FEYNMAN DIAGRAMS AND THE S-MATRIX, AND OUTER SPACE (SUMMER 2020)

DIRK KREIMER (LECT. APRIL 29, 2020)

1. Sets or edges

Given a spanning k-forest F of a cut graph G, there are a number of different sets of edges which will be important. First the edges $e \in E_F$ of the forest themselves are important.

Second are the edges $e \in C_G$ of G which are not in F but join distinct components of F. If we view F as a spanning tree T with some edges removed then all the edges of T - F are in this second class, as well, typically, as others.

Third are the edges $e \in (E_G - E_T)$ of G which are not in F but have both ends in the same tree of F.

 $C = \{1, 2, 3\}$ EFEG V F

The second and third sets of edges above are those which will ultimately be put on-shell and define the set E_{on} , while those in the first set remain off-shell whilst we will use the notation \check{E}_F for the second of the above sets of edges.

Definition 1.1. A Cutkosky graph G is a cut graph G for which a compatible spanning forest F such that $C_G = \check{E}_F$ exists.

Compatibility ensures that the spanning forest is in accordance with the chosen refinements \mathcal{E}_{H} .

Note $h_0(\tilde{G}) = h_0(F)$ for a compatible F and note that an ordering of edges in a spanning tree of a Cutkosky graph G induces a $(v_G - 1)$ -refinement of L_G .

We say that a spanning tree T of G with ordered edges is compatible with a given $(v_G - 1)$ refinement R of L_G if and only if the forests $T - \coprod_{i=1}^k e_i$ induce the k + 1-partition of R.

We let \mathcal{F}_G^R be the set of ordered spanning trees of a graph G compatible with a $(v_G - 1)$ -refinement R of L_G . Note that if $R = L_G$ is the trivial partition, then $\mathcal{F}_G^R = \mathcal{T}_G$, the set of spanning trees of G.

Definition 1.2. For a Cutkosky graph G we let $G^{red} := \tilde{G}/E_{\tilde{G}}$ be the reduced graph. It is a collection of $h_0(\tilde{G})$ corollas and hence a Cutkosky graph (\hat{G}^{red}, G^{red}) with $\hat{G}^{red} = \hat{G}/E_{\tilde{G}}$.

We call \tilde{G} the co-reduced graph.

Definition 1.3. We define H_C to be the \mathbb{Q} -vectorspace generated by Cutkosky graphs. **Definition 1.4.** We define H_{core} to be the \mathbb{Q} -vectorspace generated by graphs without cuts.

2. Hopf algebras

We have to define two Hopf algebras H_{core} and H_{ren} . Both will co-act on H_C defined above.

2.1. graph insertion and graph decomposition. Consider graphs $f = (H_f, \mathcal{V}_f, \mathcal{E}_f)$ and $g = (H_g, \mathcal{V}_g, \mathcal{E}_g)$ (f can also be a Cutkosky graph, but g is uncut).

We define the insertion of g into f, first by specifying an insertion place and a suitable bijection.

Assume $l_g \geq 3$. Assume $v \in V_f$ such that $\operatorname{val}(v) = l_g$. Choose a bijection σ between C_v and L_g .

Define

where

$$f *_{v,\sigma} g = (H_{f*_{v,\sigma}g}, \mathcal{V}_{f*_{v,\sigma}g}, \mathcal{E}_{f*_{v,\sigma}g}),$$

$$H_{f*_{v,\sigma}g} = (H_f - C_v) \dot{\cup} H_g,$$

$$\mathcal{V}_{f*_{v,\sigma}g} = \mathcal{V}_g \dot{\cup} (\mathcal{V}_f - C_v),$$

$$\mathcal{E}_{f*_{v,\sigma}g} = (\mathcal{E}_f - \dot{\cup}_{e \cap C_v \neq \emptyset} e) \dot{\cup} \mathcal{E}_g \dot{\cup} \sigma_e,$$

 $\mathcal{E}_{f*_{v,\sigma}g} = (\mathcal{E}_f - \bigcup_{e \cap C_v \neq \emptyset} e) \cup \mathcal{E}_g \cup \sigma_e,$ where σ_e is the set of edges induced by the bijection σ , each consisting of a half-edge in C_v $\bigcap f$ and a half-edge in L_q .

Now assume $l_g = 2$. Choose $e \in E_f$. Choose one of the two possible bijections between L_g and the edge e regarded as a set of two half-edges.

Define

$$f *_{e,\sigma} g = (H_{f*_{e,\sigma}g}, \mathcal{V}_{f*_{e,\sigma}g}, \mathcal{E}_{f*_{e,\sigma}g})$$

where

$$\begin{split} H_{f*_{e,\sigma}g} &= H_f \dot{\cup} (H_g \checkmark \psi), \\ \mathcal{V}_{f*_{e,\sigma}g} &= \mathcal{V}_g \dot{\cup} \mathcal{V}_f, \\ \mathcal{E}_{f*_{e,\sigma}g} &= (\mathcal{E}_f - e) \dot{\cup} \mathcal{E}_g \dot{\cup} \sigma_e, \end{split}$$

where σ_e is the set of two edges induced by the bijection σ , each consisting of a half-edge in e and a half-edge in L_g .

Summing over vertices (for $l_g = 3$) or edges (for $l_g = 2$) and over bijections defines a map $f \star g$ which gives a pre-Lie product on graphs

Хz

, 8 2 1

a2, e)

$$f * g = \sum_{G \in H_{core}} n(g, f, G)G,$$

where n(g, f, G) counts the number of appearances of G in those sums.

1

20 m, 4, 2

0=

2

Ex: Basically, this is already meeting. $(6 \times 6) \times 6 - 6 \times (6 \times 6)$ = (6, * 6,) * 6, - 6, * (6, * 6)"v"-lie" woduct (6, * 6,) - (6, * 6) = (6, 6) - (6, - 0) = (6, -0) = (6, -0) $Z_{q_1}([6, 6_2], 6_3] = \int_{a_1 \circ b_1}^{a_2 \circ b_2} J_{a_1 \circ b_2}$

2.2. The core Hopf algebra H_{core} . The core Hopf algebra H_{core} is based on the \mathbb{Q} -vectorspace generated by connected bridgeless Feynman graphs.

We define a commutative product

$$m: H_{core} \otimes H_{core} \to H_{core}, \ m(G_1, G_2) = G_1 \dot{\cup} G_2,$$

by disjoint union. The unit \mathbb{I} is provided by the empty set so that we get a free commutative \mathbb{Q} -algebra with bridgeless graphs as generators.

We define a co-product by

$$\Delta_{core}(G) = G \otimes \mathbb{I} + \mathbb{I} \otimes G + \sum_{g \subsetneq G} g \otimes G/g,$$

where the sum is over all $g \in H_{core}$ such that $g \subsetneq G$. Hence there are bridgeless graphs g_i such that $g = \dot{\cup}_i g_i$, and G/g denotes the co-graph in which all internal edges of all g_i shrink to zero length in G.

We have a co-unit $\hat{\mathbb{I}} : H_{core} \to \mathbb{Q}$ which annihilates any non-empty graph and $\hat{\mathbb{I}}(\mathbb{I}) = 1$ and we have the antipode $S : H_{core} \to H_{core}, S(\mathbb{I}) = \mathbb{I}$

$$S(G) = -G - \sum_{g \subsetneq G} S(g)G/g.$$

Furthermore our Hopf algebras are graded,

$$H_{core} = \bigoplus_{j=0}^{\infty} H_{core}^{(j)}, \ H_{core}^{(0)} \cong \mathbb{QI}, \ \operatorname{Aug}_{core} = \bigoplus_{j=1}^{\infty} H_{core}^{(j)}$$
$$h| = j.$$

and
$$h \in H_{core}^{(j)} \Leftrightarrow |h| = j$$

We define structure coefficients $n(g, G/g, G) \in \mathbb{N}_0$ by setting

$$\Delta_{core}(G) = \sum_{g} n(g, G/g, G) \left(g \otimes G/g. \right)$$

We can then define $\star: H_{core} \otimes H_{core} \rightarrow H_{core}.$

(2.1)
$$G_1 \star G_2 := \sum_{G \in H_{core}} \frac{n(G_2, G_1, G)}{|G|_v} G_1$$

Here,

$$|G|_v := |\{F \in H_{core} | \bar{F} = \bar{G}\}|_{t}$$

is the number of graphs F which have the same amputated graph $\overline{G} = \overline{F}$ as G. That is $|G|_v$ is the number of different ways of attaching an ordered set of exernal edges to the amputated graph of G. Note that this number is finite as $l_G \leq l_{G_1} + l_{G_2}$ and we assume $l_{G_1}, l_{G_2} \leq \infty$. We have $H_{\overline{G}} = H_G - L_G, H_{\overline{F}} = H_F - L_F$

Lemma 2.1. The map \star is pre-Lie.

Proof. Known.

Proof in do fip Ka Connes

This Hopf algebra has an extension operating on pairs (G, F) of a graph G and a spanning forest F.

Let \mathcal{F}_G be the set of all spanning forests of G. The empty graph \mathbb{I} has an empty spanning forest also denoted by \mathbb{I} .

We define a Q-Hopf algebra H_{GF} for such pairs $(G, F), F \in \mathcal{F}_G$ by setting

(2.2)
$$\Delta_{GF}(G,F) = (G,F) \otimes (\mathbb{I},\mathbb{I}) + (\mathbb{I},\mathbb{I}) \otimes (G,F) + \sum_{\substack{g \subseteq G \\ F - (F \cap g) \in \mathcal{F}_{G/g}}} (g,g \cap F) \otimes (G/g,F - (F \cap g)).$$

Note that the condition $F - (F \cap g) \in \mathcal{F}_{G/g}$ ensures that only terms contribute such that G/g has a valid spanning forest.

For the corresponding reduced co-pruduct we have

(2.3)
$$\tilde{\Delta}_{GF}(G,F) = + \sum_{\substack{g \subseteq G \\ F - (F \cap g) \in \mathcal{F}_{G/g}}} (g,g \cap F) \otimes (G/g,F - (F \cap g))$$

We define the commutative product to be

$$m_{GF}((G_1, F_1), (G_2, F_2)) = (G_1 \dot{\cup} G_2, F_1 \dot{\cup} F_2),$$

whilst $\mathbb{I}_{GF} = (\mathbb{I}, \mathbb{I})$ serves as the obvious unit which induces a co-unit through $\hat{\mathbb{I}}_{GF}(\mathbb{I}_{GF}) = 1$ and $\hat{\mathbb{I}}_{GF}((G, F)) = 0$.

Theorem 2.2. This is a graded commutative bi-algebra graded by |G| and therefore a Hopf algebra $H_{GF}(\mathbb{I}_{GF}, \hat{\mathbb{I}}_{GF}, m_{GF}, \Delta_{GF}, S_{GF})$.

We have $H_{GF} = \bigoplus_{j=0}^{\infty} H_{GF}^{(j)}$ with $H_{GF}^{(0)} \sim \mathbb{QI}_{GF}$ and $\operatorname{Aug}_{GF} = \bigoplus_{j=1}^{\infty} H_{GF}^{(j)}$. $(G, F) \in H_{GF}^{(j)} \Leftrightarrow |G| = j$.

Ex:

2.3. The renormalization Hopf algebra H_{ren} . This is a quotient Hopf algebra of H_{core} .

 $X_{COX} G = Z_{Q} \otimes G/Q$ y & 6/8 Z J46 Jpen $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$

2.4. The vectorspace H_C . Consider a Cutkosky graph G with a corresponding v_G -refinement P of its set of external edges L_G . It is a maximal refinement of V_G .

The core Hopf algebra co-acts on the vector-space of Cutkosky graphs H_C .

$$(2.4) \qquad \qquad \Delta_{core} : H_C \to H_{core} \otimes H_C.$$

We say $G \in H_C^{(n)} \Leftrightarrow |G| = n$ and define $\operatorname{Aut}_C = \bigoplus_{i=1}^{\infty} H_C^{(i)}$.

Note that the sub-vector space $H_C^{(0)}$ is rather large: it contains all graphs $G = ((H_G, \mathcal{V}_G, \mathcal{E}_G), (H_G, \mathcal{V}_G, \mathcal{E}_H))$ H_C such that ||G|| = 0. These are the graphs where the cuts leave no loop intact. For any $G \in H_C$ there exists a largest integer $\operatorname{cor}_C(G) \ge 0$ such that

 $\tilde{\Delta}_{core}^{\operatorname{cor}_C(G)}(G) \neq 0, \ \tilde{\Delta}_{core}^{\operatorname{cor}_C(G)}(G) : H_C \to H_{core}^{\otimes cor_C(G)} \otimes H_C^{(0)},$

whilst $\tilde{\Delta}_{core}^{\operatorname{cor}_C(G)+1}(G) = 0.$

Proposition 2.3.

$$\operatorname{cor}_C(G) = ||G||$$

Proof. The primitives of H_{core} are one-loop graphs.

In particular there is a unique element $g \otimes G/g \in H_{core} \otimes H_C^{(0)}$:

$$\Delta_{core}(G) \cap \left(H_{core} \otimes H_C^{(0)}\right) = g \otimes G/g,$$

with |g| = ||G||.

For any graph G we let $\mathbf{G} = \sum_{T \in \mathcal{T}_G} (G, T)$. Here \mathcal{T}_G is the set of all spanning trees of G and we set for $G = \dot{\cup}_i G_i$, $\mathcal{T}_G = \dot{\cup}_i \mathcal{T}_{G_i}$.

The maximal refinement P induces for each partition $P(i), 0 \leq i \leq v_G$ a unique spanning forest f_i of G/g. The set $\mathcal{F}_{G,P(i)}$ of spanning forests of G compatible with P(i) is then determined by f_i and the spanning trees in \mathcal{T}_g .

Define $\mathbf{G}_i := \sum_{F \in \mathcal{F}_{G,P(i)}} (G, F).$

(2.5)
$$\tilde{\Delta}_{G,F}^{||G||}\mathbf{G}_{i} = \sum_{i=1}^{I} \mathbf{G}_{i}^{(1)} \otimes \cdots \otimes \mathbf{G}_{i}^{(||G||+1)}.$$

Note that $|\mathbf{G}_i^k| = 1, \forall k \leq (||G|| + 1)$ and $|\mathbf{G}_i^{||G||+1}| = 0$.

Humboldt U. Berlin