
FEYNMAN DIAGRAMS AND THE S-MATRIX, AND OUTER SPACE
(SUMMER 2020)

DIRK KREIMER (LECT. APRIL 27, 2020)

1. Feynman and Cutkosky Graphs

In this lecture we define Feynman graphs and Cutkosky graphs. The latter are graphs G
where a subset Eon of their internal edges EG is distinguished: ’removing’ the edges e ∈ Eon

from G decomposes the graph into various bridge-free components.
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1.1. Feynman graphs. We first settle the notion of a partition.

Definition 1.1. Given a set S a partition (or set partition) P of S is a decomposition of S
into disjoint nonempty subsets whose union is S. The subsets forming this decomposition
are the parts of P . The parts of a partition are unordered, but it is often convenient to write

a partition with k parts as ∪̇
k

i=1Si = S with the understanding that permuting the Si still
gives the same partition. A partition P with k parts is called a k-partition and we write
k = |P|.

Now we can define a Feynman graph.

Definition 1.2. A Feynman graph G is a tuple G = (HG,VG, EG) consisting of

• HG, the set of half-edges of G,
• VG, a partition of HG with parts of cardinality at least 3 giving the vertices of G,
• EG, a partition of HG with parts of cardinality at most 2 giving the edges of G.

From now on when we say graph we mean a Feynman graph.
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We do not require all parts of EG to be of cardinality 2. We identify the parts of cardinality
2 with the set of edges EG of the graph and set eG := |EG|. We identify the sets of cardinality
1 with the set of external edges LG of the graph and set lG := |LG|. Also we set vG := |VG|.

We say that a graphG is connected if there is no partition ofHG into two setsHG(1), HG(2)
such that the parts of cardinality two of EG are either inHG(1) orHG(2). If it is not connected
it has |H0(G)| > 1 components.
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The partition VG collects half-edges of G into vertices. This formulation of graphs does
not distinguish between a vertex and the corolla of half-edges giving that vertex. However,
it is sometime useful to have notation to distinguish when one should think of vertices as
vertices and when one should think of them as corollas. Consequently let VG, the set of
vertices of G, be a set in bijection with the parts of VG, |VG| = vG = |VG|. This bijection can
be extended to a map νG : HG → VG by taking each half edge to the vertex corresponding
to the part of VG containing that vertex. For v ∈ VG define

Cv := ν−1
G (v) ⊂ HG,

to be the corolla at v, that is the part of VG corresponding to v.
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A graph G as above can be regarded as a set of corollas determined by VG glued together
according to EG.

If |νG(e)| = 1, we say e is a self-loop at v, with νG(e) = {v}.
We frequently have cause to make an arbitrary choice of an orientation on the edges. If

|νG(e)| = 2, with e = {l,m} and ν(l) = v, ν(m) = w say, e is an edge evw from v to w or ewv

vice versa for the opposite orientation. This choice of an edge orientation corresponds to a
choice of an order of e as a set of half-edges.

We emphasize that we allow multiple edges between vertices and allow self-loops as well.
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We write |G| := |H1(G)| = eG− vG+ |H0(G)| for the number of independent loops, or the
dimension of the cycle space of the graph G. Note that for disjoint unions of graphs h1, h2,
we have |h1 ∪ h2| = |h1|+ |h2|.

A graph is bridgeless if (G − e) has the same number of connected components as G for
any e ∈ EG. A graph is 1PI or 2-edge-connected if it is both bridgeless and connected,
equivalently if (G− e) is connected for any e ∈ EG. Here, for G = (HG,VG, EG), we define

(G− e) := (HG,VG, E
′

G)

where E ′

G is the partition which is the same as EG except that the part corresponding to e is
split into two parts of size 1.

The removal G −X of edges forming a subgraph X ⊂ G is defined similarly by splitting
the parts of EG corresponding to edges of X. G−X can contain isolated corollas.

Note that this definition is different from graph theoretic edge deletion as all the half-edges
of the graph remain and the corollas are unchanged. We neither lose vertices nor half-edges
when removing an internal edge. We just unglue the two corollas connected by that edge.

6




























































































































































The graph resulting from the contraction of edge e, denoted G/e for e ∈ EG, is defined to
be

(1.1) G/e = (HG − e,V ′

G, EG − e)

where V ′

G is the partition which is the same as VG except that in place of the parts Cv and
Cw for e = {ν−1(v), ν−1(w)}, V ′ has a single part (Cv ∪ Cw)− e.1

Likewise we define G/X, for X ⊆ G a (not necessarily connected) graph, to be the graph
obtained from G by contracting all internal edges of X ⊆ G.

Intuitively we can think of G/X as the graph resulting by shrinking all internal edges of
X to zero length:

(1.2) G/X = G|length(e)=0,e∈EX
.

This intuitive definition can be made into a precise definition if we add the notion of edge
lengths to our graphs, but doing so is not to the point at present.

1We often use − for the set difference, e.g. HG − e = HG \ e.
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Note that restricting VG to LG we also obtain a partition of LG into the sets LG∩ ν−1
G (v):2

LG = ∪̇v∈VG

(
LG ∩ ν−1

G (v)
)

︸ ︷︷ ︸

=:Lv

.

We let val(v) := |Cv| the degree or valence of v and eval(v) := |Lv| the number of external
edges at v, and ival(v) := val(v)− eval(v) the number of internal edges at v.

2Techincally we must discard any subsets which are now empty in order to obtain a partition.
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1.2. Cutkosky graphs. As we said above Cutkosky graphs are Feynman graphs with a
distinguished set of edges. To be more precise we first have to define cuts.

1.3. Cuts. Consider a bridgeless connected graph G. We have

1 = h0(G) = |G| − eG + vG.

If we want to cut G by removing edges, the Euler characteristic demands that we remove at
least two edges.

From a physicist’s viewpoint the cut edges can also be regarded as marked edges which
are put on-shell when we apply Feynman rules.

We will introduce the vector space HC generated by Cutkosky graphs, which are graphs
which have cuts generated by a removal of edges. The base graph G is also allowed to vary.

Example: cut graph, not Cutkosky:
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1.3.1. Refinements.

Definition 1.3. Given two partitions P and P ′ of a set S, we say P ′ is a refinement of P if
every part of P ′ is a subset of a part of P . Intuitively P ′ can be made from P by splitting
some parts. The set of all partitions of S with the refinement relation gives a lattice called
the partition lattice. The covering relation in this lattice is the special case of refinement
where exactly one part of P is split into two parts to give P ′.

We will need more than just the refinements of partitions as defined above. Given a
refinement P ′ of P it will often be useful that we additionally pick a maximal chain from
P to P ′ in the partition lattice. Concretely this means we keep track of a way to build P ′

from P by a linear sequence of steps, each of which splits exactly one part into two. Unless
otherwise specified our refinements always come with this sequence building them, and we
will let a j-refinement be such a refinement where the sequence P(i), 0 ≤ i ≤ j of partitions
has length j (including both ends). P(0) = S is the trivial partition.

We call a refinement maximal if it is a |S| − 1-refinement of a set S.
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1.3.2. Cuts. Let us now consider cuts. Ultimately we will utilize cuts which decompose a
graph G into a disjoint union

∪̇
k

i=1Gi,

of k graphs Gi which induce a k-partition of LG.
Such a cut can be obtained by removing edges from the graph. This means that a cut can

be obtained from refining EG.

Remark 1.4. Following physics parlance when we refine EG, quite generally the first step

giving two parts to LG is called a normal cut.

1.3.3. cut graphs.

Definition 1.5. A cut graph G is a pair of graphs ((HG,VG, EG), (HG,VG, EH)) on the same
half-edges HG such that EH refines EG, along with a maximal chain giving the refinement for
EH .

By abuse of notation the cut graph and the unrefined graph making it up have the same
name (G in the above). This is because for physics applications we want to regard the cut
graph as being the original G with the cut edges marked, so we view it as a decoration of
G, or as G with extra structure added. Sometimes we write (G,H) as shorthand for the two
graphs making up a cut graph.
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In view of this, it will also be useful to have the notation CG ⊂ EG for the edges which
are cut, that is for those edges in EG which are not edges in EH .

Note that (G,G) is a cut graph as the trivial refinement is a refinement. Given a cut

graph G = (G,H), let Ĝ := (G,G) be the trivial cut graph built on G.
To a cut graph G we can assign more graphs:

Definition 1.6. To a cut graph G = ((HG,VG, EG), (HG,VG, EH) we assign the amputated
graph

Ḡ = ((HG − LG, V̄G, ĒG), (HG − LG, V̄G, ĒH)

where for any partition P of HG, P̄ is the partition whose parts are the parts of P intersected
with HG − LG (with empty parts removed).

Ḡ is the pre-cut graph G with external edges removed.
Furthermore:

Definition 1.7. To a cut graph G = ((HG,VG, EG), (HG,VG, EH) we also assign the associ-
ated graph

G̃ = (HG,VG, EH)

The graph G̃ associated to a cut graph is the graph with the cuts done; it is the more
refined of the pair of graphs defining the pre-cut graph.
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Definition 1.8. For a cut graph G we set |G| := |Ĝ| and ||G|| := |G̃|.

By construction |G| ≡ |Ĝ|.
There is a h0(G̃)-partition LG(h0(G̃)) of LG. We have

LG(h0(G̃)) = G̃/EG̃,

which is a h0(G̃)-partition of the corolla Ĝ/EĜ.
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We want to restrict the notion of cut graph to the notion of Cutkosky graph. For that we
first need to discuss spanning forests.

1.4. Spanning Forests and Cutkosky graphs. To come to the notion of Cutkosky graphs
we first have to discuss spanning trees and spanning forests. In particular a maximal chain
of refinements of the set of external edges LG of a graph G can then be identified with the
removal of edges from a spanning tree in accordance with a chosen order of its edges.

1.4.1. Spanning trees and forests.

Definition 1.9. A spanning tree T = (HT ,VT , ET ) of a connected graph G = (HG,VG, EG)
is a connected subgraph T ⊆ G such that HT ⊆ HG, HT ∩ LG = ∅, VT = VG, which has no
cycles, i.e. is simply connected, vT − eT = 1.

Definition 1.10. A spanning k-forest F is similarly a disjoint union ∪̇
k

i=1Ti of k trees Ti ⊆ G,
such that ∪iVTi

= VG. Note |G| = |G/F | for any spanning forest F of G.

EF is the set of edges of F with cardinality eF =
∑

i eTi
. A spanning 1-forest is a spanning

tree.
Equivalently, a spanning k-forest is a spanning tree from which (k−1) edges are removed.
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Given a spanning k-forest F of a cut graph G, there are a number of different sets of edges
which will be important. First the edges e ∈ EF of the forest themselves are important.
Second are the edges e ∈ CG of G which are not in F but join distinct components of F .

If we view F as a spanning tree T with some edges removed then all the edges of T − F are
in this second class, as well, typically, as others.
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Third are the edges e ∈ (EG − ET ) of G which are not in F but have both ends in the
same tree of F .
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The second and third sets of edges above are those which will ultimately be put on-shell
and define the set Eon, while those in the first set remain off-shell whilst we will use the
notation ĔF for the second of the above sets of edges.

Definition 1.11. A Cutkosky graph G is a cut graph G for which a spanning forest F such
that CG = ĔF exists.

Compatibility ensures that the spanning forest is in accordance with the chosen refinements
EH .
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Note h0(G̃) = h0(F ) for a compatible F and note that an ordering of edges in a spanning
tree of a Cutkosky graph G induces a h0(vG − 1)-refinement of LG.
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We say that a spanning tree T of G with ordered edges is compatible with a given vG-
refinement R of LG if and only if the forests T −∐k

i=1ei induce the k + 1-partition of R.
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We let FR
G be the set of ordered spanning trees of a graph G compatible with a vG-

refinement R of LG . Note that if R = LG is the trivial partition, then FR
G = TG, the set of

spanning trees of G.
We finish our lecture with:

Definition 1.12. We define HC to be the Q-vectorspace generated by Cutkosky graphs.

Humboldt U. Berlin
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