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Abstract We outline ideas to connect the analytic structure of Feynman amplitudes
to the structure of Karen Vogtmann’s and Marc Culler’s Outer Space. We focus on
the role of cubical chain complexes in this context, and also investigate the bordifi-
cation problem in the example of the 3-edge banana graph.

1 Motivation and Introduction

This is a write-up of two talks given recently in Zeuthen and in Les Houches. It
contains results and ideas which are partially published and which will be elaborated
on in future work.

We want to establish a conceptual relation between scattering theory for Feynman
amplitudes (see for example [1] and references there for an introduction) and the
structure of suitable Outer Spaces, motivated by [2–5].

In particular we want to incorporate in the analysis the structure of amplitudes as
multi-valued functions. We use this term for the study of functions defined by the
evaluation of a Feynman graph Γ ∈ H by renormalized Feynman rules,

ΦR : H→ C.

Here, H is a suitable Hopf algebra of Feynman graphs.
ΦR(Γ ), ∀Γ ∈H depends on kinematics: p∈QΓ , ΦR(Γ ) = ΦR(Γ )(p), where QΓ

is a real vectorspace [8],
QΓ ∼ RvΓ (vΓ−1)/2+eΓ ,
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generated by all scalar products of external momenta, and internal masses of Γ .
Here, vΓ ,eΓ are the number of vertices and edges of Γ . We assign an external mo-
mentum to each vertex of the graph. They can be set to zero when needed.

The analysis will proceed by regarding such an amplitude ΦR(Γ ) as an iterated
integral. What is to be iterated are not differential one-forms though, as in the ex-
ample of the study of generalized polylogarithms, but elementary amplitudes ΦR(γ)
built from particularly simple Feynman graphs γ: one-loop graphs which form the
basis primitive elements of the core Hopf algebra Hcore defined below.

ΦR(Γ ) is not uniquely defined as an iterated integral as there are many distinct
flags [6, 7] which describe possible sequences of iteration to obtain ΦR(Γ ).

We will remedy this below by defining a suitable equivalence relation using
equality along principal sheets. The latter equality reflects Fubini’s theorem in the
context of renormalized amplitudes.

Our claim is that this iteration gives ΦR(Γ ) -the evaluation of Γ by renormalized
Feynman rules- a structure which reflects the structure of a suitable Outer Space
built on graphs. Here, the graphs are metric marked graphs with colored edges, and
without mono- or bi-valent vertices.

The full amplitude contributing at a given loop order is obtained by summing
graphs which all have the same loop order and the same number of external edges.
Suitably interpreted, the full amplitude is obtained as an integral over all cells of
Outer Space, in a piecewise linear manner as exhibited in [9].

Such Outer Spaces are used in mathematics to study, amongst many things, the
representation theory of the free group FnΓ

. In the course of such studies graph
complexes arise which have bearing in their own right in the investigation of ΦR(Γ ).
This includes

• Outer Space itself as a cell-complex with a corresponding spine and partial order
defined from shrinking edges [2];

• a cubical chain complex resulting from a boundary d which acts on pairs (Γ ,F),
F a spanning forest of Γ [3];

• a bordification which blows up missing cells at infinity [4].

The use of metric graphs suggests itself in the study of amplitudes upon using the
parametric representation: the parametric integral is then the integral over the vol-
ume of the open simplex σΓ , the cell assigned to each graph Γ in Outer Space,
which itself is a union of such cells.

Colored edges reflect the possibility of different masses in the propagators as-
signed to edges. External edges are not drawn in the coming pictures. Momentum
conservation allows us to incorporate them by connecting external vertices to a dis-
tinguished vertex v∞. We come back to this elsewhere.
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2 b2: the bubble

We first discuss the elementary monodromy of the simplest one-loop graph2. So we
start with the 2-edge banana b2, a bubble on two edges with two different internal
masses mb,mr, indicated by two different colors:

The incoming external momenta at the two vertices of b2 are q,−q.
We assign to b2 a one-dimensional cell, an open line segment, and glue in its

two boundary endpoints, to which the two tadpoles on the two different masses
are assigned, obtained by either shrinking the blue or red edge. The vertex at each
tadpole is then 4-valent, with no external momentum flow through the graph.

The fundamental group
Π1(b2)∼ Z

of b2 has a single generator. This matches with the monodromy of the function
ΦR(b2) as we see in a moment.

Indeed, the Feynman integral we consider is coming from renormalized Feynman
rules ΦR(b2), where we implement a kinematic renormalization scheme by subtrac-
tion at µ2 < (mb−mr)

2 (so that the subtracted terms does not have an imginary part,
as µ2 is even below the pseudo threshold):

ΦR(b2) =
∫

d4k

 1
k2−m2

r︸ ︷︷ ︸
Q1

1
(k+q)2−m2

b︸ ︷︷ ︸
Q2

−{q2→ µ
2}

 .

We set s := q2 and demand s > 0, and also set s0 := µ2.
We write k = (k0,k)T , t := k ·k. As the 4-vector q is assumed time-like (as s > 0)

we can work in a coordinate system where q = (q0,0,0,0)T and get

ΦR(b2) = 4π

∫
∞

−∞

dk0

∫
∞

0

√
tdt
(

1
k2

0− t−m2
r

1
(k0 +q0)2− t−m2

b
−{s→ s0}

)
.

We define the Kȧllen function

λ (a,b,c) := a2 +b2 + c2−2(ab+bc+ ca),

2 This material is standard for physicists. It is included here for the benefit of mathematiciams who
are usually not exposed to the monodromy of Feynman amplitudes.
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and find by explicit integration

ΦR(b2)(s,s0;m2
r ,m

2
b) =

=


√

λ (s,m2
r ,m2

b)

2s
ln

m2
r +m2

b− s−
√

λ (s,m2
r ,m2

b)

m2
r +m2

b− s+
√

λ (s,m2
r ,m2

b)
− m2

r −m2
b

2s
ln

m2
r

m2
b︸ ︷︷ ︸

B2(s)

−{s→ s0}︸ ︷︷ ︸
B2(s0)

 .

The principal sheet of the above logarithm is real for s ≤ (mr +mb)
2 and free of

singularities at s = 0 and s = (mr−mb)
2. It has a branch cut for s≥ (mr +mb)

2.
The threshold divisor defined by the intersection Q1 ∩Q2 where the zero locii

of the quadrics meet is at s = (mb +mr)
2. This is an elementary example of the

application of Picard–Lefshetz theory [8, 11].
Off the principal sheet, we have a pole at s = 0 and a further branch cut for

s≤ (mr−mb)
2.

It is particularly interesting to compute the variation using Cutkosky’s theorem
[8]

Var(ΦR(b2)) = 4π

∫
∞

0

√
zdz

∫
∞

−∞

dk0δ+(k2
0− t−m2

r )δ+((k0−q0)
2− t−m2

b).

Integrating k0 using k0 +q0 > 0 and k0 =−q0 +
√

t +m2
b, delivers

Var(ΦR(b2)) =
∫

∞

0

√
tdtδ ((q0−

√
t +m2

b)
2− t−m2

r )
1√

t +m2
b

.

With (
q0−

√
t +m2

b

)2

− t−m2
r = s−2

√
s
√

t +m2
b +m2

b−m2
r ,

we have from the remaining δ -function,

0≤ t =
λ (s,m2

r ,m
2
b)

4s
,

whenever the Kȧllen λ (s,m2
r ,m

2
b) function is positive.

The integral gives
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Var(ΦR(b2))(s,m2
r ,m

2
b) =

=:Vrb(s;m2
r ,m

2
b)︷ ︸︸ ︷

√
λ (s,m2

r ,m2
b)

2s

×Θ(s− (mr +mb)
2).

We emphasize that Vrb has a pole at s = 0 with residue |m2
r −m2

b|/2 and note
λ (s,m2

r ,m
2
b) = (s− (mr +mb)

2)(s− (mr−mb)
2).

We regain ΦR(b2) from Var(ΦR(b2)) by a subtracted dispersion integral:

ΦR(b2) =
s− s0

π

∫
∞

0

Var(ΦR(b2)(x))
(x− s)(x− s0)

dx.

Below we will also study the contributions of non-principal sheets and relate
them to the bordification of Outer Space.

In preparation we note that non-principal sheets give a contribution

2 jπıVrb(s), j ∈ Z×,

where ı is the imaginary unit, ı2 =−1.
We hence define a multi-valued function

ΦR(b2)
mv(s,m2

r ,m
2
b) := ΦR(b2)(s,m2

r ,m
2
b)+2πıZVrb(s).

Sometimes it is convenient to write this as

ΦR(b2)
mv(s,m2

r ,m
2
b) := ΦR(b2)(s,m2

r ,m
2
b)+2πıZ

(
Jrb

1 (s)+ Jrb
2 (s)+ Jrb

3 (s)
)
,

with

Jrb
1 (s) := Vrb(s)Θ((mr−mb)

2− s), (1)
Jrb

2 (s) := Vrb(s)Θ(s− (mr−mb)
2)Θ((mr +mb)

2− s), (2)
Jrb

3 (s) := Vrb(s)Θ(s− (mr +mb)
2). (3)

From the definition of the Kȧllen function, we conclude:
Jrb

1 ∈ R+ is positive real,
Jrb

3 (s) ∈ R+ likewise and
Jrb

2 (s) ∈ ıR+ is positive imaginary.

3 The pole at s = 0

In the above, we saw already a pole in s appear for the evaluation along non-principal
sheets for the amplitudes coming from the graph b2. Actually, such poles are a gen-
eral phenomenon as we want to exhibit now before we discuss the relation between
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the sheet structure of amplitudes and the structure of graph complexes apparent in
colored variants of Outer Spaces.

We proceed using the parametric representation of amplitudes through graph
polynomials as for example given in [12].

Let
ΦΓ = φΓ +A ·MψΓ ,

be the second Symanzik polynomial with masses and consider the amplitude

AΓ :=
∫
PΓ

ln ΦΓ

Φ0
Γ

ψ2
Γ

ΩΓ .

As ψΓ and Φ0
Γ

are both strictly positive in the domain of integration (the latter by
choice of a renormalization scheme which subtracts at a kinematic point p0 ∈ QΓ

below all thresholds), we conclude

ℑAΓ :=
∫
PΓ

Θ(ΦΓ )

ψ2
Γ

ΩΓ .

Let dA1
Γ

be the affine measure setting A1 = 1, and let e 6= e1 be an edge e ∈ EΓ , and
A1 be the corresponding positive hypercube.

We have ψΓ = Aeψγ−e +ψΓ /e. Then,

ℑAΓ =
∫
A1

∂AeΘ(ΦΓ )

ψΓ ψΓ−e
dA1

Γ +boundary,

where we note ∂AeΘ(ΦΓ ) =−δ (ΦΓ )∂Ae(ΦΓ ). With ΦΓ being a quadratic polyno-
mial in Ae,

ΦΓ = ZA2
e−YAe−X = Z

(
Ae +

Ỹ
2
+

1
2

√
Ỹ 2−4X̃

)(
Ae +

Ỹ
2
− 1

2

√
Ỹ 2−4X̃

)
,

we set

A±e :=−Ỹ
2
± 1

2

√
Ỹ 2−4X̃ .

As δ ( f (x)) = ∑{x0| f (x0)=0}
1

| f ′(x0)|δ (x− x0), we get

ℑAΓ =
∫
A1

e
∑
±

−∂Ae(ΦΓ )(A±e )
|−∂Ae(ΦΓ )(A±e )|

1
(ψΓ ψΓ−e)(A±e )

.

At Ae = A±e , we have ΦΓ = 0, and therefore φΓ = A ·MψΓ , or

ψΓ =
φΓ

A ·M ,

hence
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1
ψΓ ψΓ−e

=
1

ψΓ−e

A ·M
φΓ

.

For a two-point function associated to a two-point graph Γ we have φΓ = sψΓ• . Here
Γ• is the graph where the two external edges of Γ are identified. We conclude

ℑAΓ ∼
1
s
.

For a n-point function, regarded as a function of a kinematical scale s and angles
ϑi j = qi ·q j/s [12], we find similarly3

1
ψΓ ψΓ−e

=
1
s

1
ψΓ−e

A ·M
φΓ ({ϑi j})

.

An immediate calculation gives that the boundary term remaining from the
above, ∫

PΓ /e

Θ(ΦΓ /e)

ψΓ /eψΓ−e
ΩΓ /e,

leads to an iteration akin to linear reduction as studied by Brown and Panzer [13–
15].

We have just proven that the two point function has a pole at s = 0 in its imagi-
nary part. This will have consequences below when we investigate in particular the
analytic structure of the multi-edge banana graphs b3, the story is similar for generic
bn.

4 The basic set-up: Outer Space

We now first describe Outer Space. What we use is actually a variant in which there
are external edges at vertices, and internal edges are colored to allow for different
types of internal propagators. Here, different colors indicate generic different inter-
nal masses, but could also be used as placeholders for different spin and more4.

4.1 The set-up of colored Outer Space

Outer Space can be regarded as a collection of open simplices. For a graph with k
edges, we assign an open simplex of dimension k− 1. We can either demand that
the sum of edge lengths (given by parametric variables Ae) adds to unity, or work in

3 This explains the Omnès factor 1/
√

λ (q2
1,q

2
2,q

2
3) in the computation of the anomalous threshold

of the triangle graph.
4 See [21] for first introductory explorations of Outer Space with colored edges in this context.
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projective space Pk−1(R+) in such a cell. Each graph comes with a metric, and one
moves around the cell by varying the edge lengths.

Edge lengths are allowed to become zero but we are not allowed to shrink loops.
When an edge say between two three-valent vertices shrinks to zero length, there

are several ways to resolve the resulting 4-valent vertex to obtain a new nearby
graph: assume we have a 4-valent vertex in a graph G sitting in a (k−1)-dimensional
cell. Then, this cell can be glued in as a common boundary of three other k-
dimensional cells with corresponding graphs Gi, i ∈ {s, t,u}, which have an edge
e connecting two 3-valent vertices, such that Gi/e = G, where Gi/e is the graph
where edge e shrinks to zero length.

For a formal definition of Outer Space we refer to [2]. We emphasize that a
crucial role is played by the fundamental group of the graph, generated by its loops.
A choice of a spanning tree T of a graph with m independent loops li determines
m edges ei not in the spanning tree. The loops li = li(ei) are uniquely given by the
edge ei and the path in T connecting the two endponts of ei. An orientation of ei
orients the loop, and shrinking all edges of T to zero length gives a rose Rm, a graph
with one vertex and m oriented petals ei. The inverse of this map gives a marking
to the graph, which for us determines a choice for a basis of loops we integrate in a
Feynman integral. The homotopy equivalence of such markings is reflected by the
invariance of the Feynman integral under the choice how we route our momenta
through the graph.

In Outer Space graphs are metric graphs, where the metric comes from assigning
an edge length to each edge, and using the parametric integrand for Feynman graph,
the Feynman integral becomes an integral over the volume of the open simplex
assigned to the graph, with a measure defined by the parametric representation. All
vertices we assume to be of valence three or higher.

Each edge-path li(ei) defines a one-loop sub-integral which is multi-valued and
an ordered sequence of petals of Rm defines an iterated integral of multi-valued one-
loop integrals. Using Fubini this is a well-defined integral for any ordering of the
loops along the principal sheets of these loop evaluations.

Let us discuss these notions on the example of the Dunce’s cap graph, to which
just one of the many simplices of Outer Space is assigned. It is a graph dc on
four edges, accordingly, the open simplex assigned to it is a tetrahedron. The
codimension-one boundaries are four triangles, to which we assign reduced graphs
dc/e in which one of the four edges e has zero length.
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A B

C

D

A

B

C

A

B

D

B

C

D

A

D

C

a

b

c

The codimension-two boundaries are six edges, to which in five cases a two-petal
rose R2 is assigned, of the form dc/e/ f , by shrinking two of the four edges. We
can not shrink the green and red edges, as this would shrink a loop. So the edge BC
(indicated by a wavy line) with the rose on blue and yellow petals is actually not
part of Outer Space.

The codimension-three boundaries are the four corners A,B,C,D and are not part
of Outer Space either. The graph dc allows for five spanning trees, each of which
determines a loop basis for H1(dc). For any of the five choices of a spanning tree,
there are two edges e, f say not in the spanning tree. They define two loops le, l f ,
by the edge path through the spanning tree which connects the endpoints of e and f .

To translate this to Feynman graphs, we route all external momenta through edges
of the spanning tree, and assign a loop momentum to each loop le, l f . Any choice
of order in which to carry out the loop integrations defines an iterated integral over
two four-forms given by the corresponding loop integrals.

4.2 Example: the triangle graph

The above example discusses the structure of one cell together with its boundary
components. We now look at the example of a triangle graph, and discuss its ap-
pearance in different cells.
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a

b

c

a

b

c

a

b

c

∼ ∼

b

a ∪ c

a ∪ b

c

+
+

+− −
−

a b ∪ c ∼ a b ∪ c

a

b

c

a
b ∪ c

a

b

c

Here, the boundaries of the triangular cell belong themselves to OS: the three edges
of the triangular cell are a cell for the indicated 1-loop graphs on two graph-edges,
the vertices correspond to colored 1-petal roses.

We have given two triangular cells in the picture. Both are associated to a triangle
graph. The boundary in between is associated to the graph on a red and yellow edge
as indicated. It is obtained by shrinking the blue edge. On the left- and righthand
side of the boundary the triangle has permuted its internal red and yellow edge,
with a corresponding orientation change x→ x−1 of the single marking assigned to
the graph. Gluing cells for the six possible permutations we obtain a hexagon, with
alternating orientations as indicated.

We also give the OS equivalence relation where spanning trees are indicated by
double-edges, for the triangle and for the example of the red-yellow graph on the
boundary.

We omit the triangular cells corresponding to not bridge-free (not core) graphs.
Each choice of a spanning tree and choice of an ordering of its (two) edges gives

rise to a Hodge matrix correponding to the evaluation of this graph as a dilogarithm
[6]. The entries are formed from the graphs apparent in the corresponding cubical
cell complex which we describe in a moment.

The sheet structure of the normal threshold of a two-edge graph on a boundary
edge of the triangular cell is a 2πıZ logarithmic ambiguity, the triangle provides a
further anomalous theshold which is of similar nature.

In this way the generators of the simple fundamental group of this one-loop graph
map to generators of the monodromy generated by the normal or anomalous thresh-
old divisors of the amplitude obtained from the graph.
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4.3 Analytic structure

We consider the Feynman integral in momentum space and define the following
quadrics.

Q1 := k2
0− t−m2

1 + iη ,

Q2 := (k0 +q0)
2− t−m2

2 + iη ,

Q3 := (k0 + p0)
2− t−p2−2

√
tp2z−m2

1 + iη ,

where s = q2
0. The independent external momenta are p and q. q2 = q2

0 is time-like
as before, and we compute in the rest-frame of q. q is the momentum at vertex a, p
the momentum at vertex c and −(q+ p) the momentum incoming at vertex b.

The measure d4k is transferred to dk0d3k, and in the three-dimensional space-
like part we choose spherical coordinates with k2 =: t. z = cos(Θ) = p ·k/

√
p2k2

the cosine of the angle between k,p.
We are interested in the following integrals (subtractions at s0 understood when

necessary):
i) ∫

∞

∞

dk0

∫
∞

0

√
tdt
∫ 1

−1
dz
∫ 2π

0
dφ

1
Q1Q2

= ΦR(b2),

ii) ∫
∞

∞

dk0

∫
∞

0

√
tdt
∫ 1

−1
dz
∫ 2π

0
dφδ+(Q1)δ+(Q2) = Var(ΦR(b2)),

iii) ∫
∞

∞

dk0

∫
∞

0

√
tdt
∫ 1

−1
dz
∫ 2π

0
dφ

1
Q1Q2Q3

=: I3(s, p2,(p+q)2;m2
b,m

2
r ,m

2
y),

iv)

Var12(I3) :=
∫

∞

∞

dk0

∫
∞

0

√
tdt
∫ 1

−1
dz
∫ 2π

0
dφδ+(Q1)δ+(Q2)

1
Q3

.

v)

Var123(I3) :=
∫

∞

∞

dk0

∫
∞

0

√
tdt
∫ 1

−1
dz
∫ 2π

0
dφδ+(Q1)δ+(Q2)δ+(Q3).

Note that for i),ii) the integrand neither depends on z, nor on φ , so these integrals
have a factor 4π = Vol(S2) in their evaluation.

Most interesting are the integrals in iii)-v). I3 is a dilogarithm, see [6] for its
properties.

Let us start with Var12(I3). The two δ+-functions constrain the k0- and t-
variables, so that the remaining integrals are over the compact domain S2.

As the integrand does not depend on φ , this gives a result of the form
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2πC
∫ 1

−1

1
α +β z

dz︸ ︷︷ ︸
:=J(z)

= 2πC
ln α+β

α−β

β
,

where C is intimitaly related to Var(ΦR(b2))= 2C, and the factor 2 here is Vol(S2)/Vol(S1).
Then, we get a Hodge matrix for a triangle graph ∆

1 0 0
ΦR(b2)(s,m2

r ,m
2
y) Vry(s,m2

r ,m
2
y) 0

I3 Vry(s,m2
r ,m

2
y)

ln α+β

α−β

β

1√
s, p2,(p+q)2︸ ︷︷ ︸

=Vry(s,m2
r ,m2

y)×VarJ(z)


∼ 

0 0

a
b ∪ c a

b ∪ c

0

b

c

a

b

c

a

b

c

a


Here, α and β are given through l1 := λ (s, p2

b, p2
c) and l2 := λ (s,m2

y ,m
2
r ) as

α := (m2
y−m2

r − s− pa.pc)
2− l1− l2, β := 2

√
l1l2.

The amplitude of the triangle graph in a chosen triangular cell is the lower left
entry in this Hodge matrix. The leftmost column of this matrix was obtained by first
shrinking the blue edge, and then the red one. This fixes the other columns which
are defined by the Cutkosky cuts -the variations- of the column to the left.

The triangle graph has a single loop and its fundamental group a single generator.
Accordingly, we find a single generator for the monodromy in the complement of
the threshold divisors: either for the normal threshold at s0 = (mr + my)

2 or for
the anomalous threshold at s1, with lr = p2 −m2

r −m2
b, ly = (p+ q)2 −m2

y −m2
b,

λ1 = λ (p2,m2
r ,mbv2), λ1 = λ ((p+q)2,m2

y ,mbv2) it is [8] given as,

s1 = (mr +my)
2 +

4m2
b(
√

λ2mr−
√

λ1my)
2− (
√

λ1ly +
√

λ2lr)2

4m2
b

√
λ1
√

λ2
. (4)

The function J(z) has no pinch singularity and does not generate a new vanishing
cycle. In general, a one-loop graph generates one pinch singularity through its nor-



Multi-valued Feynman Graphs and Scattering Theory 13

mal threshold given by a reduced graph b2, and as many anomalous thresholds as
there are further edges in the graph.

This structure iterates upon iterating one-loop graphs to multi-loop graphs. For
multi-loop graphs, we discuss later only the example of the three-edge banana b3,
which only has a normal cut on the principal sheet, but a rather interesting structure
on other sheets. The general picture will be discussed elsewhere. An algorithm to
compute anomaloues thresholds as s1 is contained in [8].

Returning to the triangle graph, there are three different spanning trees on two
edges for the triangle graph, and for each spanning tree two possibilities which edge
to shrink first. This gives us six such matrices. To see the emergence of such matrices
from the set-up of Outer Space turn to the cubical chain complex associated to the
spine of Outer Space [3].

5 The cubical chain complex

Consider the cell (itself an open triangle) assigned to one triangle graph. Let us
assume we put the graph in the barycentric middle of the cell. At the codimension-
one boundaries of the cell we glue edges, and put the corresponding graphs in their
(barycentric) middle.

These boundaries correspond to edges ei = 0, i ∈ {r,b,y} as indicated in the
figure.

At the codimension-two corners we find tadpoles. When we move the triangle
towards the blue corner say, its spanning tree must be on the yellow and red edges
(edges in spanning trees are indicated by a double edge in the figure), which are the
ones allowed to shrink.

When we move towards say the barycentric middle of the boundary defined by
ey = 0, only the yellow edge is part of a spanning forest, to the left of it the red edge
is spanning as well, to the right the blue one.

The dashed lines connecting the barycentre of the triangular cell with the barycen-
tres of its codimension-one boundaries partitions the triangular cell into three re-
gions. Each such region has four corners and four line segments connections them,
and an interior, to which pairs of the triangle graph ∆ and a spanning tree are as-
signed as indicated.
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er = 0 eb = 0

ey = 0

eb > ey

ey > eb

ey > er

er > ey

er > ebeb > er

Such a decomposition of sectors exists for any cell in Outer space. If a graph Γ has
m spanning trees on n edges, we have m×n! paths from the barycentre of the Γ -cell
to a rose. To this, we can assign m cubes, which decompose into n! simplices, and
we get m×n! Hodge matrices as well, n! for each cosen spanning tree, for example
two for a pair of a triangle and a chosen spanning tree (containing two edges) for it:

In the figure, we have marked the edges connecting different components of a span-
ning forest by cuts. The two triangular Hodge matrices on the left in the figure
correspond to the two possible choices which edge to shrink first. Both Hodge ma-
trices contain the three graphs as entries which populate the diagonal of the cube.
The other entries are from above or below the diagonal.

The entries of the cube, and therefore the entries of the Hodge matrices describ-
ing variations of the accompanying Feynman integrals, are generated from a bound-
ary operator d, d ◦ d = 0, which acts on pairs (Γ ,F) of a graph and a spanning
forest [3].

d(Γ ,F) =
|EF |
∑
j=1

(−1) j ((Γ /e,F/e)⊗ (Γ ,F\e))
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In our Hodge matrices, the left-most colums are distinguished, as in them only pairs
(Γ ,F) appear in which F is a spanning tree of Γ , while all other entries have span-
ning forests consisting of more than a single tree, corresponding to graphs with
Cutkosky cuts.

This suggests to bring this into a form of coaction (see also [16]), which looks as
follows:

= + +

= +

= +

=

=

= =

=

(5)

Before we comment on this in any further detail, we have to collect a few more
algebraic properties of Feynman graphs.

6 Hopf algebra structure for 1PI graphs

We start with the renormalization and core Hopf algebras.

6.1 Core and renormalization Hopf algebras

Consider the free commutative Q-algebra

H =⊕i≥0H(i), H(0) ∼QI, (6)

generated by 2-connected graphs as free generators (disjoint union is product m,
labelling of edges and of vertices by momenta as declared).

Consider the Hopf algebras H(m,I,∆ , Î,S) and H(m,I,∆core, Î,Sc), given by

I : Q→ H,q→ qI, (7)
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∆ : H→ H⊗H,∆(Γ ) = Γ ⊗ I+ I⊗Γ + ∑
γ(Γ ,γ=∪iγi,w(γi)≥0

γ⊗Γ /γ, (8)

∆core : H→ H⊗H,∆core(Γ ) = Γ ⊗ I+ I⊗Γ + ∑
γ(Γ ,γ=∪iγi

γ⊗Γ /γ, (9)

Î : H→Q,qI→ q,H>→ 0, (10)

S : H→ H,S(Γ ) =−Γ − ∑
γ(Γ ,γ=∪iγi,w(γi)≥0

S(γ)Γ /γ, (11)

Score : H→ H,S(Γ ) =−Γ − ∑
γ(Γ ,γ=∪iγi

Score(γ)Γ /γ, (12)

where H> =⊕i≥1H(i) is the augmentation ideal.
Both Hopf algebras will be needed in the following for renormalization in the

presence of variations.
They both have a co-radical filtration, which for the renormalization Hopf algebra

delivers the renormalization group, and for the core Hopf algebra the flags of all
decompositions of a graph into iterated integrals of one-loop graphs. We often use
Sweedler’s notation: ∆Γ = Γ ′⊗Γ ′′.

6.2 Hopf algebras and the cubical chain complex of graphs

Let us return to graphs with spanning forests. For a spanning tree of length j, there
are j! orderings of it edges. To such a spanning tree, we assign a j-dimensional cube
and to each of the j! ordering of its edges a matrix as follows. We follow [8].

Let (Γ ,T ) be a pair of a graph and a spanning tree for it with a choice of ordering
for its edges. Let F(Γ ,T ) be the set of corresponding forests obtained by removing
edges from T in order.

Then, to any pair (Γ ,F), with F a k-forest (1 ≤ k ≤ vΓ ), F ∈ F(Γ ,T ) we can
assign a set of k disjoint graphs Γ F . We let ΓF := Γ /Γ F be the graph obtained by
shrinking all internal edges of these graphs.

For each such F , we call EΓF a cut. In particular, for F the unique 2-forest
assigned to T (by removing the first edge from the ordered edges of T ), we call
ε2 = EΓF the normal cut of (Γ ,T ).

Note that the ordering of edges defines an ordering of cuts /0 = ε1 ( ε2 ( · · · (
εk = EΓ .

For a normal cut, we have Γ F = (Γ1,Γ2) and we call

s = ( ∑
v∈VΓ1

qv)
2 = ( ∑

v∈VΓ2

qv)
2 (13)

the channel associated to (Γ ,T ).
These notions are recursive in an obvious way: the difference between a k and a

k+1 forest defines a normal cut for some subgraph.
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We then get a lower triangular matrix with entries from pairs (Γ ,F) by shrinking
edges of the spanning tree from bottom to top in order, and removing edges from
the spanning tree from left to right in reverse order.

To set up Feynman rules for pairs (Γ ,F) we need an important lemma.
We define |Γ F | = ∑γ∈Γ F |γ|. Also, we let Fk(Γ ) be the set of all k-forests for a

graph Γ .
For a disjoint union of r graphs γ = ∪r

i=1γi, we say a disjoint union of trees
T = ∪iti spans γ and write T |γ , if ti is a spanning tree for γi.

We have then an obvious decomposition of all possible spanning forests using the
coproduct ∆core. A spanning forest decomposes into a spanning forest which leaves
no loop intact in the cograph together with spanning trees for the subgraph [22,23]:

Lemma 1

∑
T |Γ ′

(
Γ ,T ∪

vΓ

∑
k=2

∑
F∈Fk(Γ

′′),|ΓF |=0
F

)
=

vΓ

∑
k=2

∑
F∈Fk(Γ )

(Γ ,F). (14)

Remark 1. On the right, we have a sum over all (k≥ 2)-forests, and therefore a sum
over all possible Cutkosky cuts. On the left, we have the same using that the set of
all sub-graphs Γ ′ which have loops left intact appear on the lhs of the core Hopf
algebra co-product, with intact spanning trees T , whilst Γ ′′ has no loops left intact,
|ΓF |= 0.

Remark 2. The lemma ensures that uncut subgraphs which have loops can have their
loops integrated out. The resulting integrals are part of the integrand of the full graph
and its variations determined by the cut edges. Understanding the variations for cuts
which leave no loop intecat suffices to understand the variations in the general case.

We set
vΓ

∑
k=1

∑
F∈Fk(Γ )

(Γ ,F) =: Disc(Γ ),

for the sum of all cuts at a graph.

6.3 Graph Polynomials and Feynman rules

We turn to Feynman rules, therefore from graphs and their combinatorial properties
to the analytic structure of the amplitudes associated to graphs.

6.3.1 renormalized Feynman rules

For graphs of a renormalizable field theory, we get renormalized Feynman rules
for an overall logarithmically divergent graph Γ (w(Γ ) = 0) with logarithmically
divergent subgraphs as
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ΦR =
∫
PΓ

∑
F∈FΓ

(−1)|F |
ln

ΦΓ /F ψF+Φ0
F ψΓ /F

Φ0
Γ /F ψF+Φ0

F ψΓ /F

ψ2
Γ /F ψ2

F
ΩΓ . (15)

Formula for other degrees of divergence for sub- and cographs can be found in [12].
In particular, also overall convergent graphs are covered. It is important that we use
a kinematic renormalization scheme such that tadpole integrals vanish [10, 12].

The Hopf algebra in use in the above is based on the renormalization coproduct
∆ .

The antipode S(Γ ) in this Hopf algebra can be written as a forest sum:

S(Γ ) =−Γ − ∑
F∈FΓ

(−1)|F |F× (Γ /F). (16)

6.3.2 renormalized Feynman rulesfor pairs (Γ ,F)

We now give the Feynman rules for a graph with some of its internal edges cut. This
can be regarded as giving Feynman rules for a pair (Γ ,F).

ϒ
F

Γ :=
∫ ΦR(Γ

′) ∏
e∈(Γ ′′−EΓF )

1
P(e) ∏

e∈EΓF

δ
+(P(e))

d4|Γ /Γ ′|k. (17)

We use Sweedler’s notation for the copoduct provided by ∆core.
Note that in this formula ΦR(Γ

′) has to stay in the integrand. The internal loops
of Γ ′ have been integrated out by ΦR, but ΦR(Γ

′) is still an obvious function of
loop momenta apparent in Γ /Γ ′. The existence of this factorization into integrated
subgraphs times cut cographs is a consequence of Lem.(1).

7 Graph amplitudes and Fubini’s theorem

This section just mentions an important point often only implicitly assumed. For a k-
loop graph Γ , acting with ∆ k−1 gives a sum over k-fold tensorproducts of one-loop
graphs, each of which corresponding to a possibility to write ΦR(Γ ) as an iterated
integral of one-loop amplitudes.

Below, we study the 3-edge banana as an explicit example. Each of these pos-
sibilities evaluate to the same physical amplitude ΦR(Γ ) uniquely defined on the
principal sheet. We need Fubini’s theorem for that, and the existence of the operator
product expansion (OPE).

Consider the Dunce’s cap.
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Its five spanning trees give five choices for a basis for its two loops. The loop to be
integrated out first is a function of the next loop’s loop momentum.

If we integrate out first the loop based on three edges, say lx : eb,er,ey (a triangle),
this is a finite integral which does not need renormalization. The second loop is
ly : er,eg and carries the overall divergence after integrating lx.

Still, the counterterm for the subloop based on the two edges er,eg is needed.
Indeed, it corresponds to a limit where vertices b,c collapse, a limit in which the
Hopf algebra of renormalization needs to provide the expected counterterm, even if
the iterated integral ly ◦ lx has no divergent subintegral.

We need the operator product expansion to work precisely in the way it does to
have the freedom to use Fubini to come to uniquely defined renormalized ampli-
tudes.

8 Cutkosky’s theorem

In [8], Cutkosky’s theorem for a graph G is proven in a particular straightforward
way for cuts which leave no loop intact, so |GF |= 0. We quote

Theorem 2 (Cutkosky) Assume GF has a non-degenerate physical singularity at
an external momentum point p′′ ∈QGF . Let p ∈QG be an external momentum point
for G lying over p′′. Then the variation of the amplitude I(G) around p is given by
Cutkosky’s formula

var(I(G)) = (−2πi)#EGF

∫
∏e∈EG\EGF

δ+(`e)

∏e∈EGF
`e

. (18)

For the set-up of Cutkosky’s theorem in general, we can proceed using Lem.(1):
-either a renormalized subgraph is smooth at the threshold divisors of the co-graph:
then we can apply Cutkosky’s theorem on the nose, and get a variation which is
parametrized by the renormalization conditions for these subgraphs with loops;
- or it is not smooth. Then, necessarily, its disconitinuity is described by a cut on
this subgraph, and hence it has no loops, adding its cut to the cut for the total.
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9 Galois co-actions and symbols

In the above, we allow |EΓF | internal edges e∈EΓF to be on-shell. Other authors [16]
also allow to put internal edges on shell such that they do not separate the graph.
This gives no physical variation as one easily proves [8]. If one allows for variations
of masses as well, in particular in the context of non-kinematical renormalization
schemes, then such more general cuts can be meaningful though. Here, we restrict
to variations coming from varying external momenta for amplitudes renormalized
with kinematic renormalization schemes.

It is of interest to study a coaction. It is often simply written as a Hopf algebra
[16, 17] and then for general cuts the coproduct ∆co has the incidence form

∆co(Γ ,E) = ∑
F⊆(EΓ \E)

(Γ /(EΓ \(E ∪F)),E)⊗ (Γ ,E ∪F),

where E is a set of edges, and F a subset of the complement EΓ \E. A pair (Γ ,E) is
to be regarded as a graph with the set of edges E put on-shell.

Restricting on-shell edges to originate from cuts EΓF allows to read off ∆co from
our lower triangular Hodge matrices in an obvious way, as in the example for the
triangle above (Eq.(5)).

This co-product fulfills

∆co ◦Disc = (Disc⊗ id)◦∆co,

and
∆co ◦/e = (id⊗/e)◦∆co,

where Disc as before is the map which sends a Feynman graph to a sum over all cut
graphs obtained from all spanning k-forests of the graph, k ≥ 2. Furthermore, /e is
the map which sums over all ways of shrinking an (uncut) edge.

We can make this into a proper coaction (see [17,18] for an overview of coactions
in the context of Feynman amplitudes)

ρ : V →V ⊗H,(ρ⊗ id)◦ρ = (id⊗∆)◦ρ.

Here, it suggests itself to take for V the vector space of uncut Feynman graphs, and
for H the Hopf algebra of cut graphs with a coproduct as above.

For one-loop graphs, these graphical coactions are in acoordance with the struc-
ture of the dilogarithms into which these graphs evaluate as was observed by Abreu
et.al., see [16].

The Hodge matrices resulting from the cubical chain complex can be constructed
for every graph, and from it the corresponding coaction can be constructed. On the
analytic side, the hope is that this confirms the set-up suggested by Brown [18].

For cuts, these coactions in accordance with the cubical chain complex.
Iterating this coaction in accordance with the co-radical filtration of the Hopf

algebra suggests then to define symbols graphically, a theme to be pursued further.
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10 3-edge banana

In the process of the blow-up of missing cells in Outer Space a graph polytope is
generated [4]. Such polytopes combine to jewels. One can use the blow-up to store
the complete sheet structure of the amplitude.

As an example we consider the construction of colored jewel J2, generated by
the 3-edge banana graph.

10.1 Existence of the banana monodromy

Let us first collect an elementary result.

Lemma 3 The integral for the cut n-edge banana∫
MD(n−1)

dD(n−1)k
n

∏
i=1

δ+(ki)≡ Var(ΦR(bn))

exists for any positive integer D.

Proof. We have n− 1 loop momenta k1, . . . ,kn−1, and the measure is dD(n−1)x =
dDk1 . . .dDkn−1. The δ+-distributions give n constraints. The n−1 integrations over
the 0-components of the loop momenta can be constrained by n−1 of the δ+ distri-
butions. The remaining spacelike integrals are over an Euclidean space R(D−1)(n−1)

and can be done in spherical coordinates. The angle integrations are over a compact
sphere, and the one remaining δ+-distribution fixes the radial integration.

The argument obviously generalizes to graphs with n−1-loops in which n cuts cut
all the loops.

10.2 b3: three edges

We now consider the 3-edge banana b3 on three different masses.

As we will see, the resulting function ΦR(b3) has a structure very similar to the
dilogarithm function Li2(z). As a multi-valued function, we can write the latter as

Limv
2 (z) = Li2(z)+2πıZ lnz+(2πı)2Z×Z,
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or more explicitly

Limv
2 (z)(n1,n2) = Li2(z)+2πın1 lnz+(2πı)2n1n2.

The variable n1 stores the sheet for the evaluation of the sub-integral Li1(x) apparent
in the iterated integral representation

Li2(z) =
∫ z

0

Li1(x)
x

dx.

The sheet for the evaluation of lnz is stored by n2 and only contributes for n1 6= 0.
Very similarly we will establish the structure of the multi-valued functions as-

signed to b3 as iterated integrals, with ΦR(b2)
mv(k2,m2

i ,m
2
j) apparent as a one-loop

sub-integral in the two-loop integration assigned to b3 and playing the role of Li1(x).
We will find multi-valued functions

Ii j
k (n1,n2)(s) = ΦR(b3)(s)+2πın1

∫ Var(ΦR(b2))(k2;m2
i ,m

2
j)

(k+q)2−m2
k

d4k (19)

+(2πı)2 |m2
k− s||m2

i −m2
j |

2s
n1n2.

Here, i, j,k take values in the index set {b,y,r} labelling the three different masses,
and we regard the three functions

Iby
r (n1,n2)(s)∼ Iyr

b (n1,n2)(s)∼ Irb
y (n1,n2)(s)

as equivalent, with equivalence established by equality along the principal sheet.
Let us come back to b3. Here, the fundamental group has two generators, the

interesting question is how to compare this with the generators of monodromy for
ΦR(b3) and how this defines corresponding multi-valued functions as above.

We start by using the fact that we can disassemble b3 in three different ways into
a b2 sub-graph, with a remaining edge providing the co-graph.

Any two of the three edges of the graph b3 can be regarded as a subgraph b2 ( b3.
This is in accordance with the flag structure of b3 generated from an application of
∆core, which gives a set of three flags (see [6]):{(

,

)
,

(
,

)
,

(
,

)}
.

Let us compute

Var(ΦR(b3)(s,m2
r ,m

2
b,m

2
y))=

∫
d4kd4lδ+(k2−m2

b)δ+(l
2−m2

r )δ+((k−l+q)2−m2
y),

an integral which exists by the above Lemma.
Using Fubini, this can be written in three different ways in accordance with the

flag structure:
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Var(ΦR(b3)) =
∫

d4kVar(ΦR(b2))(k2,m2
r ,m

2
b)δ+((k+q)2−m2

y),

or
Var(ΦR(b3)) =

∫
d4kVar(ΦR(b2))(k2,m2

b,m
2
y)δ+((k+q)2−m2

r ),

or
Var(ΦR(b3)) =

∫
d4kVar(ΦR(b2))(k2,m2

y ,m
2
r )δ+((k+q)2−m2

b).

The integrals are well-defined by the above Lemma and give the variation and hence
imaginary part of ΦR(b3), which can be obtained from it by a twice subtracted
dispersion integral (the renormalized function and its first derivative must vanish as
s = s0)

ΦR(b3)(s,s0) =
(s− s0)

2

π

∫
∞

0

Var(ΦR(b3)(x))
(x− s)(x− s0)2 dx.

Computing ΦR(b3) directly from ΦR(b2) as an iterated integral can be done accord-
ingly in three different ways:

ΦR(b3)(s,s0;m2
r ,m

2
b,m

2
y) =

=
∫

d4k
B2(k2,m2

r ,m
2
b)

(k+q)2−m2
y
=
∫

d4k
B2(k2,m2

b,m
2
y)

(k+q)2−m2
r
=
∫

d4k
B2(k2,m2

y ,m
2
r )

(k+q)2−m2
b
,

with subtractions at s = s0 understood.
There is a subtlety here: this is only correct in a kinematic renormalization

scheme where subtractions are done by a Taylor expansion of the integrand around
s = s0 [10, 12].

This implies that the co-graphs in the flag structure of b3 fulfil

ΦR

( )
= ΦR

( )
= ΦR

( )
= 0,

as tadpoles are independent of the kinematic variable s. Hence b3 can be regarded
as a primitive element under renormalization.

To study the sheet structure for b3 we now define three different multi-valued
functions as promised above

Ii j
k = I ji

k =
∫

Φmv
R (b2)(k2,m2

i ,m
2
j)

(k+q)2−m2
k + iη

d4k,

with subtractions at s = s0 understood as always such that the integrals exist.
For later use in the context of Outer Space we represent them as
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Ibry
Iyrb Ibyr

It is convenient to rewrite them as,

Ii j
k =

∫
ΦR(b2)(k2,m2

i ,m
2
j)

(k+q)2−m2
k + iη

d4k+2πıZ
3

∑
u=1

Ji j;u
k ,

with

Ji j;u
k =

∫
d4k

Ji j
u (k2)

(k+q)2−m2
k + iη

,

see Eqs.(1,2,3).
Note that by the above,

ΦR(b3) =
∫

ΦR(b2)(k2,m2
i ,m

2
j)

(k+q)2−m2
k + iη

d4k,

is well-defined no matter which of the two edges we choose as the sub-graph, and
Cutkosky’s theorem defines a unique function Vrby(s),

ℑ(ΦR(b3)(s)) =Vrby(s)Θ(s− (mr +mb +my)
2).

Before we start computations, we note that we expect that the integrals for
Ji j;2

k ,Ji j;3
k have no monodromy as there are no endpoint singularities as the inte-

grand vanishes at the endpoints of the domain of integration, and there are no pinch
singularities by inspection.

But for Ji j;1
k we expect monodromy: The denominator of Vi j is k2. So we get

monodromy from the intersection of the zero locus k2 = 0 (which now lies in the
domain of integration as k2 is only bounded from the above by (mi−m j)

2) and the
zero locus (k+q)2−m2

k = 0.

10.3 Computation

We now give computational details for the 3-edge banana graph5. We start by com-
puting ℑ(ΦR(b3)(s)) =Vrby(s)Θ(s− (mr +mb +my)

2), or equivalently ℑ(Ji j;3
k )(s).

Consider

5 Further computational results can be found in [19, 20].
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d4k

Θ(k2− (mi +m j)
2)

2k2 δ+((k+q)2)−m2
k).

The δ+ distribution demands that k0 +q0 > 0, and therefore we get

∫
∞

−q0

dk0

∫
∞

0
dt
√

t
Θ(k2

0− t− (mi +m j)
2)
√

λ (k2
0− t,m2

i ,m
2
j)

2(k2
0− t)

δ ((k0+qo)
2−t−m2

k).

As a function of k0, the argument of the δ -distribution has two zeroes: k0 =−q0±√
t +m2

k .

As k0 + q0 > 0, it follows k0 = −q0 +
√

t +m2
k . Therefore, k2

0− t = q2
0 +m2

k −

2q0

√
t +m2

k .
For our desired integral, we get∫

∞

0
dt
√

tΘ(q2
0 +m2

k−2q0

√
t +m2

k− (mi +m j)
2)×

×

√
λ (q2

0 +m2
k−2q0

√
t +m2

k ,m
2
i ,m

2
j)

2(q2
0 +m2

k−2q0

√
t +m2

k)
√

t +m2
k

.

The Θ -distribution requires

q2
0 +m2

k− (mi +m j)
2 ≥ 2q0

√
t +m2

k .

Solving for t, we get

t ≤ λ (s,m2
k ,(mi +m j)

2)

4s

As t ≥ 0, we must have for the physical threshold s > (mk +mi +m j)
2 (which is

indeed completely symmetric under permutations of i, j,k, in accordance for what
we expect for ℑ(ΦR(b3)(s))). We then have

ℑ(Ji j;3
k )(s) =

∫ λ (s,m2
k ,(mi+m j)

2)
4s

0

√
λ (s+m2

k−2
√

s
√

t +m2
k ,m

2
i ,m

2
j)

2(s+m2
k−2
√

s
√

t +m2
k)
√

t +m2
k

√
tdt.

There is also a pseudo-threshold at s < (mk−mi−m j)
2.

Note that the integrand vanishes at the upper boundary λ (s,m2
k ,(mi+m j)

2)
4s , and the

integral has a pole at s = 0 (see below) as for s = 0 the integral would not converge.
The integrand is positive definite in the interior of the integration domain and free
of singularities.

The computation of ℑ(Ji j;2
k )(s) proceeds similarly and gives
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ℑ(Ji j;2
k )(s) =

∫ λ (s,m2
k ,(mi−m j)

2)
4s

λ (s,m2
k ,(mi+m j)2)

4s

√
λ (s+m2

k−2
√

s
√

t +m2
k ,m

2
i ,m

2
j)

2(s+m2
k−2
√

s
√

t +m2
k)
√

t +m2
k

√
tdt.

The integrand vanishes at the upper and lower boundaries. The integrand is positive
definite in the interior of the integration domain and free of singularities.

Most interesting is the computation of ℑ(Ji j;1
k )(s). It gives

ℑ(Ji j;1
k )(s) =

∫
∞

λ (s,m2
k ,(mi−m j)2)

4s

√
λ (s+m2

k−2
√

s
√

t +m2
k ,m

2
i ,m

2
j)

2(s+m2
k−2
√

s
√

t +m2
k)
√

t +m2
k

√
tdt.

The integrand vanishes at the lower boundary λ (s,m2
k ,(mi−m j)

2)
4s , and the integral again

has a pole at s = 0. But now the integrand has a pole as q2
0 +m2

k − 2q0

√
t +m2

k is

only constrained to≤ (mi−m j)
2, and hence can vanish in the domain of integration.

This gives us a new variation apparent in the integration of the loop in the co-
graph

Var(Ji j;1
k )(s) =

∫ √
λ (k2,m2

i ,m
2
j)δ (k

2)δ+((k+q)2−m2
k)d

4k,

which evaluates to

Var(Ji j;1
k )(s) =

√
λ (0,m2

i ,m
2
j )︷ ︸︸ ︷

|m2
i −m2

j |

√
λ (s,m2

k ,0)︷ ︸︸ ︷
|s−m2

k |
2s

Θ(s−m2
k) .

Adding the contributions, we confirm our expectations Eq.(19).

11 Markings and monodromy

Consider the equivalence relation for b3 in Outer Space.

x

y

xy

y x

xy

∼ ∼

The three possible choices for a spanning tree of b3 result in three different but
equivalent markings of b3 regarded as a marked metric graph in (colored) Outer
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Space.6 Each different choice corresponds to a different choice of basis for H1(b3).
The markings given in this picture determine all markings in subsequent picture,
where they are omitted.

The choice of a spanning tree together with an ordering of the roses then deter-
mines uniquely a single element in the set of ordered flags of subgraphs, and hence
determines one iterated Feynman integral describing the amplitude in question.

For their evaluation along principal sheets equality of these integrals follows by
Fubini, which gives equality along the principal sheet and implies an equivalence
relation for evaluation along the non-principal sheets.

On the level of amplitudes, a basis for the fundamental group of the graph, pro-
vided by a marking, translates to a basis for the fundamental group for the comple-
ment of the threshold divisors of the graph.

Concretely, for the amplitude generated by b2, this is trivial: we have a single
generator for the one loop, and this maps to a generator for the monodromy of the
corresponding amplitude.

For b3, we get two generators. A choice as which two edges form the subgraph b2
then determines the iterated integral. The equivalence of markings in Outer Space
becomes the Fubini theorem of iterated integrals for the evaluation along principal
sheets, and the corresponding equivalence off principal sheets else.

Iybr

Ibry

Iryb

Let us have a closer look at this corresponding cell in Outer Space. In the barycenter
of the triangle we indicate the graph b3. The green lines form the spine, connecting
the graph at the barycenter to the barycenters of the codimension-one edges of the
triangle, which are cells marked by the indicated colored 2-petal roses.

The corners of the triangle are not part of Outer Space, as we are not allowed
to shrink loops. In fact, they are blown up to arcs, which are cells populated by
graphs for which the choice is obvious as to which two edges are the subgraphs -

6 For the notion of equivalence in Outer Space refer to [2].
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the corners are the intersections of two edge variables becoming small as compared
to the third. The three different iterated integrals are hence assigned to those arcs in
a natural manner.

For example for the lower left corner, the edge variable Ab is much greater than
the edge variables Ar,Ay. Along the arc, an equivalence relation operates as well, as
the loop formed by edges er,ey can have either of the two edges as its spanning tree.
The endpoints of these arcs form the vertices of the cell, which is a hexagon. To
those vertices we assign roses as indicated, with one small and one big petal, which
indicates an order on the petals.

Note that moving along an arc can be regarded as movement in a fibre given by
the chosen subgraph b2, while moving the arc away or toward the barycenter of the
triangle is movement in the base.

Moving from one corner to another utilizes a non-trivial equivalence of our iter-
ated integrals.

We indicate the markings only for some of the graphs, and only for the choice of
the red edge as the spanning tree.

Let us have a still closer look at the corners:

∼

Iryb Iryb

The equivalence relation is an equivalence relation for the two marked metric
graphs, which is indeed coming from an equivalence relation for the two choices
of a spanning tree for the 2-edge subgraph on the red and yellow edges, while the
corresponding analytic expression is equal for both choices: Iry

b .
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Moving to a different corner by shrinking the size of the blue edge and increasing
say the size of the red edge moves to a different corner while leaving the marking
equal. This time we have an equivalence relation between the analytic expressions:

Iry
b ∼ Iby

r .

Moving along an arc uses equivalence based on homotopy of the graph, moving
along an edge leaves the marking equal, but uses equivalence of analytic expressions
Iγ

Γ /γ
, here Iry

b ∼ Iby
r

7.
The complete sheet structure including non-principal sheets is always rather sub-

tle and is reflected by a jewelled space J2 as we discuss now.
A crucial aspect of Outer Space is that cells combine to spaces, and that these

spaces provide information, for example on the representation theory of the free
group in the case of traditional Outer Space, and on the sheet structure of ampli-
tudes in our case. In particular, the bordification of Outer Space as studied by [4],
motivates to glue the cell studied above to a ’jewel’:

The Euclidean simplices are put in a Poincaré disk as hyperbolic triangles. We only
give markings for a few graphs in the center. To not clutter the figure, we have not

7 In this example the cograph was always a single-edge tadpole whose spanning tree is a single
vertex and therefore the equivalence relation from the 1-petal rose R1 to the co-graph is in fact the
identity. In general, the decomposition of a graph into a subgraph γ and cograph Γ /γ corresponds
to a factorization into equivalence classes for the subgraph and equivalence classes for the cograph
familiar from [5].
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given the graphs for the vertices in this figure which are all marked ordered roses as
indicated above, by a result of [4].
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