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1. Sets or edges

Given a spanning k-forest F of a cut graph G, there are a number of different sets of edges
which will be important. First the edges e ∈ EF of the forest themselves are important.

Second are the edges e ∈ CG of G which are not in F but join distinct components of F .
If we view F as a spanning tree T with some edges removed then all the edges of T − F are
in this second class, as well, typically, as others.
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Third are the edges e ∈ (EG − ET ) of G which are not in F but have both ends in the
same tree of F .
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The second and third sets of edges above are those which will ultimately be put on-shell
and define the set Eon, while those in the first set remain off-shell whilst we will use the
notation ĔF for the second of the above sets of edges.

Definition 1.1. A Cutkosky graph G is a cut graph G for which a compatible spanning
forest F such that CG = ĔF exists.

Compatibility ensures that the spanning forest is in accordance with the chosen refinements
EH .
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Note h0(G̃) = h0(F ) for a compatible F and note that an ordering of edges in a spanning
tree of a Cutkosky graph G induces a (vG − 1)-refinement of LG.
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We say that a spanning tree T of G with ordered edges is compatible with a given (vG−1)-
refinement R of LG if and only if the forests T −qki=1ei induce the k + 1-partition of R.
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We let FRG be the set of ordered spanning trees of a graph G compatible with a (vG − 1)-
refinement R of LG . Note that if R = LG is the trivial partition, then FRG = TG, the set of
spanning trees of G.

Definition 1.2. For a Cutkosky graph G we let Gred := G̃/EG̃ be the reduced graph. It is

a collection of h0(G̃) corollas and hence a Cutkosky graph (Ĝred, Gred) with Ĝred = Ĝ/EG̃.

We call G̃ the co-reduced graph.
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Definition 1.3. We define HC to be the Q-vectorspace generated by Cutkosky graphs.

Definition 1.4. We define Hcore to be the Q-vectorspace generated by graphs without cuts.
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2. Hopf algebras

We have to define two Hopf algebras Hcore and Hren. Both will co-act on HC defined
above.

2.1. graph insertion and graph decomposition. Consider graphs f = (Hf ,Vf , Ef ) and
g = (Hg,Vg, Eg) (f can also be a Cutkosky graph, but g is uncut).

We define the insertion of g into f , first by specifying an insertion place and a suitable
bijection.

Assume lg ≥ 3. Assume v ∈ Vf such that val(v) = lg. Choose a bijection σ between Cv
and Lg.

Define
f ∗v,σ g = (Hf∗v,σg,Vf∗v,σg, Ef∗v,σg),

where
Hf∗v,σg = (Hf − Cv)∪̇Hg,

Vf∗v,σg = Vg∪̇(Vf − Cv),
Ef∗v,σg = (Ef − ∪̇e∩Cv 6=∅e)∪̇Eg∪̇σe,

where σe is the set of edges induced by the bijection σ, each consisting of a half-edge in Cv
and a half-edge in Lg.
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Now assume lg = 2. Choose e ∈ Ef . Choose one of the two possible bijections between
Lg and the edge e regarded as a set of two half-edges.

Define
f ∗e,σ g = (Hf∗e,σg,Vf∗e,σg, Ef∗e,σg),

where
Hf∗e,σg = Hf ∪̇(Hg − Lg),
Vf∗e,σg = Vg∪̇Vf ,

Ef∗e,σg = (Ef − e)∪̇Eg∪̇σe,
where σe is the set of two edges induced by the bijection σ, each consisting of a half-edge in
e and a half-edge in Lg.

Summing over vertices (for lg = 3) or edges (for lg = 2) and over bijections defines a map
f ? g which gives a pre-Lie product on graphs

f ∗ g =
∑

G∈Hcore

n(g, f,G)G,

where n(g, f,G) counts the number of appearances of G in those sums.
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Ex:

10
























































































































































































































































































































































































































































































































2.2. The core Hopf algebra Hcore. The core Hopf algebra Hcore is based on the Q-
vectorspace generated by connected bridgeless Feynman graphs.

We define a commutative product

m : Hcore ⊗Hcore → Hcore, m(G1, G2) = G1∪̇G2,

by disjoint union. The unit I is provided by the empty set so that we get a free commutative
Q-algebra with bridgeless graphs as generators.

We define a co-product by

∆core(G) = G⊗ I+ I⊗G+
∑
g(G

g ⊗G/g,

where the sum is over all g ∈ Hcore such that g ( G. Hence there are bridgeless graphs gi
such that g = ∪̇igi, and G/g denotes the co-graph in which all internal edges of all gi shrink
to zero length in G.

We have a co-unit Î : Hcore → Q which annihilates any non-empty graph and Î(I) = 1 and
we have the antipode S : Hcore → Hcore, S(I) = I

S(G) = −G−
∑
g(G

S(g)G/g.

Furthermore our Hopf algebras are graded,

Hcore = ⊕∞j=0H
(j)
core, H

(0)
core
∼= QI, Augcore = ⊕∞j=1H

(j)
core,

and h ∈ H(j)
core ⇔ |h| = j.
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We define structure coefficients n(g,G/g,G) ∈ N0 by setting

∆core(G) =
∑
g

n(g,G/g,G) g ⊗G/g.

We can then define ? : Hcore ⊗Hcore → Hcore.

(2.1) G1 ? G2 :=
∑

G∈Hcore

n(G2, G1, G)

|G|v
G.

Here,
|G|v := |{F ∈ Hcore|F̄ = Ḡ}|,

is the number of graphs F which have the same amputated graph Ḡ = F̄ as G. That is |G|v
is the number of different ways of attaching an ordered set of exernal edges to the amputated
graph of G. Note that this number is finite as lG � lG1 + lG2 and we assume lG1 , lG2 � ∞.
We have HḠ = HG − LG, HF̄ = HF − LF
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Lemma 2.1. The map ? is pre-Lie.

Proof. Known. �
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This Hopf algebra has an extension operating on pairs (G,F ) of a graph G and a spanning
forest F .

Let FG be the set of all spanning forests of G. The empty graph I has an empty spanning
forest also denoted by I.

We define a Q-Hopf algebra HGF for such pairs (G,F ), F ∈ FG by setting

∆GF (G,F ) = (G,F )⊗ (I, I) + (I, I)⊗ (G,F ) +

+
∑
g(G

F−(F∩g)∈FG/g

(g, g ∩ F )⊗ (G/g, F − (F ∩ g)).(2.2)

Note that the condition F − (F ∩ g) ∈ FG/g ensures that only terms contribute such that
G/g has a valid spanning forest.

For the corresponding reduced co-pruduct we have

(2.3) ∆̃GF (G,F ) = +
∑
g(G

F−(F∩g)∈FG/g

(g, g ∩ F )⊗ (G/g, F − (F ∩ g)),

We define the commutative product to be

mGF ((G1, F1), (G2, F2)) = (G1∪̇G2, F1∪̇F2),

whilst IGF = (I, I) serves as the obvious unit which induces a co-unit through ÎGF (IGF ) = 1

and ÎGF ((G,F )) = 0.

Theorem 2.2. This is a graded commutative bi-algebra graded by |G| and therefore a Hopf

algebra HGF (IGF , ÎGF ,mGF ,∆GF , SGF ).

We have HGF = ⊕∞j=0H
(j)
GF with H

(0)
GF ∼ QIGF and AugGF = ⊕∞j=1H

(j)
GF . (G,F ) ∈ H(j)

GF ⇔
|G| = j.
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Ex:
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2.3. The renormalization Hopf algebra Hren. This is a quotient Hopf algebra of Hcore.
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2.4. The vectorspace HC. Consider a Cutkosky graphG with a corresponding vG-refinement
P of its set of external edges LG. It is a maximal refinement of VG.

The core Hopf algebra co-acts on the vector-space of Cutkosky graphs HC .

(2.4) ∆core : HC → Hcore ⊗HC .

We say G ∈ H(n)
C ⇔ |G| = n and define AutC = ⊕∞i=1H

(i)
C .
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Note that the sub-vectorspaceH
(0)
C is rather large: it contains all graphsG = ((HG,VG, EG), (HG,VG, EH)) ∈

HC such that ||G|| = 0. These are the graphs where the cuts leave no loop intact.
For any G ∈ HC there exists a largest integer corC(G) ≥ 0 such that

∆̃corC(G)
core (G) 6= 0, ∆̃corC(G)

core (G) : HC → H⊗corC(G)
core ⊗H(0)

C ,

whilst ∆̃
corC(G)+1
core (G) = 0.
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Proposition 2.3.
corC(G) = ||G||.

Proof. The primitives of Hcore are one-loop graphs. �

In particular there is a unique element g ⊗G/g ∈ Hcore ⊗H(0)
C :

∆core(G) ∩
(
Hcore ⊗H(0)

C

)
= g ⊗G/g,

with |g| = ||G||.
For any graph G we let G =

∑
T∈TG(G, T ). Here TG is the set of all spanning trees of G

and we set for G = ∪̇iGi, TG = ∪̇iTGi .
The maximal refinement P induces for each partition P (i), 0 ≤ i ≤ vG a unique spanning

forest fi of G/g. The set FG,P (i) of spanning forests of G compatible with P (i) is then
determined by fi and the spanning trees in Tg.

Define Gi :=
∑

F∈FG,P (i)
(G,F ).

(2.5) ∆̃
||G||
G,FGi =

∑
i=1

G
(1)
i ⊗ · · · ⊗G

(||G||+1)
i .

Note that |Gk
i | = 1, ∀k � (||G||+ 1) and |G||G||+1

i | = 0.
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