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CHAPTER 1
Introduction

One of the greatest mysteries to physicists is the behaviour of the smallest constituents of matter,
the fundamental particles and their interactions. Over the better part of the 20th century many
efforts were made to give a better understanding of fundamental particle dynamics, culminating
in the standard model. The underlying framework, quantum field theory, is however not only
used in particle physics, but can be employed for a variety of problems ranging from statistical
mechanics and condensed matter physics to combinatorics, number theory and even biology (see
for example [Con00; Con01; Del85; Kre06b; Wal74; Zin96]). Although the framework of quantum
field theory is widely excepted and successful in its methods (with the standard model being the
most rigorously tested model in physics), mathematically it is far from being well understood. A
consistent and all encompassing groundwork for quantum field theory giving rise to descriptions
of all desired physically observed phenomena is still elusive, despite many endeavours and hard
work by physicists and mathematicians alike. In recent years new methodology was found by
D. Kreimer and collaborators connecting combinatorial Hopf algebras and Dyson-Schwinger
equations with particle scattering phenomena described by perturbative Feynman diagrams,
giving precise mathematical meaning to the process of renormalisation and opening the gate
for new research endeavours [Ber05; Bro01; Bro11; Kre06a; Kre06b; Kre03; Kre97; Kre09;
Kre06c; Yea17] . From another branch in the quantum field theory community J. Gracey found
formulation of universality classes, described in statistical physics by equal critical exponents, by
tower theories. A tower theory is constructed from a base Lagrangian in a certain space-time
dimension by a rather specific construction prescription, then by increasing the space-time
dimension it connects different Lagrangians and thus (physical) theories lying in the same
universality class [Gra; Gra17a; Gra17b]. The aim of this work is to give an explanation to why
this peculiar approach indeed does define universality classes in the usual sense by constructing
the renormalisation Hopf algebra of a massless scalar theory and its Dyson-Schwinger equations
and analysing their structure. In chapter 2 the needed foundations are defined, followed by an
introduction to tower theories in chapter 3. In chapter 4 the connection between tower theories
and universality classes will be approached, while in chapter 5 results and consequences will be
discussed. All graphs in this work have been compiled with the TikZ-Feynman package from J.P.
Ellis [Ell17] for Latex.
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CHAPTER 2
Prerequisits

In the following chapter the fundamentals of the (renormalisation) Hopf Algebra H, Rooted Trees,
(combinatorial) Dyson-Schwinger equations (DSEs) and the correspondence between symmetries
and Hopf-Ideals will be presented. The aim is to lay the groundwork for derivations in later
chapters.

2.1 Hopf Algebra
A Hopf algebra is a graded bialgebra with an antipode, which is the inverse element with respect
to character or convolution group (2.12). The exact definitions follow below. Let F be a field of
characteristic zero (think of Q or C) and the following tensor-products are taken over said field
(which means ⊗ actually stands for ⊗F)

Algebras
Definition 2.1 Algebras A (associative) F-algebra is a collection (A,m,u) of a F-vector space
A together with a bilinear map m : A ⊗ A → A the multiplication and another linear map
u : F → A the unit map, satisfying

m ◦ (id⊗m) = m ◦ (m⊗ id) (2.1)
m ◦ (u⊗ id) = m ◦ (id⊗ u) (2.2)

which is the same as providing that the following diagram commutes

A⊗A⊗A A⊗A

A⊗A A

m⊗id

id⊗m m

m

The algebra is also commutative, if for the twist map τ : A1 ⊗A2 → A2 ⊗A1 of vector spaces
A1, A2 with elements a1 ∈ A1 and a2 ∈ A2, such that τ (a1 ⊗ a2) = a2 ⊗ a1 and m satisfies

m = m ◦ τ

as well. From here on commutativity is always assumed.

Although this is not the standard definition of an algebra, it serves our purpose well.
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Coalgebras
By inverting the arrows in (2.1), we get a dual algebra or coalgebra holding maps to invert the
operations of that algebra.

Definition 2.2 Coalgebras A (coassociative) F-coalgebra is a collection (C,∆,ε) of a F-vector
space C together with a linear map

∆ : C → C ⊗ C

the coproduct and another linear map ε : C → F the counit, satisfying

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (2.3)
(id⊗ ε) ◦∆ = (ε⊗ id) ◦∆ (2.4)

or in the form of commutative diagrams

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆⊗id

id⊗∆

∆

∆

Cocommutativity is defined as

τ ◦∆ = ∆

Bialgebras
Bialgebras are very closely related to Hopf algebras (actually every graded bialgebra is dual to a
Hopf algebra ([Kas95]).

Definition 2.3 (Co-)Algebra Morphisms A linear map φ : A1 → A2 between algebras
(A1,m1,u1) and (A2,m2,u2) is a algebra morphism if it satisfies

φ ◦ u1 = u2 (2.5)
φ ◦m1 = m2 ◦ (φ⊗ φ) . (2.6)

And analogously for coalgebras; A coalgebra morphism ψ : C1 → C2 between coalgebras (C1,∆1,ε1)
and (C2,∆2,ε2) such that

ε2 ◦ ψ = ε1 (2.7)
∆2 ◦ ψ = (ψ ⊗ ψ) ◦∆1 (2.8)

Definition 2.4 Bialgebras Given a unital algebra (B,u) with F-vector space B and unit u :
F 7→ B, such that 1B := u(1F). Then (B,m,u,∆,ε) is a bialgebra iff the following compatibility
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conditions are satisfied

∆ ◦m = (m⊗m) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆) (2.9)
u⊗ u = ∆ ◦ u (2.10)
ε⊗ ε = ε ◦m (2.11)
ε ◦ u = 1F (2.12)
u ◦ ε = 1B (2.13)

Hopf Algebras
Definition 2.5 Hopf Algebras Given a bialgebra (H,m,u,∆,ε), a Hopf algebra (H,m,u,∆,ε,S)
is a bialgebra which has an antipode (inverse map with respect to the convolution group of 2.12)
S : H 7→ H satisfying

m ◦ (S ⊗ id) ◦∆ = m ◦ (id⊗ S) ◦∆ = u ◦ ε. (2.14)

If an antipode exists it is unique (anticipating the notation of definition 2.10) and assuming
antipodes S and S′ exist, then

Proof 2.6

S = S ? e = S ? (id ? S′) = (S ? id) ? S′ = e ? S′ = S′. (2.15)

Therefore the antipode is unique �

Connectedness bases on more abstract concepts like filtrations and gradings of Hopf algebras. It
can be shown under fairly general circumstances that a coradical filtration exists which then
permits for grading and connectedness. Absorbing all of this we can define a connected Hopf
algebra by

Definition 2.7 graded and connected Hopf algebra A Hopf algebra (H,m,u,∆,ε,S) is graded
and connected if it is endowed with the following structure, where j,k,l ∈ N

H =
∞
⊕

j=0
Hj (2.16)

H0 ' F (2.17)
m (Hk ⊗Hl) = Hk+l (2.18)

∆ (Hj) = ⊕
k+l=j

Hk ⊗Hl. (2.19)

As examples for gradings, the number of loops in case of the Hopf algebra of Feynman graphs
or the number of nodes in case of the Hopf algebra of rooted trees will be referred to as the grade.
To go into more detail by example of rooted trees: the grading (2.16) is induced by the number

k of nodes of trees which are elements of a vector space Hk, e.g. H3 =
{

, , ,

}
. In this

example H0, which only consists of the empty tree 1, is isomorphic to the underlying field F.
(2.18) and (2.19) just tell us, that the multiplication and comultiplication respect the grading.
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Definition 2.8 Hopf Ideals

ideal An algebra ideal I is (in this case) a proper subalgebra of an algebra (A,m,u), such
that it lies in the kernel of an algebra morphism ϕ : A 7→ A

0 ∈ I (2.20)
ϕ(I) = 0 (2.21)

ϕ(ai) = ϕ(ia) = 0 (2.22)

for any a ∈ A and i ∈ I.

coideal A coideal I is (in this case) a sub coalgebra of a coalgebra (C,∆,ε), such that it
respects the coproduct in the following sense

∆(I) ⊂ H ⊗ I + I ⊗H (2.23)

and gives zero when inserted into the counit ε

ε(I) = 0. (2.24)

Hopf ideal An Ideal I of a Hopf algebra (H,m,u,∆,ε, S) is a Hopf ideal if it additionally to
(2.20) and (2.23) satisfies

ε(I) = 0, (2.25)
S(I) ⊂ I. (2.26)

In this setting the quotient algebra H := H/I is a Hopf subalgebra inheriting its grading from H
and is connected if H is connected. Note that 1 * I since ε(I) = 0 is required.

Augmentation ideal In any bialgebra or Hopf algebra B the kernel of the co-unit ε gives
an ideal, the augmentation ideal Aug.

Definition 2.9 Convolution Product For an algebra (A,m,u) and a coalgebra (C,∆,ε) the
operation

f ? g = m ◦ (f ⊗ g) ◦∆ (2.27)

for algebra homomorphisms f,g ∈ Hom (C,A) is the convolution product.

Definition 2.10 Convolution Algebra (Hom (C,A) , ?, e) is an associative, unital algebra, if
for counit ε and unit u, give the neutral element e := u ◦ ε.
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Proof 2.11 For f,g,h ∈ Hom (C,A) follows:
Associativity

f ? (g ? h) = m ◦ [f ⊗ (m ◦ (g ⊗ h)∆)]∆ (2.28)
= m ◦ (id⊗m) ◦ (f ⊗ g ⊗ h) ◦ (id⊗∆) ◦∆ (2.29)
= m ◦ (m⊗ id) ◦ (f ⊗ g ⊗ h) ◦ (∆⊗ id) ◦∆ (2.30)
= m ◦ [(m ◦ f ⊗ g ◦∆) ⊗ h] ◦∆ (2.31)
= (f ? g) ? h (2.32)

Unitality

e ? f = m ◦ [(u ◦ ε) ⊗ f ] ◦∆ = m ◦ (u⊗ id) ◦ (id⊗ f) ◦ (ε⊗ id) ◦∆ (2.33)
= m ◦ (u⊗ id) ◦ (id⊗ f) ◦ (1 ⊗ id) = m ◦ (1⊗ f) = f (2.34)
= m ◦ (f ⊗ 1) = m ◦ (id⊗ u) ◦ (f ⊗ id) ◦ (id⊗ 1) (2.35)
= m ◦ (id⊗ u) ◦ (f ⊗ id) ◦ (id⊗ ε) ◦∆ = m ◦ [f ⊗ (u ◦ ε)] ◦∆ = f ? e (2.36)

� (2.37)

Remark 2.12 Convolution Group If the convolution algebra (Hom (H,H) , ?, e) gets aug-
mented by the antipode S from definition 2.5, this gives a group structure with inverse elements
f−1 = f ◦ S, f ∈ Hom (H,H), called the convolution group GH

F .

Proof 2.13 Since in 2.11 the algebra structure is proven, only the inverse element has to be
proven to exist, to permit for a group.
Inverse Element

f ? f−1 = m ◦ (f ⊗ f ◦ S) ◦∆ = m ◦ (f ⊗ f) ◦ (id⊗ S) ◦∆ (2.38)
= f ◦m ◦ (id⊗ S)∆ = f ◦ u ◦ ε = u ◦ ε = e (2.39)

where properties (2.6) and (2.5) were used. �

2.2 Rooted trees
Since the algebra structure of Feynman graphs maps onto the Hopf algebra of rooted trees [Foi10;
Kre02], some definitions and remarks will follow. Rooted trees are certain graphs which are
connected collections of nodes and edges and have a distinct node (the root), which will always
be drawn at the top of a graph. The nodes which are connected to the root or any other node
by edges are called children and the nodes, which do not have any children are called leafs. A
collection of trees is called, naturally, a forest.

Definition 2.14 Rooted Trees A tree T consists of a set of nodes (or in regard to QFT,
vertices) V (T )) and a set of edges E(T ) which connects two nodes v, w ε V (T ), such that T is
connected (all nodes are connected via subsequent edges) and simply connected (does not have
any loops). A distinguished node, the root r, will be placed atop of the graph by convention. A
pair (T, r) is called labelled rooted tree.
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An isomorphism φ : (T,r) → (T ′,r′) of labelled rooted trees fixes the root φ(r) = r′. All trees
belonging to the same isomorphism class are considered equal. For example, the trees

(0)

(1)(2)

(3)

=
(0)

(1)(2)

(3)

(2.40)

are equal. The isomorphism φ(0,1,2,3) = (0,2,1,3) maps the tree on the left hand side to the tree
on the right hand side. Thus both trees belong to the same isomorphism class and are considered
equal.

Definition 2.15 Rooted Forests Let Tn be the set of rooted trees with n vertices and let

T =
∞⋃

n=0
Tn =

1, , , , , , , , , · · ·

 (2.41)

with 1 := ∅ the empty tree, be the set of all rooted trees. Then the disjoint union of rooted trees
graded by their vertices gives a rooted forest

F =
{
1, ,, , , , . . .

}
(2.42)

Before introducing the Hopf algebra of rooted trees HR, we will shortly explain the notion of
admissible cuts.
On a tree T cuts are admissible, if it is only cut once along a branch. A cut tree then disconnects
into a tree which contains the root RC and a polynomial of trees P C. Let us take a look at an
example:
The tree (edges are labelled, to make clear which edge gets cut)

a
cb

can be cut in six different ways, of which four are admissible, since they cut every branch only
once. Results from cutting are collected in table 2.1.

Definition 2.16 Hopf Algebra of Rooted Trees The Hopf algebra of rooted trees HR is the
algebra generated by rooted trees, the grading is induced by the node number. The multiplication
of trees T1, T2 ∈ T is defined by juxtaposition

m(T1 ⊗ T2) = T1T2. (2.43)
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Table 2.1: Example for admissible cuts

cut P C RC admissible

a
cb

3

b

a

c
3

c

a

b
3

a,b 7

a,c 7

b,c
a

3

The coproduct of a tree T ∈ T is defined by

∆(T ) =
∑
C

P C(T ) ⊗RC(T ) (2.44)

where
∑

C sums over admissible cuts C.
The antipode of a tree T ∈ T is recursively defined by

S(T ) = −T −
∑
C

S(P C)RC. (2.45)

Definition 2.17 Insertion Operator The Hopf algebra morphism B+ that connects a new
root to a tree Tn ∈ T or forest up to m nodes Fm ⊂ F is called the insertion operator.

For example

B+(a 1+ b + c ) = a + b + c . (2.46)

B+ is also a Hochschild one-cocycle of the Hopf algebra, which means it fulfils the commutation
relation

∆ ◦B+ = B+ ⊗ 1+ (id⊗B+)∆. (2.47)

Remark 2.18 Trees can be endowed with decorations di ∈ D, i ∈ N belonging to a set of
decorations D, similar to the labels of (2.40), but in general loosing the equality in (2.40) for
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decorations d0, . . . , d3

d0

d1d2

d3

6=
d0

d1d2

d3

. (2.48)

The insertion operator (2.47) respects decorations and gets assigned a decoration as a superscript.
In above tree the insertion operator would be Bd0

+ .

2.3 Algebra Morphisms and Integrals
To be able to express Feynman graphs via the Hopf algebra of rooted trees it is necessary to
establish a connection between the two. The connection arises from the universal property of
connected commutative Hopf algebras in a natural way and will be explained below.

Theorem 2.19 Universal Property The pair (H,B+) of the connected commutative Hopf
algebra H and Hochschild one-cocycle B+ defined by (2.47), is unique up to algebra isomorphisms
among all such pairs

(
H̃, B̃+

)
. This means that for any Hopf algebra H̃ and one-cocyle B̃+ there

exists an unique isomorphism ρ : H 7→ H̃ such that

ρ ◦B+ = B̃+ ◦ ρ (2.49)

which also means that the diagram

H H̃

H H̃

ρ

B+ B̃+

ρ

commutes [Con98; Kre].

Proof 2.20 See [Con98].

With the universal property (2.49) we can establish a connection between the Hopf algebra of
rooted trees HR and the Hopf algebra of Feynman graphs HF G discussed below.

2.3.1 Algebra of Formal Integrals and Renormalisation
The algebra of formal integrals permits for a connection between Feynman integrals and the
Hopf algebra of rooted trees, which in turn lets us switch between those two representations in a
well defined manner and work in the representation that is more convenient to work in. Let H
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be the connected, commutative Hopf algebra of rooted trees, which by 2.19 has the universal
property and define integrals over differential forms ω

ˆ ∞

a
ω, a ∈ R, a > 0 (2.50)

to be formal pairs(ˆ
X
, ω

)
, (2.51)

with interval X ⊂ R and inf(X) = a > 0. The algebra structure is then given through regular
addition between integrals and multiplication as(ˆ

X
, ω1(x)

)(ˆ
Y
, ω2(y)

)
=
(ˆ

X

ˆ
Y
, ω1(x)ω2(y)

)
, (2.52)

with differential forms ω1, ω2 and neutral element (∅, 1).
(´

X

´
Y , ω(x)ω(y)

)
evaluates to inde-

pendent integrals if they are well-defined (which they are not necessarily for the time being).
Now consider a commutative target algebra H̃ and linear operator B̃+ : H̃ → H̃. Then following
2.19, there exists a unique algebra morphism Φa : H → H̃, which after 2.3 is an Hopf algebra
homomorphisms (also called Feynman rules in the form of a (Hopf) character), such that

Φa ◦B+ = B̃+ ◦ Φa. (2.53)

Let the "integral" insertion operator B̃+ be defined by its action on the neutral element of formal
pairs

B̃+(∅,1)(a) =
(ˆ ∞

a
, ω

)
(2.54)

and on formal pairs in general

B̃+

(ˆ ∞

x
, ωT

)
(a) =

(ˆ ∞

a

ˆ ∞

x
, ω(x)ωT (x)

)
, (2.55)

where the differential form ωT is dependent on the variables of the decorations of nodes V (T ) of
the tree T . Then Φa is defined by

Φa(1) = (∅, 1) (2.56)

and

Φa ◦B+(T ) =
(ˆ ∞

a
, ω(x)Φx(T )

)
(2.57)

with Φx(T ) =
(´∞

x , ωT

)
, where ωT is the associated differential form to tree T .
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2.3.2 Renormalisation
The formal integrals defined in (2.51) can be ill-defined for differential forms such as ω(x) = 1

x+a ,
which yields a logarithm when integrated. It is however possible to assign such integrals finite
values through renormalisation. For 1

x+a it is sufficient to subtract at a renormalisation point µ
(such a renormalisation scheme is called kinematic renormalisation) i.e.

ˆ ∞

0

{
1

x+ a
− 1
x+ µ

}
dx =

ˆ ∞

a

1
x
dx−

ˆ ∞

µ

1
x
dx =

ˆ µ

a

1
x
dx = ln(µ

a
). (2.58)

The infinity at the upper integral boundary should be understood as a limiting process lim
Λ→∞

for
a regulator Λ.
In general to find well-defined, finite expressions for formal integrals (2.51), it might be necessary
to submit them to a renormalisation operator SΦ

R, depending on a renormalisation scheme R.
The following description considers kinematic renormalisation schemes, in which the integrand
is due to a subtraction at the singular point (renormalisation point µ). It is possible to define
R differently to accommodate for different renormalisation schemes, as long as they obey the
Rota-Baxter property [Con99]

R[ab] +R[a]R[b] = R[R[a]b] + aR[b], (2.59)

but is not of interest in this work. To yield a finite integral, the singular point from the ill-
defined integral associated to Φa gets subtracted by the antipode S, following a renormalisation
scheme R. Which means evaluating a singular character Φa at renormalisation point µ by
RΦa = Φµ ⇒ RΦa(S(B+(1))) = −

(´∞
µ , ω

)
. The universal property then gives the connection

between the algebraic language, a simple integral without subdivergences:

Φa(B+(1))+RΦa(S(B+(1))) =
(ˆ ∞

a
, ω

)
−
(ˆ ∞

µ
, ω

)
=
(ˆ ∞

a
−
ˆ ∞

µ
, ω

)
=
(ˆ µ

a
, ω

)
. (2.60)

A Hopf algebra morphism, the renormalisation operator, SΦ
R : H → H̃ can then be defined

recursively by

SΦ
R(h) = −R[SΦ

R ? (Φa ◦ P )](h), h ∈ Aug, (2.61)

with projection P into the augmentation ideal and the convolution product ? (2.27) in this case
for characters from Hom(H,H̃). The well-defined integrals are then yielded by the renormalised
Feynman rules

Φa,R := SΦ
R ? Φa. (2.62)

2.4 Hopf Algebra of Feynman Graphs
Feynman graphs are a special type of graphs, which have their roots in physics. They are
comprised of edges, called propagators (in the context of this work, all propagators will be
undirected) and nodes called vertices, for example
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propagator 3-point vertex

Physics define different propagators, vertices and so called Feynman rules, which define what
mathematical expression the propagators and vertices are decorated with (example in chapter
3). Propagators and vertices then stand for building blocks from which Feynman graphs can
be build, describing scattering processes of particles for example. When constructing Feynman
graphs by connecting vertices by appropriate propagators (i.e. propagators, which are incident
to the vertices in question), two vertices can either be connected by one edge, which would deem
them disconnected upon removal of said edge, or by more than one edge. When a graph consists
only of vertices connected by more than one edge it will be called 1PI (one-particle irreducible).
An example should make that clearer

one-particle reducible one-particle irreducible

The left hand graph can be disconnected into and upon removal of the left wavy edge,

while the right hand graph can not be disconnected by removing a single edge.
We can then define the Hopf algebra of Feynman graphs, which has a one-to-one relation to the
Hopf algebra of decorated rooted trees. Only divergent 1PI graphs will be regarded, since all
non-1PI graphs can be constructed from 1PI graphs.

Definition 2.21 The Hopf algebra of Feynman graphs HF G = (H,m,∆,1, ε, S) consists of a
vector spaces Hn and Feynman graphs Γn, where n denotes the number of loops of the graph.
The algebra is graded by the number of loops

H =
∞
⊕

n=0
Hn. (2.63)

The multiplication m is given by disjoint union of graphs

m(Γ ⊗ γ) := Γ t γ = Γγ, (2.64)

usually written by juxtaposition.
The comultiplication ∆ is defined, over proper subgraphs P (Γ ) := {γ ( Γ}, by

∆(Γ ) = Γ ⊗ 1+ 1⊗ Γ +
∑

γ∈P (Γ )

γ ⊗ Γ/γ. (2.65)
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The unit is the empty graph

1 = ∅. (2.66)

The counit is defined by

ε(Γ ) =
{
1 ,Γ = ∅
0 ,Γ 6= ∅

. (2.67)

Finally the antipode is defined by

S(Γ ) =
{
1 ,Γ = 1

−Γ −
∑

γ∈P (Γ ) S(γ)Γ/γ , else
. (2.68)
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2.5 Dyson-Schwinger Equations
It is possible to formulate iterated integrals, as fixed point equations called Dyson-Schwinger
equations (analytic DSEs) of QFT, that often arise from perturbative expansions of scattering
amplitudes in Feynman integrals. A simple example is the self energy of a scalar particle in φ3

theory which can be expanded by propagator corrections, neglecting vertex corrections

= +

+ + + . . . (2.69)

where the self similarity implies

= + . (2.70)

If we then define

G = Φ

( )
, 1 = Φ ( ) ,

ˆ
ω = Φ

( )
(2.71)

it is possible to reformulate expansion (2.69) as a fixed point equation

G = 1 +
ˆ
ω +
ˆ
ω

ˆ
ω +
ˆ
ω

ˆ
ω

ˆ
ω + . . .

= 1 +
ˆ
ω

(
1 +
ˆ
ω +
ˆ
ω

ˆ
ω + . . .

)
= 1 +

ˆ
ωG , (2.72)

the afore mentioned Dyson-Schwinger equation.

2.5.1 Combinatorial Dyson-Schwinger Equations
If we recall the definitions of 2.3 we see a natural way to reformulate the analytic DSEs as
equations in a connected commutative Hopf algebra of Feynman graphs HF G (combinatorial
DSEs, or just DSEs). The (renormalised) 2-point Green’s function G is an evaluation of series
of polynomials X by (renormalised) Feynman rules ΦR from (2.62), the self similarity of (2.69)
is then implemented by the insertion operator (2.47)

G (α) = ΦR(X )(α) = ΦR (1+ αB+(X (α))) , (2.73)
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with a parameter α referring to the grading of H. We may then work with the equation

X (α) = 1+ αB+ (X (α)) (2.74)

without having to consider the specifics of the analytic representation obtained by evaluation
with ΦR. It is possible to generalize this approach to more than the single propagator residue
above.
If a theory is defined by a Lagrangian, then every monomial in that Lagrangian corresponds
to a residue graph, which is either a propagator type corresponding to a two-point Green’s
function (like ) or a n-point vertex (interaction) type corresponding to a n-point Green’s
function (like for the 4-point Green’s function of φ4). These residues construct a residue set
R =

{
R[0],R[1]} of vertex residues R[0] = {vi} , i ∈ N and propagator residues R[1] = {pj} , j ∈ N.

To properly correct the residue r ∈ R for all possible cases it is however necessary to introduce
an invariant charge

Qv(α) = Xv∏
p incident to r

√
Xp

(2.75)

for every vertex v ∈ R[0] and where 1
Xp is shorthand notation for a formal geometric series

1
Xp =

∑∞
n=0 (1−Xp)n. The invariant charge is an equivalent of the charge renormalisation in

the standard formulation of QFT.
A general DSE for a residue r ∈ R is thus

Xr = 1±
∑

k

αkBk,r
+

Xr
∏

ni,∈R[0]

(Qv)ni

 (2.76)

with tupel ni = {nvi(γ)} i ∈ R[0] where each nvi(γ) = #vi − resvi(γ) counts the number #vi of
vertices vi minus

resvi(γ) =
{

0 ,res(γ) 6= vi

1 ,res(γ) = vi

(2.77)

e.g. n ( ) = 0 − = −1, while n ( ) = 3 − 0 = 3. The elements to

each order in α then generate a Hopf algebra (more on that in chapter 4). Therefore one could
also just define a theory via its residues, without consulting the Lagrangian or even just by its
representation in DSEs [kreimer_dyson-schwinger_equations]. A DSE of type (2.76) can
be solved by the Ansatz

Xr = 1±
∑
j≥1

αjcr
j (2.78)
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where + again refers to vertex DSEs while − refers to propagator DSEs and the reduced Green’s
functions cr

j ∈ H are polynomials, which have a closed form under the coproduct

∆ (cn) =
n∑

k=0
Pn

k ⊗ ck (2.79)

with homogeneous polynomials of deree n− k in cl, l ≤ n defined by

Pn
k =

∑
l1+...+lk+1=n−k

cl1 . . . clk+1. (2.80)

These ck give rise to a sub-Hopf algebra [Ber05].
For completeness it shall be said, that a DSE can be non-self-similar, which means it has no
residue term and therefore (2.76) lacks the constant term:

Xe =
∑

k

αkBk,e
+

Xr
∏

ni,∈R[0]

(Qv)ni

 . (2.81)

Here Bk,e
+ =

∑
iB

k,ei
+ is a sum over all contributing insertion operators Bk,ei with the same

external leg structure e and k loops but with different internal loop structure.
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2.6 Renormalisation Group
The renormalisation group helps analysing macroscopic behaviour emerging from the microscopic
configuration and dynamics of a theory. In Wilson’s approach the field dependence of correlation
Green’s functions gets split into small scale (often called ultra violet or UV-regime) and large
scale (often called infrared or IR-regime) momentum shells, which consecutively get integrated
out. After many iterations only large scale degrees of freedom remain. This approach goes by
the name renormalisation group [Wil74]. However, the iterations of consecutive integrations
can be viewed as repeated rescalings of the fields and parameters of the theory leading to the
renormalisation group equation (RGE) (2.90) or Callan-Symanzik equation [Cal70; Sym70].
Callan and Symanziks approach will be reviewed below, essentially following a paper by Steven
Weinberg [Wei73].
Every renormalised N -point Green’s function of a massless scalar theory GrN ({gi}, µ, d) of a
graph r is dependent on the same parameters, the couplings gi, the renormalisation scale µ (which
is directly connected to the energy scale at which experiments are conducted) and possibly a
regulator like a cutoff Λ or in our case the dimension d = D− 2ε. It is related to the bare Green’s
function GrN

0 ({gi}, d) by GrN ({gi}, µ, d) = (ZrN )
N
2 GrN

0 ({gi}, d) with the field renormalisation
coefficient ZrN which implicitly depends on the renormalisation scale µ, while GrN

0 is independent
of the renormalisation scale. The renormalisation group equation describes a change of these
parameters and the Green’s function under rescaling (e.g. infinitesimal change in parameter µ or
change in the renormalisation prescription) i.e. simultaneous changes

φ(x) → φ′(x′) (2.82)
gi (µ) → g′

i

(
µ′) (2.83)

µ → µ′. (2.84)

This combination of rescalings keeps the Lagrangian invariant and therefore does not alter the
essence of the theory. The Green’s function then inhibits a rescaling itself from the rescaling of
the field φ, couplings gi and renormalisation scale µ

GrN → G′rN . (2.85)

The change in GrN with respect to µ can thus be described by the variation of GrN with respect
to µ

µ
d

dµ
Gr

N =
[∑

i

µ
d

dµ
gi (µ) ∂

∂gi
+ µ

∂

∂µ

]
GrN = 0, (2.86)
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changing to logarithmic derivatives in L = ln (µ) and introducing the coefficients renormalisation
function β and anomalous dimension γ

β (g, L) = − d

dL
g(µ) (2.87)

γ (g, L) = d

dL
ln (Zr) (2.88)

(2.89)

immediately leads to the Callan-Symanzik or renormalisation group equation (RGE)[
N

2 γ (g, L) −
∑

i

βi (g, L) ∂

∂gi
− ∂

∂L

]
GrN = 0. (2.90)

While the β function (there is one for each coupling, depending on all couplings) describes a
change in the coupling (in this context running coupling, since it depends on the renormalisation
scale) gi, due to change of renormalisation scale µ, the anomalous dimension γ gives information
on the accompanied change of the Green’s function GrN . (2.90) tells us, that the Green’s function
is invariant under simultaneous rescalings of fields, couplings and scale.
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2.7 Critical Exponents and Universality Classes
Critical behaviour and the associated critical exponents are concepts from statistical physics, which
arose mostly by analysis of Ising and Ising like models and were expanded on by renormalisation
group techniques from quantum field theory (QFT). This section will follow mostly [Fis74; Pes16;
Sta99; Ton], if not mentioned otherwise. First we will give a short introduction with the statistical
physics approach using the Ising model as an example, which is defined by a hamiltonian of the
form

Hising = −1
2
∑
i,j

Jijsi.sj −B.
N∑

i=1
si, (2.91)

where si and B are D dimensional vectors for spin and external magnetic field respectively, Jij is
the coupling strength between spins si, sj . If Jij > 0 when spins are aligned the system described
by (2.91) is called ferromagnetic. When Jij < 0 in an antisymmetric spin configuration, the
system is called anti-ferromagnetic.
Let us take a look at the ferromagnetic case Jij > 0. The spins sk are located at discrete lattice
positions xk, k ∈ N on a lattice of length aN with a lattice constant a. Each spin can have the
value |sk| = ±1 and we do not yet make any assumptions on the correlation length between spin
interactions Jij . The partition function of the canonical ensemble then reads

Z(T,J,B) =
∑
si

e−βHising(si), (2.92)

where β = 1
kBT , with Boltzmann constant kB and temperature T . From the partition function

we can get the thermodynamic free energy

F (T,B) = 〈H〉 − TS = −T log(Z). (2.93)

What we would really like to know, is the magnetisation of the system under influence of an
external magnetic field B. To get information on the magnetisation m we change variables to

m = 1
N

〈∑
i

si

〉
= 1
Nβ

∂ log(Z)
∂B

, (2.94)

here m ∈ [−1,+ 1]. Intuitively it is expected that under the influence of an external field B > 0
and temperatures T below the critical temperature Tc the magnetisation m → +1, while above
Tc the magnetisation would stay at m = 0.
If we sum over all spin configurations 1

N

∑
i si = m and then over all magnetisations m the

partition function (2.92) becomes

Z =
∑
m

e−βF (m). (2.95)
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In the large N limit the sum turns into an integral over a measure dm such that

Z =
ˆ
dme−βF (m). (2.96)

In the vicinity of the critical point where T ≈ Tc and m ≈ 0 it is possible to give an ansatz for the
free energy when respecting a number of physical constraints like locality, respected rotational
and translational invariance as well as mirroring symmetry m → −m of the magnetisation when
B is absent, we also take analyticity in m as given (which is at least not to far fetched for physical
systems). Thus at the critical point the free energy (or Landau-Ginzburg free energy) can be
written as the functional

F [m(x)] =
ˆ
dDx

[
1
2 (∇m(x))2 + a2(T )m2(x) + a4(T )m4(x) −Bm(x) + . . .

]
. (2.97)

Non trivial solutions exist only for a4 = b > 0 and a2 < 0 for T < Tc, therefore at T ≈ Tc we
can approximate a2 = a(T − Tc). We now get access to parameters which can be experimentally
measured, the (ground state B = 0) magnetisation m0, magnetic susceptibility χ and specific
heat c.
The ground state magnetisation can be gained by setting B = 0 and varying (2.97) and assuming
∇m(x) = const since at the critical point the system is homogeneously ordered, which yields
extrema

m = ±m0 = ±
√
a(T − Tc)

b
. (2.98)

When the external magnetic field B 6= 0 we need to incorporate the mediation of that field through
clusters of magnetisations by allowing ∇m(x) to vary. Then using the functional derivative
on (2.97) up to the quadratic term in m, and solving the arising equation yields approximate
solutions for magnetisation m(B,T )

m ≈

{
B

(T −Tc) , T & Tc

m0 + B
(Tc−T ) , T < Tc.

(2.99)

Which allows us to derive the magnetic susceptibility χ from (2.99) by differentiation

χ = ∂m

∂B
|T ∼ |T − Tc|−1 . (2.100)

The specific heat can be derived from the partition function at a the critical point

c = β2

V

∂2

∂β2 log(Z) ∼ |T − Tc|0 , (2.101)

with the volume of the system V
In general the critical exponents of m0, χ and c near the critical point of a phase transition
are different for different systems, however there are systems which may have very different
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microscopic structures, but the same macroscopic critical exponents when scaled properly. These
are then considered lying in the same universality class. In general the critical exponents for m,
χ and c the reduced temperature t = |T −Tc|

Tc
are

m2
0 ∼ t2β (2.102)
c ∼ t−α (2.103)
χ ∼ t−γ (2.104)

where above β = 1
2 , α = 0 and γ = 1. Moreover, after statistical physics lore, they are related by

α+ 2β + γ = 2. (2.105)

To stay within the context of ferromagnets, we can describe the magnetisation as a function
of external magnetic field H and reduced temperature t; m = m(B,t). If we plot the scaled
magnetisation m̃ = m

Bδ1 vs scaled reduced temperature t̃ = t
Bδ2 , with δ1, δ2 ∈ R, of different

magnetic materials, it can be observed that for certain δ1, δ2 all plots "collapse" onto one line
(see Fig. 2.1), this is the so called scaling hypothesis.
From the scaling hypothesis stems the idea to combine different materials which collapse onto the
same scaling function with the same critical exponents near their critical point, into universality
classes, akin to the periodic table of elements (see again Fig. 2.1) [Sta99].

Figure 2.1: "collapsed" scaled magnetisation M̃ vs scaled reduced temperature t̃ plot of different
magnetic materials data (CrBr3, EuO, Ni, YIG, Pd3Fe) to substantiate scaling hypothesis and
universality classes hypothesis [Sta99]
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2.7.1 Correlation Functions
If we see the partition function (2.96) as a functional of B(x) rather than of m(x) and then take
the functional derivative of − logZ we get the expectation value for m with regard to B(x)

− 1
β

δ logZ
δB(x) = 〈m(x)〉B . (2.106)

If we take the second functional derivative and set B = 0 we get a correlation function for
spatially separated magnetisations m(x), m(y)

1
β2

δ2 logZ
δB(x)δB(y) |B=0 = 〈m(x)m(y)〉 . (2.107)

These correlation functions can then be computed by solving the partition functions with Green’s
functions akin to the propagators in QFT by

〈m(x)m(y)〉 = 1
β
G(x− y), (2.108)

where the Green’s function only depends on the absolute value of vector x, due to rotational
symmetry, and can be written as a Fourier transform

G(|x|) =
ˆ

dDk

(2π)D

e−ik.x

k2 + 1
ξ2

(2.109)

with

ξ = 1√
a (T − Tc)

(2.110)

the correlation length of magnetisation. When solving the Green’s function the regimes |x| << ξ
and |x| >> ξ have to be separated which in the vicinity of T ∼ Tc leads to the correlation
function

〈m(x)m(y)〉 ∼


1

|x|D−2 , |x| << ξ

e
− |x|

ξ

|x|
D−1

2
, |x| >> ξ.

(2.111)

2.7.2 Renormalisation Group Approach
When using the renormalisation group approach of chapter 2.6, the magnetisation m(x) will be
considered as a field φ(x), hence giving the free energy

F [φ(x)] =
ˆ
dDx

[
1
2 (∇φ(x))2 + a2(T )φ2(x) + a4(T )φ4(x) −Bφ(x) + . . .

]
. (2.112)

By setting the external magnetic field B = 0, we get an expression where the integrand is
suspiciously similar to the φ4 Lagrangian with "mass" µ2 = a(T − Tc) and "coupling constant"
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g
4! = b. The similarity goes beyond that, the partition function of statistical physics (2.96) and
the path integral of quantum field theory

Z =
ˆ

Dφe
i
~
´

dDxL =
Wick rotate, it→τ

ˆ
Dφe− 1

~
´

dD
E xL (2.113)

share a similar structure and can be used similarly. This useful connection permits to use QFT
tools on statistical physics problems. This means we can analyse the free energy F [φ(x)] at the
critical point T ≈ Tc with no external magnetic field B as an action over massless φ4 Lagrangian

L(∂φ(x), φ(x)) = 1
2(∂φ)2 + g

4!φ
4. (2.114)

The correlation functions (2.111) can then be represented by the propagator of the φ field.
In chapter 2.6 rescaling behaviour of the theory was mentioned. If we rescale space, vectors
will scale like x → x′ = x

ζ , which introduces a new exponent η connected to the field scaling
dimension 4φ. This in turn means, that the field rescaling (2.82) takes the form

φ(x) → φ′(x′) = ζ4φφ(x) (2.115)

where

4φ′ = D − 2 + η

2 . (2.116)

It is this expression were the quantum nature of field φ comes into play. While classically
4φ = D−2

2 , in QFT the renormalised field φ = Z
1
2φ0 depends on the bare (or unrenormalised)

field φ0, which is independent of the renormalisation scale µ and the renormalisation coefficient
Z, which depends on the renormalisation scale µ. This means Z gives a contribution η

2 to 4φ

after rescaling changing it to (2.116). Thus η
2 exactly describes the deviation from the classical

behaviour and has an implicit and complicated dependence on the fix point coupling g∗ and
therefore the space-time dimension D.

In (2.110) the correlation length has an inverse dependence on the temperature t

ξ ∼ t−ν (2.117)

which can be represented by critical exponent ν with ν = 1
2 in (2.110). If we invert this relation

we get a scaling dimension 4t for t

t → t4t , 4t = 1
ν

(2.118)

from which it is possible to derive the critical exponents (2.102) - (2.104).
In (2.112) we have replaced the magnetisation m by the quantised field φ. So the relation for the
ground state magnetisation (2.102) becomes

φ2
0 ∼ t2β. (2.119)
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If we now use relation (2.118) we get the critical exponent β for the ground state magnetisation
φ0

4φ = β4t ⇒ β = (D − 2 + η) ν
2 . (2.120)

The second critical exponent α of the specific heat comes from a second derivative of the
Lagrangian with respect to the temperature. So we need to think of the scaling behaviour of the
Lagrangian first.
Since the action S =

´
dDxL has to be scale invariant, the Lagrangian L needs to cancel any

scales brought into the game by the integration measure. We now take the Lagrangian as
temperature dependent L = L(t). If we suppose to be near the critical point the correlation
length is the only length that matters and therfore the Lagrangian scales like

L(t) ∼ tDν . (2.121)

From this expression we can derive the critical exponent of the specific heat

c ∼ ∂2L(t)
∂t2

∼ tDν−2 ⇒ α = 2 −Dν. (2.122)

The final critical exponent γ is obtained from (2.105) α+ 2β + γ = 2

γ = 2 − α− 2β = ν (2 − η) . (2.123)

The parameter η is then equal to the renormalisation group anomalous dimension γ (g∗) of
the φ field propagator of the corresponding tower theory at the critical point g∗ [Gra; Gra17b],
while ν = 1

2 . Since in this way the critical exponents are all dependent on the RGE anomalous
dimension γ (g∗), equal γ (g∗) define universality classes.





CHAPTER 3
Tower Theories and Universality Classes

Universality classes (of QFTs) are characterized by the same critical exponents at a non-trivial
fixed point of the renormalization group β-function, such as the Wilson-Fisher fixed point
(WF-FP). It can be possible to formulate such theories in a way, that they inherit a common
interaction term in the defining Lagrangian L. The procedure is as follows: Start with a seed
Lagrangian, replace two fields of every interaction term by an new auxiliary field and add a
propagator expression for every auxiliary field. The coupling constants of the gained interaction
terms, called core interactions, may then be rescaled into the propagator expressions. Those core
interactions then persist through any dimensionality, while other terms, only depending on the
auxiliary fields with dimensionless couplings, have to be added to ensure renormalisability [Gra;
Gra18]. In the example below the universality class including massless scalar φ4 theory, in D = 4
dimensions, and the non linear σ model, in D = 2 dimensions, will be considered, since φ4 is a
very familiar model.

3.1 Tower theory of φ4 as an example for massless scalar theories
The starting point of the derivation can either be the non linear sigma model or φ4. In its
common form, on a manifold M with metric gab, the Lagrangian of the non-linear sigma model
is given by

L2 =
1

2gab (φ) ∂µφ
a∂µφb (3.1)

where the length of φi is constrained to be a coupling constant g. It is then possible to reformulate
the theory, where the constraint that the length of φi

√
φiφi has to be the coupling g can be

replaced by an auxiliary field σ, which serves as a Lagrangian multiplyer field, ensuring said
constraint. The superscripts will also be neglected from here on. The new Lagrangian is

L4,2 = 1
2 (∂µφ)2 + 1

2
(
σφφ− g2) = 1

2 (∂µφ)2 + 1
2σφφ− g2

2 σ, (3.2)

a rescaling of the σ field then swaps the coupling constant over to the interaction term

L4,2 = 1
2 (∂µφ)2 + g0

2 σφφ− 1
2σ. (3.3)

The Lagrangian is called L4,2 to stress the connection to φ4 theory in the first number of
the superscript. The second number in the superscript denotes the dimension of the theory.

27
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Increasing the dimension to D = 4 produces the Lagrangian for massless φ4 theory:

L4,4 = 1
2 (∂µφ)2 + g0

2! σφφ− 1
2σ

2, (3.4)

which for the moment will be called φ4
4 theory. On the other hand one could start with general

massless scalar φ4 theory

L4 = 1
2 (∂µφ)2 + λ

4!φ
4 (3.5)

and replace two of the φ fields again by a Lagrangian multiplyer σ field

L4 = 1
2 (∂µφ)2 + λ

4!φ
4 = 1

2 (∂µφ)2 − 1
2

(g0
2 φφ− σ

)2
(3.6)

= 1
2 (∂µφ)2 + g0

2! σφφ− 1
2σ

2 = L4,4 (3.7)

where g0 = 1
3λ. As can be seen, this also leads to (3.4).

While in standard φ4 theory the φ propagators are represented by straight lines , a second
propagator, the σ propagator represented by a wavy line appears in φ4

4. Both are coupled by
the newly introduced core interaction replacing .

Since in φ4
4 theory only a 3-point interaction exists, the topology of graphs changes. If we take

a look at the 4-point vertex in φ4 theory, all possible connections between incoming and outgoing
momenta (or permutations of external half edges) have to be considered in the new formulation,
which means the changes to

= + + , (3.8)

where the diagrams on the right hand side correspond to the s-, t- and u-channel respectively.
Although there are now more graphs, one σ propagator connecting two 3-point vertices replace
one 4-point vertex and in principle we get the φ4 graphs back when we shrink all wavy lines. By
construction it is now possible to evaluate 4-point graphs in disguise as 3-point graphs. While
they are less cumbersome to compute, the disadvantage is that now 1PI, as well as reducible
graphs, have to be looked at. Luckily the symmetry factors in both formulations agree order by
order, so no extra rules have to be established.

Symmetry Factors
To analyse the relation between symmetry factors of φ4 and φ4,4 theory the procedure will be
explained with an one loop example. At every 4-point vertex insert the possible topologies from
(3.8) and divide through the highest coefficient. For the propagator it means that the s- and
u-channel give contribution to the second term below while the t-channel gives rise to the first
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term:

= + 2

dividing by the highest coefficient yields:

Propagator:

1
2 = 1

2 +

In the same way one gets the vertex expressions:

Vertices
s-channel:

1
2 = 1

2 +

+ + +

t-channel:
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1
2 = 1

2 +

+ + +

u-channel:

1
2 = 1

2 +

+ + + .

It easy easy to see that the appearing box diagrams in the s-, t- and u- channel do not have
a residue in the residue set of the theory (more on that in 3.1.1) or in other terms, do not
correspond to an interaction term in φ4

4 theory, if we shrink the loop to a point. Such graphs
appear in non-self-similar DSEs in the sense of (2.81).

Tower Theories in Higher Dimensions
When the dimension of the Lagrangian L4,4 is not equal to 4, but rather arbitrarily chosen while
maintaining renormalizability, this leads to a new Lagrangian which always depends on the core
interaction g0

2! σφφ plus additional terms FD(σ) only depending on σ. Additional terms with a φ
dependence do not occur, since any monomial in the Lagrangian has to add up to D in their
mass dimension to preserve invariance of the action (more on that below) The core interaction
then drives the theory through the dimensions and builds a tower of theories, hence the name
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tower theories.

L4,D = 1
2 (∂µφ)2 + g0

2 σφφ+ FD (σ) . (3.9)

The additional terms FD (σ) which are not written explicitly and only depend on field σ and
dimensionless coupling constants, have to follow constraints to ensure renormalizability and
uniqueness under partial integration. For example the Lagrangians for φ4,6 and φ4,8 are:

L4,6 = 1
2 (∂µφ)2 + 1

2 (∂µσ)2 + g0
2 σφ

2 + g1
3! σ

3 (3.10)

L4,8 = 1
2 (∂µφ)2 + 1

2 (∂µ�σ)2 + g0
2 σφ

2 + g1
4! σ

4 + g2
3! σ

2�σ (3.11)

and give new terms, respecting uniqueness under partial integration because only g1
3! σ

2�σ is
considered. Although −g1

3! σ (∂µσ)2 would not invalidate the renormalisability condition, that
coupling constants must be dimensionless, but both terms are equivalent under partial integration,
therefore only one of the terms may appear.

Superficial Degree of Divergence
From the construction prescription of tower theories it is possible to determine the superficial
degree of divergence ωD (Γ ) for a given graph in space-time dimension D by

ωD (Γ ) = D −
∑

external propagators p

Np ωp +
∑

vertices v

Mv ωv (3.12)

with the number of external propagators and vertices Np and Mv and weights of propagators and
vertices ωp, ωv respectively. First, we analyse the mass dimension in D space-time dimensions of
the involved fields φ and σ. From the kinetic terms we see, that φ has mass dimension [φ] = D−2

2 ,
while σ has mass dimension [σ] = 2, giving the weights ωφ = D−2

2 and ωσ = 2
Next, we take a look at the appearing interaction terms. The mass dimension

[
Lint

]
, belonging

to a Lagrangian L = Lfree + Lint, of an interaction term is proportional to its derivatives and
fields

Lint ∼ ∂d
µσ

aφb (3.13)

and therefore dependents on the exponents d,a,b of involved fields and derivatives multiplied by
their respective mass dimension. Which in turn means[

Lint
]

= d+ 2a+ D − 2
2 b = D, (3.14)

which has to be equal to D to ensure a dimensionless coupling and thus a renormalisable theory.
The weight of the vertex in question then is

ωv =
[
Lint

v

]
−D. (3.15)
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Does the construction prescription for tower theories indeed give zero vertex weights ωv to ensure
renormalisability? The core interaction 1

2σφ
2 has

ω = D − 2
2 2 + 2 −D = 0, (3.16)

but what about the spectator terms? Since they appear first at a certain space-time dimension
D̃, such as the three point or four point vertex in (3.10) and (3.11). Suppose that D ≥ D̃, then
the weight of a spectator interaction is

ωσ =
(
D − D̃

)
+ 2D̃2 −D = 0. (3.17)

Therefore all vertices are of zero weight and the superficial degree of divergence in D space-time
dimensions of any graph is only depending on its external edges:

ωD (Γ ) = D − D − 2
2 ext ( ) − 2 ext ( ) . (3.18)

If a graph Γ gives ωD (Γ ) ≥ 0, it is superficially divergent, but there could be the case that, even
if Γ is overall convergent (ωD (Γ ) < 0), it has subgraphs γ which still are divergent, so a bit of
care has to go into evaluation of graphs. As an example take the corrections to the σ propagator
in D = 2 dimensions:
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⇒ ∆̃

  = ⊗

⇒ ∆̃

  = ⊗ .

In these cases (3.18) leads to ω2

( )
= −2 which means the graph seems convergent, the

subgraph however has weight ω2

( )
= 0 and therefore the overall graph is divergent.

For the other graph ω2

( )
= −2, so the graph again seems convergent and again the

subgraph has weight ω2
( )

= 2 which means is overall divergent as well.
Coming back to the construction of Lagrangians, for the terms in σ this means all terms up to
n = D

2 have to be considered, possibly containing derivatives. As can be seen above in (3.10)
and (3.11) the interaction or spectator terms g1

3! σ
3 and respectively g1

3! σ
2�σ and g2

4! σ
4 appear.

Diagrammatically both (σ-)3-point terms g1
3! σ

3 and g1
3! σ

2�σ are represented by the same 3-point
vertex (or residue) in their corresponding theory, but are connected to analytic expressions
by different Feynman rules due to the different monomials in the Lagrangian

(g1
3! σ

3vs.g1
3! σ

2�σ
)
.

3.1.1 From Towers to DSEs to Hopf Algebra
As discussed above, certain universality classes can be formulated conveniently by Lagrangians
defining tower theories in D space-time dimension. Generally any monomial of a given QFT
Lagrangian can be represented by a diagrammatic representation also representing a residue
of the theory. Canonically every squared field gets assigned a propagator, while monomials of
higher order get assigned vertices with external lines representing the order of involved fields,
i.e.: in case of L4,D up to D = 6
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monomial diagrammatic rep. analytic/expression
1
2 (∂µφ)2 −→ = 1

p2 (3.19)

1
2 (σ)2 ,

1
2 (∂µσ)2 −→ = 1, 1

p2 (3.20)

g0
2! σφ

2 −→ = −ig0 (3.21)

g1
3! σ

3 −→ = −ig1. (3.22)

(3.23)

As already mentioned, different monomials can be represented by the same diagrammatic
expression. While the diagrammatic expressions look the same, the corresponding Feynman rules
are different (see (3.20)) and therefore the residues as well.
Using the diagrammatic representation of residues above, the set R =

{
, , ,

}
={

R[1],R[0]} of vertices v ∈ R[0] and propagators p ∈ R[1] can be constructed. The residues R can
then be endowed by a Hopf algebra structure as described in 2.4. Further more each residue in
R gives rise to a DSE

X = 1−
∑

k

αkBk,
+

X ∏
nii∈R[0]

(Qi)ni

 (3.24)

X = 1−
∑

k

αkBk,
+

X ∏
nii∈R[0]

(Qi)ni

 (3.25)

X = 1+
∑

k

αkB
k,

+

X ∏
nii∈R[0]

(Qi)ni

 (3.26)

X = 1+
∑

k

αkB
k,

+

X ∏
nii∈R[0]

(Qi)ni

 (3.27)
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with invariant charges defined by (2.75) and explicitly written for the three vertices and

Q (α) = X

X
√
X

(3.28)

Q (α) = X

(X )
3
2
. (3.29)

The DSEs (3.24) - (3.27) then generate all elements of the corresponding Hopf algebra of Feynman
graphs H4,6

F G and can be solved by the ansatz (2.78), which will be sketched below in an example.

example
As an example the DSE

X = 1+ αB+ (X Q2) (3.30)

for a single general three point vertex , with a single skeleton graph is considered. In

this case the invariant charge Q is simply defined by

Q = X . (3.31)

The solution to DSE (3.30) is given by ansatz (2.78) and to fourth order yields (replacing
by r)

Xr = 1+ αcr,1 + α2cr,2 + α3cr,3 + α4cr,4 + O(α5). (3.32)

The reduced Green’s functions cr,i, i ∈ N stand for graphs of ith loop order and are computed
by subsequent application of the insertion operator B+. The appearing graphs in can then be
represented by rooted trees as defined in section 2.2. Every node in a tree stands for one
insertion of the skeleton graph , therefore the first two trees are

c ,1 = = (3.33)

c ,2 = 3 = 3 (3.34)

The coefficients in front of the graph or tree come from the possible insertion places of the
subdivergencies i.e. can be inserted at every vertex to give thus there are three insertion

places and hence the coefficient 3. To fourth order the reduced Green’s functions represented by
trees therefore yield
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c1 = (3.35)
c2 = 3 (3.36)

c3 = 3
(

3 +
)

(3.37)

c4 = 18 + 9 + 18 + . (3.38)

3.1.2 Invariant Charges and the Way to Universality Classes
It will turn out in Chapter 4, that the quotient algebra H = HF G/I, with a Hopf ideal I
depending on the invariant charges Qvi of HF G, gives rise to universality classes by imposing
Ward-Takahashi identities on graphs. As an example we take a look at two three point interactions
a = and b = which obey Dyson-Schwinger equations

Xa = 1+ αBa
+
(
XaQa2) (3.39)

Xb = 1+ αBb
+

(
XbQb2) (3.40)

with invariant charges Qa = Xa and Qb = Xb. The Hopf ideal is then defined by I =
〈
Qa −Qb

〉
with elements ik = ca,k − cb,k, k ∈ N. Since invariant charges are series in polynomials, ca,k, cb,k

have to agree order by order. As a reminder, for I to be a Hopf ideal the conditions

1. map the co-unit to the kernel ε(I) = 0
2. be closed under co-multiplication ∆(I) ⊂ I ⊗H +H ⊗ I

3. respect the antipode S(I) ⊂ I

have to be fulfilled as defined in 2.8. Does I =
〈
Qa −Qb

〉
fulfill these requirements?

1. follows from definition; Qa and Qb both start with 1 so there is no term proportional to the
unit 1, which is the only element ε does not map to zero. 3. is respected since the ca,k, cb,k

respect the antipode. 2. however, is a little more tricky to see and the proof follows below.
It is straight forward to calculate the co-product of I:

1
3∆̃ (i2) = ∆̃

 a

a −
b

b

 (3.41)

= a ⊗ a − b ⊗ b ± a ⊗ b (3.42)
= a ⊗ ( a − b ) − ( a − b ) ⊗ b (3.43)
= a ⊗ i1 − i1 ⊗ b (3.44)
⊂ H ⊗ I + I ⊗H. (3.45)
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So ∆ (i2) is closed with respect to the coproduct. Next ∆̃ (i3) needs to be checked.

1
3∆̃ (i3) = ∆̃

3


a

a

a −

b

b

b

+
a

aa −
b

bb

 (3.46)

= 3

 a ⊗
a

a +
a

a ⊗ a −

 b ⊗
b

b +
b

b ⊗ b

 (3.47)

+ 2 a ⊗
a

a + ( a )2 ⊗ a −

2 b + ⊗
b

b + ( b )2 ⊗ b

 (3.48)

±

3

 b ⊗
a

a +
b

b ⊗ a

+ 2 b ⊗
a

a + ( b )2 ⊗ a + 2 a b ⊗ ( a − b )

 (3.49)

= 3

{ a − b } ⊗
a

a +


a

a −
b

b

⊗ a −

 b ⊗


a

a −
b

b

+
b

b ⊗ { a − b }


(3.50)

+ 2 { a − b } ⊗
1

1 + { a − b }2 ⊗ a (3.51)

−

2 a ⊗


a

a −
b

b

+ { a − b }2 ⊗ b + 2 a b ⊗ { a − b }

 (3.52)

= 3
(
i1 ⊗

a

a + i2 ⊗ a −

(
b ⊗ i2 −

a

a ⊗ i1

))
(3.53)

+ 2i1 ⊗
a

a + (i1)2 ⊗ a +
(

2 b ⊗ i2 + (i2)2 ⊗ b − 2 a b ⊗ i1

)
(3.54)

⊂ I ⊗H +H ⊗ I (3.55)

this tells us, that I =
〈
Qa −Qb

〉
is a Hopf ideal indeed.





CHAPTER 4
Proofs

4.1 Renormalisation Functions and Tower Theories at the Wilson-Fisher Fixed Point
At a fixed point where the renormalisation β-functions vanish, (2.90) simplifies to[

N

2 γ (g, L) − ∂

∂L

]
GrN = 0.

The simplification of (2.90) is not the only positive feature following from a vanishing β-function.
As Kißler showed in [Kiß] a vanishing β-function entails momentum renormalisation scheme
independence, which permits setting invariant charges Qvi = 1 at a fixed point. This characteristic
can be used to analyse the anomalous dimension η = γ of the tower theory in question and
deduct, that it is an invariant in all dimensions.

4.1.1 Hopf Ideals at the Wilson-Fisher Fixed Point
In the following it is assumed, that we are already at a fixed point, where the βi(g∗)-functions of
couplings g∗ = (g∗

1, g
∗
2, . . .) are equal to zero βi(g∗) = 0. Since every coupling corresponds to an

invariant charge in the Hopf algebra, these can be taken equal as well Q = Qv1 = Qv2 = . . .. To
incorporate this into a Hopf algebra, an ideal I of relations between the different Qvk is defined
via I = 〈Qv1 −Qv2 , . . . , Qvn−1 −Qvn , Qvn −Qv1〉, so that in the quotient Hopf algebra H = H/I
the desired relations are respected.

Ideals and Invariant Charges
A way to see that arbitrary invariant charges give Hopf ideals is given in the following short
analysis using Sweedler’s notation ∆(X) = X ′ ⊗X ′′, closely following the arguments of [Pri18]:
Firstly, recall that the co-unit ε is an algebra morphism on H and thus its kernel ker ε generates an
ideal I ⊂ H. To promote the ideal I to an Hopf ideal it also has to satisfy ∆(I) ⊂ I ⊗H +H ⊗ I,
giving it the co-ideal property and therefore creating an biideal and letting it fulfill S(I) ⊂ I
finally promotes I to an Hopf ideal. In summary any Hopf ideal needs to satisfy the following
conditions:

1. ε(I) = 0
2. ∆(I) ⊂ I ⊗H +H ⊗ I

3. S(I) ⊂ I.

Secondly, how does the invariant charge Q fair in this regard? With minimal changes, namely
adding −1 one gets an Hopf ideal I = 〈Qi − 1〉

39
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Proposition 4.1 An invariant charge Q permit for a Hopf ideal I = 〈Q− 1〉 .

Proof 4.2 1.: From the definition

Qvi = Xvi∏
piincedent to vi

√
Xpi

(4.1)

with residues vi ∈ R[0] and pj ∈ R[1] and DSEs Xr. It is clear, that Q (superscripts will be
neglected from here on when unambiguous) is a series of polynomials in α(g) with coefficients in
H. The only constant term 1 of said series produces ε(Q) 6= 0, thus ε(Q− 1) = 0.
2. is fulfilled due to the closed form of the co-product on Q implied in [Yea08]:

∆(Q) =
∑
k≥0

Qk+1 ⊗Q|k − 1⊗ 1 ⊂ I ⊗H +H ⊗ I (4.2)

with Q|k being the kth order monomial in Q.
3. is fulfilled since 2 is fulfilled. If one considers the antipode in a slightly different form, this is
easy to see:

S(I) = S(Q− 1) =
∑
k≥0

S(Q′)Q′′ − 1 (4.3)

= m(S ⊗ id)∆(Q− 1) = (S ? id)(Q− 1) = 0 (4.4)
⊂ I (4.5)

where (S ? id)(x) = ε(x) = 0 for x ∈ I by definition of the antipode and the convolution product
is used.�

Remark 4.3 Sums of Hopf Ideals Due to the linearity of ε,∆,S, sums of Hopf ideals are
again Hopf ideals. Especially noteworthy in this regard is an Hopf ideal consisting of differences
of invariant charges

I = 〈Qv1 −Qv2 , . . . , Qvn−1 −Qvn , Qvn −Qv1〉 . (4.6)

4.1.2 Renormalisation Group Functions
As mentioned above, at a fixed point βi(g∗) = 0 from which follows Qvi = 1. This in turn
simplifies all DSEs to be linear, the vertex DSEs solely depend on vertex corrections while the
propagator DSEs depend only on propagator corrections.
The following derivation appears here for the first time. It gives a proof, that the anomalous
scaling dimension γ of the renormalisation group is independent of the space-time dimension
D in a given tower theory and thus defines a universality class.

Proposition 4.4 For a tower theory at a fixed point, with a core interaction g0
(2n)!σ (φφ)n

connecting auxiliary fields σ with physical fields φ, there exists a unique anomalous dimension
γ , independent of the space-time dimension, defining a universality class.
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Proof 4.5 The direct space-time dimension dependence comes from the invariant charges Qvi

in the DSE. Since at the WF-FP Qvi = 1,∀i the direct dimension dependence has gone. However
there still can be an indirect dimension dependence from the skeleton graphs, which shall be
analysed now.
A direct, way to see that a scaling solution exists, follows directly from the RGE (2.90) for a
propagator Green’s function Gpwith vanishing β-function:[

γp(α) − ∂

∂L

]
Gp(α,L,R) = 0 (4.7)

⇒ Gp = exp (γpL) . (4.8)

Here the question, if G is space-time dependent enters again. Since there is only one vertex
connecting φ and σ fields in the theory, and there are no interactions between φ fields alone. The
φ propagator skeleton therefore has a banana graph shape with 2n− 1 φ edges and one σ edge

2n− 1

Note that G is independent of other vertices than the core interactionand σ-propagator correc-
tions, due to its linear DSE. Since there are no pure φ interactions, connections only between
φ edges can not appear. Any insertion of a number of vertices on the σ edge would either be a
subdivergence or destroy the external leg structure. An insertion of a number of vertices on or
between the φ edges would either be a subdivergence of a 2-point up to 4n− 2-point φ function or
would destroy the external edge structure as well. A closer look at the φ-propagator skeletons
reveals, that there is only one skeleton graph. Since the number of φ edges apparently does not
play a role, they will be replaced by a single dashed line for cleaner looks. New skeletons therefore
can only occur from inserting another vertex linking the σ and φ edges, which is the same as
inserting an vertex next to a vertex. Consider one of the vertices of the first skeleton graph

can either be a 1PI graph which leads to a subdivergence and not a new skeleton graph,
or is not 1PI, but then it is a combination of a propagator correction and a vertex correction,

thus only adding a subdivergence. Therefore we know the only skeleton is and hence
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G is explicitly independent of space-time dimension D!
So applying (4.7) to G yields the desired solution

γ = ∂LG . (4.9)

Uniquness follows directly from (4.7): assume there exist γ1, γ2, γ1 6= γ2 and G1 = G (γ1) , G2 =
G (γ2) such that G1 = G2 , then from (4.7) follows γ1 = γ2, which is a contradiction to the
assumption and thus proofs uniqueness. �

To conclude, we have seen, that a fixed tower theory gives the same anomalous dimension γ at
the a fixed point independent of its space-time dimension D and thus is indeed a formulation of
a universality class.

Remark 4.6 There is a question which arises from the external field propagator . Its
momentum dependence

(
p2)− D−4

2 changes in different space-time dimensions, which may lead
to unequal anomalous dimensions γD 6= γD′. These unequalities depend on the fixed point in
question. Unfortunately the analysis of differences between fixed points and their relation to
anomalous dimensions are beyond the scope of this work.



CHAPTER 5
Conclusions

The question whether or not a universality class can be formulated as a tower theory was
approached via the correspondence of Feynman graphs and Hopf algebra. This approach has the
advantage of working with algebraic objects, which represent complicated analytical expressions,
rather than having to make sense of the analytic expressions in the first place. The connection
between the statistical physics notion of critical exponents, which define universality classes, and
their connection to quantum field theory was presented. This lead to the realisation that, in
our approach, a single parameter, the renormalisation group equation anomalous dimension is
sufficiently describing a universality class.
By use of the groundwork laid by D. Kreimer and collaborators, it was possible to find relations,
which incorporate certain crucial aspects into the Hopf algebra, such as that at a fixed point
invariant charges become constant and thus it is possible to use a quotient Hopf algebra linearising
the resulting Dyson-Schwinger equations. Here with this approach it was possible for the first
time to show that the core interaction of a tower theory defines the renormalisation group
anomalous dimension and hence a universality class. As mentioned, the specifics of the fixed
point at which the universality class arises were not explicitly taken into account, which lead to
an open question. This question and the subtleties how different fixed points play a role in the
formulation of universality classes therefore is still to be conquered.
As already mentioned in chapter 2.7, the main use of universality classes is in the theory of
critical exponents in statistical physics. It tells us, that whether one knows the specifics of a
theory or not, as long as only the critical exponents are of interest it is possible to use any theory
lying in the same universality class to compute them. Which can lead to great computational
simplification.
Useful examples are often found in different magnetic media or even the superfluid phase of
Helium. When endowed with a O(N) symmetry, the thoroughly used example of φ4 tower
theories includes the O(N) non-linear sigma model as the two dimensional formulation φ4,2 [Gra],
the Ising model in D = 3 dimensions and N = 1, the Heisenberg model in the case of D = 3,
N = 3 [Sta99; Wil74]. Other uses in physics in more complex environments can be found in
[Gra17c] for the Landau-Ginzburg theory or in [Gra18] for QED-Gross-Neveu theory and their
respective universality classes.
Furthermore in J. Gracey suggested in [Gra17b], that it is possible to construct different
universality classes based on a common underlying theory (φ4 in this regard) by changing the
number of derivatives in the kinetic term while keeping the core interaction fixed. This approach
could be promising in endeavours to connect different conformal field theories and categorise
them.
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