FEYNMAN DIAGRAMS AND THE S-MATRIX, AND OUTER SPACE (SUMMER 2020)

DIRK KREIMER (LECT. MAY 04, 2020)

1. The Hopf Algebra of rooted trees

We follow Loïc Foissy An introduction to Hopf algebras of trees (see link on course homepage).

2. General Remarks on Hopf Algebras and CO-actions

We collect some material on Hopf algebras and co-actions. For simplicity, we only discuss vector spaces instead of modules, and we consider all vector spaces to be defined over \mathbb{Q} .

A coalgebra is a vector space H together with a coproduct

$$\Delta: H \to H \otimes H,$$

that is coassociative,

$$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$$
.

and is equipped with a counit, i.e., a map $\hat{\mathbb{I}}: H \to \mathbb{Q}$ such that

 $(\hat{\mathbb{I}} \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \hat{\mathbb{I}})\Delta = \mathrm{id}.$

n4-Z=V V=0

A commutative Hopf algebra is a commutative algebra (with product \cdot) that is at the same time a coalgebra (not necessarily co-commutative) such that the product and coproduct are compatible, and it is equipped with an antipode $S: H \to H$ $- (\alpha \cdot () \otimes (h \cdot \alpha))$ such that compatible,

$$S: H \to H$$

such that

$$S(a \cdot b) = S(b) \cdot S(a) = S(a) \cdot S(b),$$

and

$$m(S \otimes \mathrm{id})\Delta = m(\mathrm{id} \otimes S)\Delta = \hat{\mathbb{I}} \circ \mathbb{I},$$

where m denotes the multiplication in H and $\mathbb{I} : \mathbb{Q} \to H$ is the unit (map), $\mathbb{I}(1) = \mathbb{I}$ is the unit in H.

A (left-)comodule over a coalgebra H is a vector space M together with a map (co-action)

$$\rho: M \to H \otimes M$$

such that

$$(\mathrm{id} \otimes \rho)\rho = (\Delta \otimes \mathrm{id})\rho, M \to H \otimes H \otimes M,$$

and $(\hat{\mathbb{I}} \otimes \mathrm{id})\rho = \mathrm{id}$. Our Hopf algebras are commutative and graded, $H = \bigoplus_{j=0}^{\infty} H^{(j)}$ and connected $H^{(0)} \sim \mathbb{QI}$, the $H^{(j)}$ are finite-dimensional \mathbb{Q} -vector spaces.

The vector space H_C of Cutkosky graphs forms a left comodule over the core Hopf algebra H_{core} .

3. The vectorspace H_C

Consider a Cutkosky graph G with a corresponding v_G -refinement P of its set of external edges L_G . It is a maximal refinement of V_G .

The core Hopf algebra co-acts on the vector-space of Cutkosky graphs H_C .

101 $\Delta_{core}: H_C \to H_{core} \otimes H_C.$ (3.1)|-| We say $G \in H_C^{(n)} \Leftrightarrow |G| = n$ and define $\operatorname{Aut}_C = \bigoplus_{i=1}^{\infty} H_C^{(i)}$. d d \mathbf{C} 1 ٢ G 9 \propto ſ G X

Note that the sub-vector space $H_C^{(0)}$ is rather large: it contains all graphs $G = ((H_G, \mathcal{V}_G, \mathcal{E}_G), (H_G, \mathcal{V}_G, \mathcal{E}_H))$ H_C such that ||G|| = 0. These are the graphs where the cuts leave no loop intact. For any $G \in H_C$ there exists a largest integer $\operatorname{cor}_C(G) \ge 0$ such that $\tilde{\Delta}_{core}^{\operatorname{cor}_C(G)}(G) \neq 0, \ \tilde{\Delta}_{core}^{\operatorname{cor}_C(G)}(G) : H_C \to H_{core}^{\otimes cor_C(G)} \otimes H_C^{(0)},$ whilst $\tilde{\Delta}_{core}^{\operatorname{cor}_C(G)+1}(G) = 0.$ (3 > X T-50000 idore R (iAg \mathcal{C} PAUZC=Auzc 5

Proposition 3.1.

Proof. The primitives of H_{core} are one-loop graphs.

In particular there is a unique element $g \otimes G/g \in H_{core} \otimes H_C^{(0)}$:

 $\Delta_{core}(G) \cap \left(H_{core} \otimes H_{Q}^{(0)}\right) = g \otimes G/g,$

 $\operatorname{cor}_C(G) = ||G||.$

with |g| = ||G||.

For any graph G we let $\mathbf{G} = \sum_{T \in \mathcal{T}_G} (G, T)$. Here \mathcal{T}_G is the set of all spanning trees of G and we set for $G = \bigcup_i G_i$, $\mathcal{T}_G = \bigcup_i \mathcal{T}_{G_i}$.

The maximal refinement P induces for each partition $P(i), 0 \leq i \leq v_G$ a unique spanning forest f_i of G/g. The set $\mathcal{F}_{G,P(i)}$ of spanning forests of G compatible with P(i) is then determined by f_i and the spanning trees in \mathcal{T}_g .

Define
$$\mathbf{G}_i := \sum_{F \in \mathcal{F}_{G,P(i)}} (G, F).$$

(3.2)
$$\tilde{\Delta}_{G,F}^{||G||}\mathbf{G}_{i} = \sum_{i=1}^{i} \mathbf{G}_{\mathbf{u}}^{(1)} \otimes \cdots \otimes \mathbf{G}_{i}^{(||G||+1)}.$$

Note that $|\mathbf{G}_i^k| = 1, \, \forall k \lneq (||G|| + 1) \text{ and } |\mathbf{G}_i^{||G||+1}| = 0.$

3.1. The pre-Lie product and the cubical chain complex. So consider the pair (G, F) of a pre-Cutkosky graph with compatible forest F with ordered edges. Assume there are graphs G_1, G_2 and forests F_1, F_2 such that

$$(G, F) = (G_1, F_1) \star (G_2, F_2).$$

Here, \star is the pre-Lie product which is induced by the co-product Δ_{GF} by the Milnor–Moore theorem.

Theorem 3.2. We can reduce the computation of the homology of the cubical chain complex for large graphs to computations for smaller graphs by a Leibniz rule:

 $d((G_1, F_1) \star (G_2, F_2)) = (d(G_1, F_1)) \star (G_2, F_2) + (-1)^{|E_{F_1}|} (G_1, F_1) \star (d(G_2, F_2)).$

Here, $d = d_0 + d_1$ is the boundary operator which either shrinks edges or cuts a graph.

4. FLAGS

4.1. **Bamboo.** The notion of flags of Feynman graphs was for example already used in [?, ?]. 4.2. **Flags of necklaces.** Here we use it based on the core Hopf algebra introduced above. We introduce Sweedler's notation for the reduced co-product in H_{core} :

$$\tilde{\Delta}_{core}(G) := \Delta_{core}(G) - \mathbb{I} \otimes G - G \otimes \mathbb{I} =: \sum' G' \otimes G''.$$

We define a flag $f\in \mathrm{Aug}_{core}^{\otimes k}$ of length k to be an element of the form

 $f=\gamma_1\otimes\cdots\otimes\gamma_k,$

where the $\gamma_i \in \operatorname{Aug}_{core} \cap \langle H_{core} \rangle$ fulfill $\tilde{\Delta}_{core}(\gamma_i) = 0, |\gamma_i| = 1.$

Here, $\langle H_{core} \rangle = \{ G \in H_{core} | |H^0(G)| = 1 \}$ is the linear Q-span of bridge-free connected graphs as generators.

Note that for elements $G \in \langle H_{core} \rangle$, we have $\tilde{\Delta}_{core}^{|G|-1}(G) \neq 0$. We have $\tilde{\Delta}_{core} := (P \otimes P) \Delta_{core}$ for $P : H_{core} \to \operatorname{Aug}_{core}$ the projection into the augmentation ideal $\operatorname{Aug}_{core}$.

Define the flag associated to a graph $G \in \langle H_{core} \rangle$ to be a sum of flags of length |G| where in each flag each element γ_i has unit degree, $|\gamma_i| = 1$:

$$Fl_G := \tilde{\Delta}_{core}^{|G|-1}(G) \in \operatorname{Aug}_{core}^{\otimes |G|}$$

Similarly, for a pair (G, F) we can define

$$Fl_{G,F} := \tilde{\Delta}_{GF}^{|G|-1}((G,F)) \in \operatorname{Aug}_{GF}^{\otimes |G|},$$

as a sum of flags

$$Fl_{G,F} = \sum_{i} (\gamma_1, f_1)^i \otimes \cdots (\gamma_{|G|}, f_{|G|})^i,$$

 $\tilde{\Delta}_{GF}((\gamma_l, f_l)^i) = 0, \, \forall i, l, \, 1 \le l \le |G|.$

Humboldt U. Berlin