FEYNMAN DIAGRAMS AND THE S-MATRIX, AND OUTER SPACE
(SUMMER 2020)

DIRK KREIMER (LECT. APRIL 29, 2020)

1. SETS OR EDGES

Given a spanning k-forest F' of a cut graph G, there are a number of different sets of edges
which will be important. First the edges e € Er of the forest themselves are important.

Second are the edges e € C¢ of G which are not in F' but join distinct components of F'.
If we view F' as a spanning tree T" with some edges removed then all the edges of T'— F are
in this second class, as well, typically, as others.

























































































































































































































































































































Third are the edges e € (Fg — Er) of G which are not in F' but have both ends in the
same tree of F'.

















































































































































































































































The second and third sets of edges above are those which will ultimately be put on-shell
and define the set E,,, while those in the first set remain off-shell whilst we will use the
notation Fr for the second of the above sets of edges.

Definition 1.1. A Cutkosky graph G is a cut graph G for which a compatible spanning
forest F' such that Cg = EF exists.
=

Compatibility ensures that the spanning forest is in accordance with the chosen refinements
Eu.









Note ho(G) = ho(F') for a compatible F' and note that an ordering of edges in a spanning
tree of a Cutkosky graph G induces a (vg — 1)-refinement of L.
















































































































































































































































































































We say that a spanning tree T" of G with ordered edges is compatible with a given (vg—1)-
refinement R of L¢ if and only if the forests T'— II¥_e; induce the k + 1-partition of R.



We let F& be the set of ordered spanning trees of a graph G compatible with a (vg — 1)-
refinement R of Lg . Note that if R = L is the trivial partition, then FZ = Tg, the set of
spanning trees of G.

Definition 1.2. For a Cutkosky graph G we let G4 := G /E¢ be the reduced graph It is
a collection of hy(G) corollas and hence a Cutkosky graph (GTed Gred) with Gre? = G/ Ep.

We call G the co-reduced graph.
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Definition 1.3. We define H¢ to be the Q-vectorspace generated by Cutkosky graphs.
Definition 1.4. We define H,,.. to be the Q-vectorspace generated by graphs without cuts.
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2. HOPF ALGEBRAS

We have to define two Hopf algebras H.,.. and H,.,. Both will co-act on Hy defined
above.

2.1. graph insertion and graph decomposition. Consider graphs f = (Hy,Vy, &f) and
g=(H,V,, &) (f can also be a Cutkosky graph, but g is uncut).
We define the insertion of g into f, first by specifying an insertion place and a suitable
bijection.
Assume [, > 3. Assume v € Vy such that val(v) = ;. Choose a bijection o between C,
and L,.
Define
f *vo g = (Hf*v,ag7 Vf*u,oﬂ’ gf*v,ag)’
where c
l[ Hf*'u,ag - (Hf - Cv)UHga
y Vf*v,ag = VQU(Vf - CU)’
(c/’f*mgg = ((c/’f — Uemcv;,g@e)UggUO'e, :&
where o, is the set of edges induced by the bijection o, each consisting of a half-edge in C, {l £

and a half-edge in L,. ;
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Now assume [, = 2. Choose e € E;. Choose one of the two possible bijections between
L, and the edge e regarded as a set of two half-edges.
Define

[ *eo g = (Hf*e,ug7 Vitengs gf*e,ug)7

Hp., .q = HfU(Hg SV/WV)a
Vf*e,crg = VgUVf,
gf*ﬁyag = <5f - 6)05900'6,
where o, is the set of two edges induced by the bijection o, each consisting of a half-edge in
e and a half-edge in L,.
Summing over vertices (for [, = 3) or edges (for [, = 2) and over bijections defines a map
f * g which gives a pre-Lie product on graphs

> nlg, f,G)G,

GEHCOTE

where n(g, f, G) counts the number of appearances of G in those sums. L R - X/k } 2

C; fC)A(QZ /'@""
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2.2. The core Hopf algebra H.,.. The core Hopf algebra H,.,. is based on the Q-
vectorspace generated by connected bridgeless Feynman graphs.
We define a commutative product

m: Hcore & Hcore — HCOT67 m<G17 GQ) = G10G27

by disjoint union. The unit I is provided by the empty set so that we get a free commutative
Q-algebra with bridgeless graphs as generators.

We define a co-product by A gt (é (- Q' Coc
Acore(G>:G®H+]I®G+Zg®G/ga T
ggGF:I_ ﬁ

where the sum is over all ¢ € H,,,. such that ¢ C G—Hencethere are bridgeless graphs g;
such that g = U;g;, and G /g denotes the co-graph in which all internal edges of all g; shrink
to zero length in G.

We have a co-unit I : H.ore — Q which annihilates any non-empty graph and ]I =1and

we have the antipode S : Hepre — Heore, S(I) =1
S(G):_G_ZS(9>G/9- /@ ,6/

Furthermore our Hopf algebras are graded,

HCO’/‘E - @Oo Hc(m)"eﬂ Hc(gze = @H Augcore - @OO Hc(g)re’

9cG
and h € Higpe < [b] = j. — - /@@







































































































































































































































































































































































































We define structure coefficients n(g, G/g, G) € Ny by setting
Acore(G) = Zn<ga G/g7 G g G/g

g
We can then define x: Hopre @ Hepre — Heore.

(21) G1 *GQ = Z

GGHCOTC

n(Gg, Gl, G)

G.
Glo

Here, o

|G|y = {F € Heore|F = G}, o
is the number of graphs F' which have the same amputated graph G = F' as G. That is |G|,
is the number of different ways of attaching an ordered set of exernal edges to the amputated

graph of G. Note that this number is finite as l¢ < lg, + lg, and we assume lg,, g, < 0.
We have Hs = H; — Lg, Hp = Hp — Ly

o0
S S
oG -6,
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Lemma 2.1. The map * is pre-Lie.

Proof. Known.

?«ﬁi R /JJ {ﬁ(ﬂb
M — (o ves
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This Hopf algebra has an extension operating on pairs (G, F') of a graph G and a spanning
forest F'.

Let F¢ be the set of all spanning forests of G. The empty graph I has an empty spanning
forest also denoted by 1.

We define a Q-Hopf algebra Hgp for such pairs (G, F), F' € Fg by setting
Agr(G,F) = (G, F)e L)+ (LI)® (G, F)+
(2.2) + Y (9.9NF)®(G/g.F - (Fny)).

9GG
Ff(Fr‘lg)G}_G/g

; Note that the condition F' — (F' N g) € Fg/4 ensures that only terms contribute such that
G /g has a valid spanning forest.
For the corresponding reduced co-pruduct we have

(2.3) Aer(G.F)=+ Y (9,9nF)®(G/g,F - (Fny)),

9GG
F—(FN9)EFG /g

—_——
We define the commutative product to be
mar((G1, F1), (G, F2)) = (G1UGs, F{UE),
{_F_—‘\

— ~
whilst Igr = (I, I) serves as the obvious unit which induces a co-unit through lgp(Igr) =1

and Ior((G, F)) = 0. ‘

Theorem 2.2. This is a graded commutative bi-algebra graded by |G| and therefore a Hopf
algebra Har(lar, lar, mar, Agr, Scr).

oo ) i 7(0) _ oo ) G)
We have Hop = ©320Hgp with Hyp ~ Qlgr and Auggr = @2, Hp. (G, F) € Hp <

Gl =J.
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2.3. The renormalization Hopf algebra H,.,. This is a quotient Hopf algebra of H,,..
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2.4. The vectorspace Ho. Consider a Cutkosky graph GG with a corresponding vg-refinement
P of its set of external edges Lg. It is a maximal refinement of V.

The core Hopf algebra co-acts on the vector-space of Cutkosky graphs He.
(24) Acore : HC — Hcore ® HC-
We say G € H((;n) < |G| = n and define Aute = @j’ilH(Ci).

( (¢
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Note that the sub-vectorspace Hg)) is rather large: it contains all graphs G = ((Hg, Vg, ), (Ha, Ve, Ex))
He such that ||G|| = 0. These are the graphs where the cuts leave no loop intact.

For any G € H¢ there exists a largest integer core(G) > 0 such that
Acorc(G) (G) ?é 07 AcorC(G)(G) : HC N H®COT‘C(G) ® ]{g))7

core core core

whilst AZr¢ (@) =o.
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Proposition 2.3.
corc(G) = ||G].

Proof. The primitives of H,,.. are one-loop graphs. O
In particular there is a unique element ¢ ® G/g € Hepre ® H g) ).

Beore(G) O (Heare @ HY') = g G/,

with |g| = [|G]].

For any graph G we let G = ;.. (G,T). Here T¢ is the set of all spanning trees of GG
and we set for G = U;G;, To = U Tg,.

The maximal refinement P induces for each partition P(7),0 < i < vg a unique spanning
forest f; of G/g. The set Fg p(;) of spanning forests of G' compatible with P(i) is then
determined by f; and the spanning trees in 7.

Define G, := ZFG}—G,P@)(G’ F).
(2:5) Al =Y 6P @@ G,

%
i=1

Note that |GF| = 1, V& < (]|G]| + 1) and |G/“H!| = 0.
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