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DIRK KREIMER (LECT. MAY 04, 2020)

1. The Hopf algebra of rooted trees

We follow Löıc Foissy An introduction to Hopf algebras of trees (see link on course home-
page).

2. General remarks on Hopf algebras and co-actions

We collect some material on Hopf algebras and co-actions. For simplicity, we only discuss
vector spaces instead of modules, and we consider all vector spaces to be defined over Q.
A coalgebra is a vector space H together with a coproduct

∆ : H → H ⊗H,

that is coassociative,
(∆⊗ id)∆ = (id⊗∆)∆

and is equipped with a counit, i.e., a map Î : H → Q such that

(Î⊗ id)∆ = (id⊗ Î)∆ = id.

1
















































































































































































































































































































































































































































A commutative Hopf algebra is a commutative algebra (with product ·) that is at the same
time a coalgebra (not necessarily co-commutative) such that the product and coproduct are
compatible,

∆(a · b) = ∆(a) ·∆(b),

and it is equipped with an antipode

S : H → H

such that
S(a · b) = S(b) · S(a) = S(a) · S(b),

and
m(S ⊗ id)∆ = m(id⊗ S)∆ = Î ◦ I,

where m denotes the multiplication in H and I : Q → H is the unit (map), I(1) = I is the
unit in H.
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A (left-)comodule over a coalgebra H is a vector space M together with a map (co-action)

ρ : M → H ⊗M

such that
(id⊗ ρ)ρ = (∆⊗ id)ρ,M → H ⊗H ⊗M,

and (Î ⊗ id)ρ = id. Our Hopf algebras are commutative and graded, H = ⊕∞
j=0H

(j) and

connected H(0) ∼ QI, the H(j) are finite-dimensional Q-vectorspaces.
The vectorspace HC of Cutkosky graphs forms a left comodule over the core Hopf algebra

Hcore.
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3. The vectorspace HC

Consider a Cutkosky graph G with a corresponding vG-refinement P of its set of external
edges LG. It is a maximal refinement of VG.

The core Hopf algebra co-acts on the vector-space of Cutkosky graphs HC .

(3.1) ∆core : HC → Hcore ⊗HC .

We say G ∈ H
(n)
C ⇔ |G| = n and define AutC = ⊕∞

i=1H
(i)
C .
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Note that the sub-vectorspaceH
(0)
C is rather large: it contains all graphsG = ((HG,VG, EG), (HG,VG, EH))

HC such that ||G|| = 0. These are the graphs where the cuts leave no loop intact.
For any G ∈ HC there exists a largest integer corC(G) ≥ 0 such that

∆̃corC(G)
core (G) 6= 0, ∆̃corC(G)

core (G) : HC → H⊗corC(G)
core ⊗H

(0)
C ,

whilst ∆̃
corC(G)+1
core (G) = 0.
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Proposition 3.1.
corC(G) = ||G||.

Proof. The primitives of Hcore are one-loop graphs. �

In particular there is a unique element g ⊗G/g ∈ Hcore ⊗H
(0)
C :

∆core(G) ∩
(

Hcore ⊗H
(0)
C

)

= g ⊗G/g,

with |g| = ||G||.
For any graph G we let G =

∑

T∈TG
(G, T ). Here TG is the set of all spanning trees of G

and we set for G = ∪̇iGi, TG = ∪̇iTGi
.

The maximal refinement P induces for each partition P (i), 0 ≤ i ≤ vG a unique spanning
forest fi of G/g. The set FG,P (i) of spanning forests of G compatible with P (i) is then
determined by fi and the spanning trees in Tg.

Define Gi :=
∑

F∈FG,P (i)
(G,F ).

(3.2) ∆̃
||G||
G,FGi =

∑

i=1

G
(1)
i

⊗ · · · ⊗G
(||G||+1)
i .

Note that |Gk
i | = 1, ∀k � (||G||+ 1) and |G

||G||+1
i | = 0.
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3.1. The pre-Lie product and the cubical chain complex. So consider the pair (G,F )
of a pre-Cutkosky graph with compatible forest F with ordered edges. Assume there are
graphs G1, G2 and forests F1, F2 such that

(G,F ) = (G1, F1) ⋆ (G2, F2).

Here, ⋆ is the pre-Lie product which is induced by the co-product ∆GF by the Milnor–Moore
theorem.

Theorem 3.2. [?] We can reduce the computation of the homology of the cubical chain

complex for large graphs to computations for smaller graphs by a Leibniz rule:

d ((G1, F1) ⋆ (G2, F2)) = (d(G1, F1)) ⋆ (G2, F2) + (−1)|EF1
|(G1, F1) ⋆ (d(G2, F2)).

Here, d = d0 + d1 is the boundary operator which either shrinks edges or cuts a graph.
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4. Flags

4.1. Bamboo. The notion of flags of Feynman graphs was for example already used in [?, ?].

4.2. Flags of necklaces. Here we use it based on the core Hopf algebra introduced above.
We introduce Sweedler’s notation for the reduced co-product in Hcore:

∆̃core(G) := ∆core(G)− I⊗G−G⊗ I =:
′

∑

G′ ⊗G′′.

We define a flag f ∈ Aug⊗k
core of length k to be an element of the form

f = γ1 ⊗ · · · ⊗ γk,

where the γi ∈ Augcore ∩ 〈Hcore〉 fulfill ∆̃core(γi) = 0, |γi| = 1.
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Here, 〈Hcore〉 = {G ∈ Hcore| |H
0(G)| = 1} is the linear Q-span of bridge-free connected

graphs as generators.

Note that for elements G ∈ 〈Hcore〉, we have ∆̃
|G|−1
core (G) 6= 0.

We have ∆̃core := (P ⊗ P )∆core for P : Hcore → Augcore the projection into the augmen-
tation ideal Augcore.
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Define the flag associated to a graph G ∈ 〈Hcore〉 to be a sum of flags of length |G| where
in each flag each element γi has unit degree, |γi| = 1:

FlG := ∆̃|G|−1
core (G) ∈ Aug⊗|G|

core .

10



Similarly, for a pair (G,F ) we can define

FlG,F := ∆̃
|G|−1
GF ((G,F )) ∈ Aug

⊗|G|
GF ,

as a sum of flags

FlG,F =
∑

i

(γ1, f1)
i ⊗ · · · (γ|G|, f|G|)

i,

∆̃GF ((γl, fl)
i) = 0, ∀i, l, 1 ≤ l ≤ |G|.
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