n+1> [Y7 511] = ’I’L(;n, [5n>5m] = 07
and the coproduct
AX)=XQI+IX+4d6, AY)=YI+IxY, A()H)=0I+Ix4d.

Note that the relations above and the requirementAhbe an algebra homomor-
phism determine\ on the generator§, for n > 2 as well. LetN be the linear
operator, callechatural growth operator on H, defined on a tree- by adding

a branch to each vertex af and summing up the resulting trees, extended as a
derivation onto all of{. For example,

(16) Ny = N +E

NYI) = /I\+3I/\+}\+.

Now identifying §; with e, and generally,, with N™(I), the commutative Hopf
subalgebra of{; generated by thé&, can be embedded intd [10]. The resulting
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Hopf subalgebra is denotédq,,. For example,

A(6,) = 0,
A(d) = 6 ® 96,

A(03) = 36 @35+ (52 +67) ® 6.
The§,, can be specified in a non-recursive manner:
On = Z CrT.

TET,

Here7, is the set of trees of weight. The integers:;, calledConnes-Moscovici
weights have been computed in [27, 19] using the tree factorial

n
Cr = ———

7! Sym(T)
where Synfr) is the symmetry factor (rank of the group of symmetriesy.of

A quadratic Dyson-Schwinger equatiohlow we turn to the study of another
source of Hopf subalgebras, the combinatorial Dyson-Suoperi equations. As
a first example, we consider the equation

17) X =T+ aBy(X?)

in H[[«]]. Using the ansatz
X = Z a"ey,
n=0

one easily findgy = I and

(18) Cnt1 = Z By (cken—k)
k=0
which determineX by induction. The first couple af,, are easily calculated:
co — H,
T = o,

2
¢ = /\_+4[

R

We observe that,, is a weighted sum of trees with vertex fertility bounded by 2 —
this is due to the square & in the Dyson-Schwinger equation (17). The reader
should compare this to the Connes-Moscovici trees (16udgad in the previous
subsection. The recursive nature of (17) makes one susgddhec,, generate a
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Hopf subalgebra oft. Indeed, for each > 0 andk < n there is a polynomiaP;
in the¢; for I < n such that

(19) Acn:ZP]?@Ck.
k=0
They are inductively determined by

n—k
(20) Pt =>_pipr

1=0
andP(’]””rl = ¢pa1. FOr a proof of this statement, see the more general Theorem 3
in the next subsection. For the moment, we merely displayfitse P in an
upper triangular matrix where columns are indexednby= 0...5 and rows by
k=0...n.

I c1 C2 Cc3 Cy4 C5
I 2¢1 2c9+ c% 2c3 4+ 2c1c0 2¢4 + 2c103 + c%
I 3c1 3co + 36% 6cico + czf + 3c3

I 4y 6¢2 + deo
I 561
I

The coefficients are basically multinomial coefficients dl§lvecome clear in the
next subsection.

2.2. Combinatorial Dyson-Schwinger equations.Let A be any connected graded
Hopf algebra which is free or free commutative as an algestna(Bﬁlr”)neN acol-
lection of Hochschild 1-cocycles on it (not necessarilynpae distinct). The most
general Dyson-Schwinger equation we wish to consider Isere i

(21) X =1+ a"w,B{"(X")

n=1
in A[[«]]. The parametet: plays the role of a coupling constant. Thg are scalars
in k. Again we decompose the solution

o

n

ng o on
n=0

with ¢,, € A.

LEMMA 2. The Dyson-Schwinger equation (21) has a unique solutionritesl
bycy =T and

n
d
(22) =Y wyBI" > Chy - - Chigin
m=1 kl+---+k7n+1:n_m7ki20

Proof. Inserting the ansatz into (21) and sorting by powersyofields the
result. Uniqueness is obvious. ]

THEOREM 3. The elements,, generate a Hopf subalgebra df :

Aley) = ZP,? ® ck
k=0
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where theP;' are homogeneous polynomials of degree k inthec;, [ <n:

n
(23) PP = > Cly - Cly -
11+...+lk+1:n—k

In particular, the P’ are independent of the,, and Bﬁlr”.

We emphasize that the main ingredient for the proof of theé®tam is the fact
that theBi" are Hochschild 1-cocycles, the rest being a cumbersomerhidis-
forward calculation.

Proof. We proceed by proving inductively the following statements
(o) The theorem holds up to order
(6,) Foragivenm € {1...n}letlj+...+l,r1 =:p€{0...n—m},l; > 0.
Then the right hand sum
._ k Em
(24) P(n—m,m,p) = Z I

Lt 1
ki1+...+kmy1=n—m, k;>l;
does not depend on the singjdut only onp, n — m andm, justifying the
notationP(n — m,m,p).
(7») Inthe above notation and for agyc {1...n}, the termP(n —m,m,q —
m) does not depend om € {1...¢}.

To start the induction, we note théty) is obvious. (3;) is trivial asm = 1
enforced; = I, = 0. Similarly, for (1) only onem is in range and the statement
thus trivially satisfied. We proceed tav,). By definition, and using (6) for the
B,

Alen) = > wn((id® BI™)A+ Bi" @1)

m=1
Z Ck1 e Clcm+1

ki+...+km+1=n—m, k; >0

(using the induction hypothesfs,_1))

n 1. kg1
. dim
= I+ g wp, (id @ BY™) E E
m=1 ki+...+kmyp1=n—m, k;>011...l;n+1=0

k‘1 km+1 _
Pll ...le+1 ®Cl1---clm+1—

(by rearranging indices)

—GelE Yy, Y )3
m=1

p=0 Li+..+lmr1=pki1+... +kmr1=n—m, k; >1;

k‘1 km+l dm —
Pll ...le+1 ®B+ (Cll"'clm+1)—

(by the induction hypothesig?,, ) and using the notation of (24))

n—m

= cn®H+ZmeP(n—m,7n,p)® Z Bim(Cll...Clerl):

m=1 p=0 li+..+lmy1=p
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(rearranging indices;(replacesn + p) and usingvy,,))

n o q
= cn®H+ZZme(n—m,m,q—m)®

g=1m=1

d77
® Z B+ L(Cll te clerl) =

li+...Hmyr1=g—m

n q
= Cn®H+ZP(n_Q7Q7O)®qu Z Bim(cll"'clm+1)'

q:1 m=1 ll+---+l7n+1:q_m

Since the right hand tensor factordg a glance at (24), using th&} = cy, veri-
fies(ay,).

The items(3,,) and(~,,) follow from (a,,—1) :

P(n—m,m,p) = Z Pl’jl . prm —

lm+1
ki+...+kmy1=n—m, k;>l;

= 2. 2

kl+~~~+km+1:n_m7 ki>l; T’%+...+Tlll+1=k‘1—l1

E Cr% . Crm+1 =

lm+1 +1
m—+1 m—+1 _
] +...+7‘lm+1+1—km+l_lm+1

= E Crq "'CTerp+17

r1+...+"mip+1=n—m—p

which is independent of arlywhence(3,,). Substitutingp = ¢ —m shows(v,,). O

At first sight the fact that the coproduct on thedoes not depend on the, and
hence that all Dyson-Schwinger equations of this kind yisdanorphic Hopf sub-
algebras (provided there are no relations among:thenight well come as a sur-
prise. The deeper reason for this is the recursiveness pB&Wwill become more
apparent in the next paragraphs.

Description in terms of treesNow we specialize to the cas¢ = H(S) where
(S =US,,| -]) is an arbitrary graded set of decorations such ffgt= n for all
n (one can even allow,, C S, and defineB{" := >";_, BY). The mapsB"
are defined as in (4) where the newly created vertex is desmbiatd,,. Using the
following lemma, which gives an explicit presentation of th in terms of trees,
Theorem 3 can be proven in a more comprehensive way.

LEMMA 4. The solution of (21) can be describeddgy= I and

(25) = > e II »

T€T(S), |T|=n Sym(T) verlol

where

by = ) Wldectw) Udecﬂ'ﬁifﬁ’lﬁeﬁ{’(v))! if fert(v) < |dec(v)] + 1
0 else
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Here 7(S) denotes the set of-decorated treesy[”) the set of vertices of,
dec(v) the decoration (inS) of v, || the decoration weight of, i. e. |7| =

> verlo [dec(v)|, andfert(v) the fertility (number of outgoing edges) of the vertex
V.

Proof. This is an easy induction using the following argument: &k a given
tree inc, and let its rooto be decorated by something in degree According
to (22),7 = B (I*7y ... 7,041-1,) Where ther; are trees different frorfi. The
fertility of the root is thusm + 1 — ky. We assumer; ... 71—k, = o—’fl e af,f”
where ther; are pairwise different trees. In (22), there ére= ,g:fﬂlfi', choices to

make which yield the tree. Since they, are simply multiplied for all vertices of
atree, it remains to see that for the only new vertéx r, we have

(m+1)! Sym()
o/ W = =C .
Yo/ ko! Sym(71) ... SYM(Tyq1—ko)
This however follows immediately from the definition of Sym. O

As a matter of fact, the coefficients
(26) 11

can be interpreted as follows: Consider each tree as anddpérobject with
|dec(v)| + 1 — fert(v) inputs at each vertex For example,

Lo

Clearly, the total number of inputs is+ 1 for any tree of decoration weight.
Now the coefficient (26) is nothing but the number of planabeddings of this
operadic tree (where the trunk, i. e. the original tree ig kepd). In other words,
(26) counts the number of ways that the input edges can swaydithe original
tree. Using this idea, we obtain the following

Operadic proof of Theorem 3As a variation of (21) let us consider the operadic
fixpoint equation

_H+Za fins1 (G ®(n+1))

Here, ;1; is a mape OVl : V¥ — V for some spac& andG(a) is a formal
series in with coefficients in theDl/!. We regardl : V — V as the identity map.
We write G(a) = T+ 3, a¥uy. It follows easily by induction that, € OF+11.
Clearly, G(«) is a sum (with unit weights) over all maps which we obtain bgneo
position of some undecomposable maps

The coproduct of decorated rooted trees acts orvihie an obvious manner. A
given monomial;! - -- v;! (which lives in the PROR ®(riit+ritr) _, yy@r
wherer = " r;) can be composed with any elementf —1

r!

(27) —
rye.. T
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ways. Hence, as the sum over all maps with unit weight, this is the contribution
to the term in the coproduct which hag on the right hand side and the given
monomial on the left hand side. Going back to the initial Dy&chwinger equa-
tion (21), we see that the same argument (27) also deterrtiae®product on the
ci there, in agreement with (23):

n __ (k‘ + 1)' , .,

(28) Pk; = Z chl - Cill
i Tyt igry=n—=Fk

0<is <igq1, X ri=hk+1

Indeed, the trees in, were weighted by a product over vertices (26), and the co-

product respects the planar structure. d

The coefficients in (26) and (28) arise thus in a completetunahway due to the
transition from a noncommutative (planar) to a commutafinen-planar) setting.

Final remarks. Before we ultimately turn to the more analytical side of Dyso
Schwinger equations, let us mention that by Theorem 3, then€aMoscovici
Hopf subalgebra presented in the preceding subsection generated by a Dyson-
Schwinger equation of the form (21) if we restrict ourselieesne-cocycles map-
ping into the linear space of generators, as they typicgpear in local quantum
field theory.

Note that the Hopf algebras which appear as solutions of 24 studied under
the name Faa di Bruno algebras in [18], to which the ConneselMici algebra
can be related through an isomorphism.

In studying propagator insertions, one encounters the gemeral equation

I
X :OéB+ (m) .

It yields a Hopf subalgebra in a similar way, see [6] for detai

Finally let us emphasize that the ladder Hopf algebfaintroduced in the last
subsection, can be generated bylthear Dyson-Schwinger equation

X =1+ aB,(X)

The Hopf algebrdH; plays a special role at the fixpoint of the renormalization
group flow [35], see also the next subsection.

As opposed to the above example, we call Dyson-Schwingeatiems of the form
(21) (where somev,, # 0 for n > 1) nonlinear They necessarily generate trees
with sidebranchings.

2.3. Applications in physics and number theory. In physics, Dyson-Schwinger
equations, usually derived by formal means using functionegrals, describe the
loop expansion of Green functions in a recursive way. Arriadtiéve to derive these
equations is given by the very existence of a Hopf algebratyidg perturbation
theory. These Hopf algebras provide Hochschild 1-cocyeled we can obtain the
Dyson—Schwinger equations for them in a straightforwardimea



HOPF ALGEBRAS IN RENORMALIZATION THEORY 21

In the following, we first exhibit Dyson-Schwinger equasadn three different con-
texts: as a source for transcendental numbers, as a mandefine a generating
function for the polylogarithm, and as the equations of mofor a renormalizable
quantum field theory. The presentation is by no means salagted, and we refer
the reader to the growing literature for more details [29,3&8 31, 32, 24].

A simple toy modelLet us consider the equation we had before (17),
(29) Xy =T+ aB(X3),

and let us exhibit the difference between such an equatidthenassociated linear
system

(30) X1 :]I—I—()éB+(X1).

We will study toy Feynman rules on these Hopf algebras, deghas characters on
the Hopf algebra. We explore thaB, (I) defines an integral kernél such that

0By = [ kw2

where the kernel is homogeneousuz, uz) = k(x, z)/u. We regard the integral
as the Fourier transform of the kernel with respect to thdiplidative groupR . .
To define our first set of renormalized Feynman rules, we sirs@i

0B 0lel = [ (b, — ko )00l
Note that we have)(hihs) = ¢(h1)d(ha) which impliese(I)[z] = 1.

Let us define the transforit () of the kernelk(x, 1) to be

K(v) = / k(z, 1)z "dx.
0
This determines
/ k(x,z)x™ "de = 27K (7).
0

Let us now look at (30). Applying to both sides delivers an integral equation
for the Green function

o(X1)[z;0] =1+ oz/ooo o(X1)[z; o] (k(x, 2) — k(x,1))dx.

Note that our choice of renormalized Feynman rules cormdpto the choice of a
boundary condition for the Dyson-Schwinger equatipfX;)[1; o] = 1. Omitting
the subtraction of the kernel at= 1 defines the unrenormalized Feynman rgie

which reconstructs the renormalized ones Sf;“ * ¢u, WhereR is the evaluation
map atz = 1.

Equation (30) can be solved by an AnsatZ(;)[z] = z~7(®), which leads to
77 =14 a(z77 — DK (v()),
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i. e. the series/(«) is the solution of the equation= aK (y(«)). The non-linear
case (29) cannot be solved by such/amsatz Maintaining the same boundary
condition we get the equation

o(Xa)[z0] = 1+ o /0 " (6(Xa) [z a]) (k(z, 2) — (z, 1))

At this moment, it is instructive to introduce a bit of quamtdield theory wis-
dom. We observe that we can write this integral equationerféhm

d(Xo)[z;0] =1+ /000 d(Xo)[x; o) A(z; ) (k(x, 2) — k(z,1))dx,

where the running coupling(z; «) = a¢(X2)[z; o] has been introduced. We see
that we just modify the linear Dyson-Schwinger equationHiy tunning coupling,
which forces us to look for solutions not of the form

Gla, z) = e (@)
but instead of the more general form
(31) G(Oé, Z) =e Z;.;l ’Yj(a) In? z’

where they; themselves are recursively defined throughhanks to the renormal-
ization group.

Indeed, assume now that the running coupling is constantd = 0. This turns
the non-linear Dyson-Schwinger equation into the linear @®0). That is a general
phenomenon: the linear Dyson-Schwinger equation appedh®ilimit of a van-
ishing 5-function, and signifies a possible fixpoint of the renoraetion group.

This suggests a natural expansion in terms of the coefficiehthe 5-function,
which will be presented elsewhere.

All this has a combinatorial counterpart:

Oln Xg(()é)
O

whereY is again the grading operator. Let us work this out in an examp/e
consider the solutioXs () of (29). SettingXs = I+ > 32, i, we find to
O(a?),

A(e;) =0 SxY(e1) =e
A(@) =2c1 ®¢ S*Y(c2) =2c0 — 20%
A(C;J,) =3c1 ®co+ (2¢0 + C%) ®cp S*Y(c3) =3c3—8cico + 5c§’.

= S*Y(XQ(QR)),

Furthermore,

1 1
a0y In Xo(a) = acy + 2a2(02 — 50%) + 303 <C3 —cieo + g(ﬁ’) )

Setting




HOPF ALGEBRAS IN RENORMALIZATION THEORY 23

and recursively replacing by ag,

ag
1+ a(ag)er + a?(ag)es + - -
aR
1 B +ager + -
QR

14+ agrer + a%(ca — )+ -

alar) =

)

confirms the result to that order. The general proof is agittiorward application
of the results in [12].

Furthermore, the reader can check that
FC’HL (Ck) = (k -—m + 1)Ck—m

for all & > m, which is at the heart of a recursive determination of thevabo
coefficientsy;(«) in (31). Here F, is the befooting operator

F., (ck) = (Z.,, ®id, A(c))

of [6]. As a final remark, we mention that it is not the non-anié&y which pro-
vides the major challenge in solving a non-linear Dysonv8oger equation, but
the fact that the one-variable Fourier calculus presentedeahas to be replaced
by a multi-variable calculus which leads to transcendesttdnsions [32] which is
a fascinating topic in its own right.

Indeed, consider once more the linear equation (30), notv Méyynman rules de-
fined by a two-variable kernél(z,y,2) = 1/(z + y + 2)? with k(zz,yz,2) =
k(z,y,1)/22

(¢(h)(x))® (p(h)(y))"
(x+y+2)?

H(BL(W)() = [ dady Ry

and g1, g2 are two positive rational numbers which add to one. Compattiis
system with the degenerate system where one af;th@nishes (and the other thus
is unity) shows that the perturbative expansiomimprovides coefficients which
are transcendental extensions of the ones obtained in tiendmte case. This
rather general phenomenon leads deeply into the transthd&ucture of Green
functions, currently under investigation.

Dyson-Schwinger equation for the polyloQuantum field theory is concerned
with the determination of correlators which we can regardexserating functions

for a perturbative expansion of amplitudes. These cooedaire solutions of our

Dyson-Schwinger equations, the latter being typical finpequations: the corre-
lator equals a functional of the correlator. Such self-Eiries appear in many

branches of mathematics. Here, we want to exhibit one sushaapnce which we

find particularly fascinating: the generating function fioe polylog [31].

Following [31] consider the followingV x N matrix once more borrowed from
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Spencer Bloch’s function theory of the polylogarithm [2]:

al +1 | 0 | 0 | 0o | -
al —Lii(2) | 2mi | 0 | 0o | -
a? —Lia(2) | 2milnz | [2mi)? | 0o | - ,
o | —Lig(z) | 2mi%z | [2rilPlnz | 2w | -
] | | |
uO ul u2 uB

given up toN = 4. We assign an order in a small parametéo each row, counting
rowso, 1,. .. from top to bottom, similarly we count columis1, ... from left to
right by a parameten, and assign an ordef to thei-th column. The polylog is

defined by
. = 2P
Li,(z) = Z =
k=1

inside the unit circle and analytically continued with araria cut along the real
axis from one to plus infinity.

As then-th polylog appears as the integral over the-1)-th polylog, we expect to
be able to find a straightforward integral equation for itsegating function which
resembles a Dyson-Schwinger equation. Consider

Flauz) = 1 1 n 2miuc +a[/ F(a,O;w)d:U
0

T 1—2z ' 1-—2miua x
2 F cx) — Fla, 0;
+/ (a7 u) x) (a7 7'1:) d.:L'
1 X

9

where we callF'(«, u; z) a renormalized Green function, the coupling (a small
parameter) < « < 1) and consider the perturbative expansion

1

F 12) =1—
(a7u7z) 1_2

+ Z o fr.(u; 2).
k=1

We distinguished the lowest order terfy(z) = z/(z — 1) (which corresponds

to the term without quantum corrections in QFT) at ord€rwhich here equals
—Lip(2). The limitw — 1 can be taken in the above Dyson-Schwinger equation.
We note that upon introducing a countertef{, u; In p), the above equation is
the renormalized solution at— 0 of the equation

1 2miuc “ Fy(o,u; )
Fy(o,u;2) = Z (o, u;In p) — 11— + 1 — 2miuc +a/0 pde'

We immediately confirm that, fok > 0, the term of orden’« in the renormal-
ized solution of this Dyson-Schwinger equation is the efkryi) in the above ma-
trix: the above matrix provides in its non-trivial entridgetsolution of the Dyson-
Schwinger equation so constructed.

We now work with the cocommutative Hopf algeliia determined by the Dyson-
Schwinger equatiolX = I + aB,(X), so X = > 32, a*t; where thet; are
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k-fold application of B; to I, and letLi = Li(z) andL = L(z) be characters on
the Hopf algebra defined by
In"(z)

—¢(tn)(2,0) = Li(ty)(2) = Lin(2), L(ty)(z) = o

We can regard the charactef as a Feynman rule and the transitibh— L as a
renormalization map which leaves the behavior at infinitghanged.

We know [2] that the elimination of all ambiguities due to ae of branch lies
in the construction of functions, (z) = (27i)~? a,(z) where

a -— Li — AV P % _1\P-11;
() = Lip(2) =+ (=1 Lipj(2) = oo (1) i ()

InP~1(2)
(p—1

This is now a very familiar equation:
PROPOSITIONS. For z € C,
ap(2) = m(L™ @ Li)(id ® P)A(t,),

where L' = LS, with S the antipode in*;, and P the projection onto the
augmentation ideal.

Proof: elementary combinatorics confirming that
LS(tn/n!)(z) = (—In(z))"/nl.
O
There is a strong analogy here to the Bogoliulidwperation in renormalization
theory [29, 31], thanks to the fact thai and L have matching asymptotic behav-
ior for | z |— oo. Indeed, if we letR be defined to map the charactéi to the

characterL, R(Li) = L, and P the projector onto the augmentation idealrof,
then

LS =S = —Rm(SE @ Li)(id ® P)A = —R (Li) ,
for example

In?(2)
20 7

SE (t2) = —R(Li(tz) + S§' (1) Li(t1)) = —L(t2) + L(t1) L(t1) =
whereLi(ty) = Li(t2) — L(t1)Li(t1). Thus,a, is the result of the Bogoliubov
map

Li =m(SE @ Li)(id ® P)A

acting ont,,. We have two completely equivalent mechanism for the reinofva
ambiguities at this moment:

L™t % Li vs 8 % ¢.

This points towards an analogy between the structure ofdtybgy and QFT Green
functions which very much suggests to explore QFT from tlegvpoint of mixed
Hodge structures in the future.
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Dyson-Schwinger equations for full QFThe quantum equations of motion, the
Dyson-Schwinger equations of a full fledged quantum fieldjyecan be obtained
in precisely the same manner as discussed above. Theylly@ioaof the form

al o oITIT
(32) IC =1+ BV (X3) =T+
21] Sym F;;L Sym(T") ’

res(I')=r

es(r)er

where the first sum is over a countable set of Hopf algebraifives y, res(y) = r,
Ay) =701+1®7,

indexing the Hochschild 1-cocycleB] above, while the second sum is over all
one-particle irreducible graphs contributing to the ds$iGreen function, all weighted
by their symmetry factors. In more traditional terms, thiengtive graphsy corre-
spond to skeletons into which vertex and propagator coomestre to be inserted.

Here,I'” is to be regarded as a formal series
Fﬁzl—l—Zciak, € H.
k>1

These coefficients of the perturbative expansion delivgsfldabalgebras in their
own right, cf. Theorem 3. Indeed, the maps

Bf"= Y Bl

(1]
’yEHL
res(vy)=r, |y|=n

where the sum is over all primitive 1Rk-oop graphsy with external leg struc-
turer, are 1-cocycles. They are implicitly defined by the secondaty in (32),
the remarkable feature is the fact that these maps can bengiodwe Hochschild
closed and hence ensure locality. A detailed account ofdlbtswhich illuminates
in particular the structure of gauge theories, is upcoma4g.|

In (32), X}, is of the form
X;Yz = Fres('y) (Xcoupl)w‘ 5

whereX.,p1 is the vertex function divided by the square roots of therisegrop-
agator functions. Under the Feynman rul€s,,,; hence maps to the invariant
charge.

As an example, consider QED. We have a set of residues (ektegnstructures)
RGSZ{W,+,W<}.
”< on

We finish our paper by exhibiting the action of the HochscliicocycleB

the ordera expansion of
3
=T <

X g =7 - (Xeoupt)”
L))
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-1
Xeoupl :r"< <r+ Voo > .

with

To ordera, one finds

X =1+a(3<{+2 + -0~ )

H

Hence, the non-primitive two-loop vertex graphs of QED dreamed as

Bﬁ (31 +2. + -0 ).

Hochschild closedness demands that this equals
v<£+w§+m%+w%+w§+w<§>,

A(...):(?wé +2 @)@wé.

In this manner one determines the Hochschild 1-cocyclesafeenormalizable
guantum field theory. This works particularly nice for gaugeories, as will be
exhibited in [24].

as then

2.4. Final remarks. There is a very powerful structure behind the above decom-
position into Hopf algebra primitives — the fact that the sower all Green func-
tions G2 is indeed the sum over all 1PI graphs, and this sum, the effeattion,
can be written nicely af] ﬁ a product over "prime” graphs — graphs which are
primitive elements of the Hopf algebra and which index thetehild 1-cocycles,
delivering a complete factorization of the action. A singlech Euler factor with
its corresponding Dyson-Schwinger equation and Feynmias wias evaluated in
[6], a calculation which was entirely in accordance with study: an understand-
ing of the weight of contributions- In(z) from a knowledge of the weight of such
contributions of smaller degree im, dubbed propagator-coupling duality in [6].
Altogether, this allows to summarize the structure in QF & aast generalization
of results summarized here. It turns out that even the quastwcture of gauge
theories can be understood along these lines [28]. A fududision is upcoming
[24].
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