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1.1. One-loop graphs. Consider the one-loop triangle with vertices {A,B,C} and edges
{(A,B), (B,C), (C,A)}, and quadrics:

PAB = k20 − k21 − k22 − k23 −M1,

PBC = (k0 + q0)
2 − k21 − k22 − k23 −M2,

PCA = (k0 − p0)2 − (k1)
2 − (k2)

2 − (k3 − p3)2 −M3.

Here, we Lorentz transformed into the rest frame of the external Lorentz 4-vector q =
(q0, 0, 0, 0)T , and oriented the space like part of p = (p0, ~p)

T in the 3-direction: ~p = (0, 0, p3)
T .
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Using q0 =
√
q2, q0p0 = qµp

µ ≡ q.p, ~p · ~p = q.p2−p.pq.q
q2

, we can express everything in

covariant form whenever we want to.
We consider first the two quadrics PAB, PBC which intersect in C4.
The real locus we want to integrate is R4, and we split this as R×R3, and the latter three

dimensional real space we consider in spherical variables as R+ × S1 × [−1, 1], by going to
coordinates k1 =

√
s sinφ sin θ,k2 =

√
s cosφ sin θ, k3 =

√
s cos θ, s = k21 + k22 + k23, z = cos θ.

We have
PAB = k20 − s−M1,

PBC = (k0 + q0)
2 − s−M2.

So we learn say s = k20 −M1 from the first and

k0 = kr :=
M2 −M1 − q20

2q0
from the second, so we set

sr :=
M2

2 +M2
1 + (q20)2 − 2(M1M2 + q20M1 + q20M2)

4q20
.
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The integral over the real locus transforms to∫
R4

d4k → 1

2

∫
R

∫
R+

√
sδ+(PAB)δ+(PBC)dk0ds×

∫ 2π

0

∫ 1

−1

dφδ+(PCA)dz.

We consider k0, s to be base space coordinates, while PCA also depends on the fibre coordinate
z = cos θ. Nothing depends on φ (for the one-loop box it would).

Integrating in the base and integrating also φ trivially in the fibre gives

1

2

√
sr

2q0
2π

∫ 1

−1

δ+(PCA(s = sr, k0 = kr))dz.
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For PCA we have

(1.1) PCA = (kr − p0)2 − sr − ~p · ~p− 2|~p|
√
srz −M3 =: α + βz.

Integrating the fibre gives a very simple expression (the Jacobian of the δ-function is 1/(2
√
sr|~p|),

and we are left with the Omnès factor

(1.2)
π

4|~p|q0
.

This contributes as long as the fibre variable

z =
(kr − p0)2 − sr − ~p · ~p−M3

2|~p|√sr
lies in the range (−1, 1). This is just the condition that the three quadrics intersect.
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An anomalous threshold below the normal theshold appears when (m1 − m2)
2 < q2 <

(m1 +m2)
2. In that range, sr is negative, hence its square root imaginary. It follows that z

can be real only for z = 0, and this delivers

sr = (kr − p0)2 − ~p · ~p−M3,

which is negative for sufficiently large M3, as expected.
On the other hand, when we leave the propagator PCA uncut, we have the integral

1

2

√
sr

2q0
2π

∫ 1

−1

1

PCA (s=sr,k0=kr)

dz.

This delivers a result as foreseen by S-Matrix theory [?].
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The two δ+-functions constrain the k0- and t-variables, so that the remaining integrals are
over the compact domain S2.

As the integrand does not depend on φ, this gives a result of the form

(1.3) 2πC

∫ 1

−1

1

α + βz
dz︸ ︷︷ ︸

:=JCA

= 2π
C

β
ln
α + β

α− β
=

1

2
Var(ΦR(b2))× JCA,

where C =
√
sr/2q0 is intimitaly related to Var(ΦR(b2)) for b2 the reduced triangle graph

(the bubble), and the factor 1/2 here is Vol(S1)/Vol(S2).
Here, α and β are given through (see Eq.(1.1)) l1 ≡ ~p2 = λ(q2, p2, (p + q)2)/4q2 and

l2 := sr = λ(q2,M1,M2)/4q
2 as

α = (kr − p0)2 − l2 − l1 −M3, β = 2
√
l1l2.

Note that
C

β
=

1√
λ(q2, p2, (q + p)2)

=
1

2q0|~p|
,

in Eq.(1.3) is proportional to the Omnès factor Eq.(1.2).
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In summary, there is a Landau singularity in the reduced graph in which we shrink PCA.
It is located at

q20 = snormal = (
√
M1 +

√
M2)

2.

It corresponds to the threshold divisor defined by the intersection (PAB = 0) ∩ (PBC = 0).
This is not a Landau singularity when we unshrink PCA though. A (leading) Landau

singularity appears in the triangle when we also intersect the previous divisor with the locus
(PCA = 0).

It has a location which can be computed from the parametric approach. One finds

q20 = sanom = (
√
M1 +

√
M2)

2 +

+
4M3(

√
λ2
√
M1 −

√
λ1
√
M2)

2 −
(√

λ1(p
2 −M2 −M3) +

√
λ2((p+ q)2 −M1 −M3)

)2
4M3

√
λ1
√
λ2

,

with λ1 = λ(p2,M2,M3) and λ2 = λ((p+ q)2,M1,M3).
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