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1. Motivation: Outer Space

We first discuss the elementary monodromy of the simplest one-loop graph. So we start
with the 2-edge banana b2, a bubble on two edges with two different internal masses mb,mr,
indicated by two different colors:

The incoming external momenta at the two vertices of b2 are q,−q.
We assign to b2 a one-dimensional cell, an open line segment, and glue in its two boundary

endpoints, to which the two tadpoles on the two different masses are assigned, obtained by
either shrinking the blue or red edge. The vertex at each tadpole is then 4-valent, with no
external momentum flow through the graph.
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The fundamental group
Π1(b2) ∼ Z

of b2 has a single generator. This matches with the monodromy of the function ΦR(b2) as
we see in a moment.

Indeed, the Feynman integral we consider is coming from renormalized Feynman rules
ΦR(b2), where we implement a kinematic renormalization scheme by subtraction at µ2 <
(mb − mr)

2 (so that the subtracted terms does not have an imginary part, as µ2 is even
below the pseudo threshold):

ΦR(b2) =

∫
d4k

 1

k2 −m2
r︸ ︷︷ ︸

Q1

1

(k + q)2 −m2
b︸ ︷︷ ︸

Q2

− {q2 → µ2}

 .

We set s := q2 and demand s > 0, and also set s0 := µ2.

We write k = (k0, ~k)T , t := ~k ·~k. As the 4-vector q is assumed time-like (as s > 0) we can
work in a coordinate system where q = (q0, 0, 0, 0)T and get

ΦR(b2) = 4π

∫ ∞
−∞

dk0

∫ ∞
0

√
tdt

(
1

k20 − t−m2
r

1

(k0 + q0)2 − t−m2
b

− {s→ s0}
)
.

We define the Kȧllen function

λ(a, b, c) := a2 + b2 + c2 − 2(ab+ bc+ ca),

and find by explicit integration

ΦR(b2)(s, s0;m
2
r,m

2
b) =

=


√
λ(s,m2

r,m
2
b)

2s
ln
m2

r +m2
b − s−

√
λ(s,m2

r,m
2
b)

m2
r +m2

b − s+
√
λ(s,m2

r,m
2
b)
− m2

r −m2
b

2s
ln
m2

r

m2
b︸ ︷︷ ︸

B2(s)

−{s→ s0}︸ ︷︷ ︸
B2(s0)

 .

The principal sheet of the above logarithm is real for s ≤ (mr +mb)
2 and free of singularities

at s = 0 and s = (mr −mb)
2. It has a branch cut for s ≥ (mr +mb)

2.
The threshold divisor defined by the intersection Q1 ∩ Q2 where the zero locii of the

quadrics meet is at s = (mb +mr)
2.
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We now first describe Outer Space. What we use is actually a variant in which there
are external edges at vertices, and internal edges are colored to allow for different types of
internal propagators. Here, different colors indicate generic different internal masses, but
could also be used as placeholders for different spin and more.

1.1. The set-up of colored Outer Space. Outer Space can be regarded as a collection of
open simplices. For a graph with k edges, we assign an open simplex of dimension k−1. We
can either demand that the sum of edge lengths (given by parametric variables Ae) adds to
unity, or work in projective space Pk−1(R+) in such a cell. Each graph comes with a metric,
and one moves around the cell by varying the edge lengths.

Edge lengths are allowed to become zero but we are not allowed to shrink loops.

3




















































































































































































When an edge say between two three-valent vertices shrinks to zero length, there are
several ways to resolve the resulting 4-valent vertex to obtain a new nearby graph: assume
we have a 4-valent vertex in a graph G sitting in a (k − 1)-dimensional cell. Then, this cell
can be glued in as a common boundary of three other k-dimensional cells with corresponding
graphs Gi, i ∈ {s, t, u}, which have an edge e connecting two 3-valent vertices, such that
Gi/e = G, where Gi/e is the graph where edge e shrinks to zero length.
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A choice of a spanning tree T of a graph with m independent loops li determines m edges
ei not in the spanning tree. The loops li = li(ei) are uniquely given by the edge ei and
the path in T connecting the two endponts of ei. An orientation of ei orients the loop, and
shrinking all edges of T to zero length gives a rose Rm, a graph with one vertex and m
oriented petals ei.

In Outer Space graphs are metric graphs, where the metric comes from assigning an edge
length to each edge, and using the parametric integrand for Feynman graph, the Feynman
integral becomes an integral over the volume of the open simplex assigned to the graph, with
a measure defined by the parametric representation. All vertices we assume to be of valence
three or higher.
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1.2. Example: the triangle graph. The above example discusses the structure of one cell
together with its boundary components. We now look at the example of a triangle graph,
and discuss its appearance in different cells.
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Here, the boundaries of the triangular cell belong themselves to OS: the three edges of the
triangular cell are a cell for the indicated 1-loop graphs on two graph-edges, the vertices
correspond to colored 1-petal roses.
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The triangle graph has a single loop and its fundamental group a single generator. Ac-
cordingly, we find a single generator for the monodromy in the complement of the thresh-
old divisors: either for the normal threshold at s0 = (mr + my)

2 or for the anomalous
threshold at s1, with lr = p2 − m2

r − m2
b , ly = (p + q)2 − m2

y − m2
b , λ1 = λ(p2,m2

r,mbv
2),

λ1 = λ((p+ q)2,m2
y,mbv

2) it is given as,

s1 = (mr +my)
2 +

4m2
b(
√
λ2mr −

√
λ1my)

2 − (
√
λ1ly +

√
λ2lr)

2

4m2
b

√
λ1
√
λ2

.

The function J(z) has no pinch singularity and does not generate a new vanishing cycle. In
general, a one-loop graph generates one pinch singularity through its normal threshold given
by a reduced graph b2, and as many anomalous thresholds as there are further edges in the
graph.
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