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Abstract

We study graphical functions as defined by Oliver Schnetz and derive an alternative
integral representation. Following a brief overview over the physical and mathe-
matical background we introduce all the graph theoretical tools that will be made
use of. We then review graphical functions in their original definition, their prop-
erties and applications in physics and mathematics. The main result is a detailed
derivation of an integral representation of graphical functions in analogy to the well
known Feynman parameter integrals from quantum field theory. Using the proper-
ties of this new integral representation we then go on to prove two new results in the
theory of graphical functions and give an alternative proof of an identity originally
due to Schnetz. Additionally we note that the new parametric integral represen-
tation makes graphical functions potentially susceptible to the iterated integration
algorithm developed by Brown and implemented in Erik Panzer’s HyperInt. We
present many results for certain concrete graphical functions obtained with Panzer’s
program.

Zusammenfassung

Wir untersuchen die von Oliver Schnetz definierten graphischen Funktionen und lei-
ten eine alternative Integraldarstellung her. Nach einer kurzen Übersicht über den
physikalischen und mathematischen Hintergrund führen wir alle graphentheoreti-
schen Werkzeuge ein, die später benutzt werden. Danach besprechen wir graphische
Funktionen in ihrer ursprünglichen Definition, ihre Eigenschaften, sowie Anwen-
dungen in Physik und Mathematik. Das Hauptergebnis ist eine detaillierte Herlei-
tung einer Integraldarstellung graphischer Funktionen in Analogie zu den bekannten
Feynman Parameterintegralen aus der Quantenfeldtheorie. Unter Benutzung der Ei-
genschaften dieser neuen Integraldarstellung beweisen wir zwei neue Ergebnisse in
der Theorie der graphischen Funktionen und geben einen alternativen Beweis für
eine zuvor von Schnetz bewiesene Identität. Zusätzlich bemerken wir, dass die neue
parametrische Darstellung potentiell ermöglicht graphische Funktionen mit Browns
Algorithmus zur iterierten Integration, der von Erik Panzer in HyperInt implemen-
tiert wurde, zu behandeln. Wir präsentieren zahlreiche Ergebnisse die mit Panzers
Programm für gewisse graphische Funktionen erhalten werden konnten.
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yōgā vē bhūri jāyati
ayōgā bhūrisaṅkhayō
bhavāya vibhavāya ca
ētām. dvēdhā patham. ñatvā
yathā bhūri pavad. d. hati
tathā attānam. nivēsēyya

From endeavour wisdom springs,
lacking effort wisdom wanes:
having known this two-fold path
either to progress or decline
so should one exhort oneself
that wisdom may increase.

Siddhārta Gautama
Dhammapada, Ch. XX, Verse 282





Chapter 1

Introduction

1.1 Background

1.1.1 Quantum field theory and Feynman integrals
Quantum field theories are the framework in which physicists describe subatomic
particles and their interactions. The goal is to make predictions in the form of
scattering probabilities that can be compared with measurements at modern particle
accelerators like the LHC. The way from some first principles (the Wightman axioms
[44]) to actual natural phenomena is long and laborious and here we will only give
a very brief summary of the most important steps. For details we refer to the
multitude of textbooks, e.g. [22].

From Lagrangians to amplitudes. A field theory is given by its Lagrangian
(density), for example in φ4 theory1

Lφ4 = 1
2
(
(∂µφ)(∂µφ)−m2φ2

)
− g

4!φ
4, (1.1)

which typically depends on the fields that appear in that particular theory and their
derivatives, as well as parameters like the mass m and coupling g. The ’quantum’
enters the stage through a quantization process, for example by imposing equal time
commutation relations on the fields in canonical quantization. Computing the afore-
mentioned scattering probabilities then essentially boils down to the computation
of vacuum expectation values of certain time-ordered products of fields. However,
actually performing these computations in practice is highly non-trivial and has in
one way or another been the main occupation of theoretical high-energy physicists
for the better part of a century. By far the most used method is the perturbative
approach in which one assumes that the coupling constant (g in the example La-
grangian above) is sufficiently small to justify an expansion in a power series. The
result is an infinite series in the coupling constant, whose coefficients are certain
integrals (except for the first ’tree-level’ term). Since the integrals quickly become
more numerous and more complicated in higher orders, one has to cut off that series

1φ4 theory and ’scalar theories’ in general are typically used as pedagogical examples because
they are the least complicated QFTs, conceptually as well as notationally. While they are not
themselves ’physical’, there are ways to reduce integrals arising in physical theories like quantum
electrodynamics to scalar master integrals (e.g. the Passarino-Veltman algorithm [31]), so they are
not only important in teaching but also in research.
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at some finite order and be content with an approximate result. Extraordinary pre-
cision in modern high energy experiments necessitates that theoreticians compute
coefficients at higher and higher orders, often approaching, sometimes extending
the very boundaries of current mathematical knowledge. Before we elaborate on
that last point, we have to clarify the nature of the coefficients in the perturbation
expansion.

Feynman rules and diagrams As mentioned above, the coefficients in a pertur-
bation expansion are integrals. Most commonly one uses momentum space, in which
a general scalar dimensionally regularized Euclidean Feynman integral has the form

I =
∫ L∏

l=1
dDkl

1
(k2
l +m2)al

V∏
v=1

δD
(
Pv −

L∑
l=1

εvlkl

)
. (1.2)

Here, Pv are external momenta, i.e. the momenta of interacting particles. The
kl are internal momenta, i.e. the momenta of virtual particles that can appear in
an interaction (and εvl = ±1, indicating incoming our outgoing momenta). Since
none of them can be observed, one has to integrate over all possible values of their
momenta and the delta function guarantees conservation of momentum.

Remark 1.1.1. Convergence of these integrals is not guaranteed, so one often has
to first regularize and then renormalize the integral. In this thesis we will need
neither of them, but the interested reader may find the book [16] useful. Moreover,
we directly write the integral in a Euclidean space, not in physical Minkowski space.
This is done by analytically continuing the time parameter to imaginary values, see
’Wick rotation’ in any textbook on quantum field theory.

Richard Feynman invented mnemonics, called Feynman rules - that assign to
each part of such an integral a part of a diagram. This not only nicely illustrates
the physical processes but also allows the study of the integrals with the tools of
graph theory. Nowadays the process is typically reversed and one starts by drawing
all non-isomorphic diagrams2 for a given order in the expansion (= number of inte-
grations left after integrating the momentum conserving delta functions = number
of independent loops of the graph = first Betti number h1 of the graph). Then one
translates diagrams to integrals, for example again in a scalar theory one gets a
propagator for each edge

1
q2 +m2 ←→

q

where the momenta q may be sums of internal and external momenta p + k. Then
one integrates each independent internal momentum with

∫
RD

dDk
(2π)D .

While the momentum space integral is the usual way to write Feynman integrals,
there are other integral representations that can be useful (see fig. 1.1). In position
space, which is related to momentum space via Fourier transformation, propagators
are not given by momentum flowing through edges but by the positions of the

2Not all graphs are possible. For instance in φ4 theory only 4-valent vertices are allowed, while
diagrams in quantum electro dynamics may only have 3-valent vertices with one photon and two
electron lines. Furthermore one only considers 2-edge-connected (’one-particle irreducible’) graphs.
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vertices the edge connects. For example, in a scalar and massless theory

1
(x1 − x2)2 ←→ x1 x2

The titular graphical functions are basically special cases, or rather special inter-
pretations, of position space Feynman integrals of such massless scalar theories.
The other part of the title of this thesis refers to another possible representation of
Feynman integrals. Momentum space integrals can be transformed to parametric
integrals by the Schwinger trick which consists of replacing all propagators with

1
q2 +m2 =

∫ ∞
0

e−α(q2+m2)dα (1.3)

and then executing the momentum integrals, which have become simple Gaussians.
Position space integrals can be transformed analogously and the majority of chapter
2 will be concerned with the application of a more general version of this trick
to graphical functions. The parametric analogue of the Fourier transform is the
Cremona transform, in this case simply an inversion of each parameter αi → α−1

i .

Parametric integrals have many properties that make them useful. The integration
variables are simple abstract parameters instead of physical momentum vectors.
Moreover, they occur in polynomials that are themselves very interesting objects
and will be introduced in section 1.2.3. Finally it is possible to rewrite a parametric
integral projectively, which makes them well-suited to be treated with the toolbox
of algebraic geometry.

momentum space

position space

parametric space

dual parametric space

Fourier transform Cremona transform

Schwinger trick

Schwinger trick

Figure 1.1: Transformations between representations of Feynman integrals

1.1.2 Periods: Multiple zeta values and beyond
Results of Feynman integrals have spawned an almost unprecedented fusion of
physics and highly abstract pure mathematics. Even a cursory overview over the
number theoretic aspects of Feynman integrals is beyond the scope of this thesis
but we will at least explain the terminology that one most often encounters in this
context.

The term period refers to “a complex number whose real and imaginary parts are val-
ues of absolutely convergent integrals of rational functions with rational coefficients,
over domains in Rn given by polynomial inequalities with rational coefficients” [24].
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Feynman integrals are periods (or have a period as the first coefficient in their Lau-
rent expansion if they have to be regularized). Only the simplest Feynman graphs
evaluate to rational numbers. Starting with the wheel with three spokes graph in φ4

theory one encounters special numbers that are the values of the Riemann zeta func-
tion at positive odd integers. At higher loop orders certain more general numbers
called multiple zeta values appear. For a long time it was suspected that all Feyn-
man graphs might turn out to give multiple zeta values but in recent years it was
first proved abstractly and later via explicit counterexamples that even in φ4 other
numbers appear (see [12] and references therein). Meanwhile concrete examples of
such numbers, e.g. alternating sums and multiple polylogarithms at sixth roots of
unity have been found (cf. [30]). At the time of writing it is completely unclear what
else might await us at higher and higher loop orders.

Multiple polylogarithms

What all the special numbers mentioned above have in common is that they are
special cases of multiple polylogarithms (MPLs). These functions are generalizations
of the classical polylogarithm to several arguments and are given by the series

Lis1,...,sl
(z1, ..., zl) =

∑
0<k1<...<kl

zk1
1 ... z

kl
l

ks1
1 ... k

sl
l

, (1.4)

in which s1, . . . , sl ∈ N and z1, . . . , zl ∈ C. The number of variables l is called depth
and the sum of the indices ∑ si is called the weight of the MPL. The special cases
that appear as periods result from it as follows:

The Riemann zeta function. The Riemann zeta function is the depth 1 MPL
(the classical polylogarithm) evaluated at z = 1:

ζ(s) =
∞∑
k=1

1
ks

(1.5)

Such single zeta values appear prominently in the periods of the wheels with three
(6ζ(3)) and four (20ζ(5)) spokes. Furthermore, all zig-zag graphs have rational
multiples of single zeta values as periods (cf. section 1.3.3). Note that even zeta
values ζ(2n) are just rational multiples of π2n.

Multiple zeta values. Allowing depths larger than 1 but still evaluating the
multiple polylogarithms at z1 = . . . = zl = 1 results in multiple zeta values (MZVs).
Thus, they have the series representation

ζ(s1, ..., sl) =
∑

0<k1<...<kl

1
ks1

1 ... k
sl
l

. (1.6)

Alternating sums. If instead of setting all arguments to 1 one also allows −1,
then alternating sums are given by the multiple polylogarithms

Lis1,...,sl
(ξ1, ..., ξl) =

∑
0<k1<...<kl

ξk1
1 ... ξ

kl
l

ks1
1 ... k

sl
l

, (1.7)

with ξ1, . . . , ξl ∈ {−1, 1}.
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MPLs at roots of unity. The final generalization to be discussed here allows
general N -th roots of unity µN ..= {ξ ∈ C | ξN = 1} as arguments. Multiple
polylogarithms at roots of unity span a vector space

Z(N) ..= Q〈Lis1,...,sl
(ξ1, ..., ξl) | l ≥ 1, s1, . . . , sl ∈ N, ξ1, . . . , ξl ∈ µN〉 (1.8)

that includes alternating sums Z(2) and multiple zeta values Z(1) ≡ Z.

Hyperlogarithms

A different way to generalize the logarithm function are hyperlogarithms. We will
give only a brief overview. For details we refer to the groundbreaking work by
Lappo-Danilevskiy [25]. A wonderful introduction and a multitude of applications
can be found in [30].

Let Σ = {0, σ1, ..., σN} be a set of distinct points σi ∈ C and associate with it an
alphabet A = {a0, a1, ..., aN}. Then A× is the set of all words (concatenations of
letters) w over A, including the so-called empty word e. Hyperlogarithms are then
defined by the four properties

1. Le(z) = 1

2. Lan
0
(z) = 1

n! logn(z) ∀ n ≥ 1

3. For all w ∈ A× and 0 ≤ i ≤ N

∂

∂z
Laiw(z) = 1

z − σi
Lw(z)

4. For all non-empty w ∈ A×, w 6= an0

lim
z→0

Lw(z) = 0

where log(z) is the principal branch of the complex logarithm function. This defini-
tion can be extended to Q〈A〉 by linearity. With the shuffle product the hyperloga-
rithms over Σ, written L(Σ), form an algebra since

Lw1�w2(z) = Lw1(z)Lw2(z) ∀w1, w2 ∈ A×. (1.9)

By extending L(Σ) with

O+
Σ = OΣ

[
σi,

1
σi − σj

, 0 ≤ i < j ≤ N

]
(1.10)

where we now understand the σn as variables and

OΣ
..= Q

[
z,

1
z
,

1
z − σ1

, ...,
1

z − σN

]
(1.11)

denotes the regular functions on C \ Σ one even gets an algebra

O+
Σ ⊗ L(Σ) (1.12)
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that is closed under taking primitives. It is possible to write hyperlogarithms in
terms of an iterated integral

Lai1 ...ail
(z) =

∫ z

0

dzi1
zi1 − σi1

∫ zi1

0

dzi2
zi2 − σi2

. . .
∫ zil−1

0

dzil
zil − σil

. (1.13)

This is the basis for the algorithm due to Francis Brown [8], that allows integration
of many Feynman integrals completely symbolically within the hyperlogarithm al-
gebra. However, not all integrals can be written in this form. The property is called
linear reducibility and checking if certain integrals are linearly reducible will be one
of the main concerns in chapter 3.

Using Σ = {0, 1} and the above integral representation one recovers multiple poly-
logarithms in one variable from hyperlogarithms by

L
a

s1−1
0 a1...a

sl−1
0 a1

(z) = (−1)lLis1,...,sl
(z). (1.14)

1.2 Graph theoretic foundations
In this section we briefly review some basics of graph theory, a thorough understand-
ing of which is imperative when talking about graphical functions. In particular we
will examine properties of the special class of graphs we will use and give suitable
definitions of properties and objects related to them.

1.2.1 Graphs
Definition 1.2.1. (Graphs)
A graph G is an ordered pair (V,E) of the set of vertices V and the multiset of
edges E.

• Elements e ∈ E can be identified with an unordered pair of vertices v1, v2 ∈ V 3.
E is then called incident on v1 and v2.

• The number of edges incident on a vertex is called its valence.

• A graph whose vertices are all k-valent is called k-regular.

• Two vertices are called adjacent if there is an edge incident on both of them.

• A path of length k is a non-empty graph of the form
P = ({v0, v1, . . . , vk}, {{v0, v1}, {v1, v2}, ..., {vk−1, vk}}). If vk = v0 then P is
called a cycle of length k or k-cycle.

• A graph is called connected if there exists a path between any two of its vertices.

• A graph that is connected and contains no cycles is called tree and a disjoint
union of trees is a forest.

3v1 and v2 need not be distinct. While graphical functions will turn out to be ill-defined for
graphs with self-loops (also known as 1-cycles or, especially in physics literature, tadpoles), certain
graphs that appear in intermediate steps might contain them.
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• If a graph is still connected after removal of any k vertices/edges then it is
called k-vertex/edge-connected. k-vertex connectivity implies k-edge-connectivity.
If the type is not specified then k-connected shall always mean k-vertex-connected.

• Natural numbers are used to label both, vertices and edges, i.e. we identify
each v ∈ V and e ∈ E with a certain v′ ∈ {1, . . . , |V |} and e′ ∈ {1, . . . , |E|}
respectively4.

• In a weighted graph one additionally associates a weight given by a complex
number νe ∈ C to each edge. All graphs in this thesis will be weighted, so from
now on we refrain from explicitly stating it whenever graphs are mentioned.

• We define the weight of a vertex to be the sum of the weights of the edges
incident on it

ν(v) =
∑

e={•,v}
νe. (1.15)

If all weights are 1, then the weight is equal to the valence.

Definition 1.2.2. (Subgraphs)
A subgraph g of G is a graph g = (V (g), E(g)) with V (g) ⊆ V (G) and E(g) ⊆ E(G).
Isolated vertices are allowed but isolated edges are not, i.e. e = {v1, v2} ∈ E(g)
implies v1, v2 ∈ V (g).

• If V (g) = V (G), then g is called a spanning subgraph of G.

• The complement gc of a subgraph g of G is the subgraph of G determined by
the complement of the edge set, i.e. E(gc) = E(G) \ E(g). The vertices of gc
are all those that its edges are incident on, so g and gc may share vertices.

In addition to those usual graph theory definitions we also demand that the ver-
tices are subdivided into two disjoint sets, internal vertices X and external vertices
Z and Z is always assumed to be non-empty.

z1

x1

x2

z2

e1

e2

e5

e6

e3 e4 z1

x1

x2

z2

e2

e5

e4 z1

x1

x2

z2

e2

e5

e4e3

Figure 1.2: A depiction of the “Sauron’s eye” graph on the left, a spanning tree
subgraph (solid lines) together with its complement (dotted lines) in the middle and
a subgraph with cycle on the right.

Example 1.2.3. The graph on the left-hand side of fig. 1.2 (sometimes called
Sauron’s eye for obvious reasons) has 4 vertices and 6 edges. It is 2-connected. All
vertices are adjacent to all others except z1 and z2. No specific weights are assigned
to its edges5. The subgraph ({x1, x2, z1, z2}, {e2, e4, e5}) (uniquely determined by its

4Note that this induces an ordering on E and V .
5All graphs that will be drawn in this thesis will only have edge weights +1 or −1, which will

be indicated with curly lines.
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edge set) depicted with solid lines in the middle of fig. 1.2 is a spanning tree of the
graph on the left-hand side. The dotted lines are the complement. The graph drawn
with solid lines on the right-hand side is also a spanning subgraph, but not a tree,
because it contains the 2-cycle {e3, e4}. Its complement determined by the edges e1
and e6 is a spanning 2-forest of Sauron’s eye.

Definition 1.2.4. (Operations on graphs)
For a graph G and E ′ ⊆ E(G), V ′ ⊆ V (G) subsets of its edges and vertices we
define the following operations:

• Deletion of edges:
G \ E ′ is the graph G with all edges in E ′ removed.

• Identification of vertices:
G/V ′ is the graph G with all vertices in V ′ identified6.

• Contraction of edges:
G//E ′ is the graph G with all edges in E ′ contracted, i.e. their endpoints
identified and the resulting tadpoles deleted.

Example 1.2.5. In fig. 1.3 we illustrate the three operations on the same graph
used in the example above.

G

z1

x1

x2

z2

e1

e2

e5

e6

e3 e4

G \ {e3, e4}

z1

x1

x2

z2

e1

e2

e5

e6

G/{x1, x2}

z1 x1 = x2 z2

e1

e2

e5

e6

e3

e4

G//{e3, e4}

z1 x1 = x2 z2

e1

e2

e5

e6

Figure 1.3: The graph operations from definition 1.2.4 illustrated on Sauron’s eye.

Since vertex identification does not alter the edge set and all edges have labels,
we can uniquely identify edges in G and G/V ′. This justifies a certain loose manner
of speaking that we will often fall into which treats edge subsets of different graphs
as the same objects. For example, taking the graphs from fig. 1.3, we could say that
the cycle {e1, e2} from G/{x1, x2} is a tree or path in G.

6Note that if two adjacent vertices are identified, this results in a tadpole.
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The following definitions are concerned with certain types of graphs. Since we
introduced the unusual partition of vertices into external and internal, they differ
slightly from the common definitions.

Definition 1.2.6. (Planar graph)
We say that a graph is planar if there exists an embedding of the graph into the plane
such that all external vertices are in the unbounded outer face.

Definition 1.2.7. (Dual graph)
Let G be a planar graph as defined above.Then the dual graph G∗ is the graph con-
structed by the following steps:

1. For each of the bounded faces i of G add an internal vertex x∗i to G∗.

2. For any edge e that is shared by two bounded faces i and j add an edge e∗ =
{x∗i , x∗j} to G∗.

3. The edges that are not shared by any bounded faces form |Z| paths Pkl between
the external vertices k and l. Add an external vertex z∗i to G∗ for each such
path and connect it to all internal vertices that correspond to bounded faces
that share an edge with the path.

4. Assign to each dual edge e∗ a new weight νe∗ = (λ(1− νe) + 1)/λ, where λ is
a positive half-integer parameter which will be formally introduced in section
1.3.

Remark 1.2.8. In the case |Z| = 3, where for reasons to be discussed below one
typically labels the three external vertices with 0, 1 and z we shall always label the
external vertices in the dual graph such that 0∗ corresponds to the path P1z, 1∗ to
P0z and z∗ to P01.

Example 1.2.9. Two planar graphs that are dual to each other are drawn in fig.
1.4. The grey letters on the left-hand side label the internal faces of the graph that
become internal vertices in the dual graph.

x1

x2

x3 x4

z1 z2

z3

x∗2

x∗1 x∗3

x∗1 x∗3

x∗2 z∗1z∗2

z∗3

Figure 1.4: Two planar graphs that are dual to each other.
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Remark 1.2.10. Comparing our definition of planar and dual graphs with the usual
definitions leads to two findings:

(i) G is planar according to def. 1.2.6.
=⇒ G is planar in the usual sense.

(ii) G∗ is the dual graph of G according to def. 1.2.7.
=⇒ G∗/Z is a dual graph of G in the usual sense.

If not explicitly stated otherwise, planar and dual will from now on always mean
planar and dual according to definitions 1.2.6 and 1.2.7.

Remark 1.2.11. In general there can be several non-isomorphic dual graphs G∗.
The dual graph of a planar graph G is unique if G has no 1-cycles or 2-cycles (multi-
edges) and all its internal vertices have valence at least 3. The dual G∗ then also has
at least 3-valent internal vertices contains neither 1 nor 2-cycles. Hassler Whitney
proved this for the case that all vertices are at least 3-valent ( [42], Theorem 10
for properties of the dual graph, Theorem 11 for uniqueness). Since in any planar
embedding the external vertices have to be in the unbounded outer face in a fixed
position relative to each other, the requirement can be dropped for them7.

1.2.2 Matrices associated to graphs
Many properties of graphs can be encoded in the form of matrices. This makes them
susceptible to the tools of linear algebra which will be highly useful in the following
chapters. Thus it is advisable to introduce the matrices that we will encounter in a
dedicated section.

Anticipating the needs of chapter 2, we will include parameters αe ∈ R+ associated
to each edge e so our definitions of these matrices will differ slightly from standard
graph theory definitions, which can be recovered by setting all parameters to 1. For
brevity we collect the parameters in α ..= (α1, · · · , α|E|) ∈ R|E|+ .

Definition 1.2.12. Let G be a graph according to definition 1.2.1 without 1-cycles.
Its degree matrix D has the sum over edge parameters of edges incident on v in the
diagonal element Dvv and is 0 otherwise.

Dvv′(α) ..= δvv′

 ∑
e={•,v}

αe

 (1.16)

The adjacency matrix A of G gives for each pair of vertices v, v′ the sum of edge
parameters of edges connecting them in the matrix elements Avv′ and Av′v. Note that
we excluded tadpoles, so the diagonal of A contains only zeros and that the empty
sum (if no edge {v, v′} exists) is zero.

Av′v(α) = Avv′(α) ..=
∑

e={v,v′}
αe (1.17)

7The statement even holds for isolated external vertices that are not connected to the rest of
the graph but such graphs would not make much sense in the context of graphical functions.
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For the definition of the incidence matrix I we have to introduce an arbitrary ori-
entation for each edge8:

Iev(α) ..=


α1/2
e if vertex v is the initial point of the directed edge e

−α1/2
e if vertex v is the end point of the directed edge e

0 if e is not incident to v.
(1.18)

Finally, we define the Laplacian matrix L as the difference of D and A.
L(α) ..= D(α)− A(α) (1.19)

Example 1.2.13. As an example we give incidence, degree and adjacency matrix
for the graph from fig. 1.6.

I e1 e2 e3 e4 e5 e6
x1 −α1/2

e1 0 α1/2
e3 −α1/2

e4 α1/2
e5 0

x2 0 α1/2
e2 −α1/2

e3 α1/2
e4 0 −α1/2

e6

z1 α1/2
e1 −α1/2

e2 0 0 0 0
z2 0 0 0 0 −α1/2

e5 α1/2
e6

A x1 x2 z1 z2
x1 0 αe3 + αe4 αe1 αe5

x2 αe3 + αe4 0 αe2 αe6

z1 αe1 αe2 0
z2 αe5 αe6 0 0

D x1 x2 z1 z2
x1 αe1 + αe3 + αe4 + αe5 0 0 0
x2 0 αe2 + αe3 + αe4 + αe6 0 0
z1 0 0 αe1 + αe2 0
z2 0 0 0 αe5 + αe6

Figure 1.5: Incidence, adjacency and degree matrix for Sauron’s eye with the orien-
tation and labels as in fig. 1.6.

z1

x1

x2

z2

e1

e2

e5

e6

e3 e4

Figure 1.6: Sauron’s eye with an additional orientation on all edges
8This is just an auxiliary property and does not affect the integrals in which we will later use

it.
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In the following we will repeatedly need an identity relating Laplace and incidence
matrices.

Lemma 1.2.14. The Laplacian matrix can be written as a product of incidence
matrices.

L = IT I (1.20)

Proof. The element of IT I in the i-th row and j-th column is

(IT I)ij =
|E|∑
e=1

IeiIej (1.21)

We will see that for i = j we will get the degree matrix while i 6= j gives the
adjacency matrix.
a) i = j:

(IT I)ii =
|E|∑
e=1

IeiIei =
∑

e={•,i}
αe = Dii (1.22)

b) i 6= j:
Since i 6= j we have Iei = ±α1/2

e and Iej = ∓α1/2
e (such that we always get an over all

−1 factor) for the case that i and j are connected by e. If i and j are not adjacent
then at least one of those factors is always zero and we get

(IT I)ij =
|E|∑
e=1

IeiIej =
∑

e={i,j}
−αe = −Aij (1.23)

As the adjacency matrix has only zeros on the diagonal while the degree matrix
vanishes everywhere but on the diagonal, we indeed see that

IT I = D − A = L. (1.24)

1.2.3 Graph polynomials
In addition to matrices there are also a multitude of polynomials carrying informa-
tion about the graph they are associated to. For our purposes, all graph polynomials
will be of the form given in the following definition.

Definition 1.2.15. (Graph polynomials)
Let G be any graph and α = (α1, . . . , α|E|) ∈ R|E|+ parameters associated to each
edge. Then a graph polynomial is defined as

P (G,α) =
∑
g⊂G

g∈C(G)

∏
e/∈g

αe (1.25)

and its dual graph polynomial is

P̂ (G,α) =
∑
g⊂G

g∈C(G)

∏
e∈g

αe, (1.26)
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where C(G) is a set of subgraphs of G satisfying a certain condition (see examples
below). The dependence on α will usually not be written explicitly and the dependence
on the graph will often be indicated as subscript PG or, if there is no danger of
ambiguities, also be dropped.

This especially means that all graph polynomials are linear in each variable, in
contrast to for example the Tutte polynomial, which, while an important polyno-
mial in graph theory, is not related to graph polynomials in the sense of the above
definition9. It is also immediately clear that a graph polynomial can be found from
its dual via

PG =
(∏
e∈E

αe

)
P̂G(α−1

1 , . . . , α−1
|E|) (1.27)

and vice versa.
Now one has to consider which kind of condition one wants to set for the subgraphs.
The broadest class of graph polynomials we will need are the so-called spanning
forest polynomials, defined by Brown and Yeats as follows.

Definition 1.2.16. (Spanning forest polynomials [15], Definition 9)
Let S = S1∪ . . .∪Sk be a set partition of a subset of the vertices of a graph G. Then
we define the spanning forest polynomial of G as

ΦS
G =

∑
F

∏
e/∈F

αe (1.28)

where the sum runs over spanning forests F = T1 ∪ . . . ∪ Tk where each tree Ti
of F contains the vertices in Si and no other vertices of S, i.e. V (Ti) ⊇ Si and
V (Ti) ∩ Sj = ∅ for i 6= j. Trees consisting of a single vertex are permitted.

One particularly important example of a spanning forest polynomial is the Kirch-
hoff polynomial [23].

Definition 1.2.17. (Kirchhoff polynomial)
The Kirchhoff polynomial is the spanning forest polynomial corresponding to a par-
tition with only one set, i.e.

ΨG =
∑
T

∏
e/∈T

αe (1.29)

where the sum runs over spanning trees T .

While in most applications one uses the above definitions, in chapter 2 we will
have to work with dual spanning forest polynomials, defined in the obvious way by
replacing e /∈ F with e ∈ F in definition 1.2.16.

The Kirchhoff polynomial is well known to physicists and mathematicians alike [5],
[2]. While less well known compared to the Kirchhoff polynomial, special cases of
the dual spanning forest polynomials (the same we will encounter in chapter 2) were
already known to Nakanishi more than 40 years ago who also found them in the

9 However, see section 4.3 of the thesis [3] and references therein for an exposition of the Tutte
polynomial and an interpretation of it as a vast generalization of the Kirchhoff polynomial with
possible applications in physics.
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context of position space Feynman integrals [28].

Having defined the objects of interest, we can now collect some of the properties that
make them so useful. It is evident from the definition that ΦS

G and Φ̂S
G are linear

in every variable and homogenous of degree |E| − |V |+ k and |V | − k respectively.
This naturally leads to relations between the polynomials of graphs that are related
via deletion, contraction and identification, but first we introduce an abbreviating
notation.

Notation for graph polynomials of certain subgraphs. Let G be a graph
and write G \ {e}, G//{e} and G/V ′ as in definiton 1.2.4. Moreover let ΦS

G be a
(dual) spanning forest polynomial associated to G. If it is clear from context that
ΦS
G is not associated to any other graph we write:

(i) ΦS
G\{e} ≡ ΦS(e)

(ii) ΦS
G//{e} ≡ ΦS

e

(iii) ΦS
G/V ′ ≡ ΦS

/V ′ (1.30)

Proposition 1.2.18. (Deletion and contraction relations)
Let G be a graph and ΦS, Φ̂S a spanning forest polynomial and its dual. Then the
following identities hold:

(i) ΦS(e) = ∂

∂αe
ΦS Φ̂S

e = ∂

∂αe
Φ̂S

(ii) ΦS
e = ΦS|αe=0 Φ̂S(e) = Φ̂S|αe=0

(iii) ΦS = ΦS
e + αeΦS(e) Φ̂S = αeΦ̂S

e + Φ̂S(e) (1.31)

Proof. The case of the Kirchhoff polynomial is well known and the proof generalizes
without problems.

Example 1.2.19. As an example consider the dual Kirchhoff polynomial of the four
graphs from fig. 1.3.

Ψ̂G = (αe3+αe4)(αe1 + αe2)(αe5 + αe6) + αe1αe2(αe5 + αe6) + αe5αe6(αe1 + αe2)

Ψ̂G\{e3,e4} = αe1αe2(αe5 + αe6) + αe5αe6(αe1 + αe2) = Ψ̂G

∣∣∣
αe3 ,αe4=0

Ψ̂G/{x1,x2} = Ψ̂G//{e3,e4} = (αe1 + αe2)(αe5 + αe6) = ∂

∂αe3

∂

∂αe4

Ψ̂G

(1.32)

Another example is the spanning forest polynomial with the partition S = {z1}∪{z2}
and for the same graphs.

Φ̂{z1},{z2}
G = (αe3 + αe4)(αe1 + αe2 + αe5 + αe6) + αe1αe6 + αe2αe5
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Φ̂{z1},{z2}
G\{e3,e4} = αe1αe6 + αe2αe5 = Φ̂{z1},{z2}

G

∣∣∣
αe3 ,αe4=0

Φ̂{z1},{z2}
G/{x1,x2} = Φ̂{z1},{z2}

G//{e3,e4} = αe1 + αe2 + αe5 + αe6 = ∂

∂αe3

∂

∂αe4

Φ̂{z1},{z2}
G

(1.33)

Remark 1.2.20. It is possible to reinterpret the dual Kirchhoff polynomial of the
graph G/Z, which will be of importance in chapter 2, as a spanning forest polynomial
of the graph G,

Ψ̂/Z ≡ Ψ̂G/Z = Φ̂
Sz1∪...∪Sz|Z|
G (1.34)

where the partition contains exactly one external vertex in each part. This equality
holds, even if there are edges between the zi, because they can never occur in the
spanning forests on either side (they are tadpoles in G/Z on the left-hand side and
each zi has to be in a separate part on the right hand side). We will use this for
example in the proof of theorem 2.4.2 and in in the following theorem 1.2.21.

Theorem 1.2.21. Let G be a planar graph, G∗ its dual graph, n ∈ {1, . . . , |Z|} and
S(n) a partition of the external vertices into n parts, i.e. S(n) = S1, . . . , Sn where
each Si contains at least one external vertex. Then there exists a partition of the
external vertices of the dual graph into |Z| − n+ 1 parts such that

Φ̂S1,...,Sn

G (α1, . . . , α|E|) =
(∏
e∈E

αe

)
Φ̂
S∗1 ,...,S

∗
|Z|−n+1

G∗ (α−1
1 , . . . , α−1

|E|) (1.35)

In particular, for n = 1,

Ψ̂G(α1, . . . , α|E|) =
(∏
e∈E

αe

)
Ψ̂G∗/Z(α−1

1 , . . . , α−1
|E|). (1.36)

Proof. After first proving the case n = 1, we subsequently generalize the method to
prove the full statement.
Note that for n = 1 we have Φ̂S1,...,Sn

G ≡ Ψ̂G by definition and Φ̂
S∗1 ,...,S

∗
|Z|−n+1

G∗ = Ψ̂G∗/Z

by remark 1.2.20. Whitney’s planarity criterion ( [43], theorem 29) states that a
graph is planar if and only if it has an algebraic dual graph (planar and dual here in
the usual sense). As Tutte points out ( [40], theorem 2.64), this is equivalent to the
statement: Every spanning tree of a planar graph G corresponds to the complement
of a spanning tree in its dual G∗. Translating this to graph polynomials while
keeping part (ii) of remark 1.2.10 (G∗/Z is a dual graph of G in the usual sense) in
mind proves the case n = 1, i.e. the case of spanning trees.
For the general case one has to consider general spanning n-forests Fn = ∪ni=1Ti.
Given any such spanning n-forest there exist edges ei1 , . . . , ein−1 such that Fn = T \
{ei1 , . . . , ein−1}, where T is a spanning tree of G and ei1 , . . . , ein−1 are the n−1 edges
whose removal from T results in Fn. By the argument above, Fn ∪ {ei1 , . . . , ein−1}
is the complement of a spanning tree in G∗/Z or in other words, the complement
of a spanning |Z|-forest F ∗|Z| = ∪|Z|i=1T

∗
i in G∗. Removing an edge eij corresponds to

inserting the corresponding edge into F ∗|Z|, either creating a cycle or turning it into
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a |Z| − 1-forest F ∗|Z|−1. However, creating a cycle in G∗ corresponds to stripping
a subgraph of G of all the edges that are connecting it to external vertices. We
constructed the partition S(n) and therefore Fn∪{ei1 , . . . , ein−1} such that removing
the edges ei1 , . . . , ein−1 leaves a spanning n-forest which has at least one external
vertex in every tree. Thus, inserting all the edges ei1 , . . . , ein−1 into F ∗|Z| indeed
results in a spanning |Z| − n+ 1-forest F ∗|Z|−n+1 in G∗.

In general it is difficult to make a statement about the structure of the partition
on the right-hand side. The only case of interest for us is |Z| = 3 (see remark
1.2.8) where we find the following corollary, that will be instrumental in the proof
of theorem 2.4.4.

Corollary 1.2.22. Let Z = {0, 1, z}. For n = 1 (n = 3) there is a spanning tree on
the lhs (rhs) of eq. (1.35) and the partition on the rhs (lhs) has exactly one external
vertex in each part. For n = 2 one finds for all distinct i, j, k ∈ Z

Φ̂{i,j}{k}G (α1, . . . , α|E|) =
(∏
e∈E

αe

)
Φ̂{i

∗,j∗}{k∗}
G∗ (α−1

1 , . . . , α−1
|E|) (1.37)

Proof. The cases n = 1, 3 follow directly from the theorem. The interesting case
n = 2 becomes obvious with the illustration of the situation in fig. 1.7. Since the
external vertices in the dual graph have a canonical position relative to each other
and their counterparts in the original graph, one can infer that for each spanning
2-forest F1 ∪ F2 of G there is at least one edge in G that connects F1 and F2 and
the dual edges corresponding to them connect i∗ and j∗ in the dual graph.

F1 F2

i

j

k

j∗

i∗

k∗

Figure 1.7: Illustration of the case n = 2 in corollary 1.2.22. F1 and F2 are dis-
connected trees within G. The vertices with stars represent external vertices of the
dual graph. Their position relative to the external vertices of G was fixed in remark
1.2.8. Since G is connected, there must be one or more edges in G connecting F1
and F2 exactly such that their dual counterparts connect i∗ and j∗.

Example 1.2.23. Fig. 1.8 illustrates the statement of corollary 1.2.22 on the two
dual graphs that we already used as examples earlier.
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x1

x2

x3 x4

0 1

z

x∗1 x∗3

x∗2 0∗1∗

z∗

Figure 1.8: Illustration of corollary 1.2.22 on a concrete example. Solid lines in both
graphs represent the spanning 2-forests. The dashed lines on the left-hand side are
the edges missing from the spanning forest whose counterparts on the right-hand
side are the thick lines.

1.3 Graphical functions

1.3.1 Definition and properties
Preliminaries. Before we give a definition of graphical functions we first discuss
the setting that we will work in. Our space-time is D-dimensional Euclidean, where
D is an integer strictly larger than 2.10 As the name suggests, graphical functions
are always associated to a certain graph and their definition is basically a translation
rule from graphs to integrals, similar to the Feynman rules of quantum field theory.

With each vertex we associate a real vector, xv ∈ RD for v ∈ X and zv ∈ RD for v ∈
Z. The xv will be (vectors of) integration variables, while the zv will be parameters.
For the sake of brevity we collect them in vectors x = (x1, ..., x|X|)T ∈ RD|X| and
z = (z1, ..., z|Z|)T ∈ RD|Z|.

For each edge there is an associated quadric, defined as

Qe
..= ||uv − u′v′||2 (1.38)

where e = {v, v′}, u and u′ stand for x or z, depending on the vertex and the norm is
Euclidean. The quadrics usually have powers −λνe in which the νe ∈ C are precisely
the weights of the edge e and λ = D

2 − 1 ∈ 1
2N is a dimensional parameter. We do

not admit graphs with tadpoles since their quadric is 0. Apart from that restriction,
all graphs as defined in the previous section are allowed11.

Now that we set the stage, we can define graphical functions as follows:

10It is possible to define graphical functions for D = 2 (see [37]) but that case differs considerably
from the casesD > 2 and we will not discuss it here. We will also not use dimensional regularization
as one often does in quantum field theory. Instead we focus for now on integrals that are convergent
in integer dimensions.

11While all graphs are allowed, only a small subset of graphs will yield a well-defined graphical
function (see lemma 1.3.3).

17



Definition 1.3.1. (Graphical Functions [37]) Let G be a graph, νe ∈ C for all
e ∈ E and λ = D

2 −1 > 0 such that the convergence criteria given below are satisfied.
Then the graphical function

f
(λ)
G : RD|Z| → C (1.39)

exists and is given by the integral

f
(λ)
G (z) =

∫
RD|X|

(∏
v∈X

dDxv
π

D
2

) ∏
e∈E

Q−λνe
e . (1.40)

Remark 1.3.2. The function defined above is what we will later call an uncompleted
graphical function. Completed graphical functions will be defined below for the special
case Z = {0, 1, z} whose importance will be discussed later in this section. They
will mostly be needed for computations in chapter 3. Chapter 2 will only deal with
uncompleted graphical functions. In section 2.3 we will generalize graphical functions
to complex arguments, rewriting them as functions depending on complex numbers
rather than D-vectors.

The convergence criterion is based on Weinberg’s theorem on power counting for
Feynman integrals [41].
Lemma 1.3.3. (Convergence [37], Lemma 3.4)
The integral in definition (1.3.1) is convergent if and only if it is infrared and ultra-
violet finite.
It is infrared finite if and only if for every subgraph g of G with |X(g)| vertices whose
neighbors all lie in g and 0 < N(g) ..= ∑

e∈E(g) Re νe one has

(D − 2)N(g) > D|X(g)|. (1.41)
It is ultraviolet finite if and only if for every subgraph g of G with 0 < |E(g)| and
with at most one of its |V (g)| vertices in Z one has

(D − 2)N(g) < D(|V (g)| − 1). (1.42)
If G contains multi-edges (multiple edges between the same two vertices) then the
above conditions have to hold only for all those subgraphs g that contain either all
edges that are part of a specific multi-edge or none of them.

Remark 1.3.4. The infrared convergence criterion above contains the set X(g) of
internal vertices of g, i.e. vertices whose neighbors all are also in g. It is important
not to confuse this set with X ∩ g, the set of internal vertices of G, that are also in
g. These two sets are only the same if g = G.

Conformal parametrization. By far the most important special case of graph-
ical functions is the one with three external vertices 0, 1, z parametrized by two
complex numbers z, z̄,

0 ∼ 0 ∈ RD

1 ∼ v1 = (1, 0, ..., 0) ∈ RD

z ∼ vz =
(
z + z̄

2 ,
z − z̄

2i , 0, ..., 0
)
∈ RD. (1.43)
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In this form, graphical functions appear in various places in physics (see section
1.3.2). Moreover, many very useful properties, two of which are mentioned in the
following two paragraphs, are exclusive to this special case.

Completion. Let G be a graph with three external vertices labeled 0,1 and z and
recall that the weight of a vertex v was defined as

ν(v) ..=
∑

e={v,•}
νe. (1.44)

Then we can complete the graph and define completed graphical functions with the
following steps:

• Add another external vertex and label it ′∞′.

• Add an edge {z,∞} with weight such that ν(z) = 0.

• For all v ∈ X add edges {v,∞} with weights such that ν(v) = 2D
D−2 .

• Add edges {0, 1}, {0,∞} and {1,∞} such that ν(0) = ν(1) = ν(∞) = 0.

We denote the resulting completed graph by Γ. Completions are unique [37]. Com-
pleted graphical functions are defined by applying the definition of uncompleted
graphical functions to a completed graph and setting all quadrics Q{•,∞} to 1. Com-
pleted graphical functions have various nice properties, most prominently a 24-fold
symmetry that relates graphical functions under permutations of the vertices 0, 1, z
and ∞. An example will be given in section 1.3.3.

Since we set all quadrics of edges incident on ∞ to 1, the graphical function does
not change under completion

f
(λ)
G (z) = f

(λ)
Γ (z). (1.45)

Appending an edge. There is a useful identity that relates certain graphs with
three external vertices 0, 1, z (see fig. 1.9) via a differential equation. The identity
was previously proved by Schnetz [37]. In section 2.4.1 we give an alternative proof
using the parametric version of graphical functions that will be derived in chapter
2. For a graph G and a graph Gz that is G with an additional edge as in fig. 1.9
one has

f
(λ)
G (z) = −Γ(λ)

(
∂z∂z̄ −

λ

z − z̄
(∂z − ∂z̄)

)
f

(λ)
Gz

(z). (1.46)

The significance of this identity lies in the fact that it has (under certain quite
general assumptions) a unique solution and allows the computation of a large family
of periods. This was also independently discovered by James M. Drummond (see
section 1.3.2 below). The identity gains further relevance because it is crucial for
the proof of theorem 2.4.4 in section 2.4.2.
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G Gzz z

Figure 1.9: Depiction of the graphs G and Gz. They are almost the same but Gz

has an internal vertex where G has z and an edge connecting that vertex to the new
z.

1.3.2 Application: Conformally invariant 4-point functions
Conformal symmetry. Extending the usual Poincaré symmetry of space-time
by including scale invariance and invariance under so-called special conformal trans-
formations

xµ → xµ − aµx2

1− 2a · x+ a2x2 (1.47)

where a is a parameter vector and xµ is a component of a position vector in the
given space-time, results in conformal symmetry. Conformal field theories have a
wide range of applications, from statistical mechanics to string theory [19].

Graphical functions are closely related to 4-point functions in that context. Any
conformally invariant function of four variables12 can be written in terms of the two
conformally invariant cross sections

u = x2
12x

2
34

x2
13x

2
24

v = x2
14x

2
23

x2
13x

2
24

(1.48)

where xij = ||xi − xj|| is the usual notation in the literature. This can be related
to the conformal parametrization of graphical functions mentioned above by noting
that it is possible to map three of the four points to 0, e1 = (1, 0, . . . , 0),∞. Now only
rotations that leave e1 invariant are left as possible transformations which means
the remaining point has to be mapped into the plane spanned by e1 and another
base vector, say e2 = (0, 1, 0, . . . , 0). For example, choosing

x1 →∞
x2 → e1

x3 → re1 + se2 r, s ∈ R
x4 → 0 (1.49)

leaves two real parameters as the only functional dependence of such a four-point
function. Inserting these points into u and v above shows that the invariant cross
sections take the form u = |x3|2, v = |e1 − x3|2. Replacing the two real parameters
by a complex parameter x3 = z returns exactly the case mentioned in the preceding
section and discussed in detail in section 2.4.

Generalised ladders. In [17] J.M. Drummond developed the theory of generalised
ladder type integrals, an infinite family of conformal four-point integrals (see fig.
1.10 and 1.11). They are identical to the special case of sequential graphical functions

12There are no non-constant conformally invariant functions of less than 4 variables because the
conformal symmetry completely fixes all degrees of freedom.
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from [37]. Drummond’s approach, which amounts to solving a tower of differential
equations of the form (1.46), has successfully been applied to 3 and 4 loop integrals
arising in N = 4 supersymmetric Yang-Mills theory [18].

p3

p1 p4

p2

∞ z

0

1

. . .

Figure 1.10: A four-point ladder type diagram (solid lines) together with its mo-
mentum space dual (dashed lines) whose shape is the origin of the name.

∞ z

0

1

. . .

Figure 1.11: A generalized ladder type diagram (Drummond, [17]) or sequential
graphical function (Schnetz, [37]). They differ from the usual ladder diagrams in so
far as internal vertices do not have to be adjacent to both 0 and 1 but only at least
one of them.

1.3.3 Application: Computation of periods
There are several ways in which graphical functions are useful in the computation of
periods. For more theoretical background we refer to [37], where the two examples
of this section were taken from. Here we try to focus on illustrating the general
concepts on examples.
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Constructing periods. The natural way to turn a graphical function into a pe-
riod is integrating the remaining variable z. In the conformal parametrization this
can be achieved by a simple integral over the complex plane instead of an integral
over RD|Z| as one would expect in the general case. This is due to the identity [37]

1
π

D
2

∫
RD
f

(λ)
G (z)dDz = 1

(2i)D−2√πΓ(D−1
2 )

∫
C
f

(λ)
G (z)(z − z̄)D−2d2z (1.50)

which relates the two kinds of integrals in the case of a conformally symmetric
function. The steps from an arbitrary (4-regular φ4) graph G to its period are as
follows:

1. Label any 4 vertices with {0, 1, z,∞}. Denote the resulting graph with Γ.

2. Take the connected components Gi of Γ \ {0, 1, z,∞}.

3. Complete each connected component by adding {0, 1, z,∞} and connecting
them to the same vertices of each Gi that they were connected to in Γ. Add
edges between 0 and 1 or edges incident on ∞ as necessary such that each Gi

becomes a completed graph Γi.

4. Integrate

P (Γ) =
∫ dDz
π

D
2

∏
i f

(λ)
Γi

(z)
||z||2λν0z ||z − 1||2λν1z

. (1.51)

1.

x1

x2
2.

x1 x2

1 0z

∞
3.

x1 x2

1
0
z

∞

1
0
z

∞

Figure 1.12: Depiction of the steps in the construction of the periods of WS4.

Exploiting the permutation symmetry of completed graphical functions.
Another possibility lies in using the remarkable symmetry under permutation of
external vertices that graphical functions satisfy. The following example nicely il-
lustrates the general principle.

Example 1.3.5. (Period of the the complete graph K5)
We want to find the period of the complete graph K5. The strategy is to use the
permutation symmetry and the fact that edges connected to ∞ just give a factor 1 in
order to reduce K5 to a smaller graph with a known period. Denote with G1, . . . , G6
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the graphs from fig. 1.13. Let f (λ)
K5 (z) = f

(λ)
G1 (z) be the graphical function of K5.

Since edges between external vertices give constant factors one has

f
(λ)
K5 (z) =

f
(λ)
G2 (z)

zz̄(1− z)(1− z̄) . (1.52)

where G2 = K5 \ {e01, e0z, e1z}. Now, G3 is the completion of K5 \ {e01, e0z, e1z}.
Since completion only adds edges between 0 and 1 or edges incident on ∞ it follows
that

f
(λ)
K5 (z) =

f
(λ)
G3 (z)

zz̄(1− z)(1− z̄) . (1.53)

In the next step we use the permutation symmetry. Swap 0↔ 1 and z ↔∞. Then13

f
(λ)
K5 (z) =

f
(λ)
G4 (z)

zz̄(1− z)(1− z̄) . (1.54)

From G4 to G5 one once again ’decompletes’ the graph by deleting ∞ and all edges
incident on it, as well as all edges between 0 and 1. This still does not change the
graphical function, i.e. f (λ)

G5 (z) = f
(λ)
G4 (z) = f

(λ)
G3 (z) = f

(λ)
G2 (z).

1.

1

0

z

2.

1

0

z

3.

1 0 z

∞

4.

0 1 ∞

z 5.

0 1

z 6.
0

1

Figure 1.13: Depiction of the 6 steps in the computation of the period of K5 from
the period of K4 using the permutation symmetry of completed graphical functions.
1.+2.: The complete graphK5 before and after removal of edges {0, z}, {1, z}, {0, 1}.
3.+4.: K5 after completion and permutations 0↔ 1, z ↔∞.
5.: The graph after removal of all edges connected to ∞.
6.: The graph K4 ∼= WS3 which has the known period 6ζ(3).
Curly lines denote an edge with negative weight.

13Actually, completed graphical functions are only invariant under permutations of external
vertices together with a Möbius transformation of the argument z. This particular double trans-
position, however, leaves the argument untouched [37].
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In the last step one first notes that we can again remove the two edges incident
on z, which results in another factor (zz̄(1− z)(1− z̄))−1. Finally, adding an edge
between 0 and 1 turns G5 \ {e0z, e1z} into the graph G6 = K4 ∼= WS3 which has the
well-known period 6ζ(3). All together, the result is

f
(λ)
K5 (z) = 6ζ(3)

(zz̄(1− z)(1− z̄))2 . (1.55)

Now it is possible to integrate f (λ)
K5 (z) over the complex plane as in eq. (1.50) and

get the period PK5

The zig-zag conjecture. The zig-zag conjecture, due to Broadhurst and Kreimer
[7], states that for n ≥ 3 the periods of the zig-zag graphs Zn (two examples of which
are given in fig. 1.14) are

P (Zn) = 4(2n− n2)!
n!(n− 1)!

(
1− 1− (−1)n

22n−3

)
ζ(2n− 3). (1.56)

Schnetz [37] noticed that his method of solving towers of differential equations im-
plied the conjecture up to multiplication with products of multiple zeta values.
The full proof of the conjecture by Brown and Schnetz [14] takes a slightly differ-
ent approach and is too voluminous for this brief exposition but certainly a great
demonstration of the utility of graphical functions.

Z3 Z6

Figure 1.14: The zig-zag graphs Z3 and Z6.
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Chapter 2

A parametric integral
representation for graphical
functions

2.1 Derivation of the parametric integral

2.1.1 Schwinger trick and integration of position space vari-
ables

Graphical functions were originally defined analogous to position space Feynman
integrals and we can rewrite them as an integral depending on abstract parameters,
similar to what was mentioned for Feynman integrals in the introduction. However,
there are some notable and very important differences that make it worthwhile to
discuss the derivation of the parametric integral representation of graphical functions
in full detail.

A somewhat less general version of the result that we will arrive at was already
briefly discussed by Nakanishi in [28] but the book appears to be long out of print
and not well known among physicists, which gives us another reason to thoroughly
explain how to write graphical functions in parametric space.

Remark 2.1.1. Note that in accordance with standard physics terminology as vi-
sualized in fig. 1.1 the integral derived in the following is actually dual parametric
and to go to the parametric integral one would have to include a Cremona trans-
formation. This, however, unnecessarily complicates things - especially if one wants
to allow quadrics in the numerator, i.e. negative edge weights - and brings no dis-
cernible advantage. Since there is no conceptual difference between parametric and
dual parametric integrals - apart from their derivation from position space or mo-
mentum space integrals via the Schwinger trick - the term ’parametric’ will be used
loosely to refer to either of the two versions.

We assume G to be connected and chosen such that f (λ)
G satisfies the UV and IR

convergence conditions (1.3.3), but otherwise arbitrary. In particular we allow both,
arbitrary edge weights νe ∈ C and multiple edges between the same vertices. While
the equivalence of multiple edges and a single edge with the same total weight is
completely obvious in the position space definition 1.3.1 where the exponents of the
quadrics can be added up directly, it is somewhat veiled in the parametric version
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we are about to derive. For that reason and to check our parametric integral for
consistency an explicit proof will be given in proposition 2.2.3.

Given such a graph G, its graphical function is defined according to def. 1.3.1
by the integral

f
(λ)
G (z) =

∫
RD|X|

(∏
v∈X

dDxv
π

D
2

) ∏
e∈E

Q−λνe
e (2.1)

where G is a graph, X and E are sets containing the graphs internal vertices and
edges respectively, D = 2λ + 2 with a positive half-integer parameter λ is the
dimension, νe ∈ C and Qe are the weight and quadric associated to the edge e ∈
E and the argument z = (zi)i∈Z = (zi1 , . . . , ziD)i∈Z ∈ RD|Z| consists of variables
associated to external vertices of the graph G. We will now replace all quadrics by
expressions depending on parameters α1, . . . , α|E| and integrate the position space
variables xv as was outlined for Feynman integrals in the introduction.

Treatment of negative edge weights. Since the Schwinger trick relies on the
Γ-function, more specifically, the integral representation

Γ(z) =
∫ ∞

0
dx xz−1e−x =

∫ ∞
0

dx azxz−1e−ax a,Re z > 0 (2.2)

which demands a positive real part of the argument, one has to replace quadrics with
non-positive real parts of their edge weights differently. If the weight is a negative
integer or at least a negative rational number such that λνe is a negative integer,
then it is possible to write

Q−λνe
e = (−1)λ|νe| ∂

λ|νe|

∂α
λ|νe|
e

∣∣∣∣∣
αe=0

exp(−αeQe). (2.3)

Any edge weight νe ∈ C with Re νe ≤ 0 can be decomposed into two parts νe1 +νe2 =
νe with 0 > νe1 ∈ Q and νe2 ∈ C such that 0 > λνe1 ∈ Z and Re νe2 > 0.
Therefore, after splitting edges into parallel edges if necessary and naming E± ..=
{e ∈ E | Re νe ≷ 0}, we replace each Q−λνe

e as follows:

Q−λνe
e =



∫ ∞
0

dαe
αλνe−1
e

Γ(λνe)
exp(−αeQe) if e ∈ E+

(−1)λ|νe| ∂
λ|νe|

∂α
λ|νe|
e

∣∣∣∣∣
αe=0

exp(−αeQe) if e ∈ E−

(2.4)

The graphical function is then

f
(λ)
G (z) =

∫
RD|X|

(∏
v∈X

dDxv
π

D
2

)∫ ∞
0

∏
e∈E+

dαe
αλνe−1
e

Γ(λνe)


×

 ∏
e∈E−

(−1)λ|νe| ∂
λ|νe|

∂α
λ|νe|
e

∣∣∣∣∣
αe=0

 ∏
e∈E

exp(−αeQe)

= π−
D
2 |X|∏

e∈E+ Γ(λνe)

∫ ∞
0

∏
e∈E+

dαe
α1−λνe
e

 ∏
e∈E−

(−1)λ|νe| ∂
λ|νe|

∂α
λ|νe|
e

∣∣∣∣∣
αe=0


×
∫
RD|X|

(∏
v∈X

dDxv
)

exp
(
−
∑
e∈E

αeQe

)
. (2.5)
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Remark 2.1.2. Let us discuss in detail what one has to check to move the position
space integral past both, parameter integration and differentiation. As part of the in-
tegrand of the position space integration, parameter integrals and derivatives can be
freely exchanged but if we want to move the position space integration past them, we
always have to write the parameter integrals to the left of the parameter derivatives.
This is due to the fact that while exchanging integrals only requires absolute con-
vergence (which is a given since we required the graphical function to be convergent
and the integrand is strictly positive), exchanging the position space integration and
the derivatives requires that the integrand (the exponential) and its derivatives are
continuous. If we first exchange integrations, then integration and differentiation we
have continuous terms of the form ∏

e∈E−
Qλ|νe|
e

 exp
− ∑

e∈E+

αeQe

 , (2.6)

but trying to do it the other way around gives terms ∏
e∈E+

Q−λνe
e

 exp
− ∑

e∈E−
αeQe

 (2.7)

and derivatives thereof. Having quadrics in the denominator they are clearly not
continuous everywhere in RD|X|. Consequently, we will from now on always write
the parameter integrals to the left of the parameter derivatives.

The exponent. The sum over all edges in the exponent can be rearranged. Each
quadric can be written as

Qe = ||uv − uv′ ||2 = u2
v − 2uv · uv′ + u2

v′ , (2.8)

where v and v′ are the two endpoints of the edge e and the dot represents the
standard scalar product. Any variable vector uv appears squared exactly once for
every edge incident on it. The mixed term containing the standard scalar product
of two real vectors appears once for each edge connecting a pair of vertices that are
adjacent to each other, with a factor 2 due to symmetry. This means the exponent
can be rewritten in terms of the Laplace matrix L from section 1.2.2. We can assume
that the labels of the vertices are sorted such that entries for internal vertices form
a |X| × |X| block matrix L(X,X) in the upper left of L while the mixed entries form
|X|× |Z| and |Z|× |X| block matrices L(X,Z) and L(Z,X) = LT(X,Z) in the upper right
and lower left of L. We can therefore write

L =
L(X,X) L(X,Z)

L(Z,X) L(Z,Z)

 . (2.9)

It is clear from the structure of the Euclidean norm, i.e. from the fact that

Qe = ||uv − uv′ ||2 = u2
v − 2uv · uv′ + u2

v′ =
D∑
i=1

u2
vi
− 2uvi

· uv′i + u2
v′i

(2.10)

that the exponential in eq. (2.5) factorizes into D identical factors. To treat all
dimensions simultaneously we introduce the scaled Laplace matrix

L(D)(α) ..= (Lij(α)ID)i,j∈V (2.11)
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which has a D×D diagonal matrix with identical entries where the Laplace matrix
has a scalar entry. Note that this means that their determinants are related by

(detL)D = detL(D). (2.12)

This leads to ∑
e∈E

αeQe = xTL
(D)
(X,X)x+ 2zTL(D)

(Z,X)x+ zTL
(D)
(Z,Z)z. (2.13)

The xv integrations. Since we started with well defined integrals the Gaussian
integral with this exponent is convergent, i.e. L

(D)
(X,X) (or equivalently L(X,X)) is

positive definite. We confirm this in the following Lemma.

Lemma 2.1.3. The matrix L(X,X) is positive definite.

Proof. One of the characterizations of a positive definite matrix is that it is the
Gram matrix of linearly independent vectors. Since L = IT I each element of L
is the inner product of the vectors Iv which are the v-th columns of the incidence
matrix, and therefore both L and L(X,X) are Gram matrices. If the vectors are
linearly dependent then there are scalars λv such that ∑λvIv = 0 where not all λv
are zero. Since the underlying graph is connected there are exactly two non-zero
elements with the same value but opposite signs in every row of I that corresponds
to an internal edge, so all λv have to be equal. Because the graph also contains at
least one edge connecting to an external vertex, the restriction of L to L(X,X), i.e.
to v ∈ |X| means that at least one λv has to be zero. Therefore all λv have to vanish
to fulfill ∑λvIv = 0, which means that the the vectors Iv are linearly independent
and L(X,X) is hence positive definite.

Now we can compute the Gaussian integral with the standard result
∫
RD|X|

(∏
v∈X

dDxv
)

exp
(
−xTL(D)

(X,X)x− 2zTL(D)
(Z,X)x− z

TL
(D)
(Z,Z)z

)

=
 πD|X|

detL(D)
(X,X)

 1
2

exp
((
zTL

(D)
(Z,X)

) (
L

(D)
(X,X)

)−1 (
zTL

(D)
(Z,X)

)T
− zTL(D)

(Z,Z)z
)

(2.14)

2.1.2 Combinatorics and graph polynomials
Next we discuss how to write the above result in terms of spanning forest polynomi-
als. Specifically, we will find Ψ̂/Z and one that is a linear combination of spanning
forest polynomials with partitions of the form S = {zi, zj} ∪ (Z \ {zi, zj}) for zi, zj
two distinct external vertices. The first step will be to evaluate the determinant of
L

(D)
(X,X). This is done in full detail in the following theorem 2.1.4 which is essentially

the well known matrix tree theorem (see e.g. [39]). The second step is then the
application of the same techniques to the much more complicated expression in the
exponential function.

Theorem 2.1.4. (First graph polynomial for graphical functions)
Let G be a graph such that its graphical function f

(λ)
G exists and G/Z the graph
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which can be found from G by identifying all external vertices of G. Furthermore let
L be the Laplace matrix of G and L(X,X) the sub matrix corresponding to internal
vertices of G. Then

detL(X,X)(α) =
∑
T⊂E

T spanning tree of G/Z

∏
e∈T

αe = Ψ̂/Z (2.15)

Proof. Let I(K,X), K ⊆ E be the |K| × |X|-submatrix of I that contains only the
columns corresponding to internal vertices and the rows corresponding to edges in
K. Then L(X,X) = IT(E,X)I(E,X) is the submatrix of L that contains the rows and
columns corresponding to internal vertices. Due to the Binet-Cauchy theorem we
can write

detL(X,X) =
∑

K∈P(E)
|K|=|X|

det IT(K,X) det I(K,X) (2.16)

The determinant of I(K,X) vanishes if its columns or rows are linearly dependent.
Next we show that this is the case if the edges e ∈ K form a cycle in G/Z.
a) The edges in K form a cycle G and therefore also in G/Z:
This means that if the cycle contains 2 ≤ q ≤ |X| of the edges, there are q rows in
I(K,X) that have (up to permutation of columns and rows) the form

ei1 = ±α1/2
i1 (1,−1, 0, ..., 0)

ei2 = ±α1/2
i2 (0, 1,−1, 0, ..., 0)

...

eiq = ±α1/2
iq (1, 0, ..., 0︸ ︷︷ ︸

q−2
times

,−1, 0, ..., 0) (2.17)

and are therefore linearly dependent.
b) The edges in K form a cycle in G/Z but not in G:
In this case, if the cycle contains 2 ≤ q ≤ |X| of the edges, there are q rows in I(K,X)
that have (up to permutation of columns and rows) the form

ei1 = ±α1/2
i1 (1,−1, 0, ..., 0)

ei2 = ±α1/2
i2 (0, 1,−1, 0, ..., 0)

...

eiq−2 = ±α1/2
iq−2(0, ..., 0︸ ︷︷ ︸

q−3
times

, 1,−1, 0, ..., 0)

eiq−1 = ±α1/2
iq−1(1, 0, ..., 0)

eiq = ±α1/2
iq (0, ..., 0︸ ︷︷ ︸

q−2
times

, 1, 0, ..., 0) (2.18)

where the last two edges are the ones that contain the merged external vertex of
G/Z. These rows are clearly linearly dependent, too. Since edges between external
vertices are allowed, there may be tadpoles (loops with only one edge) in G/Z. They
correspond to a row of only zeros and therefore also a vanishing determinant.
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The remaining edge subsets are trees in G/Z with |X| edges connecting |X| + 1
vertices. They are the spanning trees T of G/Z.
I(T,X) for a spanning tree T has at least one row with only one non-zero entry in
row m, column n. The determinant of I(T,X) is then

det I(T,X) = ±α1/2
m det I(m,n)

(T,X) (2.19)

where the superscript means that the m-th row and n-th column are removed from
the matrix. I(m,n)

(T,X) has at least one row with only one non-zero entry. Repeating this
until only a 1× 1 matrix remains gives

det I(T,X)(α) = ±
∏
e∈T

α1/2
e . (2.20)

Therefore,

detL(X,X)(α) =
∑
T⊂E

T spanning tree of G/Z

∏
e∈T

αe. (2.21)

which is the definition of the dual Kirchhoff polynomial of G/Z.

Remark 2.1.5. The dual Kirchhoff polynomial of G/Z will ubiquitous all throughout
the rest of this thesis. In order to reduce notation we will from now on identify
Ψ̂ ≡ Ψ̂G/Z = Ψ̂/Z. Should we need the dual Kirchhoff polynomial of G proper, which
would normally be equivalent to Ψ̂ without indices we will explicitly write Ψ̂G instead.

Spanning forest polynomials in the exponent. We will now show that the
expression (

zTL
(D)
(Z,X)

) (
L

(D)
(X,X)

)−1 (
zTL

(D)
(Z,X)

)T
− zTL(D)

(Z,Z)z (2.22)

can be written as a linear combination of certain spanning forest polynomials with
coefficients that depend only on the external vertex parameters. The inverse matrix
in eq. (2.22) can be written using cofactors:

(
L

(D)−1

(X,X)

)
ij

= (−1)i+j

det(L(D)
(X,X))

det(L(D)(j,i)
(X,X) ) (2.23)

As noted earlier, det(L(D)
(X,X)) is the D-th power of the determinant of L(X,X) and

one quickly confirms that det(L(D)(j,i)
(X,X) ) = (det(L(X,X)))D−1 det(L(j,i)

(X,X)). So we have

(
L

(D)−1

(X,X)

)
ij

= (−1)i+j
(detL(X,X))D

det(L(D)(j,i)
(X,X) )

= (−1)i+j

Ψ̂
det(L(j,i)

(X,X)). (2.24)

That remaining determinant is

detL(j,i)
(X,X) =

∑
K∈P(E)
|K|=|X|−1

det(I(j)
(K,X))

T det I(i)
(K,X). (2.25)
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The superscript with only one index on the rhs means that no row is deleted, only
the column j or i, respectively. Again, if K has a cycle in G/Z, the determinant of
I

(i)
(K,X) vanishes. The remaining possible sets K are the spanning 2-forests of G/Z
because they have |X|− 1 edges in a graph with |X|+ 1 vertices and no cycles. The
incidence matrix I(K,X) for such spanning 2-forest consists of two blocks

I(K,X) =
(
I(Tint)

0

∣∣∣∣∣ 0
I(vext)(Text)

)
(2.26)

where Tint denotes the tree with only internal vertices, Text is the tree that con-
tains the external vertex vext and I(vext) means that the column of vext is deleted.
I(Tint) has one more columns than rows while I(vext)(Text) is quadratic. Therefore, if
i ∈ Text then I(i)

(K,X) consists of two non-quadratic block matrices so its determinant
vanishes. If, on the other hand, i ∈ Tint, then the two sub matrices are quadratic
and consist of linearly independent columns (because they are incident matrices of
trees), so their determinant does not vanish.
We collect all spanning 2-forests which lead to non vanishing determinants by defin-
ing

F (i,j)
G/Z

..= {F = Tint ∪ Text ⊂ G/Z | i, j ∈ Tint} ∀ i, j ∈ X. (2.27)

One can now introduce for each pair i, j (which need not be distinct) another poly-
nomial similarly to the way the dual Kirchhoff polynomial was found in the proof of
theorem 2.1.4, albeit with an additional argument regarding the sign of detL(j,i)

(X,X).
L(X,X) is a Stieltjes matrix (real, symmetric and with non-positive off-diagonal en-
tries), so its inverse is a non-negative matrix. Since each entry of the inverse is given
by

(
L−1

(X,X)

)
ij

= (−1)i+j

Ψ̂
det(L(j,i)

(X,X)). (2.28)

one sees that the sign of det(L(j,i)
(X,X)) always cancels the (−1)i+j. Consequently one

again finds a polynomial with positive coefficients, namely

χ̂ij ..= (−1)i+j detL(j,i)
(X,X) =

∑
F∈F(i,j)

∏
e∈F

αe = Φ̂{i,j}{k}/Z (2.29)

where Φ̂{i,j}{k}/Z is a dual spanning forest polynomial and k in its partition stands for
the single external vertex of G/Z. The inverse matrix therefore can be written as

(
L

(D)
(X,X)

)−1

ij
= χ̂ij

Ψ̂
. (2.30)

Now one needs to multiply this matrix from both sides with the vector

zTL(Z,X) =

− ∑
i∈Z

i adj. k

ziαe={i,k}


k∈X

∈ RD|X| (2.31)

which gives the result
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(
zTL

(D)
(Z,X)

) (
L

(D)
(X,X)

)−1 (
zTL

(D)
(Z,X)

)T
= 1

Ψ̂
∑
i,j∈Z

zTi zj
∑
k,l∈X
k adj. i
l adj. j

χ̂kl
∑

e1,e2∈E
e1={i,k}
e2={j,l}

αe1αe2 . (2.32)

χ̂kl contains the product of all edge parameters that are in a given spanning 2-forest
of G/Z, summed over all spanning 2-forests that have k and l in one tree and the
merged external vertex in the other. We have to distinguish three cases:

(a) i 6= j:
Multiplying by αe={i,k}αe={j,l} corresponds to adding the two edges {i, k} and {j, l}
to the spanning 2-forest. Since k and l were in the same tree, i and j are in the
same tree. For each spanning 2-forest F ∈ F (k,l)

G/Z one gets F ∪ {i, k} ∪ {j, l} which
is a spanning |Z| − 1-forest in G. It is important to note that added edges always
connect an external and an internal vertex of G. Purely external edges e = {zv1 , zv2}
with v1, v2 ∈ Z do not appear in this case. We will later find them when examining
the term zTL

(D)
(Z,Z)z. The sum over all possible added edges can hence be written as

a sum over elements of the set

F (i,j)
G\EZ

..= {F ∪ {i, k} ∪ {j, l} | F ∈ F (k,l)
G/Z , i, j ∈ Z and k, l ∈ X} (2.33)

where EZ ⊂ E shall denote the set of purely external edges. The sum from eq.
(2.32) is then∑
i,j∈Z
i 6=j

zTi zj
∑
k,l∈X
k adj. i
l adj. j

χ̂kl
∑

e1,e2∈E
e1={i,k}
e2={j,l}

αe1αe2 =
∑
i,j∈Z
i 6=j

zTi zj
∑

F∈F(i,j)
G\EZ

∏
e∈F

αe =
∑
i,j∈Z
i 6=j

zTi zj Φ̂{i,j}{k}G\EZ

(2.34)
where the k in the partition of the dual spanning forest polynomial is again any
vertex of G \ EZ which is neither i nor j.

(b) i = j and k 6= l:
For any F ∈ F (k,l)

G/Z adding the two edges results in a subgraph that has a loop in
G because the two vertices k and l which where already in the same tree are now
connected via the external vertex i = j too. We will see below that all the terms of
this case cancel.

(c) i = j and k = l:
Here we get the terms ∑

i∈Z
z2
i

∑
k∈X
k adj. i

χ̂kk
∑
e∈E
e={i,k}

α2
e. (2.35)

Below we will see that these terms also get canceled.

Lastly, we have to take into account the terms that we called zTL(D)
(Z,Z)z in eq. (2.14).

zTL
(D)
(Z,Z)z = 1

Ψ̂/Z

∑
i,j∈Z
i 6=j

zTi zj

 ∑
T⊂E

T s. t. of G/Z

∏
e∈T

αe

 ·


−
∑
e∈E
e={i,j}

αe if i 6= j

∑
k∈V
k adj. i

∑
e∈E
e={i,k}

αe if i = j

(2.36)
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After lifting to G we have to distinguish three cases again:
(a) i, j /∈ T ⊂ G:
If i 6= j, then the spanning tree T ⊂ G/Z is by the above considerations a spanning
|Z|-forest in G. Since neither i nor j are in T , the edge connecting them (if there
is one) makes T ∪ {i, j} a spanning (|Z| − 1)-forest of G. In fact, this case contains
all the terms corresponding to spanning (|Z| − 1)-forest of G with purely external
edges that were missing in case (a) above.
If i = j, the edge {i, k} connects the external vertex i with the tree T . T might
contain any (but at most one) external vertex or only internal vertices so this gives
all spanning |Z|−1-forest of G which have i and another external vertex in one tree
and the others in the other tree. All in all we have for i, j /∈ T

−
∑
i,j∈Z
i 6=j

zTi zj
∑

F∈F(i,j)
G \F(i,j)

G\EZ

∏
e∈F

αe +
∑
i∈Z

z2
i

∑
j∈Z

∑
F∈F(i,j)

G

∏
e∈F

αe (2.37)

(b) i = j, i ∈ T ⊂ G and e = {i, k} /∈ T :
We can write (∏

e∈T
αe

)
αe={i,k} =

∏
e∈T∪{e}

αe (2.38)

T ∪ {e} now contains a cycle, so terms of this kind will cancel the terms one gets
from case (b) above. (c) i = j, i ∈ T ⊂ G and e = {i, k} ∈ T :
Because e ∈ T , αe also occurs in the corresponding monomial of Ψ̂, which we can
rearrange to make it obvious that these terms cancel those from (2.35):

(∏
e∈T

αe

)
αe={i,k} =

 ∏
e∈(T\{{i,k}})

αe

α2
e={i,k} (2.39)

Summarized we now have that in the expression (2.22) everything but the results of
(2.34) and (2.37) cancels. The non-vanishing terms are

(
zTL(Z,X)

)
L−1

(X,X)

(
zTL(Z,X)

)T
− zTL(Z,Z)z

= 1
Ψ̂
∑
i,j∈Z
i 6=j

(zTi zj − z2
i )

∑
F∈F(i,j)

G

∏
e∈F

αe

= − 1
Ψ̂

∑
i≺j∈Z

||zi − zj||2Φ̂{i,j}{k}G (2.40)

Note that to avoid double counting of terms we make use of the ordering ≺ that
was induced on Z by labeling the vertices with natural numbers.
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Now we can define the second important polynomial.

Definition 2.1.6. (Second graph polynomial for graphical functions)
Let G be a graph with |Z| external vertices, F (i,j)

G the set of |Z|−1-forests of G that
have the external vertices i and j in one tree and the remaining external vertices in
the other trees (necessarily exactly one per tree). Then we define the second graph
polynomial for graphical functions as

Φ̂G(α, z) ..=
∑
i≺j∈Z

||zi − zj||2
∑

F∈F(i,j)
G

∏
e∈F

αe =
∑
i≺j∈Z

||zi − zj||2Φ̂{i,j}{k}G .

and as a shorthand notation we will often use

Φ̂G(α, z) ..=
∑
i≺j∈Z

zijΦ̂ij. (2.41)

Furthermore the dependence on α, z and usually also G will not be written explicitly.

Using these results one can write the graphical function from eq. (2.5) as

f
(λ)
G (z) = 1∏

e∈E+ Γ(λνe)

∫ ∞
0

∏
e∈E+

dαe
α1−λνe
e

 ∏
e∈E−

(−1)λ|νe| ∂
λ|νe|

∂α
λ|νe|
e

∣∣∣∣∣
αe=0

 exp
(
− Φ̂

Ψ̂

)
Ψ̂λ+1

.

(2.42)

2.1.3 The exponential, affine and projective integral
There are two more possible modifications to the parametric integral. Firstly, we
can of course execute the derivations but this will lead to a polynomial which is
in general neither homogenous nor linear in any particular variable and which -
as many examples seem to indicate - does not have a handy factorization like the
Dodgson polynomial either. Due to these complications, the integral as it stands is
already quite useful in the case of E− 6= ∅ and we will from now on refer to

f
(λ)
G (z) = 1∏

e∈E+ Γ(λνe)

∫ ∞
0

∏
e∈E+

dαe
α1−λνe
e

 ∏
e∈E−

(−1)λ|νe| ∂
λ|νe|

∂α
λ|νe|
e

∣∣∣∣∣
αe=0

 exp
(
− Φ̂

Ψ̂

)
Ψ̂λ+1

.

(2.43)

as the exponential integral representation of graphical functions. The second possible
modification is making the integrand rational, which naturally leads to a projective
integral. It is in principle possible to do this without first executing the deriva-
tives (see [21]) but here we will make the integrand derivative free, complification
notwithstanding.

The partial derivatives. We already mentioned that executing the partial deriva-
tives in eq. (2.43) results in a very inconvenient polynomial as prefactor of the ex-
ponential that complicates practical computations considerably (cf. chapter 3). We
introduce that polynomial into the graphical function in the following proposition.

Proposition 2.1.7. Let

N− ..=
∑
e∈E−

|νe| (2.44)
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such that λN− is the total number of partial differentiations and let

ψ̂ ..= Ψ̂
∣∣∣
αe=0 ∀ e∈E−

φ̂ ..= Φ̂
∣∣∣
αe=0 ∀ e∈E−

(2.45)

be the graph polynomials as above but with all parameters corresponding to negative
integer edge weights set to zero. Then we can write graphical functions as

f
(λ)
G (z) = 1∏

e∈E+ Γ(λνe)

∫ ∞
0

 ∏
e∈E+

dαe
α1−λνe
e

 η exp
(
− φ̂

ψ̂

)
ψ̂λ+1+2λN−

. (2.46)

where η ≡ η(α, z, λ) is a polynomial of degree 2λN−|X| in the remaining edge pa-
rameters {αe | e ∈ E+}.

Proof. We prove by induction over the number of differentiations. For λN− = 0 one
has η = 1 and nothing else to prove. The λN−-th differentiation, say in the variable
αe1 is

− ∂

∂αe1

η(λN−−1) exp
(
− Φ̂

Ψ̂

)
Ψλ+1+2λN−−2

=
η(λN−−1) Φ̂e1Ψ̂− Φ̂Ψ̂e1 + (λ+ 1 + 2λN− − 2)Ψ̂e1Ψ̂

Ψ̂2
+ ∂

∂αe1

η(λN−−1)


×

exp
(
− Φ̂

Ψ̂

)
Ψ̂λ+1+2λN−−2

.

(2.47)

The degree of both Φ̂e1Ψ̂− Φ̂Ψ̂e1 + (λ+ 1 + 2λN− − 2)Ψ̂e1Ψ̂ and Ψ̂2 is 2|X|. After
pulling Ψ̂−2 out of the bracket we can identify the polynomial

η(λN−) ..=
(
η(λN−−1)

(
Φ̂e1Ψ̂− Φ̂Ψ̂e1 + (λ+ 1 + 2λN− − 2)Ψ̂e1Ψ̂

)
+ Ψ̂2 ∂

∂αe1

η(λN−−1)
)

(2.48)

which is indeed of degree 2λN−|X|. Therefore,

− ∂

∂αe1

η(λN−−1) exp
(
− Φ̂

Ψ̂

)
Ψλ+1+2λN−−2 =

η(λN−) exp
(
− Φ̂

Ψ̂

)
Ψλ+1+2λN−

. (2.49)

Projectivization. We will now rewrite the integral in eq. (2.46) in a certain way
that will be very useful, for explicit computation as well as for more abstract reasons.
First we rescale the variables by1

αe → α1αe ∀ e > 1 (2.50)
1This will lead to an affine integral, which can be interpreted as a special case of a projective

integral. Equivalently one could scale all αe by a new variable t which one introduces together
with a side constraint and directly find the projective integral. See [20] for a detailed explanation
and case (b) of the proof of proposition 2.2.3 for an application of this method to a partial integral
of the exponential integral representation.
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which, remembering that the degrees of ψ̂ and φ̂ are |X| and |X| + 1 respectively,
gives

f
(λ)
G (z) = 1∏

e∈E+ Γ(λνe)

∫ ∞
0

(∏
e>1

dαe
α1−λνe
e

)∫ ∞
0

dα1α
λN+−|X|(λ+1+2λN−)−1
1

× η(α1, α1α2, . . . , α1α|E|)
exp

(
−α1

φ̂

ψ̂

∣∣∣
α1=1

)
ψ̂|λ+1+2λN−

α1=1
. (2.51)

Here we introduced N+ = ∑
νe + N−, the sum of all edge weights that are not

negative integers. Furthermore we will from now on use the abbreviation

Y ..= λN+ − |X|(λ+ 1) (2.52)

and Yn ..= Y − 2|X|λN− + n, which will be useful in the next step.

To integrate α1 one has to look at the terms in η with different powers of α1
separately. Write

η(α1, α2, . . . , α|E|) =
2|X|λN−∑
n=0

ηn (2.53)

where ηn contains all degree n monomials of η. Then

η(α1, α1α2, . . . , α1α|E|) =
2|X|λN−∑
n=0

αn1 · ηn|α1=1 (2.54)

and the graphical function contains a sum of integrals which give different Γ-functions,

f
(λ)
G (z) = 1∏

e∈E+ Γ(λνe)

∫ ∞
0

(∏
e>1

dαe
α1−λνe
e

)

×
2|X|λN−∑
n=0

ηn

∫ ∞
0

dα1α
Y−2|X|λN−+n−1
1

exp
(
−α1

φ̂

ψ̂

∣∣∣
α1=1

)
ψ̂|λ+1+2λN−

α1=1

= 1∏
e∈E+ Γ(λνe)

∫ ∞
0

(∏
e>1

dαe
α1−λνe
e

) 2|X|λN−∑
n=0

Γ(Yn)ηn
φ̂Y+n ψ̂λ+1−Yn

∣∣∣∣∣
α1=1

. (2.55)

The function in (2.55) will be referred to as affine integral representation of
graphical functions. It is scale invariant in every variable and can be interpreted as
one realization of the projective integral,

f
(λ)
G (z) = 1∏

e∈E+ Γ(λνe)

∫
∆P

2|X|λN−∑
n=0

Γ(Yn)ηn
∏
e α

λνe−1
e

φ̂Y+n ψ̂λ+1−Yn
Ω. (2.56)

where Ω = ∑
e(−1)e−1αedα1 ∧ ... ∧ d̂αe ∧ ... ∧ dα|E| is the projective volume form

and one integrates over the subset of real projective space in which all parameters
are positive

∆P = {[α1 : . . . : α|E|] | αi > 0 ∀ i = 1, . . . , |E| }. (2.57)
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These two versions of graphical functions are needed for explicit integrations which
are practically impossible in the exponential version. The affine integral (2.55) is
useful for concrete calculations because it effectively reduces the number of variables
by one. It is therefore of course the version of graphical functions most commonly
used in calculations with computer algebra (see chapter 3). The projective version
(2.56) is more commonly used if one needs the abstract framework of algebraic
geometry and wants to use properties that were lost in the affine integral, e.g.
homogeneity of the spanning forest polynomials.

Since the polynomial due to negative edge weights complicates things so much, we
will mostly use the projective version of graphical functions for the case E− = ∅, in
which (2.56) takes on the form

f
(λ)
G (z) = Γ(Y )∏

e∈E Γ(λνe)

∫
∆P

∏
e α

λνe−1
e

Φ̂Y Ψ̂λ+1−Y
Ω. (2.58)

2.2 Properties of the parametric integrals
In this section we will explicitly show that the parametric graphical function derived
above indeed treats edges between external vertices and multi-edges just like the
position space graphical function, even though it is everything but obvious from the
parametric integral representations introduced above. On the one hand this serves
as a consistency check, on the other hand it is an opportunity to familiarize ourselves
with the parametric integrals we just derived.

2.2.1 Insertion of purely external edges
From the position space definition (1.3.1) we know that inserting an edge e between
external vertices i and j only changes the graphical function by a constant factor

||zi − zj||−2λνe = z−λνe
ij . (2.59)

Such a factor can be incorporated into the parametric integral with an additional
integration or differentiation. We will explain below how we can use this fact to
simplify matters in many situations and in section 2.4 will see this principle applied
but first let us check that the parametric graphical function is indeed consistent for
graphs with trivial edges.

Let G be a graph such that f (λ)
G exists and G′ be the graph G with an additional

edge e between external vertices, say i and j. Note that G may already contain
other edges between any two external vertices, including i and j. We can recover
the fact

f
(λ)
G′ (z) = z−λνe

ij f
(λ)
G (z) (2.60)

from the parametric integral as follows. An edge between external vertices becomes
a tadpole in G′/Z and is therefore never in one of its spanning trees. Hence,

Ψ̂G′/Z = Ψ̂G/Z . (2.61)
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With the contraction/deletion relations 1.2.18 we find that the polynomial in the
integrand of f (λ)

G′ (z) can be written

Φ̂G′ = αeΦ̂G′//e + Φ̂G′\{e} (2.62)

where one also directly finds Φ̂G′\{e} = Φ̂G. Since αe, i.e. the parameter of an edge
directly connecting i and j, may only occur in a single polynomial Φ̂ij from the sum
Φ̂ = ∑

zmnΦ̂mn, one has

Φ̂G′//e = ∂

∂αe
Φ̂G′ = zij(Φ̂ij)G′//e. (2.63)

Moreover, when using spanning forest polynomial notation with Sres a partition of
all external vertices except i and j into disjoint sets, one has

(Φ̂ij)G′ = Φ̂{i,j},Sres

G′ (2.64)

and consequently

(Φ̂ij)G′//e = Φ̂{i=j},Sres

G′//e = Φ̂{i=j},Sres

G′/{i,j} = Φ̂{i=j},Sres

G/{i,j} (2.65)

Here, the second and third equality are due to the fact that contracting e = {i, j}
gives a tadpole that can never be part of a spanning forest. Finally we find that we
can write (following remark 1.2.20)

Φ̂{i=j},Sres

G/{i,j} = Φ̂{i},{j},Sres

G̃
= Ψ̂G/Z (2.66)

such that the second polynomial now is

Φ̂G′ = αezijΨ̂G/Z + Φ̂G (2.67)

Now, starting from the graphical function as in (2.43) an additional edge either gives
an integral

1
Γ(λνe)

∫ ∞
0

dαeαλνe−1
e

exp
(
− Φ̂G′

Ψ̂G′/Z

)
Ψ̂λ+1
G′/Z

= 1
Γ(λνe)

exp
(
− Φ̂G

Ψ̂G/Z

)
Ψ̂λ+1
G/Z

∫ ∞
0

dαeαλνe−1
e e−αezij

= z−λνe
ij

exp
(
− Φ̂G

Ψ̂G/Z

)
Ψ̂λ+1
G/Z

(2.68)

or a differentiation

(−1)λ|νe| ∂
λ|νe|

∂α
λ|νe|
e

∣∣∣∣∣
αe=0

exp
(
− Φ̂G′

Ψ̂G′/Z

)
Ψ̂λ+1
G′/Z

= z
λ|νe|
ij

exp
(
− Φ̂G′

Ψ̂G′/Z

)
Ψ̂λ+1
G′/Z

∣∣∣∣∣∣∣∣
αe=0

= z−λνe
ij

exp
(
− Φ̂G

Ψ̂G/Z

)
Ψ̂λ+1
G/Z

. (2.69)

In both cases one finds the integrand for f (λ)
G (z) and the correct constant factor.
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Remark 2.2.1. Note that for these particular integrations and differentiations the
caveat from remark 2.1.2 does not apply since they just give a constant factor that
does neither affect convergence nor continuousness in any way. Therefore it is jus-
tified to look at them isolated from the other integrations and differentiations as we
just did.

This property can be exploited to simplify a graphical function. Provided that
f

(λ)
G exists with Y < λ+1 and there are no inverse propagators, it is always possible
to insert an edge with weight such that for the new graph Y = λ+ 1 and Ψ̂ vanishes
from the integrand in (2.56) or (2.55). Then one can do all calculations or proofs
for that graphical function and recover the result for the original graphical function
by simply dividing through a constant. This will be used in the proof of theorem
2.4.4. If the graph contains inverse propagators this is only possible for one of the
Yn but might still be helpful, depending on the complexity and number of terms in
the sum.

Example 2.2.2. Consider the graph G from the left-hand side of fig. 2.1 in the
case λ = 1 and with all edge weights νe = 1. It has three edges and one internal
vertex, giving

Y = 3λ− (λ+ 1) = 2λ− 1 λ=1= 1 (2.70)

and a graphical funtion

f
(1)
G (z) =

∫
∆P

1
Φ̂Ψ̂

Ω. (2.71)

The graph on the right hand side has an extra edge such that Y ′ = Y + 1 = 2 and
we can write

f
(1)
G (z) = Γ(Y )

Γ(Y ′) ||z2 − z3||2f (1)
G′ (z) = 1

2 ||z2 − z3||2
∫

∆P

1
Φ̂2

Ω. (2.72)

We see that the integrand only depends on one polynomial which is a situation that
is combinatorially much easier to handle, as we will see below.

G

z1

z2 z3

G′

z1

z2 z3

Figure 2.1: Graphs G with Y = 1 and G′ with Y ′ = 2 for the case λ = 1.
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2.2.2 Equivalence of multi-edges and a single weighted edge
Proposition 2.2.3. Let G be a graph with n > 1 edges with weights νe1 , . . . , νen

between two of its vertices such that f (λ)
G (z) exists and the sum of the weights either

has positive real part or is in λ−1Z.2 Furthermore let G′ be the same graph as G but
with the multiple edges replaced by a single edge with weight νe1 + . . . + νen. Then
their parametric integral representations are equivalent.

Proof. Firstly we note that it suffices to prove the case n = 2 because if there are
more edges one can successively merge them pairwise. Secondly, no tree or |Z| − 1-
forest can ever contain more than one edge between the same two vertices and for
each tree or forest containing one edge from a pair of multi-edges there is another
tree or forest that contains the other edge but is otherwise identical. In equations
that means we can write

Ψ̂ = Ψ̂e1(αe1 + αe2) + Ψ̂(e1e2) = Ψ̂e2(αe1 + αe2) + Ψ̂(e1e2)

Φ̂ = Φ̂e1(αe1 + αe2) + Φ̂(e1e2) = Φ̂e2(αe1 + αe2) + Φ̂(e1e2). (2.73)

There are several cases to investigate separately. In all of them we use the exponen-
tial integral representation as written in (2.43):

(a) e1, e2 ∈ E−:
In order to prove this case we look at the derivatives:

(−1)λ|νe1 |+λ|νe2 |
∂λ|νe1 |

∂α
λ|νe1 |
e1

∣∣∣∣∣
αe1=0

∂λ|νe2 |

∂α
λ|νe2 |
e2

∣∣∣∣∣
αe2=0

exp
(
− Φ̂

Ψ̂

)
Ψ̂λ+1

(2.74)

Due to the relations (2.73), the above expression is equivalent to

(−1)λ|νe1+νe2 |
∂λ|νe1+νe2 |

∂α
λ|νe1+νe2 |
e1

∣∣∣∣∣
αe1 ,αe2=0

exp
(
− Φ̂

Ψ̂

)
Ψ̂λ+1

, (2.75)

which is exactly what appears in f (λ)
G′ (z).

(b) e1, e2 ∈ E+:
We cannot exchange integration and partial derivatives, but can execute them as in
eq. 2.46. The relevant partial integral is then

1
Γ(λνe1)Γ(λνe2)

∫ ∞
0

dαe1

∫ ∞
0

dαe2α
λνe1−1
e1 αλνe2−1

e2 f(αe1 + αe2), (2.76)

where we abbreviated

f(αe1 + αe2) ..= η
exp

(
− φ̂

ψ̂

)
ψ̂λ+1+2λN−

= η(αe1 + αe2)
exp

(
− φ̂e1 (αe1+αe2 )+φ̂(e1e2)

ψ̂e1 (αe1+αe2 )+ψ̂(e1e2)

)
(
ψ̂e1(αe1 + αe2) + ψ̂(e1e2)

)λ+1+2λN−

(2.77)
2At the beginning of this chapter we noted that we always split edges that do not have such a

weight into two parallel edges and use the resulting graph for our graphical functions. For such a
case this proposition simply states that an n-fold multi-edge with n > 2 is equivalent to a double
edge.
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A change of coordinates
αe1 → αt

αe2 → α(1− t)
gives ∫ ∞

0
dαe1

∫ ∞
0

dαe2α
λνe1−1
e1 αλνe2−1

e2 f(αe1 + αe2)

=
∫ ∞

0
dα αλ(νe1+νe2 )−1f(α)

∫ 1

0
dt tλνe1−1(1− t)λνe2−1 (2.78)

The t integration is now exactly the Euler-Beta-function
Γ(a)Γ(b)
Γ(a+ b) = B(a, b) =

∫ 1

0
dx xa−1(1− x)b−1 (2.79)

which exists for Re a,Re b > 0. This is the case for λνe1 and λνe2 , so
1

Γ(λνe1)Γ(λνe2)

∫ ∞
0

dαe1

∫ ∞
0

dαe2α
λνe1−1
e1 αλνe2−1

e2 f(αe1 + αe2)

= 1
Γ(λνe1 + λνe2)

∫ ∞
0

dα αλ(νe1+νe2 )f(α) (2.80)

and after appropriate renaming of α, this is exactly what one would expect in f (λ)
G′ (z).

(c) e1 ∈ E−, e2 ∈ E+,Re νe2 > |νe1|:
Here one has both, a partial integral and a differentiation. Since the merged edge
would still have positive real part, the integration has to remain but the weight of
the corresponding edge has to be changed due to the differentiation. Due to case
(a) we can assume without loss of generality that λνe1 = −1. Let f(αe1 + αe2) be
as above and denote the polynomials corresponding to G′ with primed variables.
Then, using again (2.73),

−1
Γ(λνe2)

∫ ∞
0

dαe2

α
1−λνe2
e2

∂

∂αe1

∣∣∣∣∣
αe1=0

f(αe1 + αe2)

= 1
Γ(λνe2)

∫ ∞
0

dαe2

φ̂e1ψ̂
(e1) − φ̂(e1)ψ̂e1 + (λ+ 1)ψ̂e1ψ̂

(e1)

(ψ̂(e1))2
· f(αe2)
α

1−λνe2
e2

= 1
Γ(λνe2)

∫ ∞
0

dαe2

φ̂
′
e2ψ̂

′ − φ̂′ψ̂′e2 + (λ+ 1)Ψ̂′e2ψ̂
′

(ψ̂′)2
· f(αe2)
α

1−λνe2
e2

= 1
Γ(λνe2)

∫ ∞
0

dαe2α
λνe2−1
e2

∂

∂αe2

f(αe2)

= 1
Γ(λνe2 − 1)

∫ ∞
0

dαe2α
λνe2−2
e2 f(αe2) (2.81)

which is the correct partial integral from f
(λ)
G′ (z).

(d) e1 ∈ E−, e2 ∈ E+, λ|νe1| > λνe2 ∈ Z:
Due to case (b) we can assume that λνe2 = 1. Then one has

(−1)λ|νe1 |
∫ ∞

0
dαe2

∂λ|νe1 |

∂α
λ|νe1 |
e1

∣∣∣∣∣
αe1=0

f(αe1 + αe2). (2.82)
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Let

f̃(αe1 + αe2) ..= ∂λ|νe1 |−1

∂α
λ|νe1 |−1
e1

f(αe1 + αe2), (2.83)

such that we can use again the trick from case (c),

∂

∂αe1

∣∣∣∣∣
αe1=0

f̃(αe1 + αe2) = ∂

∂αe2

f̃(αe1 + αe2)
∣∣∣∣∣
αe1=0

(2.84)

and find

(−1)λ|νe1 |
∫ ∞

0
dαe2

∂λ|νe1 |

∂α
λ|νe1 |
e1

∣∣∣∣∣
αe1=0

f(αe1 + αe2)

= (−1)λ|νe1 |
∫ ∞

0
dαe2

∂

∂αe2

f̃(αe2)
∣∣∣∣∣
αe1=0

= (−1)λ|νe1 |
(

lim
αe2→∞

f̃(αe1 + αe2)− f̃(αe1)
)
αe1=0

= (−1)λ|νe1 |
∂λ|νe1 |

∂α
λ|νe1 |
e1

∣∣∣∣∣
αe1=0

f(αe1) (2.85)

which is the desired integrand for f (λ)
G′ (z). The limit is evident when one observes

that in the denominator αe2 always occurs with a power that is by λ+ 1 larger than
it can be in the numerator polynomial one gets from the differentiations and the
exponential converges to a constant.

2.3 Analytic Continuation
So far, graphical functions were always treated as functions

f
(λ)
G : RD|Z| → C. (2.86)

In position space the z-dependence was possibly distributed over many quadrics and
in differences of zv and xv vectors. In the parametric integral all z-dependence is
contained in quadrics of the form ||zi − zj||2 =.. zij ∈ R+, i.e. f (λ)

G is effectively not
a function of |Z| D-vectors but of

(
|Z|
2

)
positive real numbers. This naturally leads

to an analytic continuation to complex arguments as follows.

Definition 2.3.1. (Analytically continued graphical functions)
Let f (λ)

G (z) : RD|Z| → C be a graphical function as given by one of the formulae
(2.43), (2.55) or (2.56). By replacing all positive real zij in the second graph poly-
nomial with zij ∈ C we define the corresponding analytically continued graphical
function (using the same notation)

f
(λ)
G : Cn \ Σ→ C (2.87)

where n =
(
|Z|
2

)
and Σ is the subset of Cn on which the analytic continuation does

not exist.
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Σ is the zero locus of a set of polynomials in the zij, i.e. the polynomials that
remain in the denominator of the graphical function after integrating all variables αi.
It is a representation of a Landau variety, a hypersurface in P1(C)× . . .×P 1(C) (n
times), where each zij is a coordinate on its individual copy of the Riemann sphere.
For detailed technical background we refer to the book [33] and the article [10]. The
latter reference also contains explicit computations of Landau varieties in some small
cases. In general, however, Landau varieties are immensely difficult to compute. In
chapter 3, upper bounds for the Landau varieties of certain graphical functions are
studied.

Remark 2.3.2. For simplicity we will often relabel the arguments and corresponding
spanning forest polynomials with a single index i ∈ {1, . . . , n} instead of the double
index.

2.3.1 Analyticity
To show analyticity of graphical functions in z = (z1, . . . , zn) we will make use of
the following standard theorem:

Theorem 2.3.3. (Holomorphic parameter integrals)
Let R ⊂ Rm and S ⊂ Cn be domains with m,n ∈ N. Furthermore be

I(α, z) = I(α1, . . . , αm, z1, . . . , zn) : R× S → C (2.88)

a continuous function with the following properties:
(a) For every fixed α ∈ R,

ι(z) := I(α, z) (2.89)

is holomorphic for all z ∈ S.
(b) There is a continuous function F (α) : R→ [0,∞) with∫

R
F (α) dα <∞ (2.90)

such that

|I(α, z)| ≤ F (α) for all (α, z) ∈ R× S. (2.91)

Then the function

f(z) :=
∫
R
I(α, z) dα (2.92)

is holomorphic in S.

Proof. The theorem can be proven by construction of a sequence of holomorphic
functions which is then shown to converge to the desired function f(z). See [34], p.
231 for details.

We will now show that graphical functions satisfy the conditions of the above
theorem if we demand positive real parts for all zi. We restrict ourselves to the case
of non-negative edge weights only. A more elaborate proof that includes negative
edge weights will appear in [21].
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Theorem 2.3.4. (Analyticity of graphical functions)
Let G be a graph in which all edge weights have positive real part (i.e. E− = ∅),
that satisfies the convergence conditions 1.3.3 such that its graphical function f (λ)

G (z)
exists for z ∈ RD|Z|. Then its continuation is holomorphic in Cn

+.

Proof. Take the exponential parametric version of the graphical function as in (2.43),

f
(λ)
G (z) = 1∏

e∈E+ Γ(λνe)

(∫ ∞
0

∏
e∈E

dαe
α1−λνe
e

) exp
(
− Φ̂

Ψ̂

)
Ψ̂λ+1

. (2.93)

Because f (λ)
G exists, there are z0

i > 0, i = 1, . . . , n such that f (λ)
G (z0) <∞. To satisfy

condition (a) of theorem 2.3.3 we choose the domain of the complex parameters to
be a strip with finite width along the real axis

S ..= {z ∈ Cn
+ | 0 < z0

i − li < Re zi < z0
i + Li ∀ i = 1, . . . , n}. (2.94)

for fixed li, Li ∈ R+ and R = R|E|+ as the domain of the real integration variables.
For (b) we need the following estimate. Let A = min{z0

i − li | i = 1, . . . , n} and set
ξA = max

{
z0

i

A
| i = 1, . . . , n

}
. Then we have

Φ̂(A) =
n∑
i=1

AΦ̂i ≥
n∑
i=1

z0
i

ξA
Φ̂i = Φ̂(z0/ξA), (2.95)

With this bound one has

(∫ ∞
0

∏
e∈E

dαe
α1−λνe
e

) exp
(
− Φ̂(A)

Ψ̂

)
Ψ̂λ+1

≤
(∫ ∞

0

∏
e∈E

dαe
α1−λνe
e

) exp
(
− Φ̂(z0/ξA)

Ψ̂

)
Ψ̂λ+1

<∞ (2.96)

where the integral on the right hand side exists because scaling each z0
i with ξ−1

A

corresponds to scaling each original variable vector from RD|Z| with ξ−1/2
A and does

not change the convergence behaviour. Furthermore,

Φ̂(A) ≤ Re Φ̂(z) (2.97)

which means that the second condition
∫ ∞

0

∏
e∈E+

dαe
α1−λνe
e

 exp
(
− Φ̂(A)

Ψ̂

)
Ψ̂λ+1

≥

∫ ∞
0

∏
e∈E+

dαe
α1−λνe
e

 exp
(
−Re Φ̂(z)

Ψ̂

)
Ψ̂λ+1

=
∫ ∞

0

∏
e∈E+

dαe
α1−λνe
e


∣∣∣∣exp

(
− Φ̂(z)

Ψ̂

)∣∣∣∣
Ψ̂λ+1

≥

∣∣∣∣∣∣∣∣
∫ ∞

0

∏
e∈E+

dαe
α1−λνe
e

 exp
(
− Φ̂(z)

Ψ̂

)
Ψ̂λ+1

∣∣∣∣∣∣∣∣ (2.98)

is also fulfilled. Because li and Li are arbitrary, f (λ)
G (z) is analytic in all of Cn

+.
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2.4 The conformal parametrization
An especially interesting case of graphical functions is given by the set of external
vertices Z = {0, 1, z}. The vertices can be parametrized as follows [37]:

0 ∼ 0 ∈ RD

1 ∼ v1 = (1, 0, ..., 0) ∈ RD

z ∼ vz =
(
z + z̄

2 ,
z − z̄

2i , 0, ..., 0
)
∈ RD (2.99)

The graphical function is now neither a function ofD-vectors nor of
(

3
2

)
= 3 numbers

z01, z0z, z1z but only of the complex variable z and its complex conjugate z̄ because
the dependence on external vertices in Φ̂ is now

Φ̂ =
∑
i≺j∈Z

||zi − zj||2Φ̂ij

= Φ̂1z||vz − v1||2 + Φ̂0z||vz − 0||2 + Φ̂01||v1 − 0||2

= Φ̂1z(z − 1)(z̄ − 1) + Φ̂0zzz̄ + Φ̂01. (2.100)

The analytically continued graphical function arises naturally from treating z and
z̄ as independent variables instead of complex conjugates, which we will always do
from now on. The complex conjugate, if needed, will be denoted by z∗ to avoid
confusion.

In this special case we immediately find a corollary to theorem 2.3.4:

Corollary 2.4.1. If Re zz̄ > 0 and Re(z − 1)(z̄ − 1) > 0, then f (λ)
G (z, z̄) is analytic

in z and z̄. In particular, f (λ)
G (z, z∗) is real analytic in C \ {0, 1}

Proof. The first part is true because for z0z = zz̄, z1z = (z − 1)(z̄ − 1), z01 = 1
f

(λ)
G (z0z, z1z, z01) is analytic in C3

+ and the three complex variables z1z, z0z and z01
are themselves analytic functions in z and z̄. The second part follows since zz∗ >
0 ∀ z 6= 0 and (z − 1)(z∗ − 1) > 0 ∀ z 6= 1.

In the following sections we will discuss properties that are unique to graphical
functions in this parametrization. Section 2.4.1 contains a new proof of a previously
known identity. Both the result and the techniques of the proof are instrumental
in section 2.4.2 where they will be used to prove a new identity between graphical
functions of dual planar graphs.

G Gzz z

Figure 2.2: The graphs G and Gz from theorem 2.4.2.
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2.4.1 Appending an edge
In this section we give an alternative proof for an identity that relates the graphical
functions of certain graphs via a differential equation. The original proof is due to
Oliver Schnetz [37].

Theorem 2.4.2. (Appending an edge)
Let G, Gz be graphs such that their graphical functions exist and Gz is the graph G
with an edge ez with weight νez = 1 appended to the external vertex z as in fig. 2.2,
i.e. such that Gz//{{•, z}} = G. Then3,

f
(λ)
G (z) = −Γ(λ)

(
∂z∂z̄ −

λ

z − z̄
(∂z − ∂z̄)

)
f

(λ)
Gz

(z). (2.101)

Proof. Let αez denote the appended edge’s parameter and mark all remaining vari-
ables associated to Gz with a subscript z. Starting from the exponential parametric
integral (2.43) it suffices to prove the case E−(G) = ∅ because derivatives with
respect to edge parameters can be exchanged with ∂z and ∂z̄. For the graph poly-
nomials of Gz one finds from the usual contraction-deletion relations (1.2.18) and
observing how an appended edge affects trees and forests that they can be written
as:

Ψ̂z = αez∂αez
Ψ̂z + Ψ̂z|αez =0

= αezΨ̂ + Φ̂0z + Φ̂1z (2.102)

Φ̂z = αez∂αez
Φ̂z + Φ̂z|αez =0

= αezΦ̂ + Ψ̂G

= αez(zz̄Φ̂0z + (z − 1)(z̄ − 1)Φ̂1z + Φ̂01) + Ψ̂G (2.103)

Some parts of that deserve a more detailed explanation. As we observed several
times already, Ψ̂z = Φ̂{0},{1},{z}Gz

. Setting αez to zero corresponds to deleting all the
spanning 3-forests of Gz that have the three external vertices in different trees and
contain the edge ez. In the remaining spanning 3-forests z is necessarily an isolated
vertex, so the vertex that was z in G must be contained in one of the other two
trees, i.e. it is connected to either 0 or 1. For the polynomials this means

Ψ̂z|αez =0 = Φ̂0z + Φ̂1z (2.104)

as above. In Φ̂z, setting αez to zero only leaves spanning 2-forests of Gz that do
not contain ez. Seen instead as subgraphs of G they are the spanning trees, so
Φ̂z|αez =0 = Ψ̂G.

The appended edge corresponds to an integration

1
Γ(λ)

∫ ∞
0

dαezα
λνez−1
ez

exp
(
− Φ̂z

Ψ̂z

)
Ψ̂λ+1
z

. (2.105)

3In [37], the identity was formulated as f (λ)
G (z) = −Γ(λ)

(
1

(z−z̄)λ ∂z∂z̄(z − z̄)
λ + λ(λ−1)

(z−z̄)2

)
f

(λ)
Gz

(z).
Here we prefer a shorter but equivalent version.
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Applying
(
∂z∂z̄ − λ

z−z̄ (∂z − ∂z̄)
)
to the z, z̄ dependent part gives

(
∂z∂z̄ −

λ

z − z̄
(∂z − ∂z̄)

)
exp

−αez(zz̄Φ̂0z + (z − 1)(z̄ − 1)Φ̂1z + Φ̂01) + Ψ̂G

Ψ̂z


= αez Ψ̂−2

z

(
αezzz̄Φ̂0z(Φ̂0z + Φ̂1z) + αez (zz̄ − z − z̄)Φ̂1z(Φ̂0z + Φ̂1z)

−(λ+ 1)(Φ̂0z + Φ̂1z)Ψ̂z + αez Φ̂2
1z

)
exp

− Φ̂z

Ψ̂z

 . (2.106)

A tedious computation best left to a computer then shows that the full integrand
can be written as(

∂z∂z̄ −
λ

z − z̄
(∂z − ∂z̄)

)
αλνez−1
ez

exp
(
− Φ̂z

Ψ̂z

)
Ψ̂λ+1

= αλνez
ez

(
αezzz̄Φ̂0z(Φ̂0z + Φ̂1z) + αez (zz̄ − z − z̄)Φ̂1z(Φ̂0z + Φ̂1z)

−(λ+ 1)(Φ̂0z + Φ̂1z)Ψ̂z + αezΦ̂2
1z

) exp
(
− Φ̂z

Ψ̂z

)
Ψ̂λ+3

= −αλ(νez−1)
ez

∂αez

αλ+1
ez

exp
(
− Φ̂z

Ψ̂z

)
Ψ̂λ+1


−αez (Φ̂0zΦ̂1z + Φ̂0zΦ̂01 + Φ̂1zΦ̂01 − Ψ̂Ψ̂G)

exp
(
− Φ̂z

Ψ̂z

)
Ψ̂λ+3

 (2.107)

With the identity ( [15], proposition 22)

Φ̂0zΦ̂1z + Φ̂0zΦ̂01 + Φ̂1zΦ̂01 = Ψ̂Ψ̂G (2.108)

which is essentially the Dodgson identity formulated in terms of spanning forest
polynomials4, we see that only the term which is a partial derivative in the new
edge variable remains. This allows evaluation of the integral

∫ ∞
0

dαezα
λ(νez−1)
ez

∂αez

αλ+1
ez

exp
(
− Φ̂z

Ψ̂z

)
Ψ̂λ+1



= αλ+1
ez

(αez Ψ̂ + Φ̂0z + Φ̂1z)λ+1
exp

−αez (zz̄Φ̂0z + (z − 1)(z̄ − 1)Φ̂1z + Φ̂01) + Ψ̂G

αez Ψ̂ + Φ̂0z + Φ̂1z

∣∣∣∣∣∣
∞

0

= −
exp

(
− Φ̂

Ψ̂

)
Ψ̂λ+1

. (2.109)

Including the factor −1 from eq. (2.107) and the factor Γ(λνez) = Γ(λ) from eq.
(2.105) proves the statement.

4In [15] the identity was formulated for spanning forest polynomials. It is clear that it also
holds for dual spanning forest polynomials.
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2.4.2 Fourier identity
We will prove an identity on graphical functions of a certain class of graphs - planar
graphs, that are dual to each other. The name stems from the theory of Feynman
integrals, where the Fourier transform of a momentum space integral of a planar
graph gives the position space integral of a dual graph (cf. the ladder box graph
from fig. 1.10). In the parametric analog something similar but somewhat more
convenient happens. Cremona transforms take the place of Fourier transforms when
going from parametric to dual parametric space or vice versa. Such a transformation
effectively replaces the graph polynomials in the integrand by their complements,
which, by Tutte’s observation [40] already mentioned in the proof of theorem 1.2.21,
are exactly the graph polynomials of the dual graph.

For the case λ = 1 it was previously proved by O. Schnetz [38] using position and
momentum space methods. Here we will give a proof for general positive half-integer
λ in the parametric representation which mainly uses identities on graphs and their
associated polynomials as well as the above identity for graphs with an appended
edge.

Before stating the main theorem of this section we need a lemma to establish two
simple facts about planar graphs and their graphical functions.

Lemma 2.4.3. Let G be a planar graph with only positive weights such that f (λ)
G

and f (λ)
G∗ exist, and Y = Y (G) = λN(G)− (λ+ 1)|X(G)|, Y ∗ = Y (G∗). Then

(i) Y + Y ∗ = 2(λ+ 1),

(ii) Y, Y ∗ > 0.

Proof. The first fact follows from the definition of the edge weights in the dual graph
λνe∗ = λ(1 − νe) + 1 (which in turn was chosen that way because one wants both
weights positive and λνe, λνe∗ < λ + 1 for UV convergence) applied to the sum of
all edges

λN∗ =
∑
e∗
λνe∗ =

∑
e

(λ(1− νe) + 1) = −λN + (λ+ 1)|E| (2.110)

together with Euler’s formula for planar graphs (where internal vertices of G∗ are
internal faces of G and the ’outside’ of the graph counts as one additional face)

|X∗| = |E| − |X| − 2. (2.111)

Inserting both into the formula for Y ∗ = Y (G∗) gives

Y ∗ = λN∗ − (λ+ 1)|X∗|
= −λN + (λ+ 1)|E| − (λ+ 1)(|E| − |X| − 2)
= −Y + 2(λ+ 1). (2.112)

Lastly, the second claim follows from the convergence conditions. Take the IR
condition

(D − 2)N(g) > D|X(g)|, (2.113)
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which has to hold for all subgraphs g ⊆ G (G∗) and consider the case g = G (G∗).
Substituting D = 2λ+ 2 and dividing by 2 directly gives

0 < λN − |X|(λ+ 1) = Y (2.114)

and Y ∗ analogously.

Theorem 2.4.4. (Fourier identity)
Let G be a planar graph with three external vertices labeled 0, 1 and z, weights such
that 0 < λνe < λ + 1 for all edges e ∈ E, λ ∈ 1

2N, fG(z) and fG∗(z) exist, and Y
and Y ∗ are positive integers. Then

f
(λ)
G (z) = Γ(λ+ 1)∏e∗∈E∗ Γ(λνe∗)

Γ(Y ∗)∏e∈E Γ(λνe)

(
λ

z − z̄
(∂z − ∂z̄)− ∂z∂z̄

)Y−λ−1

f
(λ)
G∗ (z) (2.115)

if Y ∗ ≤ Y , and

f
(λ)
G∗ (z) = Γ(λ+ 1)∏e∈E Γ(λνe)

Γ(Y )∏e∗∈E∗ Γ(λνe∗)

(
λ

z − z̄
(∂z − ∂z̄)− ∂z∂z̄

)Y ∗−λ−1

f
(λ)
G (z) (2.116)

if Y ∗ ≥ Y .

Proof. First we prove the case Y = λ+ 1 = Y ∗, i.e. we prove that

Γ(Y )∏
e∈E Γ(λνe)

∫
∆P

∏
e α

λνe−1
e

Φλ+1
G

Ω = Γ(Y ∗)∏
e∗∈E∗ Γ(λνe∗)

∫
∆P

∏
e∗ α

λνe∗−1
e∗

Φλ+1
G∗

Ω. (2.117)

The prefactors are already part of the identity. What remains to be shown is the
relation between the integrals. An inversion of all parameters turns the projective
volume form into

Ω =
∑
e

(−1)e−1αedα1...d̂αe...dα|E|

→
∑
e

(−1)e−1 1
αe

−dα1

α2
1
∧ ... ∧ −d̂αe

α2
e

∧ ... ∧
−dα|E|
α|E|

= (−1)|E|−1 Ω
(∏e αe)2 . (2.118)

The sign that one picks up if |E| even is canceled by the orientation reversal of ∆P
in that case.5 Thence such a Cremona transformation applied to the integral on the

5In the special case of the affine integral, where one sets one parameter to 1 this is rather
obvious, since ∆P is then just R|E|−1

+ and one gets the correct sign because one has to change the
integration boundaries after the Cremona transformation, i.e. one gets |E| − 1 times a −1 from∫ 0
∞ . . . = −

∫∞
0 . . . . For the abstract projective case the argument is more difficult. For |E| odd,

∆P has even dimension and is therefore not orientable (see e.g. [26], ch. 13). If |E| is even, one
can consider the (|E| − 1)-sphere S|E|−1 which is orientable if and only if |E| − 1 is odd. For
the sphere one can explicitly check that the Cremona transformation reverses the orientation (e.g.
in the charts given by the stereographic projection). Then one can construct P|E|−1(R) from the
sphere by identification of antipodal points and go further to ∆P by restricting to positive values
of the homogenous coordinates, neither of which changes the orientation behavior one found for
the sphere.
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left hand side of eq. (2.117) gives(∏
e∈E

Γ(λνe)
)
f

(λ)
G (z) =

∫
∆P

∏
e α

λνe−1
e

Φλ+1
G

Ω =
∫

∆P

∏
e α

1−λνe
e

(∏e αe)2Φλ+1
G (α−1

1 , · · · , α−1
|E|)

Ω

=
∫

∆P

∏
e α

λ(1−νe)
e

(∏e αe)λ+1Φλ+1
G (α−1

1 , · · · , α−1
|E|)

Ω

corollary 1.2.22=
∫

∆P

∏
e∗ α

λνe∗−1
e∗

Φλ+1
G∗

Ω

=
( ∏
e∗∈E∗

Γ(λνe∗)
)
f

(λ)
G∗ (z), (2.119)

Now we prove the other cases. Due to the symmetry under exchange of G and G∗
it suffices to prove the cases Y > Y ∗. From lemma 2.4.3 we know that

1 ≤ Y, Y ∗ ≤ 2λ+ 1 (2.120)
and Y + Y ∗ = 2(λ+ 1). Consider the pair (Y = λ+ 1 + n, Y ∗ = λ+ 1− n) for any
n ∈ {1, . . . , λ}. By inserting n trivial edges with weight 1/λ between 0∗ and 1∗ in
G∗ we can turn it into a graph G∗01n such that Y ∗01n

..= Y (G∗01n) = λ + 1. The new
graph G∗01n is still planar and has a dual graph. Moreover, from the construction
of the dual graphs (see definition 1.2.7 and remark 1.2.8) one finds that this dual
graph is in fact Gzn , the graph G on which an edge was appended as in the previous
section n times (cf. fig. 2.3). That means we have so far

f
(λ)
G∗ (z) = Γ(Y ∗)

Γ(Y ∗01n)f
(λ)
G∗01n

(z) = Γ(Y ∗)
Γ(λ+ 1)

Γ(λ)n∏e∈E Γ(λνe)∏
e∗∈E∗ Γ(λνe∗)

f
(λ)
Gzn (z) (2.121)

where E and E∗ denote the edge sets of G and G∗ respectively. The gamma factors
of the trivial edges only contribute Γ(λ 1

λ
) = 1 for each edge and the gamma factors

of the appended edges are written separately as Γ(λ)n. Now we apply the differential
operator of the appending an edge identity 2.4.2 n times and find(
−Γ(λ)

(
∂z∂z̄ −

λ

z − z̄
(∂z − ∂z̄)

))n
f

(λ)
G∗ (z) = Γ(Y ∗)

Γ(λ+ 1)
Γ(λ)n∏e∈E Γ(λνe)∏

e∗∈E∗ Γ(λνe∗)
f

(λ)
G .

(2.122)
which, after canceling Γ(λ)n on both sides and bringing all other gamma factors on
the left-hand side, proves the statement.

G∗ G

0∗

1∗

z∗ z

0

1

Figure 2.3: Illustration showing how multiple inserted trivial edges in G∗ correspond
to successively appended edges in G.
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Chapter 3

Computational aspects

In this chapter we turn our backs on the general analytic considerations of the pre-
ceding chapter and instead focus on the question what insights can be gained from
concrete computations via computer algebra. There are two main directions to ex-
plore. The first is the establishment of a database, collecting properties of as many
graphical functions as possible. This is done in the hope that it will help gain intu-
ition and fuel and direct future research into graphical functions. The other option
is to concentrate all computing power on a few graphical functions that are - for
reasons to be discussed below - especially interesting.

The computations in this chapter were performed using Maple1 [1] and Erik Panzer’s
Maple implemented program HyperInt [29].

Conventions. Graphical functions as treated so far are quite general objects. For
the remainder of this chapter we will use the following constraints to reduce the
number of graphical functions to a manageable amount and concentrate on cases
that have immediate applications.

1. Constraints that give conformal 4-point functions and φ4
4-periods:

(a) space time dimension D = 4⇔ λ = 1
(b) external vertices Z = {0, 1, z}
(c) conformal parametrization z01 = 1, z0z = zz̄, z1z = (z − 1)(z̄ − 1)
(d) all internal vertices 4-valent: ν(v) = 4 ∀ v ∈ X
(e) edge weight only +1 (’propagator’) or −1 (’inverse propagator’)

2. Constraints that reduce the number of graphical functions by known identities
and symmetries:

(a) all external vertices are at least 2-valent: ν(v) ≥ 2 ∀ v ∈ Z
(see ’appending an edge’, section 2.4.1)

(b) use only one of the 24 graphs that are related via permutation of external
vertices when completed (see ’completion’, section 1.3.1)

1MapleTM is a trademark of Waterloo Maple Inc.

51



3.1 Graph generation
In order to investigate them, one first has to generate an exhaustive list of all
graphical functions that fulfill the restrictions mentioned above. This was done with
a python script based on Michael Borinsky’s Feynman graph generator feyngen [6]
which in turn makes use of the graph theoretical tools in Brendan McKay’s nauty
[27]. The script works as follows

1. Generate all graphs with a given number of vertices as lists of edges, where
edges are sets (propagators) or lists (inverse propagators) of two vertices.

2. Assign external vertices, including ’∞’ and permutations.

3. Check constraints (vertex valence) and convergence conditions.

4. Complete the graphs that remain after step 3.

5. Check if the graph or a graph that is the same up to permutation of (0, 1, z,∞)
is already in the list of graphical functions. If not, add the graph to the list.

The script takes the total number of vertices (0, 1, z,∞ + internal vertices) as input
and returns a list of all completed graphs with convergent graphical functions with
that number of vertices that satisfy the above constraints. For 6 and less vertices
there are no such graphs. The results for 7-10 vertices are discussed below. For
11 and more vertices we have not yet created a list on the one hand due to the
considerable amount of time the program needs for such large graphs on the other
hand because there is at the time of this writing no use for such graphical func-
tions in practical calculations. Already the 10-vertex graphical functions are both
too numerous and too complicated to treat with currently available programs and
computers.

Grouping according to inverse propagator structure. We will classify graphs
into three different sets, the criterion being the occurrence and position of inverse
propagators. Type 1 graphs have no inverse propagators anywhere, type 2 consists
of graphs that have inverse propagators, but only between internal vertices. Graphs
of the third type have at least one inverse propagator between an internal and an
external vertex and may additionally have them between internal vertices.
The reason for this categorization of graphs into three groups is the fact that inverse
propagators produce huge polynomials in the numerators of the integrands. In the
first type there are no inverse propagators, so these are typically the easiest to han-
dle. The graphs from the second and third type are the more complicated, because
more inverse propagators also means that the graph can have more edges in total
while still giving a convergent graphical function and in the case of the third type
also because the numerator structure now explicitly depends on z.

Having generated the graphs, one can then - among other things that we will do
- check if they are linearly reducible. What that means will be explained in the
following section.
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3.2 Linear Reducibility
Let

IG =
∫
Rn

+

1
P 2
G

n∏
i=1

dαi (3.1)

be a convergent integral over some graph polynomial PG (typically the Kirchhoff
polynomial) in variables α1, . . . , αn. We say that the integral (⇔ polynomial ⇔
graph) is linearly reducible if there exists an order of integration αi1 , . . . , αin such
that at each integration step the denominator of the integrand factors into products
of polynomials that are linear in the next variable. The significance of this concept
is that such integrals can be evaluated step by step in terms of hyperlogarithms and
eventually result in multiple zeta values or MPLs at roots of unity.

The notion of linear reducibility was introduced by Brown [10]. In the same article
he also gave the so far only sufficient combinatorial criterion for a graph to be
linearly reducible, which sadly cannot be further strengthened due to the existence
of counter examples but still applies to an infinite family of graphs. Furthermore he
devised an efficient algorithm to check if a polynomial is reducible. A worked out
example of both reduction algorithm and integration via hyperlogarithms applied
to the wheel with three spokes can be found in [8] and, together with some more
elementary explanations, also in [20].

Reduction algorithm and hyperlogarithm integration are both implemented in (and
in the case of the latter even the main task and naming inspiration of) HyperInt.

3.2.1 Application to graphical functions.
Let G be a graph (for simplicity with edge weights νe = +1 for all e ∈ E) such that
the graphical function f

(1)
G ≡ fG exists. Then the affine integral representation of

fG (see eq. (2.55)) is

fG(z) = Γ(Y )
∫ ∞

0

dα2 . . . dα|E|
φ̂Y ψ̂2−Y

∣∣∣
α1=1

.

We will illustrate the typical steps in checking such a graphical function for linear
reducibility by an example.
Example 3.2.1.

Let G be the graph (again dismissing the two inverse propagators ez∞and e01
that its completed version would have right from the start)

∞z

01

e4e3

e1e2

Then its graphical function is (using the projective integral for now and only later
deciding which variable to set to 1)

fG(z) =
∫

∆P

Ω
(zz̄α1α3 + (z − 1)(z̄ − 1)α2α3 + α1α2)(α1 + α2 + α3) . (3.2)
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Reduction. Now one can use the HyperInt functions cgReduction, which
computes the reductions, and reductionInfo, which gives an overview over
the result of the reduction, to check for reducibility. Concretely, the output of
reductionInfo in this example is

After 1 variables: minimum 4 polynomials
{{x[2]}, {x[3]}}

After 2 variables: minimum 3 polynomials
{{x[1], x[2]}, {x[1], x[3]}, {x[2], x[3]}}

After 3 variables: minimum 3 polynomials
{{x[1], x[2], x[3]}}

where x[i] ↔ αi. The first line is particularly interesting here, because it indicates
that one might have a problem when the integration order begins with α1. Actually
finding a working integration order is then a matter of trial and error informed by
the data one can gather from this output2. Furthermore it indicates the minimum
number of polynomials that will appear after integrating a certain number of vari-
ables. This is useful to see if a working integration order that one has found is
already optimal or if there might be more efficient integration orders in the sense
that they produce less polynomials in intermediate results.

Finding integration orders. Suppose we have somehow found an order of inte-
gration that we suspect might work. Now we can use another HyperInt function
called checkIntegrationOrder. Say we want to try the order α1, α2, α3. We
noticed above that an integration starting with α1 will most likely be problematic
and lo and behold, checkIntegrationOrder returns

1. x[1]: 2 polynomials, 2 dependent
Error, (in checkIntegrationOrder) Not linear in x[2].

However, in this case all integration orders starting with either α2 or α3 will work.
Curiously, the order α1, α3, α2 will also work, because we set the last variable to 1
in the affine integral. The quadratic terms in α2 then simply vanish and one finds

1. x[1]: 2 polynomials, 2 dependent
2. x[3]: 6 polynomials, 4 dependent
Final polynomials

{−1 + z,−1 + zz,−zz + z}

where zz ↔ z̄. The first two lines contain information about the total number of
polynomials in the integrand in each integration step and how many of them actually

2For larger graphs with more variables the output does not contain all possible combinations
of variables at each step, as it does in this simple example after two and three variables. Which
variables occur in such sets gives valuable hints regarding possibly working integration orders.
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depend on the next variable, e.g. in the first step there are the two polynomials φ̂
and ψ̂ and both depend on α1 . This can be compared with the minimum number of
polynomials from the reductionInfo output to judge efficiency of an integration
order.

The last line indicates that the denominator of the final integration result will at
most be a product of z, z̄, z−1, z̄−1 and z− z̄ (the single z and z̄ are never written
explicitly in the output). Consequently, one already knows where the graphical
function will at most have singularities without having to do a single integration.
While these final polynomials may be more complicated for larger graphs (see section
3.3.1), all graphical functions checked so far are only singular on

L = {(z, z̄) ∈ C2 | zz̄ = 0 or (z − 1)(z̄ − 1) = 0}. (3.3)

which leads to the suspicion that this might be the case in general. A proof however
currently seems to be out of reach.

Remark 3.2.2. It has to be emphasized that the reduction algorithm only makes
positive statements about linear reducibility. Even if the reduction does not find an
integration order such that at each step there is a suitable variable, an adequate
change of variables may change that [30]. However, this has to be done on a case
by case basis and is not further pursued in this thesis.

Another caveat has to be added regarding linearly reducibility of graphical functions
in different permutations of (0, 1, z,∞). Due to the large number of graphical func-
tions at higher number of vertices, each graph was only checked for reducibility in
the four cases that change the position of the ∞ vertex, i.e. (0, 1,∞, z), (0, 1, z,∞),
(0,∞, 1, z) and (∞, 1, 0, z). These four were chosen because all edges connected to
∞ are removed from the graph and moving ∞ therefore often changes the structure
of the graph immensely. It is in principle possible that permuting one of the three
other vertices changes linearly reducibility, but this seems to be a negligible effect
and we believe that very few if any linearly reducible graphical functions (of those
that can be found with the algorithm) were overlooked by discarding the other 20 per-
mutations. For comparison, of the 88 linearly reducible 9 vertex graphical functions
that were found (see below) 59 were found in the first permutation. The second, third
and fourth then gave 16, 8 and 5 more respectively, all of which became reducible
because the structure of the graph was significantly modified by moving ∞ (by far
the most common case being a reduction of the total number of edges).

3.3 Results
7 vertices. At 7 vertices there are a total of 7 graphical functions of which 5 were
previously found by hand [38]. Their graphs are drawn in figure 3.1. All seven
graphs are linearly reducible. One of the two new functions (bottom left in fig. 3.1)
was successfully computed with Panzer’s HyperInt and added to Schnetz’s list of
graphical functions. Due to its inverse propagators, the other new graphical function
(bottom right in fig. 3.1) produces such a large polynomial η in the numerator that
direct computation is for now not possible.
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∞z

01

∞z

0

1

∞

z
01

∞z

Figure 3.1: The seven 7-vertex graphs that have convergent graphical functions and
satisfy the constraints of chapter 3. Edges between external vertices are not drawn.
The specific permutation of (0, 1, z,∞) drawn here was randomly chosen. The two
graphs in the bottom row were previously overlooked.

8 vertices. In the case of 8 vertices the script confirmed a list of 19 type 1 graphs.
In addition to that it was found that there are 23 graphs of the second kind and 167
of the third. All but four of the 19 graphs without inverse propagators are linearly
reducible (see fig. 3.2). The vast majority of type 2 and 3 graphs give graphical
functions with enormous numerator polynomials that prohibited computations with
them.

9 vertices. 9 vertex graphical functions are currently the most important to in-
vestigate, mainly because computing certain specimen leads directly to previously
unknown periods of φ4 graphs (see section 3.3.2).Their number is already too large
to be reasonably and reliably generated by hand. There are 219, 563 and 8353 of
the first, second and third kind respectively but only the 219 without inverse prop-
agators were more thoroughly investigated, seeing that already at 7 and 8 vertices
graphical functions with numerator structures due to inverse propagators are inac-
cessible with current programs. In total 88 of 219 graphs were found to be linearly
reducible.

Only five of those 88 graphical functions could be integrated within reasonable time
(<1 week). They are depicted in fig. 3.3. All others require excessive amount of
time, and memory demands of several dozen GiB per process severely restrict the
possibility of parallelization. From the set of graphical functions that are helpful for
the computation of currently unknown φ4 periods, only two are linearly reducible.
The computation of the easier of the two will be finished in the foreseeable future
(cf. section 3.3.2).
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Figure 3.2: The four non-reducible graphs with 8 vertices and no inverse propagators.

10 vertices. For 10 vertices only the number of graphs of first and second kind
is known: 1966 and 19914. Two important specimen (depicted in fig. 3.5), that
would allow computation of new φ4 periods were checked for linear reducibility. The
upper graph depicted in fig. 3.5 was quickly found to be non-reducible but the
computation for the other graph is quite time-consuming and still ongoing.

# vertices 7 8 9 10
# g.f. in type 1 1 19 219 1966

2 1 23 563 19914
3 5 167 8353 ?

lin. reducible (only type 1) 1 15 88 ?

Figure 3.4: Summary of computational results.

3.3.1 Upper bounds for Landau varieties of 9 vertex graph-
ical functions

In definition 2.3.1 we mentioned the Landau variety as the subset of Cn on which
(the analytic continuation of) a graphical function is not defined, which was essen-
tially (see caveat below) the set of zero loci of the polynomials in the denominator.
The previous section contained a brief example of an upper bound on that set of
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G9,218
0
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z∞

Figure 3.3: The five 9 vertex graphical functions that could be computed with
HyperInt.

polynomials, as provided by the function checkIntegrationOrder for the case
of a conformally parametrized graphical function with three external vertices:

Final polynomials
{−1 + z,−1 + zz,−zz + z}

We worked out integration orders for all 88 linearly reducible 9 vertex graphical
functions and collected the upper bounds provided by checkIntegrationOrder.
In addition to {z, z̄, z− 1, z̄− 1, z− z̄}, which appears in every final polynomial set,
we found the following linear combinations of

z0 = z − z̄ z1 = zz̄

z2 = (z − 1)(z̄ − 1) = zz̄ − z − z̄ + 1 z3 = 1

with coefficients in {0,±1}:

z1 − z2 ↔ z + z̄ − 1 z1 + z2 − z3 ↔ 2zz̄ − z − z̄
z1 − z3 ↔ zz̄ − 1 z1 − z2 + z3 ↔ z + z̄

z2 − z3 ↔ zz̄ − z − z̄ −z1 + z2 + z3 ↔ 2− z − z̄

z1 ± z0 ↔ zz̄ ± (z − z̄) z2 + z0 ↔ zz̄ + 1− 2z̄
z3 ± z0 ↔ 1± (z − z̄) z2 − z0 ↔ zz̄ + 1− 2z
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Figure 3.5: Two 10 vertex graphical functions.

We found only a single exception where a polynomial occurred that was not of this
form. The reduction of the graph G9,127 with external vertices assigned as in fig. 3.6
resulted in the two polynomials

z2 − z − z̄ + 1 and z̄2 − z − z̄ + 1. (3.4)

G9,127

0

1z

∞

Figure 3.6: The graph G9,127.

The zero loci of all these polynomials are upper bounds in two senses. On
the one hand we have the fact that the algorithm used for the reduction gives an
approximation of the Landau variety Σ ⊂ C3 3 (z1, z2, z3). This means that the
output of checkIntegrationOrder might contain ’final polynomials’ that are
not actually in the denominator of the integration result. On the other hand we have
an extraordinary property of graphical functions in the conformal parametrization.
From the obvious symmetry under exchange of z and z̄ (the only z, z̄ dependence is
in Φ̂ = zz̄Φ0z + (z− 1)(z̄− 1)Φ1z + Φ01) one knows that if a graphical function is of
the form

fG(z) = g(z)
z − z̄

, (3.5)
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that is, if it has a denominator polynomial with zero locus z = z̄, then g(z) must
always be such that it vanishes at z = z̄ and removes the apparent singularity.
While this particular symmetry only works for z − z̄, there might be other hidden
symmetries that cancel other poles in a similar fashion. An indication for this is the
fact that all graphical functions that have so far been checked by Schnetz with his
own program [36] were singular only on

L = {(z, z̄) ∈ C2 | zz̄ = 0 or (z − 1)(z̄ − 1) = 0} (3.6)

and nowhere else. This leads to the hypothesis that this might be a general property
of all graphical functions. Our results are consistent with the hypothesis. The zero
loci of all sets of polynomials found in the reductions have non-empty intersection
with L and the one new 7 vertex function did not give a counterexample. At 9
vertices there are 28 linearly reducible (type 1) graphical functions that could not
previously be computed with Schnetz’s program, but they are so complicated that
- while in principle integrable with HyperInt - they could not yet be computed
to see if they provide a counterexample. Finishing these integrations will take an
immense amount of computing time but should be doable in the long run.

3.3.2 The 9 vertex graphical function G9,55

So far, all computing power has been concentrated on the integration of the graph-
ical function of G9,55 as depicted in fig. 3.7. Knowing this graphical function will
provide the periods called P8,26 and P8,28 in [35].

G9,55 0

1
z

∞

Figure 3.7: The graph G9,55.

At the time of writing, the integration of the ninth of 11 variables (there are 12
edges remaining after removal of∞ and one parameter is set to 1) is under way and
approximately half finished. The first seven integration steps can be done in less
than one day (on a single core) while the eighth integration already takes roughly
2-4 days, even including parallelization. For the integration of the ninth variable
the integrand, which contains already 993,276 polylogarithms, was split into 199
batches of 5000 terms each. Integrating one such batch takes 3 to 7 days, claims
50-70 GiB memory and yields an intermediate result containing ≈ 108 terms3.

3Adding all intermediate results up in the end reduces the number of terms drastically, but will
most likely still leave ≈ 106 terms to be integrated in the next step.
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Chapter 4

Conclusion

In this thesis we introduced a parametric version of Schnetz’s graphical functions
and presented various results obtained with it.

We gave a short introduction to the necessary graph theoretical concepts, focussing
on the spanning forest polynomials of Brown and Yeats and their dual counterparts.
Following that we set up graphical functions as defined by Schnetz (slightly - and
straightforwardly - generalizing to an arbitrary number of external vertices). We
then discussed some of their properties and applications in physics and mathemat-
ics.

The second chapter contains a derivation of a parametric integral representation of
graphical functions carried out in the fullest possible detail. The result is a gen-
eralization of an integral representation of position space Feynman integrals due
to Nakanishi. Using this new representation we introduced analytically continued
graphical functions and proved their analyticity for the case that all arguments
and edge weights have positive real parts. In the special case of the conformal
parametrization we proved one new identity and presented a new proof of an iden-
tity originally due to Schnetz.

Apart from these theoretical considerations we also presented results of compu-
tations of concrete graphical functions. Specifically, we slightly modified Michael
Borinsky’s feyngen to generate a complete list of completed graphical functions in
4 dimensions with 7, 8 and 9 vertices that satisfy certain properties that make them
interesting. These graphical functions were then checked for linear reducibility and
if possible integrated with Erik Panzer’s HyperInt - at least as far as processing
power and memory limitations admitted.

There are several starting points for possible future work. The graph theory used
so far was very basic. It might be possible to deduce new relations for spanning for-
est polynomials using one of the many rich theories that exist - graph homology
and metric graphs (interpreting what we called weight as length) are keywords that
come to mind. Ideally this would lead to further combinatorial criteria for linear
reducibility.

On the level of the integral, a deeper understanding of the special functions that
occur in the integration process is desperately needed. This includes the multiple
polylogarithms briefly mentioned in the introduction but also much more general
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objects like modular forms [13] and multiple elliptic polylogarithms [11]. It might be
worthwhile to consider graphical functions in the context of moduli spaces, specifi-
cally moduli spaces of curves of genus zero with n marked points that have already
been applied to Feynman integrals [9], [4]. Finally, it seems promising to consider
graphical functions with non-Euclidean metrics. In particular, Penrose’s Twistor
theory [32] which already found applications in quantum gravity and string theory
could be employed to look for deeper results on the behavior of graphical functions.

On a computational level, there will not be much more advances with the currently
available programs and technology. In the near future the integration of G9,55 will
be finished and enable the computation of two new φ4 periods. Integrating the
remaining linearly reducible 9 vertex graphical functions would likely take several
years and checking even a single 10 vertex graphical function for linear reducibility
already takes weeks. However, an upcoming FORM implementation of HyperInt1

will be able to deal with the huge number of terms that occur in the integration
process much better than the current Maple implementation. This will allow for
computations of 8 and 9 vertex graphical functions with large numerator structures
and open up 10, possibly even 11 vertex graphical functions for integration.

1Private communication with E. Panzer.
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