1. The Hopf algebra of rooted trees

We follow Loïc Foissy *An introduction to Hopf algebras of trees* (see link on course homepage).

2. General remarks on Hopf algebras and co-actions

We collect some material on Hopf algebras and co-actions. For simplicity, we only discuss vector spaces instead of modules, and we consider all vector spaces to be defined over \mathbb{Q}.

A coalgebra is a vector space H together with a coproduct

$$\Delta : H \rightarrow H \otimes H,$$

that is coassociative,

$$(\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta \cdot$$

and is equipped with a counit, i.e., a map $\hat{1} : H \rightarrow \mathbb{Q}$ such that

$$(\hat{1} \otimes \text{id})\Delta = (\text{id} \otimes \hat{1})\Delta = \text{id}.$$
A commutative Hopf algebra is a commutative algebra (with product \(\cdot \)) that is at the same time a coalgebra (not necessarily co-commutative) such that the product and coproduct are compatible,

\[\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b), \]

and it is equipped with an antipode

\[S : H \to H \]

such that

\[S(a \cdot b) = S(b) \cdot S(a) = S(a) \cdot S(b), \]

and

\[m(S \otimes \text{id})\Delta = m(\text{id} \otimes S)\Delta = \hat{I} \circ I, \]

where \(m \) denotes the multiplication in \(H \) and \(\hat{I} : \mathbb{Q} \to H \) is the unit (map), \(\hat{I}(1) = I \) is the unit in \(H \).

\[S \left(\begin{array}{c} a \\ b \\ c \\ d \end{array} \right) = \]

\[- \left(a \cdot l \right) + l \cdot a + 2 \left(\begin{array}{c} a \\ b \\ c \\ d \end{array} \right) \]
A (left-)comodule over a coalgebra H is a vector space M together with a map (co-action) $$\rho : M \rightarrow H \otimes M$$ such that $$(\text{id} \otimes \rho)\rho = (\Delta \otimes \text{id})\rho, M \rightarrow H \otimes H \otimes M,$$ and $$(\mathbb{f} \otimes \text{id})\rho = \text{id}.$$ Our Hopf algebras are commutative and graded, $H = \bigoplus_{j=0}^{\infty} H^{(j)}$ and connected $H^{(0)} \sim \mathbb{Q}$, the $H^{(j)}$ are finite-dimensional \mathbb{Q}-vectorspaces.

The vectorspace H_C of Cutkosky graphs forms a left comodule over the core Hopf algebra H_{core}.

\[\rho = \Delta \]
\[\tilde{\rho} \left(\begin{array}{c} \vdots \\ \ast \\ \vdots \end{array} \right) = \begin{array}{c} \vdots \\ \ast \\ \vdots \end{array} \otimes \begin{array}{c} \vdots \\ \ast \\ \vdots \end{array}
\]
\[\tilde{\rho} \left(\begin{array}{c} \vdots \\ \ast \\ \vdots \end{array} \right) = 0 \]
\[\tilde{\rho} \left(\begin{array}{c} \vdots \\ \ast \\ \vdots \end{array} \right) = \mathbb{I} \otimes \begin{array}{c} \vdots \\ \ast \\ \vdots \end{array} \]
3. The vector space H_C

Consider a Cutkosky graph G with a corresponding v_G-refinement P of its set of external edges L_G. It is a maximal refinement of V_G.

The core Hopf algebra co-acts on the vector-space of Cutkosky graphs H_C.

\[\Delta_{\text{core}} : H_C \rightarrow H_{\text{core}} \otimes H_C. \]

We say $G \in H_C^{(n)} \iff |G| = n$ and define $\text{Aut}_C = \bigoplus_{i=1}^{\infty} H_C^{(i)}$.

\[S = \Delta_{\text{core}} \]

\[\bigotimes_{G \in H_{\text{core}}} (\alpha, \beta, \gamma, \delta) \]
Note that the sub-vectorspace $H_C^{(0)}$ is rather large: it contains all graphs $G = ((H_G, V_G, E_G), (H_H, V_H, E_H))$ such that $\|G\| = 0$. These are the graphs where the cuts leave no loop intact.

For any $G \in H_C$ there exists a largest integer $\text{cor}_C(G) \geq 0$ such that \[
\tilde{\Delta}_{\text{core}}^\text{cor}_C(G) \neq 0, \quad \tilde{\Delta}_{\text{core}}^\text{cor}_C(G) : H_C \rightarrow H_{\text{core}}^{\text{cor}_C(G)} \otimes H_G^{(0)},
\] whilst $\tilde{\Delta}_{\text{core}}^{\text{cor}_C(G)+1}(G) = 0$.

\[
\Delta_{\text{core}}((i \cdot \alpha \otimes i \cdot \beta) \otimes \xi) = \xi \otimes \Delta_{\text{core}}((i \cdot \alpha \otimes i \cdot \beta)) = \xi \otimes (\Delta_{\text{core}}((i \cdot \alpha \otimes i \cdot \beta)) \otimes (P(\Pi) = 0 \quad \tilde{F} = (P \otimes \text{id}) S
\]

$P_A \cup c = A \cup c$
Proposition 3.1.

\[\text{cor}_C(G) = ||G||. \]

Proof. The primitives of \(H_{\text{core}} \) are one-loop graphs.

In particular there is a unique element \(g \otimes G/g \in H_{\text{core}} \otimes H_C^{(0)} \):

\[\Delta_{\text{core}}(G) \cap \left(H_{\text{core}} \otimes H_C^{(0)} \right) = g \otimes G/g, \]

with \(|g| = ||G|| \).

For any graph \(G \) we let \(G = \sum_{T \in \mathcal{T}(G)} (G, T) \). Here \(\mathcal{T}(G) \) is the set of all spanning trees of \(G \) and we set for \(G = \bigcup_i G_i \), \(\mathcal{T}(G) = \bigcup_i \mathcal{T}(G_i) \).

The maximal refinement \(P \) induces for each partition \(P(i), 0 \leq i \leq v_G \) a unique spanning forest \(f_i \) of \(G/g \). The set \(\mathcal{F}_{G,P(i)} \) of spanning forests of \(G \) compatible with \(P(i) \) is then determined by \(f_i \) and the spanning trees in \(\mathcal{T}_g \).

Define \(G_i := \sum_{F \in \mathcal{F}_{G,P(i)}} (G, F) \).

(3.2) \[\tilde{\Delta}_{G,F} G_i = \sum_{i=1}^{||G||} G_i^{||G||+1} \otimes \cdots \otimes G_i^{1}. \]

Note that \(|G_i^k| = 1, \forall k \leq (||G|| + 1) \) and \(|G_i^{||G||+1}| = 0. \)
3.1. The pre-Lie product and the cubical chain complex. So consider the pair \((G, F)\) of a pre-Cutkosky graph with compatible forest \(F\) with ordered edges. Assume there are graphs \(G_1, G_2\) and forests \(F_1, F_2\) such that

\[
(G, F) = (G_1, F_1) \star (G_2, F_2).
\]

Here, \(\star\) is the pre-Lie product which is induced by the co-product \(\Delta_{GF}\) by the Milnor–Moore theorem.

Theorem 3.2. We can reduce the computation of the homology of the cubical chain complex for large graphs to computations for smaller graphs by a Leibniz rule:

\[
d((G_1, F_1) \star (G_2, F_2)) = (d(G_1, F_1)) \star (G_2, F_2) + (-1)^{|E_{F_1}|}(G_1, F_1) \star (d(G_2, F_2)).
\]

Here, \(d = d_0 + d_1\) is the boundary operator which either shrinks edges or cuts a graph.
4. Flags

4.1. Bamboo. The notion of flags of Feynman graphs was for example already used in [?, ?].

4.2. Flags of necklaces. Here we use it based on the core Hopf algebra introduced above. We introduce Sweedler’s notation for the reduced co-product in H_{core}:

$$\tilde{\Delta}_{core}(G) := \Delta_{core}(G) - \mathbb{I} \otimes G - G \otimes \mathbb{I} =: \sum' G' \otimes G''.$$

We define a flag $f \in \text{Aug}_{core} \otimes^{k}$ of length k to be an element of the form

$$f = \gamma_{1} \otimes \cdots \otimes \gamma_{k},$$

where the $\gamma_{i} \in \text{Aug}_{core} \cap \langle H_{core} \rangle$ fulfill $\tilde{\Delta}_{core}(\gamma_{i}) = 0$, $|\gamma_{i}| = 1$.
Here, $\langle H_{\text{core}} \rangle = \{ G \in H_{\text{core}} \mid |H^0(G)| = 1 \}$ is the linear \mathbb{Q}-span of bridge-free connected graphs as generators.

Note that for elements $G \in \langle H_{\text{core}} \rangle$, we have $\tilde{\Delta}_{\text{core}}^{[G]-1}(G) \neq 0$.

We have $\tilde{\Delta}_{\text{core}} := (P \otimes P)\Delta_{\text{core}}$ for $P : H_{\text{core}} \to \text{Aug}_{\text{core}}$ the projection into the augmentation ideal Aug_{core}.
Define the flag associated to a graph $G \in \langle H_{\text{core}} \rangle$ to be a sum of flags of length $|G|$ where in each flag each element γ_i has unit degree, $|\gamma_i| = 1$:

$$F \ell_G := \tilde{\Delta}_{\text{core}}^{-1}(G) \in \text{Aug}_{\text{core}}^{\otimes|G|}.$$
Similarly, for a pair \((G, F)\) we can define

\[
F l_{G,F} := \bar{\Delta}_{GF}^{-1} \left((G, F)\right) \in \text{Aug}_{G,F}^{\otimes |G|},
\]

as a sum of flags

\[
F l_{G,F} = \sum_i (\gamma_1, f_1)^i \otimes \cdots \otimes (\gamma_{|G|}, f_{|G|})^i,
\]

\[
\bar{\Delta}_{GF}((\gamma_l, f_l)^i) = 0, \forall i, l, 1 \leq l \leq |G|.
\]