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1.1. One-loop graphs. Consider the one-loop triangle with vertices {A, B, C'} and edges
{(A,B),(B,C),(C,A)}, and quadrics:

Pag = k2 — k2 — k2 — k2 — M,
PBC = (ko—i-(]o)Q —k% —k% —kg —Mg,
Poa = (ko —po)® — (k1)? = (k2)* — (ks — p3)* — M.

Here, we Lorentz transformed into the rest frame of the external Lorentz 4-vector ¢ =
(¢0,0,0,0)T, and oriented the space like part of p = (po, )7 in the 3-direction: g = (0,0, p3)7.
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Using ¢o = /¢% qopo = qup* = qp, p-D = %, we can express everything in

covariant form whenever we want to.

We consider first the two quadrics Pag, Pgc which intersect in C*.

The real locus we want to integrate is R*, and we split this as R x R3, and the latter three
dimensional real space we consider in spherical variables as R, x S x [~1,1], by going to
coordinates ky = /ssin ¢sinf,ky = \/scos¢sinf, ks = \/scosl, s = k¥ + k3 + k3, z = cos¥.

We have

Pup = ki — s — My,
Ppe = (ko + qo)* — s — M.
So we learn say s = k2 — M, from the first and
My — M, — a

ko =k, :
’ 2qo

from the second, so we set
o M5 + M7 + (g5)* — 2(My My + g3 My + g5 My)
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The integral over the real locus transforms to

2 1
/ ik / V56, (Pap)S, (Ppc)dkods X / / 465, (Pon)dz.
R4 2 RJR, 0 -1

We consider kg, s to be base space coordinates, while Pr 4 also depends on the fibre coordinate
z = cos . Nothing depends on ¢ (for the one-loop box it would).
Integrating in the base and integrating also ¢ trivially in the fibre gives

1./5, 1
—Y o O (Poa(s = s, ko = ky))dz.
2 2qo -1
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For Pr4 we have
(1.1) Poa = (ky —po)? — 5, — - p — 2|pl\/5r2 — My =: o + fz.

Integrating the fibre gives a very simple expression (the Jacobian of the é-function is 1/(2,/s,|p]),
and we are left with the Omnes factor

(1.2)

™

Alplgo
This contributes as long as the fibre variable

(kr_p(])Q_sr_ﬁ'ﬁ_Mfi

z =

lies in the range (—1,1). This is just the condition that the three quadrics intersect.
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An anomalous threshold below the normal theshold appears when (m; — m»)? < ¢* <
(m1 +m3)%. In that range, s, is negative, hence its square root imaginary. It follows that z
can be real only for z = 0, and this delivers

Sp = (kr_p0)2_ﬁ'ﬁ_M37

which is negative for sufficiently large M3, as expected.
On the other hand, when we leave the propagator Pz uncut, we have the integral

1./5, bl
__827-[- — dz.
2 2qo —1 Poa (s=s, ko=ky)

This delivers a result as foreseen by S-Matrix theory [?].
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The two ., -functions constrain the ko- and t-variables, so that the remaining integrals are
over the compact domain S2.

As the integrand does not depend on ¢, this gives a result of the form

L | C. a+p 1
(1.3) 2nC /1 o ﬂzdz = QWEID P §Var(®R(bQ)) X Joa,
—_——
=Joa

where C' = /5, /2qo is intimitaly related to Var(®r(by)) for by the reduced triangle graph
(the bubble), and the factor 1/2 here is Vol(S')/Vol(S?).

Here, a and 3 are given through (see Eq.(1.1)) Iy = p* = A% p% (p + q)?)/4¢* and
ly := s, = MN¢%, My, Ms) /4q* as

a= (k —po)? —lz — b — My, B =2v/lil.
Note that
1 1
VAE P2 (q+p)?)  2alp
in Eq.(1.3) is proportional to the Omnes factor Eq.(1.2).

¢
E
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In summary, there is a Landau singularity in the reduced graph in which we shrink Pg 4.

It is located at
Q(2) = Snormal = (\/ Ml + V M2>2-

It corresponds to the threshold divisor defined by the intersection (Pag = 0) N (Ppc = 0).
This is not a Landau singularity when we unshrink P4 though. A (leading) Landau
singularity appears in the triangle when we also intersect the previous divisor with the locus

(Pca =0).
It has a location which can be computed from the parametric approach. One finds
qa = Sanom = (\/ Ml + v/ M2)2 +
Jr4]\43(\//\_2\/1\41 — VAMVM)? = (VM(P? — My — M3) + Ve ((p+q)* — My — M3))2
AMsv/ AV A
with A1 = A<p27 M27 M3) and AQ = A<<p+ Q)27M1a M3)
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