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“Science may set limits to knowledge, but set no limits to imagination.”
Bertrand Russel, 1872-1970

1. Introduction

Modern physics describes elementary particles and their interaction by quantum field theories.
This union of classical field theory, special relativity theory and quantum mechanics has proven
incredibly successful in predicting the high precision experiments performed in particle acceler-
ators with enormous accuracy.

Nevertheless, the question of how to put quantum field theories in a solid mathematical frame-
work is far from settled. Rather, the apparent discrepancy of physical calculations being ex-
tremely effective, while often turning out to be surprisingly hard to underlay with consistent
mathematics, opens up an exciting as well as challenging playground for both mathematicians
and physicists to cooperate.

One of the key advances in this direction was made by Kreimer showing that Feynman diagrams
(or Feynman graphs) come with a rich algebraic structure, they form a Hopf algebra. This insight
lead to explaining a problem which long troubled physicists: The process of renormalization, i.e.
the handling of singularities occurring in the high energy limit of perturbative quantum field
theories, long seeming like an ad hoc procedure, is now structurally understood in well defined
algebraic terms of the so called renormalization Hopf algebra [6].

Beyond this, another promising direction for further research was mentioned in [1], namely the
reconciliation of our understanding of renormalization with the understanding of the unitarity
of the S-matrix. Intimately related to this endeavor are the concept of the core Hopf algebra,
containing the above mentioned renormalization Hopf algebra as a quotient, on the one side,
and (Cutkosky) cutting rules, illustrating propagator poles, as an implication of unitarity on the
other.

The aim of this work is to contribute to this by introducing the algebraic structures leading to
the core Hopf algebra and presenting the cutting rules with respect to application and unitarity.
Finally, we show a connection between these two concepts by proving that the core coproduct
is compatible with Cutkosky cutting as proposed in section 5 of [1]. The proof of a related
proposition for more general cuttings, given in [2], is directly inferred. Both statements are
useful for renormalization in the presence of discontinuities arising from propagator poles.

In the following chapter, we introduce the role of Feynman diagrams in quantum field theory
and subsequently give a proper graph theoretic definition of them and certain associated graph
operations, as far as relevant in the course of this work.

Chapter 3 is devoted to establishing the algebraic structures needed to understand the core
Hopf algebra and its relation to the renormalization Hopf algebra. We begin with the general
definition of Hopf algebra and then turn to its two physically meaningful realizations.

In chapter 4 we introduce unitarity as a key feature of a quantum field theory. Cutkosky cutting
rules are derived and interpreted in relation to the optical theorem as an important consequence
of unitarity. Moreover, the cutting rules are considered as a powerful tool for looking at the
analytic structure of Feynman diagrams, allowing to calculate their imaginary parts, and via
dispersion relations (also know as Hilbert transforms) the corresponding real part.

In chapter 5 we prove that the core coproduct in a certain way respects the cutting of a graph,
precisely that there is a bijection between the several cut Feynman graphs ', (i = 1,..,n; n € N)
of a graph I' as given by Cutkosky’s prescription and the tensor products of subgraphs v/ C T’
as filtered by the coproduct A. with the respective completely cut cographs 7. : 7' ® Ve,
(j = 1,....,m;m € N). The proof can almost identically be transferred to the more general
statement for k-cuts, separating I' into k& connected components. Finally, implications of the
two theorems are discussed.
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2. Feynman diagrams

Feynman diagrams (Feynman graphs) are incredibly rich objects. They can bee looked at from
a purely algebraic viewpoint just as one can study their combinatorial properties [8]. On the
other hand, one can also consider the integral expression assigned to each Feynman diagram
and study its analytic structure [12], or they can be treated as graph theoretical objects such
that one can apply graph operations on them. In this chapter, we present the graph theoretical
foundations, in the following we continue touching the other points.

The first section serves to classify the role of Feynman diagrams in quantum field theory after
general textbook knowledge. Following [2, 3], we thereupon develop a graph theoretically precise
definition of a Feynman diagram in section 2.2 as well as of its underlying forest structures
in section 2.3 and finally, in section 2.4, introduce graph operations. We focus on subgraph
shrinking and (Cutkosky) cutting as these are important concepts appearing in the following
chapters 3 and 4 and eventually needed for the proofs of chapter 5.

2.1. Feynman diagrams in quantum field theory

High energy particle physics aims to understand the fundamental constituents of matter by
performing particle collision experiments in accelerators. Quantum field theory as its theoretical
foundation intends (and succeeds) to make precise predictions about these experiments as well
as it tries to structurally understand the underlying ”rules of the game”.

<< < <]
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Figure 2.1: All graphs for (1 — 2)-scattering up to second loop order as built from 3-valent vertices. Incoming
particles on the left, outgoing on the right. Summation gives the corresponding amplitude As.

After quantum field theory was derived by a canonical quantization of the classical field theory
at first, the so called path integral approach introduced by Feynman became very popular.
This was in large part due to its intuitive diagrammatic representation of the path integral
calculations to be performed.

For a free theory, i.e. a theory with no interactions between particles (and thereby finitely inter-
esting), the path integrals can be calculated analytically, whereas for theories with interactions
it turned out that only approximate calculations can be achieved. Perturbative expansions have
proven to be a very successful method of approximation in this case.

Let us look at things in a little more detail. To calculate a physically measurable quantity which
describes a scattering process the so called S-matrix

S =T+iT (2.1)

is introduced. The identity matrix I is identified with no interaction and the T-matrix represents
the nontrivial part of the scattering. The latter is understood to describe a three-stage process of
particles incoming, interacting, and afterwards outgoing. Formally, this is described by matrix
elements (f|7T'|i) of the T-matrix, with an initial state |i) (contravariant vector) and a final state
(f] (covariant vector), both assumed to be described by a free theory when positioned infinitely
far away from the interaction.

The matrix elements (f|7|i) can be related to so called (scattering) amplitudes A and calcu-
lated perturbatively as T' = " -, g"A, with A, denoting perturbative amplitudes. Finally,
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these amplitudes A,, are sums of Feynman diagrams up to a certain loop order. The squared
amplitudes | A|? then represent a scattering probability which can be measured.

Example 2.1.1. Let us consider an example to get the idea in principle. The amplitude As of
a (1 — 2)-scattering process is a sum of all Feynman graphs with 1 (fized) incoming particle
and 2 (fized) outgoing particles that one can possibly draw given a certain set of rules (for edges
and vertices). In- and outgoing particles are represented by "open” edges on the left and right
side of the diagram respectively. Say, we are allowed to draw only vertices with 3 adjacent edges
and one edge type. Given that our perturbative expansion is driven by the number of loops, our
graphs contributing to As can at most have two loops. The result is depicted in figure 2.1.

2.2. Graph theoretic definition of Feynman diagrams

The physical term of a Feynman graph T is to be given a mathematically precise definition. For
simplicity, the graph to be modeled is from a scalar theory! (¢3- and ¢*-theory for illustrations)
which suffices for our purposes. Details necessary to describe other theories should be reintro-
duced without difficulty (see figure 2.2 for examples). We start by recapitulating some basic
graph theoretic terms.

e = e =

Figure 2.2: Examples for one- and two-loop Feynman diagrams from scalar ¢*-theory (left) and quantum
electrodynamics (right).

Graph A graph G is a pair (V, E) of a vertex set V and an edge set E, with elements e € E
formed by pairs of vertices e = {v,w}, s.t. v,w € V. We consider finite graphs only, i.e. V' and
FE are finite sets. Precisely, F is a multiset as its elements can occur more than once. Below, we
define a labelling to address these so called multiple edges uniquely.

Orientation A graph is unordered (or unoriented) if {v,w} = {w,v}.

Multiple edge A graph has multiple edges if it has at least one pair of vertices {v, w} connected
by more than one edge. For instance, vertices b and c in figure 2.3 are connected by edge 3 and 4.

External half edge Apart from the usual (internal) edges, a Feynman graph has the specialty
of external half edges?, i.e. edges which are only connected to a vertex at one of its endpoints
(see figure 2.3). This entails E = Ejpt LUl E¢y¢. From now on we assume the external half edges
to be implicitly given by the valency of each vertex (defined below) and identify E = Ej,;.

Graph labelling A labelling of edges | : E — {1, ...,k € N}, e — n maps to each edge a natural
number. Analogously define a labelling of vertices, mapping to each vertex a letter.

While edges were first defined as pairs of vertices {v, w}, together with a labelling they are now
given as triples {v,w,n}.

Remark 2.2.1. (Labelling w.r.t subgraphs and cographs)
In order to give this important note on labelling, we anticipate the terms of a subgraph and a
cograph properly defined in chapter 2.4 below. Only with the extra information of the labelling

'Roughly speaking, this means there is only one edge type, orientation of edges does not matter and every
vertex must be connected to the same fixed number of edges.

2These external edges correspond to incoming particles when drawn on the left and outgoing particles when
drawn on the right.
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we can address multiple edges uniquely and thereby uniquely identify subgraphs v C T' in a given
graph T'. As an example consider again the edges {b,c,3} and {b,c,4} in figure 2.3 giving rise
to the different subgraphs v1 = {a,1,b,3,¢,2} and vo = {a,1,b,4,¢,2}.

Also the shrinking of a subgraph v C T' in T' to obtain the cograph T'/7y is a uniquely defined
operation only in case that we have a labelling. Shrinking implies (besides deleting edges) the
identification of the subgraph’s vertices V., C Vr, thereby accessing (possibly changing) the first
two elements of triples {v,w,n} in I'. So relating the remaining edges of the cograph I'/~y
uniquely to edges in the original graph T’ needs the extra (untouched) information given by the
third element in {v,w,n}. Consider as an example the lower line of graphs in figure 2.6, where
for instance edge {v,w,5} of T'/y can be identified with edge {a,c,5} of T.

c

Figure 2.3: A Feynman graph I' with labelling. From now on, external half edges are implicitly assumed
given by the fixed valency Val(v) of each vertex and therefore omitted.

Connectivity A graph is connected if every two of its vertices can be connected through a
finite sequence of edges and vertices {vj, €;j,, Vi, , €jy, ..., €5, Viy, } With i, j,k =1,..n € N. Also a
single vertex is considered connected.

A graph is k-connected if removing k — 1 of its internal edges leaves it connected, i.e. if I is
connected, so is I'—{ey, ..., ex_1 } for any edge e € E. Important for us is the case of 2-connected
or 1PI graphs, which stay connected after removal of one internal edge (see figure 2.4). These
are the graphs we build our Hopf algebras on in chapter 3.

b b

I'—{esx} [ —{e1,ea}

Figure 2.4: Removing in the graph I' of figure 2.3 the single edge es leaves it connected. Removing edges e
and e separates the graph in two components.

Loops A loop of a graph is a sequence of its edges and vertices, such that each edge and vertex
are passed only once and initial and final vertex agree. For instance, in the graph of figure 2.3
the sequence {a,1,b,3,¢,2,a} is a loop.

Self-loops A self loop is an edge connected at both ends to the same vertex, i.e. e = {v,v}.
Simple graphs A graph is simple if it has no multiple edges or self loops.

Vertex valency The valency of a vertex is the number of its adjacent half edges, i.e. be E,
the set of half edges connected to a vertex v then Val(v) = |E,|. For instance, the two graphs
on the Lh.s of figure 2.2 have Val(v) = 4 for each vertex, whereas the two graphs on the right
have Val(v) = 3.

A k-regular graph is a graph where all vertices are of fixed valency k, k € N.
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The below definition of a Feynman graph is used in the following. We will sometimes refer to
Feynman graphs simply as graphs from now on.

Definition 2.2.1. (Feynman graph)

A Feynman graph I' is an unordered, connected and two-connected (1PI) graph, with multiple
edges between vertices and self-loops allowed. For each vertexr! be Val(v) > 3. Additionally
1t contains external half edges which if not explicitly drawn can be inferred from the valency of
each vertex. All vertices and (half) edges are uniquely labelled by finite sets of letters and natural
numbers respectively.

Furthermore, let V1 be the vertex set of I', |Vr| = vr the number of vertices. Er and |Er| = er
be the set and number of edges respectively. |I'| := |Hy(I')| (first Betti number) be the loop
number of a the graph I'.

2.3. Tree and forest structures

With this definition in place, we can define spanning trees T" and spanning forests F' of a graph I.
These concepts add to the graph some more structure and prove useful for the proper definition
of graph cutting later on.

Definition 2.3.1. (Spanning tree)
A spanning tree of I is a proper subgraph T C T, such that Vi = Vr, and T is simply connected.

Definition 2.3.2. (Spanning k-forest)
A spanning k-forest Fy, k = 1,...,ur, is a disjoint union UleTz- of trees, T; C I, such that
UiVTi =r.

Yes, a k-forest with & = 1 is a tree.

b b b b b
1 1 1
a a 3 a 4 a 3 a 4
2 2 2
c c c c c

(a) k=1 (b) k=1 () k=1 (d) k=1 (e) k=1

/ ’e ’e
1
[ ) 3 [ ) 4 [ ]

c c c c c

Figure 2.5: All possible k-forests of the graph I' in figure 2.3.

It turns out that spanning 2-forests are of special interest as they induce Cutkosky cuts, which
separate a graph I' into exactly two connected components I' = I'y L I's under some additional
physical constraints.

Generally, spanning k-forests separate a graph into several £k = 1,...,vr € N connected com-
ponents via their induced vertex partitioning. However, forest (f) and (g) of figure 2.5, for

We consider mainly graphs from ¢*-theory (4-regular graphs) and ¢*-theory (3-regular graphs) for illus-
tration. Exceptionally, two-valent vertices may occur in cographs at a the place where a propagator correction
subgraph is shrunken.



Cutkosky Cuts at Core Hopf Algebra

instance, both yield the same vertex partition {a} U {b,c}. There are more spanning k-forests
than allowed for uniquely partitioning vertices, thus it makes sense to introduce the following
equivalence relation.

Definition 2.3.3. (Equivalence) Two spanning k-forests F}\ and F,f, k=1,2,...,ur €N, are
said to be equivalent if every two trees T;, (i =1,2, r =1,...,k) from different forests share the
same vertex set Vr, .

From now on, we only consider k-forests up to equivalence. The set of k-forests of a graph I is
denoted by Fg.

2.4. Graph operations

Among the various kinds of operations on graphs, shrinking of subgraphs and removing edge sets
are of special interest here as these are the operations performed later when applying coproducts
and cutting edges respectively.

2.4.1. Shrinking and inserting subgraphs

Generally, a subgraph v C I' is a pair (V;, E,) with V, C Vr and E, C Ep. Here, we always
consider as subgraphs disjoint unions of 1PI (two-connected) graphs v = I_Ile%-, with v =T
allowed. For instance, subgraphs are given by the middle graphs in figure 2.6.

Definition 2.4.1. (Cograph)

The cograph T'/~, for v C T a disjoint union of 1PI subgraphs v = I_Ilew, denotes the graph
obtained from I' by shrinking all internal edges of v to zero length while all vertices v; € V,
are merged within each of the k subgraph components v; and identified with k new vertices w;,
labelled by the disjoint union of the letters of the vj.

As the name suggests, cographs appear in the coproducts A and A, introduced in chapter 3.
Note that it is possible to regain from the cograph I'/+ the original graph I by the knowledge
of v when given a suitable labelling as described in remark 2.2.1.

b b
1
K 4 3 4 1
c a 2

T/y;v=0bUc

0000 <>

T/yv;v=aUb,w=
r Y= Uy cUd.

Figure 2.6: Shrinking the subgraph « (possibly a disjoint union) in the graph I' gives the cograph I'/~.

Example 2.4.2. (Constructing cographs)
In the upper line of figure 2.6 a one component subgraph v C I is shrunken within I' by contract-
ing edges 3 and 4 and identifying the union of the vertices b and ¢ with a new vertex w = bU c.
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In the lower line of figure 2.6 a two component subgraph v = v1 U~vy2 C I' is shrunken within I’
by contracting edges 1 and 2 and identifying the union of the vertices a and b with a new vertex
v = a Ub, while at the same time contracting edges 3 and 4 and identifying the union of the
vertices b and c with a new vertex w = cUd.

Let us look explicitly at the special case of shrinking a propagator correction subgraph =, i.e. a
subgraph with only two (implicitly given) external edges.

Figure 2.7: Shrinking in the graph I' the propagator correction subgraph ~ yields the cograph I'/+ with the
new vertex w =bUc.

Example 2.4.3. (Cographs from propagator subgraphs)

In figure 2.7 the propagator correction subgraph v C T (with two implicitly given external edges)
is shrunken to a 2-valent vertex w = bU ¢ in the cograph T'/~. This is worth noting, for in the
later performed cutting of cographs, both of its two adjacent edges 1 and 5 facilitate a cut.

2.4.2. Cutkosky cuts

Now we are prepared to define the Cutkosky cutting of Feynman diagrams in purely graph
theoretic terms. For its physical origin and interpretation we refer to chapter 4. Generally, a
Cutkosky cut graph I'. is a graph I with additional ”cut information” of how to separate it into
two connected components under certain (physical) constraints. The definition we give here
is based on forests F' which are suitable to induce on the graph I' this looked for additional
structure, i.e. we consider pairs! (I', F). More generally, this notion allows to define cuts of T
into k£ connected components.

Let us start from the general case and consider a pair (I, F'), with F' a spanning k-forest for the
graph I'. The k connected components of F' separate the vertices in k partitions. Thereby, F'
defines a set GI" of k mutually disjoint graphs I'; C T, 1 < i < k, with every edge e € T'; having
both of its boundary vertices in I';. Note that a spanning 2-forest yields exactly two disjoint
graphs GI' = {T', T2}.

At the same time, by defining I'p := I'/(UF_,T';), F induces a unique set of edges Er, which
connect vertices of different I';. I'r is based on edges e € Er,, and k vertices only. In particular,
for a two-forest we obtain two vertices connected by a multiple edge as shown in column three
of figure 2.8.

Now let us restrict our considerations to 2-forests and impose on them the constraint that every
component of the forest (equivalently the induced graphs of G¥) must be connected to at least
one external half edge. Then the induced edge set Er, can be identified with a Cutkosky cut
when we interpret cutting as a removal® of all edges e € Er, in I'. The resulting cut graph
I'.=I-FEr f(E I_Ilel“ ;) can contain isolated vertices and as well as intact subgraphs. Figure
2.8 together with example 2.4.6 shows a concrete construction.

!Cutkosky cuts can be defined directly via removal or marking of a certain edge set £ C Fr without an
underlying forest structure but we intend to connect to the framework of [2], leading beyond.
2Equivalently, one can of course mark the edges.

10
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Definition 2.4.4. (Cut graph)

A (Cutkosky) cut graph is a pair (I', F) of a graph T' and one of its 2-forests F together with
the condition that each element I'; € GY', i = 1,2, of the induced set of graphs contains at least
one external half edge.

The following important definition is needed later on as well.

Definition 2.4.5. (Completely cut graph) A completely cut graph is a pair (I',F) of a
graph T' and one of its 2-forests F together with the two conditions that each element I'; € G,
1= 1,2, of the induced set of graphs contains at least one external half edge, while none of them
contains intact subgraphs.

In chapter 5 we denote cut graphs as I'. and completely cut graphs as I'... This is convenient
for there the focus is not anymore on how cuts are constructed in detail but rather on the com-
binatorial operations to be performed with them. To get acquainted, this notation also appears
in the following two examples.

b
b b
1
K 4 ) 3 1 .. ; p
2 aOV
c c 2 <
r F I'e;v=>bUc I'n=TI-Er,
a 5 c a 5 c a 5 c

r F I'r;v=aUbUc I'n=I-Er,

Figure 2.8: A cut graph I'. of the graph I' as constructed from a forest F.

Example 2.4.6. (Cutting and completely cutting graphs)

The 2-loop graph T in the upper line of figure 2.8 has (among others) the 2-forest F which
separates the vertices of the graph in two sets. This partition of vertices induces a set G of
two graphs T'1 = {1} and T's = {c, 3,b,4} which contain edges with both end vertices in their
respective component only. Now consider I'r = T'/(I';1 UT'2), made solely of edges with one vertex
in component I'y and the other in I'y, namely Er, = {1,2}. Removing these edges gives the cut
graph T'. which has the subgraph v = {c,3,b,4} intact. For the 3-loop graph in the line below
the cutting works identically.

For an example of a completely cut graph, consider another 2-forest F' in the upper line of figure
2.9 which induces a different edge set Er, = {2,3,4}. This yields a cut graph T, with no intact
(1PI) subgraphs left and thereby is identical to F. Again, for the 3-loop graph below the cutting
works identically.

The two above definitions are essential for later proving theorem 5.2.1.

11
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a a
2 v d
C C. C.
r F I'r;v=0aUb I'n=T-Er,
a 5 c ag 5 ‘o 1 a 5 c
. 4 “\,
v w
o0 o0
b 6 d b 6 d b 6 d
I'p;v=aUc,w=
T F bud r,=T-Er,

Figure 2.9: A completely cut graph I'c of the graph I' as constructed from a forest F'.

Also note, that there are graphs I' which allow for no cuts for they can not be separated in at
least two components. Here, we only state that these graphs are mapped to zero by a cutting
and come back to a more detailed consideration of this fact in remark 5.1.

2.4.3. K-cuts

It is possible to more generally define cuts of graphs by using k-forests (instead of 2-forests) and
dropping the condition of connectedness to external half edges.

Definition 2.4.7. (K-cut graph)
A k-cut graph is a pair (I', F) of a graph T’ and one of its k-forests F' which induces elements
Iegl, 1<i<k.

Definition 2.4.8. (Completely k-cut graph)

A completely k-cut graph is a pair (I', F) of a graph T' and one of its k-forests F' such that
the elements T; € G, 1 < i < k, in the corresponding induced set of graphs contain no intact
subgraphs.

These definitions become important for the generalization of theorem 5.2.1 to arbitrary k-cuts,
theorem 5.3.1.

12
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3. Hopf algebraic structures

The discovery of the Hopf algebra structure on the set of Feynman graphs enabled a system-
atic understanding of renormalization! from an algebraic viewpoint [6]. But there are further
promising Hopf algebra structures to be explored, namely the core Hopf algebra H., first intro-
duced in [1], which holds a connection to unitarity and analytic properties of Feynman diagrams
via Cutkosky cutting rules. The core Hopf algebra H. can be constructed from dropping the
requirement for divergence generally entering the definition of the coproduct such that it filters
for all 1PI subgraphs. This way, the core Hopf algebra can be regarded as a Hopf algebra for a
field theory in infinite dimension as well as a generalization of the renormalization Hopf algebra,
including the latter as a quotient.

This chapter serves to introduce the general concept of a Hopf algebra (section 3.1, following [5])
and the two physically important cases of the renormalization Hopf algebra (section 3.2, after
[6, 2]) and the core Hopf algebra (section 3.3, after [1, 4, 2, 7]). As our focus is to understand
the core Hopf algebra, we keep the other two chapters short and restrict to presenting concepts
of direct importance for this goal. For details and omitted proofs we refer to the cited literature.

3.1. The Hopf algebra

Let K be a field. All vector spaces and tensor products are to be understood over this field.
Also we canonically identify the vector space V with V2KV 2V @ K.
Further, let 7w : VW — W & V,v ® w — w ® v denote the twist map.

Definition 3.1.1. (Associative unital algebra)
An associative unital K-algebra (A, m, 1) is a K-vector space A together with two linear maps,
m:A®g A— A (multiplication) and I : K — A (unit) such that:

mo (id®@m) =mo (m® id) (3.1)
mo (I®id) =mo (id®1) (3.2)

The multiplication is commutative if m = m o 7. Equation (3.1) and (3.2) are equivalent to the
commutativity of the following diagrams.

.d i i
AoAeA " soa A% 4040 Aok
e [m \‘m/
A A A A

(3.3)

Definition 3.1.2. (Coassociative counital coalgebra)
A coassociative counital K-coalgebra (C,A,I) is a K-vector space C together with two linear
maps A : C — C ® C (compultiplication) and I : C' — K (counit) such that:

(id®A)o A= (A®id)oA (3.4)
(idoT) o A =rox([®id) o A (3.5)

The coproduct is cocommutative if ToA = A. As the coalgebra is the object dual to the algebra,
the commutative diagrams corresponding to equations (3.4) and (3.5) can be obtained by simply
reversing the arrows in equation (3.3).

!The treatment of divergencies in Feynman integrals occurring in the high energy limit of the momenta, i.e.
p"* — 00, such as to obtain finite expressions from them.
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A®id - s
CoCeC ®1 C®C C I®id CoC id® I CoK

AN

CeC«——C
@ A

id ® A

(3.6)

A common way to denote the coproduct is Sweedler’s notation, A(x) = > ' @ 2", which is
frequently used in the following chapters within the context of the physical Hopf algebras.

Definition 3.1.3. (Algebra morphism)
For two algebras (A,ma,14) and (B,mp,lp) a linear map ¢ : A — B is an algebra morphism

if
¢ o) ]IA = ]IB (37)
pomyg=mpo (PR Q) (3.8)
For two coalgebras (C, Ac, ﬁc) and (D, Ap, f[D) a linear map v : C' — D is an algebra morphism
if
Ipoy =I¢ (3.9)
Apot = (@) o Ac (3.10)
Definition 3.1.4. (Bialgebra)
A K-bialgebra (B, m,I, A,I) is a K-vector space B which has a K-algebra structure (m,1) and

a K-coalgebra structure (A,ﬁ), such that (m,I) are coalgebra morphisms and (A,ﬁ) are algebra
morphisms.

We note that m is a coalgebra morphism if and only if A is an algebra morphism. So the
bialgebra can equivalently be defined via the commutativity of the following diagrams.

B®B®B®B

B® B®B®B

ARA me®m

B® B B B®B
" A (3.11)

I I (3.12)

Definition 3.1.5. (Hopf algebra) )
A Hopf algebra (H,m,I, AL, S) is a bialgebra (H,m,I, A,T) endowed with an antipode, i.e. a
map S € Hom(H,H) that satisfies

mo(S®id)A=mo(id®S)A=Tol (3.13)

Equivalently to (3.13) the diagram below commutes. The antipode of a Hopf algebra is unique
and closely related to the convolution product introduced below.

14
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S®id

HROH HROH
/ X
H - k - H
d® S
HROH HRH
(3.14)
Convolution product
Take f,g € Hom(H,H). Then the so called convolution product!
frg:=mo(f®g)oA (3.15)

defines another linear map on H. (Hom(H,H),*,e) can be shown to form an algebra with
neutral element ¢ := [ ® I. The s-inverse is given by f~' = f oS with S the above given
antipode. Now, equation (3.13) allows to interpret the antipode as the x-inverse of the identity
map id on H.

Filtration and connectedness

The Hopf algebra H comes with a filtered structure which can be useful for performing inductive
proofs. Especially for connected Hopf algebras the start of induction is trivial.

Definition 3.1.6. (Graduation) A Hopf algebra H is graded if

H = 0L Hn, (3.16)
A(Hn) C @jrk=nM; @ Hr = S;gHi @ Hni, (3.18)
S(Hn) C Hn. (3.19)
Definition 3.1.7. (Connectedness)
A graded Hopf algebra is connected if
Ho ~ KI. (3.20)

Definition 3.1.8. (Filtration)
A Hopf algebra H is filtered if there is a growing sequence of subspaces H™ C H"!, n € Ny,
fulfilling the conditions

H= i%” (3.21)
=0
m(H" @ H™) C H"T™, (3.22)
A(H™) C Zn:% Q@ H", (3.23)
=0
S(H™) C H". (3.24)

Every graduation induces a filtration by H" = @}'_,Hy.

!Generally, it suffices to take a K-algebra A and K-coalgebra C to define the convolution product f * g :=
mao (f®g)oA..

15
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3.2. The renormalization Hopf algebra

Let us now look at the first physically important realization of a Hopf algebra, namely the
renormalization Hopf algebra H. To begin with, we enlist its constituents explicitly, then we
give a brief overview over the renormalization procedure known from quantum field theory and
relate it to its new representation in purely algebraic terms.

3.2.1. Constituents and properties

In order to introduce the Hopf algebra H as a framework for renormalization, the notion of a
(superficially) divergent graph is essential. It is defined via the concept of a weight! of a graph
I" originating from powercounting in the integral expression assigned to a Feynman diagram.
To all edges e € Er and vertices v € V1, we assign weights w(e), w(v) € Z, and define the weight
of a graph to be the integer

w(l) =D = > ww) = > wle), (3.25)

veVr ecEr

where D denotes the dimension of space time. For in this thesis we restrict our considerations
to scalar graphs, we always set w(v) = 0 and w(e) = 2 in the following.

A graph is called superficially divergent if w(I') > 0. For instance, in dimension D = 4 the graph
in figure 2.3 has weight w(I') =4-2 —0— 8 =0, i.e. it is superficially divergent.

With this in place, the ingredients of the renormalization Hopf algebra take the following explicit
form. Consider the free commutative Q-algebra

H=disoHD, HO ~ QI (3.26)

generated by all (infinitely many) 1PI graphs as free generators. The full renormalization Hopf
algebra H(m, I, A, 1, S) is then given by a multiplication m defined as the disjoint union of graphs

m:HOH = H,v @ — v Uy, (3.27)

and an algebra unit
I:Q—H,q~ ¢l (3.28)

Further, we have a coproduct A which assigns to a graph I' the sum over all tensor products of
its superficially divergent subgraphs v with their respective cographs I'/v as defined in section
2.4:
AHo>HOHATD) =T @I+IxT + > y@T/y, (3.29)
YETy=Uivi,w(v:)>0
while the counit
I:H— Q,ql+— g, (3.30)

maps the augmentation ideal Aug = EBizl’H(i) (i.e. all nontrivial Hopf algebra elements, pre-
cisely, all graphs except for tree-level graphs and the empty graph) to zero.
Finally, the antipode is given by

S:H—H,ST)=-T— > S(D)T /7, (3.31)

Y& y=U;vi,w(v:)>0

and plays a leading role for renormalization (see section 3.2.2).

'Feynman rules allow to transfer the power counting in the integrand, a rational function of the external
momenta ¢!, to a counting of graph components. See chapter 4.2 for an explicit integral expression.
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A most useful grading on H is given by the superficial degree of divergence of the graphs.

It is helpful to define the reduced coproduct (for an example see figure 3.2a),

A=A - (T®I4+I®T) = > y&T/y, (3.32)

G, y=U;vi,w(y:)>0

in order to define an important class 0~f Feynman graphs called primitive elements.
We call a Feynman graph primitive if A(T') = 0. Thus, for the renormalization Hopf algebra the
primitive elements are those graphs I' which contain no superficially divergent subgraphs v C I'.

3.2.2. The renormalization procedure

Let us give a brief conceptual overview of renormalization as known from quantum field theory
to see how it relates to the above Hopf algebraic notions.

In quantum field theory, renormalization is employed as mathematically consistent method to
receive finite expressions from divergent Feynman integrals. Essentially, the renormalization
procedure is based on the systematic subtraction of integrals. Let us give a brief motivation.
Consider the logarithmically divergent integral

* 1
I= / dxr — oo. (3.33)
0 X + 1

The first step to handling a divergent integral is to introduce a regulator. For instance, intro-
ducing a complex parameter «, with Re(a) > 0, as a power in the denominator, ensures the
convergence of the integral

0 1
I(a) = /O e (3.34)

Note, that for & — 1 we recover the original integrand. Even though we can calculate the inte-
gral now, the correct physical result is obtained in the limit o — 1, which is still infinite. This
is where renormalization comes into play. Introducing the regulator allows to view the original
integral as a function I(«), which has a Laurent series in «. In the series, we are interested
mostly in the pole terms at o« = 1. The key idea of renormalization is that two expressions
with the same pole part in « in their Laurent series can be subtracted, such that poles cancel
mutually and we get a meaningful finite result when finally taking limit o — 1.

Now, let us look at the full renormalization procedure. We benefit from the fact that Feynman
rules allow to capture renormalization structurally in terms of graphs I" rather than (regularized)
integrals.

Further, we are interested in the renormalization procedure itself, i.e. the canceling of divergent
parts of the Laurent series. Therefore we forget about possible finite terms and consider graphs
equivalent, I'; ~ I';, if they give Laurent series with identical pole parts. Obviously, for a finite
expression this means I' ~ 0.

Generally, a graph I" can not only give rise to one overall divergence, but rather contain sub-
divergences from its subgraphs v C I". The same can be true again for each . Therefore, one
must pay special attention to properly cancel every single divergence to finally obtain a finite
result. If (sub-) divergencies are present, can be identified by calculating the weight for I" and
all subgraphs v after equation (3.25).

Renormalization constructs for a divergent graph [' a new expression I', which has all its sub-
dlvergences (from subgraphs) renormalized. From this, it calculates the so called counterterm
Z (F) with the same pole part as I’ but opposite sign. Then the quantity I'+Z ( ) is finite.

17
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Zimmermann’s forest! formula organizes this canceling in a beautiful way by recursively con-
structing counterterms

Z()=-R(T) - > R(ZH)T/v), (3.35)
~vel

where we wrote Z(I") for convenience, but still mean that Z only constructs overall counterterms,
i.e. counterterms for graphs ' with all subdivergences renormalized. For instance, a subgraph
~v € I' with no overall divergence has Z(y) = 0. In the case of subgraphs v containing several
disconnected components, e.g. v = 7; Ly, we have Z(y) = Z(v;)Z(vj). R(I') denotes the
renormalization map.

Figure 3.1: An overall divergent graph I' (outer box) with one divergent subgraph v C I' (inner box).

Example 3.2.1. (Renormalization)

Zimmerman’s forest formula is best illustrated in the simple example of figure 3.1. Note, that
for this graph T'/y = ~. Generally, we start calculating counterterms for subgraphs and work
our way up to the final overall divergence of T'.

Z(y) = —R(y) (3.36)
I=T-Z()y (3.37)
Z(T') = R(T) = —R(T) + R(Z(y)v) (3.38)
['+2()=T—Z(y)y— R(T) + R(Z(7)v) (3.39)

In the last line (3.39), everything is expressed in terms of graphs without subdivergences (prim-
itives). It corresponds to the renormalized (finite) graph T+ Z(T') ~ 0.

The renormalization Hopf algebra (H,m, 1, A,ﬁ, S) models the above process for, as indicated
in section 3.2.1, its ingredients are constructed to take the following tasks:

e The counit I annihilates graphs.
e The coproduct A generates all terms necessary to compensate the subdivergences.

e The renormalization schemes correspond to maps R : P — P fulfilling R(I') ~ I', where P
denotes the set of all primitive graphs.

e The antipode S(R(T")) equals the counterterm Z(T") for a given graph T

e Finally, the defining equation (3.13) for the antipode m o (S ® id)A(T') = I o I(T) gives
the finite term ~ 0, corresponding to the renormalized graph. For our example graph in
figure 3.1 this result is equal to equation (3.39).

We refer to [6] for examples, further or more detailed information.

'Here, forests mean families of divergent 1PI subgraphs which are non-overlapping, i.e. pairwise disjoint
w.r.t. edges and vertices or included one in the other w.r.t their edges. In fact, this is equivalent to our notion of
subgraphs v introduced in chapter 2.4.1.
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3.3. The core Hopf algebra

Beyond the Hopf algebra for renormalization, one can rightly suspect further algebra structures
to underly perturbative quantum field theory. The core Hopf algebra H. can be constructed
from the renormalization Hopf algebra by dropping the condition of superficial divergence en-
tering the definition of the coproduct A and the antipode S.

In chapter 5 we will see that H,. combines well with the notion of Cutkosky cutting graphs,
which again is closely related to the unitarity of the S-matrix and analytic properties of Feyn-
man graphs (see chapter 4).

Accordingly, H(m, I, AL S¢) is given with multiplication m, algebra unit I, and counit I as
defined in section 3.2 but with a new core coproduct A, and antipode S, defined as

A HoHOHAM) =T@I+Ixl+ Y  y®I[/y, (3.40)
YEy=Uivi
and
Se:H =M, S(l)=-T—- > SO/ (3.41)
Y& y=Uivi

A natural grading on H. is given by the loop number due to |I'| = |y| + [['/~]| as filtered by the
core coproduct A..

b b
1 1
A 4 = 3 |a O
A a ® a \"
2
C C

2

(a) The reduced renormalization coproduct A
in dimension D = 4.

b b b b
4 3
1 1 1 1
A 4 = 3
i« | Joo L+ ° \/ *+. 4®Q
2 2 2 v 2 v
C C c c

(b) The reduced core coproduct A...

Figure 3.2: Coproduct application to a 4-regular 2-loop graph.

Analogously to before, we define the reduced core coproduct A=A, — TRI+IxT).

Note that now the primitive elements (Ac = 0) are graphs with no 1PI subgraphs (i.e. one-loop
graphs).

Example 3.3.1. As an example for the application of the two coproducts A and A, see figure
3.2. Compared with the renormalization coproduct A in (3.2a), the core coproduct A. in (3.2b)
yields two more graphs. They are filtered out by A as they are not superficially divergent after
equation (3.25), assumed dimension! D = 4.

!Dimension D = 4 is a convenient choice as then ¢*-theory is renormalizable.
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Relations to the renormalization Hopf algebra

Another pretty viewpoint for looking at the core Hopf algebra is by starting from the power
counting formula (3.25). There we observe that if the space time dimension D is high enough,
any graph becomes divergent. Thus, we can regard the core Hopf algebra H., as the renormal-
ization Hopf algebra of a field theory in infinite dimension.

More generally, we can build a tower of Hopf algebras by incrementally increasing in the power
counting formula (3.25) the dimension! D = 4,6, ...,2n,..,0c0. Doing so, allows for more and
more graphs to be regarded divergent. Now, consider the coproduct A as the defining map for
our Hopf algebras. It filters subgraphs only if they are divergent for dimension D, such that it
gives a Hopf algebra for each growing dimension:

Hy CHe C ... CHop C .. CHoo = He, (3.42)

with H. := US_yHp. Hp is a subalgebra of H p,,, but not a Hopf subalgebra as their respective
coproducts differ.

We can also show that the renormalization Hopf algebra H is contained in the core Hopf algebra
H. as a quotient. Again, let us start from general considerations. In Hp,, we can consider the
following QQ-ideal

Z:= (T € Glwp(l') >0 and wp4,(T) <0), (3.43)

with G the set of all Feynman graphs. The ideal filters out all graphs that are not divergent in
D dimensions and thereby excluded from Hp but divergent in D 4+ n and included in Hp4p.
With respect to this ideal we can build the quotient

Hp ~ Hpin/T, (3.44)

and regard Hp as a quotient Hopf algebra of Hpy,. The renormalization Hopf algebra is then
just a special case of Hp while we can identify Hp4, with H,.

We remark that there is a strong connection between the core Hopf algebra H. and quantum
gravity (see for instance [4, 9]). Especially, for theories with a power counting like quantum
gravity the core Hopf algebra becomes the renormalization Hopf algebra.

We consider even dimensions only, for the analytic structures of field theories in even dimensions bear
resemblances among each other but not w.r.t. odd dimensions. The same holds true vice versa.
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4. Cutkosky cutting rules

Cutkosky cutting rules serve as a powerful tool for they allow to calculate imaginary parts' of
Feynman diagrams. These imaginary parts originate from poles or branch cuts in the integrand
of a Feynman integral, arising when intermediate (virtual) particles can go on shell? at the same
time. Together with dispersion relations, more familiar to mathematicians under the name of
Hilbert transforms, one can also calculate the corresponding real part out of them [11]. Above
this, the cutting rules are intimately related to two fundamental features of a quantum field
theory, namely causality® and conservation of probability, the latter provided by the unitarity
of the S-matrix [10].

This chapter introduces Cutkosky cutting rules following established physics literature. We
begin in section 4.1 with a heuristic reflection on how Feynman diagrams give rise to imaginary
parts after [12, 14, 15]. In section 4.2 we make a connection to the corresponding real part via
dispersion relations following [16, 13] and in section 4.3 we present a derivation of the Cutkosky
cutting rules after [10, 11]. Finally, in section 4.4 we link the cutting rules to unitarity and the
above mentioned imaginary parts after [10, 11, 15].

4.1. Imaginary parts from Feynman diagrams

After plenty of algebra in the previous chapter, now, in order to get an idea of how imaginary
parts of Feynman diagrams arise, we intend to open the toolbox of complex analysis. We explic-
itly view the integrand of a Feynman integral as a complex function of (complex) momentum p.
While only real momenta p are physically interesting, this change of perspective has proven to
allow for powerful calculations, which can finally be shown to lead back to the real case. The
latter is shown in the following section.

Consider a single Feynman integral G({¢;}), i = 1,...,n, as given by a Feynman diagram in its
most general form

G({a}) = hmH/ddk N (kr, ) (4.1)

D(kr,qi)’

with denominator

n

(kry qi) H (kry i) m]2 + ie), (4.2)

such that l;(k;,q;) denotes the momenta of the internal edges as a linear function of loop mo-
menta {k,} and external momenta {g;}, and m; denotes the particle mass.

In practice, evaluating such integrals is nontrivial. As seen in chapter 3.2.2, the integrands do
not necessarily fall off fast enough at infinity for the corresponding integrals to converge. For
now, assume the divergencies from momenta k; — oo to be treated by renormalization such that
we can neglect them.

Apart from this, the integrands can diverge at propagator (denominator) poles. So, as our focus
is on D now, equal for particles with spin and scalar particles, we set N = 1 and restrict to

scalar integrals
doky - ... d%,
G({g¢i}) = lim / L 5 (4.3)
0 ) [ pJ —mj+ i€)’

Equally referred to as absorbative parts for the imaginary part of a complex-valued refractive index describes
the attenuation of light entering material.

20Often abbreviated as loop momenta reaching values for particle production.

3For a treatment of causality we refer to [10].
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where we directly write out p; = l;(k,, ¢;) for the momenta of the n internal lines.

For illustration, let us look at the simplest case of G({¢;}) which is the tree-level process con-
tributing to the 1-particle decay, given by the single propagator without any loop integrations
(see figure 4.1 on the L.h.s). In this case we have only one momentum ¢; = p flowing in from the
left such that

_ 1
p2—m2 e

G({pr}) (4.4)

G has a pole at the on shell value for the momentum p? = m? when € — 0. At the same time,
its imaginary part is by complex extension

1 €

Im( ):_(pz_m2)2+62‘

G B R—— 4.
p? —m? +ie (4.5)

Given an arbitrary finite value const = (p?> — m?)?, this expression vanishes properly for € — 0
as the constant factor saves the denominator from becoming zero. At p? = m? though, the
expression equals 1/e¢ which obviously diverges as ¢ — 0. If we integrate over this imaginary
part of the propagator, like we would in loop calculations, we get!

/oo F-mEra® =" (46)

suggesting that

() = —as(p? — m?), (4.7)

P2 —m?2 +ie

which strongly resembles the Cutkosky rules presented at the end of chapter 4.4.

These results already give a heuristic idea of how propagator poles arise at on shell values of the
momenta and contribute imaginary parts to Feynman diagrams, which in turn can be calculated
from Cutkosky cutting rules.

k

G,

- k+p
Figure 4.1: Tree-level (left) and one-loop (right) contribution to the 1-particle decay.
Now, consider the first loop-order contribution to the 1-particle decay, depicted in 4.1 on the

right. From standard textbook knowledge, the corresponding integral expression, after (Pauli-
Villars) regularization and Feynman parametrization, gives

d’k 1 1
cm=¢ | @m) [k + p)? — m? 1 ie] [R2 —m? + id (48)
g [ m? — p*a(l — )
= 162 /0 dx ln( A > , (4.9)

with A denoting the regulator.

Let us analyze the pole structure. From 0 < z <1 it follows that z(1 — x) < 1/4, which means
that for p < 2m the logarithm is real. For p > 2m the argument in the logarithm becomes
negative and creates a branch cut. We are not interested in calculating any results?, but note

'See appendix 4.6.
2See for instance [11, 15].
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that this branch cut yields a contribution to the imaginary part by using the principal arm of
the complex logarithm to find the logarithm of negative arguments In(—z) = In|x| + iw.

From the beforehand tree-level considerations we saw that propagators give rise to imaginary
parts when they are put on-shell. Looking one more time at equation (4.8), it becomes obvious
that a momentum p > 2m is large enough for both propagators to be put on shell at the same
time.

The general version of this condition for arbitrary integrals G({¢;}) in (4.3) is given by Cutkosky
rules, which ”cut” propagators in all possible ways such that they can be put on shell simulta-
neously.

4.2. Dispersion relations

In the previous chapter, we saw that Feynman integrals are generally real valued, while giving
rise to imaginary parts at poles or branch cuts. This threatens to cloud our mood for we are
persistently interested in the real part along the branch cut. Luckily, dispersion relations allow
to circumvent this problem by employing the knowledge of the imaginary part along the branch
cut to recover the real part. In chapter 4.4, it is shown how this imaginary part is calculated
from Cutkosky rules, for now we assume it to be given.

For in the following we would like to even more employ the toolbox of complex analysis, it makes
sense to restart more conceptually and view the integrand (or an amplitude) of a (possibly
transformed) complex momentum p? as a general complex function f(s) of complex variable s.

Im(s)

AAAAAAA
WY VVVVVYV Re(s)

Figure 4.2: Contour of the integration path C' in the complex s-plane.

In order to model the above described situation, let f(s) be real for real s < M and let f(s)
have a branch cut for real s > M. Away from the branch cut, let f(s) be analytic! for complex
s on the upper half plane. We fix the sign of the imaginary part of f above the branch cut by

f(s+ie) = Ref(s) +iImf(s), (4.10)

with € > 0 is infinitesimal. Further, assuming f(s*) = f*(s) (for our setup is symmetric w.r.t
the real axis) we have all requirements fulfilled to reflect? f across the real axis and thereby
analytically continue it to entire complex plane. Applying the above property we get

f(s+ie) — f(s—ie) =2iImf(s). (4.11)

Within the contour C, as depicted in figure 4.2, f is analytic at each point s. So we can apply
Cauchy’s integral formula together with equation (4.11) to give the value of f at an arbitrary
point sq inside C.

!Convergence is guaranteed, when working with renormalized expressions.
2By Schwartz’ reflection principle.
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f(s0) = ! ?ids /(s) (4.12)

2 s — 8o

(R fsrio - fs—i0 1)
Sp </ d +7|{S|:Rd > (4.13)

M s — 8o s — S
R
- 1/ dsTmI () +1f g5 %) (4.14)
|s|=R

T 2 S§—8g—1€ 2mi s— s
M 0 0

Take a look at equation (4.14). As we only know Im(f) along the branch cut (from Cutkosky
rules) we run into a problem as f also appears in the integral along the circle with radius R. If
the right integral vanishes as R — oo, we obtain the dispersion relation

f(s0) = 71T/00 dst(S) (4.15)

M S—so— i€

which allows to reconstruct f at any point so in C from I'mf(s), and especially the real part via
a suitable limiting procedure

R
Ref(sg) = lim 1/ dst(S). (4.16)

=1
R—co T Jpp S — 80

Generally though, the right integral in equation (4.14) is nonzero. However, to obtain a disper-
sion relation one can, for instance, subtract from equation (4.12) its value at some real point
s1 < M,

B _ S —S1 RS 1 Imf(s) 50 — 51 . f(s)
f(s0) = f(s1) = /d - . 7|{s|:Rd . (417)

T M S—S81S8— Sy — 1€ 211 s—81S— Sp

Now, the right integrand has a better convergence behavior than the right integral in equation
(4.14), precisely O(1/s%) compared to O(1/s) before, such that the integral vanishes for R — oc.
We arrive at the subtracted dispersion relation

F(s0) = fls1) + =51 /Moods L Imf(s) (4.18)

T §— 581 8— Sy — i€

This procedure may be repeated if necessary.

4.3. Derivation of the Cutkosky cutting rules

This section reveals the physical origin of our purely graph theoretic definition of Cutkosky cut
graphs in chapter 2.4.2. The cutting rules can be derived by analyzing the energy flow trough
a Feynman diagram. For simplicity, the derivation is again restricted to a scalar field theory
(¢-theory for illustrations) and integrals are assumed to be regulated, so no divergencies occur.

Let ; = 2!', p = 0,1,2, 3, be the four vector with time component 2¥ and let i = 1,...,n denote
different points in space time. The starting point for deriving the cutting rules is to consider
the scalar Feynman propagator in coordinate space

Aij = Ap(@i — xj) = (0T (¢(x:)$(24))[0), (4.19)
with the time ordered product T'(¢(x;), ¢(x;)) of the fields

(2:)d(x;), 2 >

4.20
o(z)pls), 20 < . (4.20)

T(p(xi), o(x;)) = {
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We write down the explicit Fourier representation of the propagator

%k _; i
A — ke 1 1.21
J / (27T)de k2 —m?2 + i€’ (4.21)

where we abbreviate x = z; — x; inside the integral.

We now want to decompose the propagator Ap(x) into positive and negative energy parts. Using
the heavyside function

o) 1, 2°>0 (4.22)
xXr) = .
0, 2 <0,

we can express the time ordered product T of fields by a product of normal fields to receive the
following expression

Aij = H(JZZ - CIZJ)A;; + 9($] - xz)Az_j, (4.23)
with
+ ddk —ikx 2 2
A = (0l¢(zi)¢(x;)[0) = e "O(+k)2mo (k7 —m”), (4.24)
i (27)d
and
85 = 8Gol0) = [ 5 o0 kmsr2 - m) (4.25
We note that A" and A~ fulfill
AL =AF and AF = (Af), (4.26)
such that we obtain the complex conjugate of the propagator
A;kj = 0(1’1 — x])Al_J + Q(x] — xﬂA;‘; (4.27)
X1 X5 X3
kg
k2

Figure 4.3: A (®*-theory) Feynman graph in coordinate space.

Now, consider a graph with n vertices in coordinate space (an example with n = 6 depicted in
figure 4.3). By convention incoming particles with momentum k;, i = 1,2, are drawn on the
Lh.s., outgoing particles with momentum &, i = 1,2, on the r.h.s. as indicated by the arrows.

We can calculate the amplitude of this diagram by applying the usual coordinate space Feynman
rules for a scalar theory. Assign to:

1. Each vertex z; a factor —ig, with g the coupling constant.

2. Each internal edge from z; to x; a propagator A;;. In scalar theories we have A;; = Aj;,
i.e. the orientation of the edges is irrelevant.
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3. Each incoming particle with impulse k;, represented by an external edge attached to a
vertex x;, a factor e kit

4. Each outgoing particle with impulse k;, represented by an external edge with attached to
a vertex x;, a factor ki,

5. Integrate over all vertices x;.

Above, we gave the full set of rules again in order to compare them to the new rules to be
constructed below. For now, we consider only the part of the amplitude F(z1,...,z,) before
multiplying with external particles and before integration (i.e. disregarding points 4 and 5). For
instance the graph in figure 4.3 gives F(a:l, X9,23,T4,T5, 1‘6) = (—ig)6A12A23A36A56A45A14A25.

X1 Xy X3

X5 X6

Figure 4.4: A (®3-theory) Feynman graph in coordinate space with circled vertices.

Next, consider the same graph with some of its vertices circled as shown in figure 4.4. For clarity,
arrows are drawn on edges from uncircled vertices to circled vertices. Lines with end vertices of
the same type remain as before. Later, we will see that these arrows, together with those from
the incoming and outgoing particles, indicate the energy flow through the diagram.

For a diagram with an arbitrary number of vertices circled, we calculate a similar function as

above, namely, F(21,...,&;, ..., Tj, ... Lpp, .., Tn), With the z; representing circled vertices. In

order to calculate this F', we extend the above given Feynman rules to adapt to the newly
generated cases in the diagram. Assign:

6. —ig — ig for each circled vertex z;, i.e. the complex conjugate of an uncircled vertex.

7. 0Ny — Ay = Ai_j for each edge from a circled vertex z; to an uncircled vertex ;.

8. Ajj — Ay = A;; for each edge from an uncircled vertex x; a circled vertex z;.

9. Aj; — Azj = A;‘j for each edge connecting two circled vertices x; and Zj, Le. the complex
conjugate propagator.

As before, A;; and Af; are invariant under exchange of vertices but A;; = Aj; by the Lh.s. prop-
erty of equation (4.26). In the case where all vertices are uncircled we regain F'(z1, ..., ;). As an
example the diagram in figure 4.4 gives (again disregarding rules 4 and 5): F(z1,Zq, &3, T4, T5, Lg) =
(i9)* (—ig)* A A3s Afe Az Aas Ara ;.

The largest time equation

With the previous rules set up, we can now write down a first important statement.

Theorem 4.3.1. (Largest time equation) In a graph with an arbitrary number of circled
vertices, be T, the vertex of largest time, i.e. 9, > 2V for all i # m. Then

F(x1y ey &y ooy Ty ooy ) + F (21, oy gy ooy Ty vy ) = 0, (4.28)

i.e. the two sides differ only in that the verter x,, is circled in one graph and uncircled in the
other.
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The two terms are identical except for the minus sign in the right graph containing z,,,,
nating from the replacement —ig — ig for a circled vertex by rule 6.
Now let us examine the energy flow by looking at the explicit propagators A?; and A;;. The

origi-

factor e tk(zi—z;)

in the integrals corresponds to a momentum k entering the vertex z; (as famil-
iar from the multiplicative factors of the incoming particles). So, for all edges between vertices
of different types we have A* such that the energy flow is always directed towards the circled
vertex, whereas for all edges between vertices of the same type (A;; or A:-‘j) energy can flow in

both directions.

From theorem 4.3.1 follows an important statement:

Corollary 4.3.1.
> F(a, . 1) =0, (4.29)

where the sum Tuns over all possibilities to circle vertices in the graph.

Figure 4.5: An example for corollary 4.3.1.

This can be seen as follows: Be z,, the vertex of largest time. Then the above sum can be
decomposed into pairs so that the two terms in the pair are identical except for one space time
point x; being circled in one term but not in the other. These terms cancel by 4.3.1 such that
the entire sum adds up to zero. For an example see figure 4.5.

()

Figure 4.6: Examples for graphs with zero contribution to equation (4.29). Circled and uncircled regions
marked by a line.

When looking at all graphs contributing to equation 4.29, one finds that some diagrams are
subject to mutually conflicting requirements and therefore must give a zero contribution. For
instance, graph (a) in figure 4.6 vanishes because (as described above) the A* force the energy
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to flow into the vertex z;. But in this case, no energy can leave x; to exit the diagram which
conflicts with energy conservation.

Similarly, graphs (b) and (c) in figure 4.6 break this requirement. In graph (b) only positive
energy enters the circled region (indicated by the arrows), whereas graph (c) gives a zero con-
tribution for only positive energy leaves the uncircled region.

Cutkosky rules

Now we are close to making the final step towards Cutkosky rules. In summary of what we just
found, non-vanishing diagrams must fulfill two conditions:

e The circled vertices must constitute a (by internal edges) connected region, linked to one
or more outgoing edges through which the inflowing energy can exit.

e Uncircled vertices must constitute a (by internal edges) connected region, linked to one
ore more incoming edges through which the energy can flow into the diagram.

In diagrams fulfilling these two conditions, the circled and uncircled vertices can be separated
by a so called ”cut” which separates the diagram in a ”sunny side” linked to the ingoing vertices
and a ”"shady side” linked to the outgoing vertices. Cutting of external half edges has no physical
meaning.

(a) (b)

Figure 4.7: Examples allowed cuts of graphs.

From the above preliminary Feynman rules (ordinary Feynman rules 1.-5. plus extension 6.-9.)
we can now write down the proper momentum space Feynman rules for graphs with cuts.

e To each ”"sunny-side” propagator with impulse k£ assign Wm

To each ”shady-side” propagator with impulse k assign —ﬁm.

To each cut propagator through which the impulse k& flows from the ”sunny-side” to the
"shady-side” assign 278 (k? — m?)0(k).

To each vertex on the ”"sunny-side” assign (—ig)(2m)%6% (> k;).
e To each vertex on the ”shady-side” assign (+ig)(27)%5%(> k;).

Now in corollary 4.3.1 consider the two extreme cases of a totally uncircled amplitude F'(z, ..., )
and a totally circled amplitude F' = F(x,...,z,,). Together with the just introduced notion of
a "cut”, corollary 4.3.1 can be rewritten as the equation giving the Cutkosky rules.

Corollary 4.3.2. (Cutkosky rules)

F(21, oy n) + (21, 0y n) = = Y Fo(m1, .., 20), (4.30)

cuts
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where F is evaluated using the ”sunny-side” rules only, F using the ”shady-side” rules only and
F. on the r.h.s according to the Feynman rules for cut graphs given above. The sum runs over
all possible cuts with energy flowing from sun to shade.

Certain cuts can give zero contribution to the r.h.s. sum as shown in the previous section.
Note that equation (4.30) is still valid after multiplying with external vertices and integration
to calculate the amplitude.

From the above analysis of the energy flow through a Feynman diagram it is clear where our
purely graph theoretic definition of Cutkosky cut graphs in chapter 2.4.2 has its roots.

4.4. Unitarity

Conservation of probability is a crucial feature for a quantum field theory and represented by
the property of the S-matrix to be unitary (ST = S~!). This unitarity can be seen as a general
requirement posed on the theory from which one can deduce further results. One of the most
important implications of unitarity is the optical theorem.

Recall the definition of the S-matrix of a scattering process in chapter 2.1, namely S =14 ¢T.
Requiring unitarity implies

STS=l1e «(T-T)=-TT. (4.31)

Now, rewrite this in terms of T-matrix elements (f|T|i) = T}; and squeeze in a complete set! of
intermediate states I = " |a){a|. It follows that

i({(fIT[0) = (FITY8)) = = D _(fIT"|a)(alT ). (4.32)
a

This equation is known as the general optical theorem. Remember from chapter 2.1 that the
T-matrix elements are directly related to perturbative amplitudes A,,, such that the theorem
must work order by order in perturbation theory. Note also that in equation (4.32) on the left we
have matrix elements, while on the right there are matrix elements squared. For instance, in a
calculation up to order a = g2, for each loop calculation on the left there must be corresponding
a tree-level calculation on the right.

Assuming time reversal invariance of the T-matrix? (T} ¢ = Ty;) and writing out the matrix
elements as complex numbers Ty = Re(Tjr) + ilm(T;s) on the left side of equation (4.32) it is
obvious that

2iIm(Typ) = > Tt Tui. (4.33)

Again, for instance, up to order a this means that imaginary parts of loop amplitudes are
completely determined by tree-level amplitudes.

Unitarity from Cutkosky cuts

The formal analogy of the optical theorem (4.32) and equation (4.30) giving the Cutkosky rules
is striking. Nevertheless, equation (4.30) works for any theory described by a Lagrangian £, it
does not need to be unitary.

In contrast to working top down, deriving the optical theorem from the general unitarity re-
quirement as we just did, we can also work from the bottom up and infer the optical theorem

'Integration over the appropriate phase space element for the intermediate states |a) is implicitly assumed.
2Electromagnetic, gravitational, strong and weak interactions are invariant [17].
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and thereby unitarity from the cutting rules. For this statement to hold true, the Lagrangian £
from which the S-matrix is derived must be hermitian, i.e. £ = L*.

This can be seen as follows: In order for equation (4.32) to agree with (4.30) the diagrams oc-
curring in ST must be equal to the diagrams where all vertices are on the "shady side”. Matrix
elements of ST are usually defined as

(alS"[b) = (b]Sla)*, (4.34)

but they can also be obtained another way. Define the matrix S calculated as usual from L£*
together with the replacement ¢ — —¢ in the propagators and the vertices. This is equivalent to
using our previously defined ”shady-side” Feynman rules. Then by [10] one can show that

(alST(L,3)[b) = (alS(L", i) b). (4.35)
Given £ = L* we can rewrite the optical theorem (4.32) to

i(Tip+Tp) ==Y TraTu (4.36)
a

This is precisely equation (4.30) with 7" = —iF. So it is allowed to say that the cutting rules
fulfill the optical theorem (4.32) even diagram wise when we identify the intermediate states |a)
with cuts of the graph. This way we can now calculate imaginary parts directly from Cutkosky
cuts.

Finally, we have made the link between Cutkosky cuts and imaginary parts via the optical
theorem. Practically, the prescription to calculate imaginary parts from Cutkosky cuts is:

e Cut a diagrams in all possible ways which allow to put the cut propagators on shell
simultaneously.

e Replace for each cut propagator 5 — 2mié(p? — m?).

1
2 —m?2+4ie
e Sum over all cuts.

With this slender recipe we conclude this chapter and move on to the final part of the thesis,
namely the linking between Cutkosky cuts and the core Hopf algebra.
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5. A connection: Cutkosky cutting and the core Hopf algebra

Having collected the necessary background knowledge from the previous chapters in order to
understand the core Hopf algebra and (Cutkosky) cutting rules, the following part of the thesis
is devoted to the linking between these two concepts.

Why would this be an interesting thing to do? Most generally, a relation between the core
Hopf algebra and the cutting of graphs would mean, that the beautiful theory of Hopf algebras,
which did us a great service in conceptually understanding renormalization, receives a link to
the unitarity of the S-matrix, another most fundamental feature of a quantum field theory.
Tied to this on the more practical level is a also a connection to the analytic structure of Feynman
graphs: The coproduct of the core Hopf algebra filters in graphs for certain subgraphs. If these
subgraphs can be shown to stay unaffected by the cutting (i.e. propagator poles), then the
corresponding parts of the integration can be renormalized and performed independently and
later reassembled in the calculation for the entire graph. In the following we prove a theorem
implying precisely the latter aspect.

Before examining the connection between the core Hopf algebra and graph cutting, we briefly
recapitulate the most important notions collected from the previous chapters in section 5.1.

In chapter 5.2, we give a rigorous proof of a proposition first made by Kreimer in section 5 of [1],
claiming that the coproduct A. of the core Hopf algebra H. is compatible with the Cutkosky
cutting of a graph I'. In other words, cutting a graph I' in all possible ways is equivalent to
cutting all corresponding cographs I' /v in all ways that leaves none of their loops intact.
Further, in chapter 5.3 we discuss a generalized statement, namely Lemma 3 of chapter 3 in
[2], which makes an analogous claim for k-cuttings. For each case, we clarify the terminology in
which each statement was first given, and finally interpret the results.

5.1. Preliminaries

We briefly recapitulate the most important notions collected from the previous chapters for re-
freshment. A reader who generally is familiar with the presented background can thus read this
chapter independently from the others and look up individual aspects where necessary.

First of all note that, for simplicity, our considerations are restricted to scalar (Feynman) graphs
as given in definition 2.2.1. Reintroducing the necessary details for other theories should produce
no difficulties.

Remember, all uncut graphs I' are assumed to be 1PI, and subgraphs are defined as disjoint
unions of 1PI graphs v = Ll;y;. It is exactly this type of subgraph the coproduct A, of the
core Hopf algebra H, filters for (see chapter 3.3). In this context the operation of shrinking
subgraphs v C I is important and assumed to be known from chapter 2.4.1.

All vertices and edges of a graph I' are labelled uniquely by letters and natural numbers as
explained in chapter 2.2. External half edges are not drawn in illustrations, such that figures
are clear. Nevertheless, they can be inferred from the fixed valency of each vertex (chapter 2.2).
Though cutting external half edges has no physical meaning, and subgraph shrinking does not
affect them, in the case of Cutkosky cuts one needs to keep track of them for each component
of the cut graph must be connected to at least one of external half edge (see chapter 2.4.2). For
k-cuts this restriction is cancelled.

Finally and most importantly, Cutkosky cuts and k-cuts are identified with removing edge sets
Er, C Er induced from forests! via their corresponding vertex partitioning as explained in
chapter 2.4.2 and 2.4.3. For the former this happens under additional physical constraints. The
resulting cut graphs I, consist of several (disjoint) connected components L;I';,;i = 1,...,k. In a

'Remember, the cutting can just as well be identified with marking edges and defined directly via edge sets or
partitioning vertices. Here, we intend to connect to the framework of [2] and make the generalizations to k-cuts
for which this definition is practical.
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completely cut graph I'.., other than in a general cut graph I'., none of its components contains
intact subgraphs v anymore. We will sometimes refer to Cutkosky cuts simply as cuts to be
distinguished from the more general notion of a k-cut.

0 ¢

Figure 5.1: Tadopole-like graphs I' allow for no cuts, i.e. I'c = 0.

Remark 5.1.1. (Cutting I and tadpole-like graphs)
Note, cutting and k-cutting tadpole graphs or graphs that are tadpole-like (see figure 5.1), as
well as cutting the empty graph 1, is impossible by the definition of the cutting rules (definitions
2.4.4, 2.4.5, 2.4.7 and 2.4.8) for they can not be separated in components by a forest. These
kind of graphs I map to zero when cut, i.e. I'c = 0. Consequently, terms with cographs of such
shape if produced by the core coproduct A, also give zero.

For the proof of theorem 5.2.1, following in the next chapter, it is important to note that
we consider all graphs T' (including I' = T) vanishing under the cut operation as equivalent.
Otherwise we would map several cut graphs or tensorproducts to zero.

5.2. Compatibility of the core coproduct and Cutkosky cutting

In this section, we prove a proposition of Kreimer which states that the coproduct A, of the core
Hopf algebra H, respects the Cutkosky cutting of a graph I', precisely this means that cutting a
graph T in all possible ways is equivalent to cutting the corresponding cographs I'/v in all ways
that leaves none of their loops intact. Cutkosky cutting and the core Hopf algebra are two very
different concepts which hereby receive a linking. The practical implications of this theorem are
discussed below.

In the original terminology of [1], where the proposition was first presented, it reads as follows.

There exists a bijection between
CT) and (id® CC)A). (5.1)

This theorem can be rewritten in a form more suitable for our purposes, showing the action of
the coproduct A, and the cutting explicitly. With C(I') denoting the set of all Cutkosky cuts of
a graph ' and C(T") the set of all its complete cuts, we can write

Theorem 5.2.1.
YNolve D> @Vl = Y T (5.2)
y=Uivi ceeC(T/v) cec(I)

To achieve this expression, we defined C'(I") as the sum over all possible Cutkosky cut graphs
¢ (definition 2.4.4) of a given graph I' (for an example see figure 5.2a),

Z r.. (5.3)
ceC(T

On the other hand, (id ® CC)A.(T") first sums over all subgraphs v C I', with v = L;y; and ~;
1P1, via the core coproduct A. such that

(id® CC)AT) = Y 7@ CC(T/7), (5.4)

y=Uivi
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where we define CC(I'/) as the sum over all completely cut cographs (I'/7)c. (definition 2.4.5)
only,
cor/y) = >, T/Vee (5.5)
cceC(T/~)
In completely cut graphs I'.. the only possible subgraph is v = I. For illustration, consider the

first two terms on the right side of the equation in figure 5.2a. As an example for the application
of (id ® CC)A. on a graph I see figure 5.2b.

(b) Filtering all subgraphs in a graph I" with the coproduct A. and subsequently completely cutting the
corresponding cographs.

Figure 5.2: Example of theorem 5.2.1 applied to a graph I'.

Proof of theorem 5.2.1

We now find a proof for theorem 5.2.1. We do so by proving a statement which is slightly differ-
ent from it, i.e. slightly stronger. We show that there is a bijection between single cut graphs I'.
and single tensor product terms of subgraphs with completely cut cographs v ® (I'/7)¢c, rather
than a bijection between sums over all possibilities to build each of the terms. The original
statement for sums in 5.2.1 follows directly. This proceeding captures the underlying structure
well, for the correspondence of sums directly emerges from workings on the single graph level.
For physical calculations however we are interested in summing' over all cuts.

First, we fix a graph I' and define the following two finite sets, with the notation already
indicating the cutting of graphs and cographs respectively:

G ={0} U{I.| I'; cut graph of I'}, (5.6)

and

G = {0} U{y® (T/7)ecly C T,y = Ui7i, (I'/7y)ee completely cut graph of I'/~}. (5.7)

'Remember, finally we intend to calculate perturbative scattering amplitudes A, which are sums of graphs.
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Then, the theorem we prove as an intermediate step in order to prove theorem 5.2.1 reads:

Theorem 5.2.2. For every cut graph T € G there exists exactly one v @ (I'/7)ec € G, i.c.
9] = 19].

Proof: Our approach is to directly show surjectivity between the two (finite) sets G and G in
both directions, for this implies |G| > |G| and |G| < |G|, such that |G| = |G]|.

= First, let us show that for every combination v ® (I'/7)c € G there is a I', € G such that we
can map I'; onto v ® (I'/7)cc.

Be v®(I'/7)cc an arbitrary tensor product combination built from I'. There are three possibilities
one can distinguish in this tensor product which need to be reached by our map:

Ly=Tor (T/Y)e=0=72(T/7)ec =0
3. y=CT = 7% [T/7)e

We suggest the the following map & : G — G as a surjection,

0,if I'.=0
o(T) == I®T,, if I'. has no intact subgraph (5.8)
Ym @ Le/Vm, for vm € I'c maximal intact subgraph

Let us prove this. Consider an arbitrary cut graph I'.. For I'. # 0, it consists of exactly two
connected components I'; and 'y, say, with I'; being connected to the incoming particles, I'y
to the outgoing particles. Each component can be a single vertex or spanning tree, or it can
contain subgraphs. So generally, in I', = 'y UT's it is a meaningful operation to search for intact
subgraphs v = Lgyk, where the v are 1PI and need not all to be in the same component I';,
i =1,2. Among the possibly many subgraphs, we can find the maximal subgraph ~,, by taking
the disjoint union of all subgraphs present. Obviously then, this ~,, is unique in I".

To each tensor product case 1.-3. we find a I'. as explained in the following.
1. We take I'. = 0 such that §({0}) = 0.

2. We take the graph I'; to be a completely cut graph, i.e. no loop is left intact and v, = L.
Now, almost identically, we map §(I'.) =1 ® ..

3. We take a cut graph I', which contains intact subgraphs. Among them we find the maximal
subgraph by disjoint union ~,, € I': = I'y UT's. Now we shrink ~,, the way shrinking
is defined in chapter 2.4. We are left with a disjoint union of connected components
Le/ym = I’y U T, none of which contains intact subgraphs anymore, i.e it is completely
cut. If I'. /7, had not been completely cut, there was a subgraph in at least one component
left, which we did not include in ~,,, thereby contradicting maximality.

To see I'c/ym really is a (cut) cograph of I', we use Er = E,, + Er/,, as obvious from
our unique labelling. The primary cutting only happened on edges e ¢ ~,, for v, was left
intact, i.e. only edges e € By, were cut. As vy, is then removed, only cograph edges are
left by the above equation. Vertices stay unaffected by edge cutting anyway.

The respective components of I'./v,, = I'1 U Ty are still connected and linked to their
respective external edges as shrinking of 1PI subgraphs neither destroys connectivity nor
does it affect the linking. Finally, we map I'. to the tensor product v, ® I'c/vm.

Thus ¢ is a surjection and \G| < |G].
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<: Reversely, let us show that for every cut graph I'. € G there exists a combination Y& (T'/7)¢ €
G, such that we can map v ® (I'/7)¢. onto T..

Let I'. be a cut graph of I'. As noted before, we have the following different cases I'. our map
needs to reach.

1. '.=0.
2. I'e =T, i.e. it is completely cut.

3. I'. is cut with subgraphs v intact.

For this direction, we suggest the the following map M : G—Gasa surjection,

0, if y=Tor (I'/y)ee=0
MY @ (T/Y)ee) = mI @), if y=1I (5.9)
mo (L") (Y@ ([T/Y)ee), HyET .

Letting C denote the set of all cut graphs and C the set of all completely cut graphs (é C 0),
we define the insertion of an uncut graph ' into a completely cut graph +/. to give a cut graph
with intact subgraph I'y as Z : C — C,Z7 (y/) := T'.. Further, we define the constant map
¢: He = HeI' — T to erase the subgraph « in the tensor product and finally we multiply
everything together by m: H. @ C = C,I® ', — II'. = I..

To show surjectivity of M, we first list again the (above mentioned) different cases in the ten-
sor product ¥ ® (I'/7)ee. It can be zero, I ® I's., or v can be a proper disjoint union of 1PI
subgraphs. For this direction of the proof, the essential operation is to reinsert v into the cut
cograph (I'/7)cc in order to obtain the respective cut graph I'. = I' — Er,., witfh the inserted
subgraph intact. Generally, this is possible because from building the tensor product in the first
place, we are given all information about the original (labelled) T" and T'/~.

To each cut graph case I'; 1.-3. we find a v ® (I'/7). explained as follows.
1. We take I' ® (I'/7) ¢ = 0 such that M(0) = 0.

2. We take I ® I'.. and map, almost identically, M(I®@T..) = m(I®@T..) = Tee.

3. We start off at v & (I'/7)¢e, with v # L, (T'/7)ee # 0, and v € T'. We reinsert v into (I'/)c
to obtain I', with v C I' intact. How, precisely, is this done?
As indicated above, we know the original graphs I" and I'/, with all their vertices and
edges uniquely labelled as described in chapter 2.2. Remember, I'/~ contains [ new vertices
at the places of the shrunken 1PI subgraph components of v = I_Iﬁgfyk (especially also for
propagator correction subgraphs). Thanks to the labelling, there is exactly one possibility
(w.r.t place and orientation) to reinsert the shrunken subgraph v C T' (rather its 1PI
components) into the cograph I/~ as to obtain the full graph T.
Now take the new cut information into account, how can we be rebuild I': = I" — Er,,
with Er, the set of cut edges induced by a forest of I'? The key observation here is, that
cutting is an operation on edges, whereas subgraph inserting is an operation on vertices.
Consider again Fr = E, + Ep/,. All subgraph information on edges and vertices is safely
stored on the left side of the tensor product 7 ® (I'/)c.. Cutting the cograph I'/y on
the right can only affect (i.e. remove) edges e € Er /v- Reinserting the uncut subgraph
~ into the completely cut cograph (I'/v). though, can take place at vertices only which
have been unaffected by the beforehand cutting. Especially, the vertex v from shrinking
~ remains untouched.
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Finally, we can uniquely rebuild I'. from our knowledge of I' by reinserting v into v €
(T'/7)ce in a way that gives I'c :=T" — Er/y),» where our labelling uniquely identifies the
edges e € Er/,), with certain edges e € Ep. This means we are left with a cut graph
I'c=T - FEr, st. v C I is intact.

Inserting 1PI subgraphs in vertices of (I'/7).. obviously leaves I'; separated in exactly two
connected components and preserves the primary connection to external edges.

Then, we map v ® (I'/7)e to I'. as explicitly given in (5.9).

This proves M really is a surjection and |G| < |G|.

Together with the first part, we showed that |G| = |G|, s.t. the existence of a bijection is proved.
In fact, we actually gave the explicit bijection ¢ with its inverse M = §~1. O

To complete the proof of theorem 5.2.1, we sum over all tensor products v @ (I'/7)ee € G/{0}
to achieve the left side of equation (5.2) and sum over all cut graphs I'. € G/{0} to achieve the
right side. The bijection is proved for each summand by theorem 5.2.2, the statement for sums
follows directly. Thus, theorem 5.2.1 is proved.

Interpretation

In chapter 4 we saw that Cutkosky rules cut certain edges of a graph I' when their corresponding
propagators in the Feynman integral can be put on shell simultaneously. Thus, they pictorially
illustrate the situation where the integrand experiences branch cuts from propagator poles and
gives rise to imaginary parts.

Now, for practical calculations theorem 5.2.1 shows that if a Cutkosky cut leaves certain sub-
graphs v C T intact, then the integration for the corresponding part of the integral can be
renormalized and performed separately, regardless of the pole structure of the integrand, and
later reassembled with the remaining integration to give the calculation for the entire graph I.
Apart from this, theorem 5.2.1 allows to restrict proofs on cut graphs to proofs on the smaller
set of completely cut graphs (no loops intact) for the former can be rebuilt by the explicitly
given bijection. In the case of cut graphs with loops intact the coproduct also reduces the con-
siderations to a lower loop order.

On the more conceptual level, the validity of theorem 5.2.1 shows that the application of the
coproduct and Cutkosky cutting of graphs are concepts that respect each other in a certain way.
As seen in chapter 4.4 the Cutting rules work on the graph level, but can be shown to prove
unitarity perturbatively. The core coproduct also is an operation working on single graphs, but
is embedded in the bigger framework of the Hopf algebra.

This encourages to pursue the goal of understanding the global connection between the Hopf
algebraic approach to quantum field theories and unitarity, together with analyticity properties,
via the core Hopf algebra and Cutkosky cutting rules.

5.3. Generalization to k-cutting

Further, let us discuss a proposition from Kreimer closely related to theorem 5.2.1, namely
Lemma 3 of chapter 3 in [2], which makes an analogous claim but this time for general k-
cuttings.

After definition 2.4.7 and 2.4.8 (complete) k-cuts separate the graph in k components which
do not necessarily need to be connected to external half-edges. So the subsequently presented
statement is identical to the above theorem 5.2.1 when sums over all Cutkosky cuts (2-cuts) are
replaced with sums over all possible k-cuts.

The theorem is originally given in a notation very different from the one used above, and therefore
explained in detail below. Now it becomes clear, why we introduced the concept of forests in
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chapter 2.4.2 and 2.4.3. As mentioned before, the considerations so far would have been possible
without forests but in order to understand the below theorem and its implications this concept
is very convenient and we benefit from our previous work.

Theorem 5.3.1.

> [rTu (Z): F :i > (@,F) (5.10)
),

T k=1 FeFy Ig¥|=0 k=1 FeF(T)
Here, we have the following ingredients from left to right (see also chapter 2.4.2):

e IV and I denote a subgraph and cograph of I' respectively in the style of Sweedler’s
notation.

e T|I" denotes a tree T spanning I''. As subgraphs are allowed to be disjoint unions of 1PI
graphs IV = L;I", it is possible that T is a disjoint union of trees, one for each subgraph
component, i.e. T = U;T;.

o Fi(T') is the set of all k-forests of given graph I'.
o GF' = {Iy,...,T}} denotes the set of graphs induced by a forest F via I' — Er,.

e (I''F)=TI—Er, =;l', i =1,...,k, denotes the cut graph given by the original graph
I, together with the cut information delivered by the forest F'.

The above proof of theorem 5.2.1 on Cutkosky cuts can directly be transferred to a proof of
theorem 5.3.1 for general k-cuts.

The reasoning is identical, we only use definitions 2.4.7 and 2.4.8 for k-cut graphs and complete
k-cut graphs instead of definitions 2.4.4 and 2.4.5 for (complete) Cutkosky cuts.

Our argumentation is not affected, for the coproduct does not ”see” the number of connected
components in a graph and keeps filtering all cut graphs depending on the loop number of the
subgraphs which are possibly left intact. Figures 5.3a and 5.3b give an example, where special
attention is to be paid on the 3-cut graph appearing in the third term on the right side of the
equation in figure 5.3b.

b®

c®

(b) Filtering all subgraphs in a graph I' with the coproduct A, and completely k-cutting the corre-
sponding cographs.

Figure 5.3: Example for theorem 5.3.1 applied to a graph I'.
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The main difference in the setup is that, other than before, the several induced graph compo-
nents do not necessarily have to be connected to external edges. However, this does not affect
the two key operations of our proof above, namely searching for maximal subgraphs -,, in a cut
graph I'. or rebuilding of graphs I'. from cographs (I'/7).. by subgraph insertion with the help
of T.

Just like theorem 5.2.1 before, theorem 5.3.1 implies that certain subgraph integrations can
be performed independently from the remaining part of the integration affected by the cutting
operation. Referring to [2], we further note that the forest approach in a very simple manner
captures the fact that the difference of a k-cut and a (k + 1)-cut defines a Cutkosky cut on some
subgraph. This observation suggests that the optical theorem may also be applied iteratively.
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6. Conclusion and future prospects

In this thesis we rigorously proved that the coproduct of the core Hopf algebra H,. respects the
Cutkosky cutting of a graph I'. This fact can be employed to simplify practical calculations
and indicates a more general linking between Hopf algebras and the unitarity property of the
S-matrix in a quantum field theory.

Having set up a clear graph theoretic terminology for Feynman diagrams I' as labelled graphs
as well as for subgraph shrinking and graph cutting (via forests) in chapter 2, we introduced
the core Hopf algebra #H, in chapter 3. The core Hopf algebra is built on all 1PI (2-connected)
graphs and can be regarded as the Hopf algebra for a field theory in infinite dimension. It is
linked to the well known renormalization Hopf algebra , which it contains as a quotient (in
the sense of Hopf algebras).

In chapter 4, we learned that for a theory with a hermitian Lagrangian £, Cutkosky cutting rules
are intimately related to the unitarity of the S-matrix via the optical theorem. They even prove
unitarity perturbatively. Also, they illustrate the case when certain propagators in a Feynman
integral are put on shell simultaneously, thereby giving rise to branch cuts in the integrand,
which consequently result in imaginary parts of the integral. Luckily, the real part along the
branch cut can be traced back from these imaginary parts via dispersion relations, also known
as Hilbert transforms.

Finally, in chapter 5, we dealt with the connection between the core Hopf algebra H. and
Cutkosky cutting rules by rigorously proving a concrete proposition from Kreimer, stating that
the core coproduct A, is compatible with the Cutkosky cutting of a graph. In other words,
cutting a graph I' in all possible ways is equivalent to cutting its corresponding cographs I'/~y
all ways that leaves none of their loops intact.

Our approach was to suggest two maps working on the level of single terms and prove the bi-
jection by showing surjectivity in both directions. The result for sums over all possibilities of
cutting follows directly from this.

For practical calculations, our result implies that if a Cutkosky cut leaves certain subgraphs
~ C T intact, the corresponding renormalization and integration can be performed unaffected
by the pole structure of the integrand, and later reassembled with the remaining integration for
the entire graph I'. Further, proofs on cut graphs can be restricted to proofs on the smaller set
of completely cut graphs for the former can be rebuilt by the explicit bijection. In the case of
cut graphs with loops intact, the coproduct even reduces the considerations to a lower loop order.

On the more conceptual level, the proved compatibility of the core coproduct A, and Cutkosky
cutting of graphs encourages to pursue the goal of understanding the global connection between
the the beautiful theory of Hopf algebras, which did us a great service in understanding renor-
malization, and unitarity, coming with a link to the analytic structure of Feynman graphs, as
two fundamental features of a quantum field theory.

We gave a short outlook on current work in this direction by briefly looking at a very similar
statement for more general k-cuttings from [2]. Within this context the primarily introduced
concept of forests proved useful, for it readily captures the fact that the difference of a k-cut
and a (k + 1)-cut defines a Cutkosky cut on some subgraph. In principle, this fact allows for
iterating cut operations to higher loop orders, offering a new tool for further research.
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A. Appendix
A.1. Integral (4.6)

We give an explicit calculation of the integral in equation (4.6). This can also be taken as a
brief reminder for performing contour integrals and calculating residues. Consider

/Oo T mi e dp”. (A.1)

Substitute z = p?> — m? to write

/ L, (A.2)

2 2
oo TZ Tt €

To evaluate this integral, consider the integrand as a complex valued function

f(z) =

€

Zre (43)

with singularities at +ie. We pick a contour C in the complex plane that contains the real-valued
integral. The semicircle on the upper half plane with boundary diameter on the real line from
—a to « is a suitable choice. Note, that by Cauchy’s integral formula

ff(z)dz: ’ f(z)dz—l—/ f(2)dz, (A.4)
C —a arc

where we are interested in the middle integral.
Now, factorize the integrand and put the only (first order) pole in the contour C in a convenient
place for direct application of Cauchy’s integral formula.

€

€ . € _ (z+ie)
224 €2 (z4ie)(z—ie) (2 —ie) (A.5)

By calculating the residuum of the first order pole, the left side of the formula gives

(zjie) . . (zjie)
dz =2 -
7({ G—id z = 27i(z — ie) ((z — Z€)>

It remains to show that the integral over the semicircle arc tends to zero as a — co. We use the

=. (A.6)

Z—ri€

= 2mi
Z—1€

z + 1€

the estimation lemma, whit (ﬁ) as the upper bound along the arc, and (o) the length of

+e€
arc. It follows

€
’/arc f(Z)dZ S <Og2—i—62> (0477') — 0, fOI' a — oo, <A7)
such that finally
/oo 1dz—/oo f(z)dz = lim /a f(z)dz—E (A.8)
700224_62 B —o _a—>+<>o —a o 2 '
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