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1. Flags

The notion of flags of Feynman graphs was for example already used in [?, ?].
Here we use it based on the core Hopf algebra introduced above.
We have ∆̃core := (P ⊗ P )∆core for P : Hcore → Augcore the projection into the augmen-

tation ideal Augcore.
We introduce Sweedler’s notation for the reduced co-product in Hcore:

∆̃core(G) = ∆core(G)− I⊗G−G⊗ I =:
∼∑
G′ ⊗G′′.

Consider a graph G. We define an expanded flag associated to G a sequence of graphs

G1 ( G2 ( · · · ( G|G| = G,

where |G1| = 1 and |Gi/Gi−1| = 1 for all i ≥ 2. We set γi = Gi/Gi−1 and γ1 = G1.
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Figure 1: The graph generating the expanded flags of the example.

Write F (G) for the collection of all expanded flags of G. Let us consider an example.
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are the twelve expanded flags for the graph given in Fig.(1). We omitted the edge labels in
the above flags.

We define a flag f ∈ Aug⊗kcore of length k to be an element of the form

f = γ1 ⊗ · · · ⊗ γk,
where the γi ∈ Augcore ∩ 〈Hcore〉 fulfill ∆̃core(γi) = 0, |γi| = 1 which arises from an expanded
flag.

Here, 〈Hcore〉 = {G ∈ Hcore|h0(G) = 1} is the linear Q-span of bridge-free connected
graphs as generators.

Note that for elements G ∈ (〈Hcore〉 ∩ Augcore), we have ∆̃
|G|−1
core (G) 6= 0.
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Define the flag associated to a graph G ∈ 〈Hcore〉 to be a sum of flags of length |G| arising
from all expanded flags so that in each flag each element γi has unit degree, |γi| = 1:

FlG := ∆̃|G|−1
core (G) ∈ Aug⊗|G|core .

With ξG = |F (G)| the number of expanded flags a graph G has we can write

FlG =

ξG∑
i=1

γ
(i)
1 ⊗ · · · ⊗ γ(i)

|G|,

where for any of the orderings of the cycles lj of G we have

(1.13) γ1 = l1, γ2 = l2/El1∩l2 , . . . , γ|G| = lG/El1∩···∩l|G|−1
.

Similarly, for a pair (G,F ) we can define

FlG,F := ∆̃
|G|−1
GF ((G,F )) ∈ Aug

⊗|G|
GF ,

as a sum of flags

FlG,F =
∑
i

(γ1, f1)i ⊗ · · · (γ|G|, f|G|)i,

∆̃GF ((γl, fl)
i) = 0, ∀i, l, 1 ≤ l ≤ |G|.
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2. Partial Fractions and Spanning Trees

2.1. Divided differences. Residue integrals can be expressed using divided differences. To
this end consider a product Lγ of vγ quadrics which constitute a one-loop graph γ.

Without loss of generality we can asumme that each quadric has the form

Qe = (k + re)
2 −m2

e + iη,

for some loop momentum k, four-vector re, mass me and 0 � η � 1. We write

Lγ :=

vγ∏
e=1

1

Qe

.

The divided difference with regard to the function f : x → x−1 delivers the partial fraction
decomposition

(2.1) Lγ =

vγ∑
e=1

f(Qe)
∏
f 6=e

1

Qf −Qe︸ ︷︷ ︸
=:pfγe

.

Note that the coefficients of any 1/(Qf −Qe) ∼ f(Qe)− f(Qf ).
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2.2. Partial fractions. To make use of flags, let us consider L above. It can be regarded
up to cyclic permutations of its vertices and hence regarded as a belonging to an equivalence
class forming necklace p as a primitive element γ ∈ Hcore.

As an example for the bubble b we find :

Lb =
1

Q1Q2

=
1

Q1

1

Q2 −Q1

+
1

Q2

1

Q1 −Q2

.

2.3. pf and spanning trees. Note that the edges ef ∈ Eγ in pfγj , for f 6= e, for any
chosen edge e ∈ Eγ, form a spanning tree of γ.

We hence can write

Lγ =
∑

T∈T (γ)

pf(T )
1

QT́

,

where T́ denotes the edge of γ which is not in T so that pf(T ) = pfγ
T́

.

Note that pf(T )−1 = (pfγ
T́

)−1 is linear in the four-vector k and is real.
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The divided difference structure gives

Proposition 2.1. Lγ vanishes at any zero of any pf(T )−1.

Proof. For pf(T )−1 to vanish, we need to have T́ , f such that Qf = QT́ . By the divided
difference structure the coefficient of this zero is 1/Qf − 1/QT́ which vanishes. �
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As a result the poles of Lγ in the variable k0 are determined by the two zeroes of the
quadric QT́ which are located in the upper and lower complex k0-plane.

Indeed,

QT́ = (k0 + rT́ ,0)2 − (~k + ~rT́ )2 −m2
T́

+ iη,

so that the zeroes are at

kT́0 ± = −rT́ ,0 ±
√

(~k + ~rT́ )2 +m2
T́
− iη.
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2.4. Shifts. Lγ above has to be integrated:

Φ(γ) :=

∫ ∞
−∞

dk0

∫
dD−1~kLγ.

Proposition 2.2. For each term in the partial fraction decomposition the integral

Φ(γ, T́ ) :=

∫ ∞
−∞

dk0

∫
dD−1~kf(QT́ )pf(T ),

exists as a unique Laurent-Taylor series with a pole of first order in ε = D/2 − 2 and is

invariant under the shifts k0 → k0 − rT́ ,0 and ~k → ~k − ~rT́ .

Proof. Elementary properties of dimensional regularisation, [?]. �
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Assume from now on that for each Φ(γ, T́ ) the indicated shift has been performed so that
QT́ = k2 −mT́ + iη, let

p̄f(T ) = pf(T )k0→k0−rT́ ,0,~k→~k−~rT́
.

We get

Φ(γ) =
∑

T∈T (γ)

Φ(γ, T́ ) =

∫ ∞
−∞

dk0

∫
dD−1~k

∑
T∈T (γ)

p̄f(T )
1

k2
0 − ~k2 −m2

T́
+ iη

.

Doing the k0-integral by a contour integration closing in the upper complex half-plane we
find

Φ(γ) =

∫
dD−1~k

∑
T∈T (γ)

p̄f(T )
|k0=+

√
~k2−m2

T́
+iη
.
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2.5. Partial Fractions for generic graphs. A generalization to generic graphs is then
straightforward.

We define

L(FlG) :=
∑
i

|G|∏
j=1

L
γ

(i)
j
.

This is a homogeneous polynomial of degree |G| in inverse quadrics 1/Qe. The γ
(i)
j are

determined as above in Eq.(1.13).
For the integral Φ(G) we have

Φ(G) :=

ξG∑
i=1

 |G|∏
j=1

∫ ∞
∞

dk0(j)

∫
dD−1~k(j)

×
 |G|∏
j=1

L
γ

(i)
j

 .

Carrying out all k0(j)-integrals we find

Φ(G) :=

ξG∑
i=1

 |G|∏
j=1

∫
dD−1~k(j)

× |G|∏
j=1

∑
T∈T (γ

(i)
j )

p̄f(T )
k0(j)=+

√
~k(j)2−m2

T́
+iη
.

Note that for each of the |G|! terms in the above sum, the spannng trees T of the graphs γ
(i)
j

combine to a spanning tree U ∈ T (G). Furthermore each term in the summand indicates
one of the |G|! possible orders of the |G| independent cycles of the graph.
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2.6. General structure. It is then useful to count the number of spanning trees of a graph
to control its computation as well as for example the number of Hodge matrices describing
the analytic structure of an evaluated Feynman graph.

So we let spt : Hcore → N, G→ spt(G) be the number of spanning trees of G and define

spt : Hcore → N, spt(G) := spt(G)|G|!.
We have

Proposition 2.3.

spt(G) =
∼∑

spt(G′)spt(G′′),

using the reduced coproduct and

spt(G) = spt |G|∆̃|G|−1
core (G).

Proof. Immediate pairing off edges in the spanning trees. �

In fact spt(G) counts the nubers of residues when integrating the energy components in
each loop momentum as we have seen above.
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Proposition 2.4.

L(FlG) = ξG
1∏

e∈EG Qe

,

As before ξG is the number of distinct flags in FlG.

Proof. By definition of FlG we can write FlG =
∑ξG

j=1 γ
(j)
1 ⊗ · · · ⊗ γ

(j)
|G|. Each L(γ

(j)
k ) =∏

e∈E
γ

(j)
k

1
Qe

and we use L(u⊗v) = L(u)L(v) where we extend L as a map Q : Hcore → C. �
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2.7. Example. For the Dunce’s cap graph dc we find the following residues in accordance
with the core coproduct, see Figs.(2,3):

Q(Fldc) =
1

Q4

(
1

Q1

1

(Q2 −Q1)(Q3 −Q1)
+

1

Q2

1

(Q3 −Q2)(Q1 −Q2)
+

1

Q3

1

(Q1 −Q3)(Q2 −Q3)

)
+

1

Q3

(
1

Q1

1

(Q2 −Q1)(Q4 −Q1)
+

1

Q2

1

(Q4 −Q2)(Q1 −Q2)
+

1

Q4

1

(Q1 −Q4)(Q2 −Q4)

)
+ (

1

Q1

1

Q2 −Q1

+
1

Q2

1

Q1 −Q2

)(
1

Q3

1

Q4 −Q3

+
1

Q4

1

Q3 −Q4

)
.(2.2)

We have ξdc = 3, corresponding to the three parts in 10 = (3× 1) + (3× 1) + (2× 2). The
ten terms correspond to the five spanning trees, with each spanning tree defining two loops
l1, l2, which contribute to the core coproduct as either l1 ⊗ l2 or l2 ⊗ l1.
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For example choosing the spanning tree on edges e2, e3 in the Dunce’s cap, the two loops
are l1 = {e1, e2, e3}, l2 = {e3, e4}. The term l1 ⊗ l2 has l1 as the sub-graph and dc/l1 = e4 as
the co-graph. The corresponding term in Q(Fldc) is

(2.3)
1

Q4

(
1

Q1

1

(Q2 −Q1)(Q3 −Q1)

)
.

The term l2 ⊗ l1 has l2 as the sub-graph and dc/l2 = {e1, e2} as the co-graph. The corre-
sponding term in Q(Fldc) is

(2.4)

(
1

Q1

1

Q2 −Q1

)(
1

Q4

1

(Q3 −Q4)

)
.

For both Eqs.(2.3,2.4) the conditions Q1 = 0 and Q4 = 0 determine k0 =
√
s+m2

1 and

l0 =
√
t+m2

4. Both equations have by construction the same residue as

(Q3 −Q4)0=Q1=Q4 = (Q3 −Q1)0=Q1=Q4 ,

in accordonce with the divided difference structure of contour integrals.
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+

+
a

1

2
b ∪ c

b
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3
4 ⊗

→
a ∪ b ∪ c

a ∪ b ∪ c

.
Figure 2: The flag decomposition of the Dunce’s cap. Note that the Dunce’s cap has five
spanning trees and two loops. This gives ten terms which appear on the rhs by counting
spanning trees in the sub- and co-graphs: 2× 5 = 10 = 3× 1 + 3× 1 + 2× 2. Indeed, the five
spanning trees of the Dunce’s cap are the five pairs of edges {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}.
Each spanning tree defines a basis for the loops in the Dunce’s cap by connecting the two
endpoints of one of the edges not in the spanning tree by a path through that tree. With two
edges not in the spanning tree and five spanning trees this gives a five element set. Looking
at the flag decomposition on the right, the triangle on edges 1, 2, 3 has three spanning trees
given by the pairs {(1, 2), (2, 3), (3, 1)} while the tadpole has a single spanning tree given by
the vertex a∪ b∪ c. The triangle on edges 1, 2, 4 has three spanning trees given by the pairs
{(1, 2), (2, 4), (4, 1)} while the tadpole again has a single spanning tree given by the vertex
a∪ b∪ c. Each of the two edges 3, 4 of the bubble forms a spanning tree and similar each of
the two edges 1, 2 of the other bubble.
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Figure 3: ∆̃GF ((G, T )) = FlG,T for G the Dunce’ s cap and for its five spanning trees T .

What remains are |G| integrations over variables si, to be integrated over the positive real

half-axis R+. They span a |G|-dimensional hypercube R|G|+ . We dissect it into |G|! sectors
si < sj, one for each possible ordering.

We perform the integrals over the energy variables as contour integrals. This is possible as
the quadrics Qei are quadratic, so the single presence of a factor 1/Qei ensures convergence
when closing the contour in the upper half-plane.
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Let spt(G) ≡ |TG| be the number of spanning trees of G.
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Lemma 2.5. There are |G|!× spt(G) =: spt(G) contributing residues.

Proof. Consider a given spanning tree T ∈ T (G). The locus ∩e 6∈TQe = 0, defines |G|! residues
through the |G|! possible orders of evaluation of

∏
e∈T 1/Qe corresponding to the |G|! sectors

in the above hypercube.
Consider

ResG(T ) :=
∏
e∈ET

1

Qe

.

For any chosen order and fixed chosen T , the contour integrals above deliver

ResG(T ) =

(∏
e∈ET

1

Qe

)
|l0,i=+

√
si+m2

i

.

Next, let us consider the set of residues in the energy integrals which can contribute. Come
back to the cycle space of G. A choice of a spanning tree determines a basis for this space.

Choose an ordering of the cycles. This defines a sequence corresponding to a flag

l1, l2/l1, . . . , l|G|/l|G|−1/ · · · /l1.
Now any choice of an ordering of the cycles, or equivalently of the edges e 6∈ T , defines the

Feynman integral as an iterated integral, and therefore a sequence s1 > s2 > · · · > s|G| > 0.
We get spt(G) = spt(G)× |G|! such iterated integrals. �
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2.8. The energy integral. Summarising, we have

Theorem 2.6. The energy integral I0
G is given as

I0
G =

∫ ∞
−∞

|G|∏
i=1

dki,0
1∏

e∈EG Qe

=

ξG∑
i=1

 |G|∏
j=1

∫
dD−1~k(j)

× |G|∏
j=1

∑
T∈T (γ

(i)
j )

p̄f(T )
k0(j)=+

√
~k(j)2−m2

T́
+iη
.
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This can be written as a sum over all spanning trees of G together with a sum of all
orderings of the space like integrations and for the full integral we find

ΦG
R =

∑
T∈T (G)

∑
σ∈S|G|

∫
0<σ(1)<···<σ(|G|)

(∏
e∈ET

1

Qe

)
|k(j)2

0=sj+m2
j , j 6∈ET

∏
j 6∈ET

ds(j)
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2.9. The three-edge banana. Here, we see a new phenomenon. We have a two-loop
graph, and the first question is for the number of contributing residues. This has a straight
combinatorial answer which we will first exhibit on the example of the three-edge banana b3.
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Let us consider the integrand:

Ib3 =
1

Q1Q2Q3

=
1

(k2
0 − s−m2

1)(l20 − t−m2
2)((k0 − l0 + q0)2 − s− t− 2

√
s
√
tz −m2

3)
.

This has to be integrated against d4kd4l, concretely∫ ∞
0

dsdt

∫ 1

1

dz

∫ ∞
−∞

dk0dl0.

We do the k0, l0 integrals as contour integrals. Assume we integrate k0 first and then l0.
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Q1 and Q3 have poles in the upper k0 half-plane. Let us start with Q1. Evaluating the
product 1/(Q2Q3) at the residue defined by Q1 = 0 is a product which has two poles in the
upper l0 half-plane, at Q2 = 0 or at Q3 = 0. This gives two loci

(Q1 = 0) ∩ (Q2 = 0),

and
(Q1 = 0) ∩ (Q3 = 0).
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Next, the pole in the upper k0 half-plane at Q3 = 0 evaluates the residue of the product
1/(Q1Q2) as a term with a single pole in the upper l0 half-plane at Q2 = 0 providing the
locus

(Q3 = 0) ∩ (Q2 = 0).

Altogether we find three loci. Precisely the same three loci are obtained when we inter-
change the order of the k0, l0 contour integrals.
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The three loci correspond to

(Q1 = 0) ∩ (Q2 = 0) ⇔
(

1

Q3 −Q1

+
1

Q3 −Q2

)
1

Q1Q2

⇔ Il1,e3 × Ie2 + Il2,e3 × Ie1 ,

(Q2 = 0) ∩ (Q3 = 0) ⇔
(

1

Q1 −Q2

+
1

Q1 −Q3

)
1

Q2Q3

⇔ Il3,e1 × Ie3 + Il1,e1 × Ie2 ,

(Q3 = 0) ∩ (Q1 = 0) ⇔
(

1

Q2 −Q3

+
1

Q2 −Q1

)
1

Q3Q1

⇔ Il2,e2 × Ie1 + Il3,e2 × Ie3 .

We have to discuss this in detail. Look at the first line. The locus (Q1 = 0) determines k0 =√
s+m2

1 with s + m2
1 ∈ R+ strictly positive. The locus (Q2 = 0) determines l0 =

√
t+m2

2

with again t+m2
2 ∈ R+.
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Intersecting the two loci evaluates

Q3 =

(√
s+m2

1 −
√
t+m2

2 + q0

)2

− s− t− 2
√
s
√
tz −m2

3.

Now consider Ib3 with the three internal edges e1, e2, e3. Assume we choose e3 to define a
spanning tree of the graph. This defines as a basis of the cycle space {l1, l2, l3} of b3 the two
loops generated by e1, e2 together with e3:

l1 = {e1, e3},
and

l2 = {e2, e3}.
Also l3 = {e1, e2}.

Furthermore we note that b3/l1 = l2/(l1 ∩ l2) = {e2} and b3/l2 = l1/(l2 ∩ l1) = {e1}.
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We have for the coproduct of the pair of the graph b3 with its spanning tree e3,

∆̃GF ((b3, e3)) = l1 ⊗ e2 + l2 ⊗ e1,

so that either l1 or l2 appear as subgraph.
The integrands for these sub- and co-graphs are

Il1 =
1

Q1Q3

=
1

Q3 −Q1

(
1

Q1

− 1

Q3

)
=: Il1,e3 + Il1,e1 ,

Il2 =
1

Q2Q3

=
1

Q3 −Q2

(
1

Q2

− 1

Q3

)
=: Il2,e3 + Il2,e2 ,

Ie1 =
1

Q1

, Ie2 =
1

Q2

.

where we introduced the integrands for the pair of a graph with its spanning tree Ilj ,ek .

For any choice of order of the contour integrals we do the s = ~k2 and t = ~l2 integrals in
the same order as iterated integrals.

This gives us six integrals which converge in dimensional regularization so that we can
treat the three loci separately.

In particular in each of the three loci we can route the external momentum q through the
remaining edge.
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