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CHAPTER 1

Introduction

This cumulative thesis is dedicated to the application of generalized polylogarithms in

analytic computations of multi-loop Feynman integrals. The following chapters serve as

an introduction to the publications [6, 7, 8, 9, 11, 45, 47], motivating and summarizing

their main results. To provide the reader with all details, these articles are re-printed in

the appendix of this thesis.

The main motivation to improve methods for the computation of Feynman integrals

is given by the demand of increasingly complex theoretical predictions of observables for

the phenomenology at modern particle colliders such as the LHC. In general the increase

in the required precision of these predictions implies an increase in both the number of

Feynman integrals to be considered as well as the intricacy of the individual integrals.

It is very common for such computations to include two steps: In a first step, the given

set of Feynman integrals is expressed in terms of a smaller set of integrals, the so-called

master integrals of the problem, by use of integration-by-parts (IBP) relations [83]. By

use of Baikov’s method [24, 25], Laporta’s algorithm [137] or alternative approaches,

implemented in efficient computer programs such as [19, 141, 142, 153, 188, 189, 192,

194], this step serves for a drastic reduction of the number of integrals to be computed.

However, the number of master integrals still may be large in today’s research projects.

To give just one example, let us refer to the impressive computation of the gluon fusion

Higgs boson cross-section at the LHC [18] where at N3LO a set of 1028 master integrals

remained after a reduction (see [17]). Clearly efficient methods and algorithms are also

required for the second step: the computation of the master integrals. Such methods and

the underlying mathematics are in the focus of this thesis.

The difficulty of an analytic Feynman integral computation varies strongly from case

to case. The loop-number of the Feynman graph and the number of kinematic invariants

and particle masses which the function depends on only give a very vague and biased

guidance to determine the difficulty of the problem. Let us consider the graphs of fig.

1.0.1 (a) and (b) as examples. In fig. 1.0.1 (a) we indicated the family of mass-less

ladder-graphs with four off-shell legs. At the dashed line we may insert further rungs of

the ladder up to a desired loop-number. Results for these Feynman integrals are known

to arbitrary loop-number [91]. The on-shell case is more difficult. Here first results for

the two- and three-loop ladders were obtained later in [190, 191]. The graph in fig. 1.0.1

(b) is an example for a change in difficulty by assigning masses to the propagators. In the

mass-less case, a result for the graph in fig. 1.0.1 (b), even to all orders in the parameter of
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(a) (b) (c)

Figure 1.0.1. (a) The n-loop four-point ladder-graphs (b) The two-loop
two-point 5-propagator-graph (c) A ten-point double-box

dimensional regularization, is given in [36]. However, if all five propagators are massive,

a result is unknown so far.

These examples show that apart from the number of loops and legs, our ability to

compute a Feynman integral may depend on other properties, sometimes in a quite subtle

way. There are Feynman integrals which, even if we assume unlimited computational

resources, can not be computed with today’s most powerful techniques. We do not have

a definite classification which would tell us which integral can be computed with today’s

methods. In general we have to try. However, there are some very useful criteria to

be mentioned below which help to decide, whether certain methods succeed for a given

integral.

Some of the most powerful computational approaches rely on the use of particular

classes of functions. Obviously these methods will fail for a given Feynman integral if the

latter simply can not be expressed in terms of these functions. This leads to the crucial

question: Which classes of functions should we use in our attempts to compute Feynman

integrals? Ideally we would work with a class of functions which is sufficient to express as

many Feynman integrals as possible and which has well-understood properties, allowing

for the automatization of the computations and the evaluation of the results.

A class of functions with an exceptional success-story in particle physics computations

are polylogarithms and their generalizations. The classical polylogarithms (see e.g. [148])

are defined by

Lin(z) =
∞∑

j=1

zj

jn
, |z| < 1

and their multivariate generalizations are the multiple polylogarithms

Lin1,...nk
(z1, ..., zk) =

∑

0<j1<...<jk

zj11 ...z
jk
k

jn1
1 ...j

nk

k

for |zi| < 1

introduced by Goncharov in [111, 112]. The use of these functions is by now standard

in the particle physics literature and there are countless examples of Feynman integrals

expressed in terms of these. The mentioned ladders in fig. 1.0.1 (a) belong to these

examples. Also the result for the mass-less case of fig. 1.0.1 (b) which is expressed in

terms of multiple zeta values, can be understood as given by special values of multiple
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polylogarithms. However, in the case of the same graph where all propagators are massive,

there are strong reasons to assume that the integral can not be expressed in terms of

multiple polylogarithms only. We will provide more details on these reasons. Apparently

this problem does not just arise in one or a few pathological cases. In fact there seems

to be a large family of Feynman integrals, appearing in different physical contexts, which

can not be expressed in terms of multiple polylogarithms. In [29, 184] this problem is

exhibited for massive integrals arising in electroweak physics while also mass-less integrals

arising in N=4 super Yang-Mills theory, such as the ten-point on-shell double-box of fig.

1.0.1 (c), are known to admit this problem [76, 165].

In this thesis we focus on two methods for the computation of Feynman integrals

which both make use of generalized polylogarithms. We will refer to these methods as the

method of parametric integration and the method of differential equations. As we will see,

both methods make use of the iterated integral structure of generalized polylogarithms.

In the case of the classical polylogarithms, this property is reflected in the obvious relation

Lin(z) =

∫ z

0

dx

x
Lin−1(x) for n > 1.

The mentioned methods are both widely used in particle physics and their success may

serve as a strong reason to rely on generalizations of polylogarithms in Feynman integral

computations.

If a Feynman integral can be expressed in terms of multiple polylogarithms, these and

other methods may be applied and our good understanding of multiple polylogarithms

allows us to automatize computations. On the other hand, in the case of Feynman integrals

which apparently can not be expressed in terms of multiple polylogarithms, computational

techniques are much further behind. As a crucial step towards automated computations

of these cases in the future, we have to find out at first, which classes of functions beyond

multiple polylogarithms may be appropriate here. Because of this general situation, the

present thesis proceeds in two directions. Both directions improve the use of generalized

polylogarithms in Feynman integral computations, but in quite different ways.

The first direction is worked out in our joint work with Brown [47] and in [45]. Here

we assume the case of Feynman integrals which can be expressed in terms of multiple

polylogarithms. In [47] we present algorithms for certain computations with multiple

polylogarithms. These are based on a representation of these functions in terms of an

appropriate class of iterated integrals. The algorithms serve for an automatization of the

method of parametric integration and may support other approaches as well. In [45]

we present the program MPL which is an implementation of these algorithms for the

computer algebra system Maple [154].

The second direction is followed in our joint work with Adams, Schweitzer and Weinzierl

[6, 7, 8, 9, 11]. Here we focus on the two-loop sunrise graph with three massive prop-

agators, shown in fig. 1.0.2 (a) and on the kite graph with three massive propagators

(straight lines) and two mass-less propagators (dashed lines), shown in fig. 1.0.2 (b).
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(a) (b)

Figure 1.0.2. (a) The two-loop sunrise graph (b) The kite graph

Both of these graphs have been considered in the literature for a long time and it is com-

mon knowledge that multiple polylogarithms are not sufficient to express their Feynman

integrals. The massive sunrise integral turns out to be a very useful showcase of this

general problem. In [7] we consider this integral for the case of arbitrary masses in D = 2

space-time dimensions and express the result with the help of integrals over elliptic inte-

grals. In [8] we present a further result of this integral in terms of a new function, which

can be understood as an elliptic generalization of the dilogarithm Li2. Using the same

type of elliptic generalizations of polylogarithms, we present a result for the case of four

space-time dimensions in [9]. In [11] we focus on the case of three equal masses in two

dimensions and provide an algorithm to obtain the result in all orders of the parameter

ǫ of dimensional regularization. In [6] finally, we use the same framework of functions to

provide a result for the kite graph to all orders in four dimensions.

The most important point in the latter series of projects is the introduction of a new

class of elliptic generalizations of (multiple) polylogarithms. These functions admit an

iterated integral structure, and therefore they are very well suited for the method of dif-

ferential equations, as our computations show. The fact that not only the massive sunrise

integral but also the kite integral can be expressed in terms of these functions give rise

to the hope that in the future they may serve for a larger class of Feynman integrals

which could not be computed so far - possibly including the graphs of fig. 1.0.1 (b) or

even the graph of fig. 1.0.1 (c). If these functions continue to be useful in the future, we

furthermore may hope that their use will eventually enable the automatization of compu-

tations to the level which is already reached for the cases where multiple polylogarithms

are sufficient.

This thesis is structured as follows: In chapter 2 we give a brief introduction to well-

known aspects of polylogarithms and some of their generalizations which will be required

for the understanding of the further material. In chapter 3 we recall basic notions of

Feynman integrals including the method of parametric integration and the method of

differential equations. In chapter 4 we discuss the class of iterated integrals representing

multiple polylogarithms which we use in our joint work with Brown. We review the

most important algorithms of this work and of our resulting computer program MPL.

In chapter 5 we review our class of elliptic generalizations of polylogarithms and their

use in the computations of the sunrise and kite integrals from our work with Adams,
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Schweitzer and Weinzierl. In chapter 6 we state our conclusions and point out some open

questions to be addressed in future research. The appendix contains reprinted versions of

the mentioned publications.
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CHAPTER 2

Classical and multiple polylogarithms

For the later discussion of methods for the computation of Feynman integrals, it is

important to be aware of some properties of the functions they rely on. In this chapter we

recall basic properties of polylogarithms and of some of their generalizations. In the case

of classical and multiple polylogarithms, this material is presented more exhaustively in

introductions and reviews such as [62, 77, 119, 203, 210, 211]. We also mention some

additional developments in the physics literature.

2.1. Definitions and basic properties

Let us begin with a quick detour via two letters of Gottfried Wilhelm Leibniz which

may be seen as the historical birthplace of polylogarithms. Near the end of the year 1696

Leibniz writes two letters to Johann Bernoulli including the following passages (see N. 46,

p. 176 f. and N.47, p. 179 in [146]):

[...] Quaeritur summa horum numerorum 1
1 + 1

4 + 1
9 + 1

16 etc. Fingo esse casum

specialem hujus: x2

1 + x3

4 + x4

9 + x5

16 etc. = y cum scilicet fit x = 1. Quod si ergo

semper haberi posset y, haberetur et summa quaesita. Ergo et x
1 + x2

2 + x3

3 + x4

4

etc. = dy
dx = log,1-x, seu

ddy
dx = x0+x1+x2+x3 etc. = 1

1−x seu y =
∫ ∫

1
1−xdxdx.

[...]

[...] Literis ad Te dimissis, mox in mentem venit oportere ut error in illis admissus

fuerit. Nam area illa quam aequalem feceram seriei de qua agitur in nita est. Re

ergo resumta vidi sic procedendum: 1
1+

x
2+

x2

3 + x3

4 etc. = dy. Unde x
1+

x2

4 + x3

9 + x4

16

etc. = y. Ergo dy = log.1−x dx
x , seu y =

∫
log.1−x

x dx. [...]

In the first sentence, Leibniz expresses his interest in the series today known as

∞∑

j=1

1

j2
=
π2

6

due to Euler [103]. Nowadays this series is usually considered as Riemann’s zeta function

(2.1.1) ζ(n) =
∞∑

j=1

1

jn

evaluated at n = 2. Leibniz suggests to consider a function of x which evaluates to this

series in the special case (“casum specialem”) x = 1. In a first attempt, he considers
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x2

1
+ x3

4
+ x4

9
+ x5

16
+ ... and erroneously claims that the function1

(2.1.2) − ln(1− x) =

∞∑

j=1

xj

j

is obtained by differentiating this series with respect to x. He derives an integral represen-

tation from this false result. Despite this mistake, these are the lines of thought leading

to the definition of polylogarithms.

The second excerpt above stems from his next letter to Bernoulli, written a few days

later. Here Leibniz corrects his mistake and considers the function

(2.1.3) y(x) =
∞∑

j=1

xj

j2
.

By differentiation he obtains
dy

dx
=

− ln(1− x)

x
and hence he arrives at an integral which in modern notation reads

y(x) = −
∫ x

0

dx′

x′
ln(1− x′).

Today the function y(x) in eq. 2.1.3 is known as the dilogarithm denoted Li2(x) and

some of its properties already pointed out in the above letters will be shared by its

generalizations: a definition in terms of a series, a representation as an integral over a

closely related function and an interesting special value at x = 1.

As a generalization of the dilogarithm, classical polylogarithms are defined as

(2.1.4) Lin(z) =
∞∑

j=1

zj

jn

for n ∈ N and a complex variable z with |z| < 1. Standard references such as [148]

discuss these functions at length. Clearly the first two members of this class of functions,

Li1(z) and Li2(z), are the series of eqs. 2.1.2 and 2.1.3 as mentioned in the above letters.

Following Leibniz’ main idea, one differentiates these series, obtaining the differential

equations

(2.1.5)
d

dz
Lin(z) =

1

z
Lin−1(z), n ≥ 2.

These lead to the integral relations

(2.1.6) Lin(z) =

∫

γ

dx

x
Lin−1(x), n ≥ 2,

where γ is a smooth path from 0 to z in C\ {0, 1} . As the end-point z of the path is

allowed to be outside the unit-circle here, this integral serves for the analytic continuation

of the polylogarithms to multivalued functions on C\ {0, 1} . Integrals like this are central

to this thesis and will be discussed in more detail in section 2.2.

1Notice that Leibniz’ notation log.1-x and log,1-x as printed in [146] can only mean our − ln(1− x).
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As a further generalization the multiple polylogarithms in one variable are defined by

(2.1.7) Lin1,...,nr
(z) =

∑

0<j1<...<jr

zjr

jn1
1 ...j

nr
r

for n1, ..., nr ∈ N and a complex variable z with |z| < 1. They satisfy differential equations

(2.1.8)
d

dz
Lin1,...,nr

(z) =







1
z
Lin1,...,nr−1(z) for nr > 1,

1
1−z

Lin1,...,n(r−1)
(z) for nr = 1.

Again, an analytic continuation to C\ {0, 1} is given by integrals to be discussed below.

Multiple polylogarithms in several variables [112, 111] are defined by

(2.1.9) Lin1,...,nr
(z1, ..., zr) =

∑

0<j1<...<jr

zj11 ...z
jr
r

jn1
1 ...jnr

r

for n1, ..., nr ∈ N and converging where all the complex variables zi admit |zi| < 1. We will

refer to these functions as multiple polylogarithms and state explicitly, if we only mean

the one-variable case. One main subject of this thesis will be an implementation of the

integrals representing the multiple polylogarithms as functions of several variables. As we

will see below, these integrals provide an analytic continuation to a certain moduli space,

which can be seen as a multi-dimensional generalization of C\ {0, 1} .
We have seen that Leibniz’ consideration of the dilogarithm was motivated by interest

in the special value ζ(2) obtained by evaluation at z = 1. The above generalizations have

meaningful special values as well. The series in eq. 2.1.4 for the classical polylogarithms

converges at z = 1 for n > 1. One obtains

Lin(z) = ζ(n),

where ζ(n) is the Riemann zeta function of eq. 2.1.1. The series in eqs. 2.1.7 and 2.1.9

for the multiple polylogarithms converge as well at z = 1 and respectively at z1 = z2 =

... = zr = 1 if nr > 1. The values at these points are multiple zeta values [209] defined by

(2.1.10) ζ (n1, ...nr) =
∑

0<j1<...<jr

1

jn1
1 ...j

nr
r

∈ R.

Let us consider the multiplication of polylogarithms and multiple polylogarithms using

their above series representations. For the product of two classical polylogarithms with

n,m ∈ N and with |z| < 1, |y| < 1 we obtain

Lin(z)Lim(y) =
∑

0<j,k

zjyk

jnkm

=
∑

0<j<k

zjyk

jnkm
+
∑

0<k<j

zjyk

jnkm
+
∑

0<j

(zy)j

jn+m

= Lin,m(z, y) + Lim,n(y, z) + Lin+m(zy).
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n′ m′ l x

(n1, n2) (m1, 0) (n1 +m1, n2) (z1y1, z2)

(n1, n2) (0, m1) (n1, n2 +m1) (z1, z2y1)

(0, n1, n2) (m1, 0, 0) (m1, n1, n2) (y1, z1, z2)

(n1, 0, n2) (0, m1, 0) (n1, m1, n2) (z1, y1, z2)

(n1, n2, 0) (0, 0, m1) (n1, n2, m1) (z1, z2, y1)

Table 1. Construction of a stuffle product

The concept generalizes to products of multiple polylogarithms as follows (see e.g. [203]):

For this purpose, us write Lin1,...,nr
(z1, ..., zr) = Lin (z) with ordered sets n = (n1, ..., nr)

and z = (z1, ..., zr) . For sets n = (n1, ..., nr) , z = (z1, ..., zr) , m = (m1, ..., ms) , y =

(y1, ..., ys) we have the product

(2.1.11) Lin (z)Lim
(
y
)
=
∑

l

Lil (x)

where the sum on the right-hand side runs over all possible ordered sets l with t elements,

max(r, s) ≤ t ≤ r + s, whose elements are li = n′
i + m′

i for i = 1, ..., t, where the sets

n′ = (n′
1, ..., n

′
t), m

′ = (m′
1, ..., m

′
t) both of length t are obtained from n and m respectively

by inserting zeroes, such that all li 6= 0. In the corresponding term Lil (x) the arguments

x are obtained as

xi =







zj for li = nj ,

yj for li = mj ,

zjyk for li = nj +mk.

Example. In the case of n = (n1, n2) , m = (m1) , z = (z1, z2), y = (y1) the sum runs

through the cases shown in table 1 and we obtain

Lin1,n2(z1, z2)Lim1(y1) = Lin1+m1,n2(z1y1, z2) + Lin1,n2+m1(z1, z2y1)

+Lim1,n1,n2(y1, z1, z2) + Lin1,m1,n2(z1, y1, z2) + Lin1,n2,m1(z1, z2, y1).

Note that every l preserves the internal ordering of n and of m. This way of multiplying

multiple polylogarithms can be formulated with the help of a product of the sets n and

m known as stuffle or quasi-shuffle product . A recursive definition and properties of the

corresponding algebra are given in [122]. For our purposes, another product known as

the shuffle product based on iterated integrals will be more important. Let us now turn

to iterated integrals.
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2.2. General aspects of iterated integrals

We have seen that Leibniz already knew

Li2(z) = −
∫ z

0

dx

x
ln(1− x).

He was also aware of the integral representation of the logarithm, and hence of the formula

Li2(z) =

∫ z

0

dx

x

∫ x

0

dx′

1− x′
.

The right-hand side of the latter equation is called an iterated integral. Following work of

Poincaré and Lappo-Danilevsky, Chen developed a general theory of such integrals. We

discuss some aspects of the general theory and then focus on the cases of classical and

multiple polylogarithms.

As a general set-up, let us consider a smooth manifold M over a field K and let

γ : [0, 1] → M

be a piecewise smooth path, meaning that this path is the union of finitely many smooth

paths. We denote the set of piecewise smooth paths on M by PM. Let ω1, ...ωr be smooth,

K-valued differential 1-forms on M . With respect to the path γ, let the pull-back of these

1-forms to [0, 1] be denoted by γ⋆ (ωi) (t) = fi(t)dt.

The iterated integral of ω1, ..., ωr along γ is defined by
∫

γ

ω1...ωr =

∫

0≤t1≤...≤tr≤1

γ⋆ (ωr) (t1) ...γ
⋆ (ω1) (tr)(2.2.1)

=

∫

0≤t1≤...≤tr≤1

fr (t1) dt1...f1 (tr) dtr.

We will use the term iterated integral as well for K-linear combinations of such integrals.

The case r = 0 is the empty integral, defined to be 1. The case r = 1 is the ordinary line

integral
∫

γ

ω1 =

∫ 1

0

f1 (t1) dt1.

Iterated integrals satisfy the following properties (see [79, 119, 62]):

• The iterated integral
∫

γ
ω1...ωr is independent of the parametrization of the path

γ.

• For γ−1(t) = γ(1− t) being the reversal of the path γ, one has

(2.2.2)

∫

γ−1

ω1...ωr = (−1)r
∫

γ

ωr...ω1.

• The product of two iterated integrals along the same path γ is computed as

(2.2.3)

∫

γ

ω1...ωr ·
∫

γ

ωr+1...ωr+s =
∑

σ∈Σ(r,s)

∫

γ

ωσ(1)...ωσ(r+s)

17



where Σ (r, s) is the set of (r, s)-shuffles, defined as

(2.2.4) Σ (r, s) = {σ ∈ Σ (r + s) : σ(1) < ... < σ(r) and σ(r + 1) < ... < σ(r + s)}

with Σ (n) being the symmetric group.

• Let α, β : [0, 1] →M be two paths with α(1) = β(0), i.e. the end of α coincides

with the beginning of β, and let αβ denote the path composed of these two. Then

(2.2.5)

∫

αβ

ω1...ωr =
r∑

i=0

∫

α

ω1...ωi ·
∫

β

ωi+1...ωr.

It is useful to relate the latter properties to certain constructions on the corresponding

sequences of 1-forms. For tensor products of differential 1-forms, let us introduce the bar

notation

(2.2.6) [ω1|...|ωr] = ω1 ⊗ ...⊗ ωr.

We refer to such tensor products and their K-linear combinations

(2.2.7) ξ =

r∑

k=0

∑

i1...ir

ci1...ir [ωi1 |...|ωik ] with ci1...ir ∈ K

as words up to length r. We will also consider tensor products of such words and the

bar notation will help to steer clear of any possible confusion between different levels of

tensor products. The concatenation of words a = [a1|...|ak] , b = [b1|...|bm] is denoted by

a ⊔ b = [a1|...|ak|b1|...|bm] .

The commutative shuffle product ax b is recursively defined by

a x b = [a1] ⊔ ([a2|...|ak] x b) + [b1] ⊔ (ax [b2|...|bm]) .

The sum on the right-hand side of eq. 2.2.3 runs through the terms of the shuffle product

of [ω1|...|ωr] x [ωr+1|...|ωr+s] , so we may re-write eq. 2.2.3 as

(2.2.8)

∫

γ

ω1...ωr ·
∫

γ

ωr+1...ωr+s =

∫

γ

ω1...ωr xωr+1...ωr+s.

We furthermore define the de-concatenation co-product ∆ by

(2.2.9) ∆ [a1|a2|...|ak] = 1⊗ [a1|a2|...|ak] + [a1]⊗ [a2|...|ak] + ...+ [a1|...|ak]⊗ 1.

Note that the terms on the right-hand side of eq. 2.2.5 correspond to the terms in

∆ [ω1|...|ωr] . We will make further use of these constructions in chapter 4.

The above properties are true for every iterated integral. In this thesis, we work

with classes of iterated integrals which furthermore have the property of being homotopy

invariant or in other words a homotopy functional . Two continuous paths γ1, γ2 on M are

called homotopic (relative to their end-points) if their end-points coincide as γ1(0) = γ2(0)

and γ1(1) = γ2(1) and if furthermore there exists a continuous map φ : [0, 1]× [0, 1] →M
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such that

φ(0, t) = γ1(t) and φ(1, t) = γ2(t)

for all 0 ≤ t ≤ 1 and φ(s, 0) = γ1(0), φ(s, 1) = γ1(1) for all 0 ≤ s ≤ 1. This defines

an equivalence relation on PM and we write γ1 ∼ γ2 for homotopic paths. A map

F : PM → K is called a homotopy functional or homotopy invariant, if

γ1 ∼ γ2 ⇒ F (γ1) = F (γ2) .

In other words, for a homotopy invariant iterated integral
∫

γ1
ω1...ωr we have

∫

γ1

ω1...ωr =

∫

γ2

ω1...ωr

for every path γ2 which begins and ends at the same points as γ1 respectively, and which

can be transformed continuously into γ1.

Not every iterated integral is homotopy invariant. For the case of r = 1 one can show

with the help of Stokes’ theorem and Poincaré’s lemma, that
∫

γ
ω1 is homotopy invariant

if and only if ω1 is closed. For the general case, Chen proved a criterion which can be

formulated as follows. Assuming that all differentiations in the following relation exist,

we define the operator D acting on words by

(2.2.10)

D ([ω1|...|ωr]) =
r∑

j=1

[ω1|...|ωj−1|dωj|ωj+1|...|ωr]−
r−1∑

j=1

[ω1|...|ωj−1|ωj ∧ ωj+1|ωj+2|...|ωr] .

A word ξ as in eq. 2.2.7 is called integrable if

(2.2.11) D (ξ) = 0.

Chen has proven in [79], that there is an isomorphism between integrable words and

homotopy invariant iterated integrals: Consider a word

ξ =
r∑

k=0

∑

i1...ir

ci1...ir [ωi1 |...|ωik ]

and the corresponding iterated integral

I =

r∑

k=0

∑

i1...ir

ci1...ir

∫

γ

ωi1...ωik

along some path γ ∈ PM . Then I is homotopy invariant if and only if ξ is integrable.

This statement has important implications for our work in [47, 45] to be discussed in

chapter 4: We will construct a vector space of certain homotopy invariant iterated inte-

grals by constructing their corresponding integrable words. After fixing certain boundary

conditions, the isomorphism between integrable words and homotopy invariant iterated

integrals will allow us to express all functions of our class by the corresponding word of

1-forms. As a consequence, all our main computations in chapter 4 are manipulations
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on words and therefore they are very well suited for the implementation in a computer

program as discussed there.

We furthermore note a simple consequence from Chen’s work: If we consider words of

closed 1-forms of the type ω = f(x)dx with some rational function f then due to dx∧dx =

0 every word in these 1-forms clearly satisfies 2.2.11 and therefore no ordering among such

1-forms will violate the homotopy invariance of the corresponding iterated integral. As

we will see, this is the case for classical polylogarithms and multiple polylogarithms in

one variable and for some related classes of functions to be mentioned in section 2.5.

However, in chapter 4 we will work with words in 1-forms for which eq. 2.2.11 is a

non-trivial condition and where not every ordering of 1-forms is admissible.

2.3. Tangential basepoints

Before we apply the language of iterated integrals to classical and multiple polylog-

arithms on C\ {0, 1}, let us discuss some preparative steps regarding this space. Let x

denote the complex coordinate of the space C\ {0, 1} and let us consider a smooth path

γ : [0, 1] → C\ {0, 1} which begins at γ(0) = x0 and ends at γ(1) = z. We consider the

parametrization γ(t) = x0 + (z− x0)t and the 1-form dx
x

on C\ {0, 1} . We easily compute

the integral
∫

γ

dx

x
=

∫

0≤t≤1

(z − x0)dt

x0 + (z − x0)t
= ln (z)− ln (x0) .

As a direct consequence of the multiplication rule in eqs. 2.2.3 and 2.2.8 we have
∫

γ

dx

x
·
∫

γ

dx

x
=

∫

γ

dx

x
x

dx

x
= 2

∫

γ

dx

x

dx

x

and more generally
(∫

γ

dx

x

)n

= n!

∫

γ

dx

x
...
dx

x
︸ ︷︷ ︸

n times

.

We therefore arrive at

(2.3.1)

∫

γ

dx

x
...
dx

x
︸ ︷︷ ︸

n times

=
1

n!
(ln (z)− ln (x0))

n .

So far, the endpoints x0 and z of the path were treated equally, but it will be convenient

to let them play different roles. We want to consider the iterated integrals as functions

of endpoint z (consisting of several complex components in chapter 4) and fix x0 at the

same value for all of our paths. We adapt the convention to choose x0 = 0 for all paths γ,

by abuse of our original set-up where the point 0 is excluded. Clearly, this choice causes a

divergence in eq. 2.3.1. However, we will consider classes of iterated integrals where such

logarithmic divergences are the only ones caused by the choice x0 = 0. As a regularization

of these divergences we formally set the logarithm at x0 = 0 equal to zero, replacing the
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(b)(a)

Figure 2.3.1. Three paths, initiating at x0 6= 0 in (a) and at the tangential
basepoint x0 = 0 in (b).

result eq. 2.3.1 by

(2.3.2)

∫

γ

dx

x
...
dx

x
︸ ︷︷ ︸

n times

=
1

n!
lnn (z) .

In the same sense we define the function in eq. 2.3.2 to vanish at z = 0.

In this re-definition we have to fix the branch of ln (x0) which we eliminate at x0 going

to zero. This choice requires a further condition introduced on the path γ : In addition

to the value x0 = 0 of the initial point, we also fix the initial direction in which the path

starts there. With this additional condition, x0 is called a tangential basepoint of γ. Here

we choose dγ
dt
|t=0 = 1, meaning that γ starts in the direction of the positive real axis.

Therefore there is a region sufficiently close to x0 where the path does not intersect the

branch cut (−∞, 0] of the logarithm. Hence we can unambiguously choose a Riemann

sheet there. We fix ln (x0) to be located on the principal sheet near x0 = 0.

Figure 2.3.1 illustrates that the notion of the tangential basepoint is necessary to

preserve the homotopy equivalence classes of paths when we send the basepoint to zero.

In fig. 2.3.1 (a) we have three paths starting at some x0 6= 0 and ending at some other

point z. Clearly, γ1 and γ2 are homotopic and γ3 belongs to a different equivalence class.

We can not continuously deform γ3 into γ1 or γ2 in C\ {0, 1} because the point 0 lies in

the region enclosed by γ3 and γ1 or γ2 respectively. As we send x0 to 0, the latter is not

true anymore. However, due to the condition dγi
dt
|t=0 = 1 for i = 1, 2, 3, we keep the same

equivalence relations. As we see in fig. 2.3.1 (b) the path γ3 still can not be transformed

continuously into one of the two other paths.

In this thesis we consider classes of iterated integrals where re-definitions as in eq.

2.3.2 are sufficient for a regularization at the origin. If every iterated integral admits an

expansion

(2.3.3) I =
∑

i

fi(z) ln (z)
i
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where the fi are finite at z = 0, the only possible divergences are cured by this regular-

ization. In chapter 4 we will have a similar property for functions of several variables.

For practical computations it can be useful to make the reduction to the logarithmic

divergences explicit. One considers an iterated integral
∫

γ
...dx

x
which diverges at the

origin due to its right-most 1-form dx
x

and relations from the shuffle product involving

this integral. Using these relations one expresses the iterated integral in terms of the

functions of eq. 2.3.2 and of iterated integrals whose right-most 1-form is different from
dx
x
.

Example. From the shuffle-relations
∫

γ

dx

x

dx

1− x
·
∫

γ

dx

x
= 2

∫

γ

dx

x

dx

x

dx

1− x
+

∫

γ

dx

x

dx

1− x

dx

x
,

∫

γ

dx

x

dx

x
·
∫

γ

dx

1− x
=

∫

γ

dx

1− x

dx

x

dx

x
+

∫

γ

dx

x

dx

1− x

dx

x
+

∫

γ

dx

x

dx

x

dx

1− x
,

derived from eqs. 2.2.3 and 2.2.8, we obtain
∫

γ

dx

1− x

dx

x

dx

x
=

∫

γ

dx

x

dx

x
·
∫

γ

dx

1− x
+

∫

γ

dx

x

dx

x

dx

1− x
+

∫

γ

dx

x

dx

1− x
·
∫

γ

dx

x
.

We see that in the last equation, the divergence on the right-hand side is cured by eq.

2.3.2.

2.4. Classical and multiple polylogarithms in terms of iterated integrals

Let γ be a piecewise smooth path starting at the tangential basepoint x0 = 0 with
dγ
dt
|t=0 = 1 and ending at some point z ∈ C\ {0, 1} . We consider the set

ΩP = {ω0, ω1}

of the differential 1-forms

ω0 =
dx

x
and ω1 =

dx

1− x
on C\ {0, 1} . It is clear from section 2.2 that every word in these 1-forms is integrable.

As a solution to the differential equations in eq. 2.1.5 the classical polylogarithms can

be written as

(2.4.1) Lin(z) =

∫

γ

ω0...ω0
︸ ︷︷ ︸

n−1 times

ω1.

Recall that according to our conventions chosen in eq. 2.2.1, the iterated integration begins

always with the right-most 1-form, here ω1, and proceeds to the left. The differential

equations eq. 2.1.5 for n > 1 can be expressed in terms of differential forms as

dLin(z) = ω0Lin−1(z) = ω0

∫

γ

ω0...ω0
︸ ︷︷ ︸

n−2 times

ω1

by de-concatenation of the leftmost 1-form.
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The functions in eq. 2.4.1 are multivalued on C\ {0, 1} and their value depends on the

homotopy class of γ. Let γa and γb be paths starting at the same tangential basepoint and

ending at the same z in C\ {0, 1} . Furthermore let γi for i = 0, 1 be closed paths winding

once around the point i respectively in anti-clockwise direction. We can always construct

a piecewise smooth path homotopic to γ2 by concatenating pieces of γa and the loops γi,

possibly using several copies of these paths and inverting their direction. Therefore, the

multiple values of Lin(z) can be expressed with the help of the loops γ0 and γ1.

One defines the monodromy Mi around the point i = 0, 1 as the operator, which to a

local branch of a multivalued function associates its analytic continuation along the path

γi. One can show (see e.g. [62] and references therein) that on classical polylogarithms

this operator acts as

M0Lin (z) = Lin (z) ,

M1Lin (z) = Lin (z) +
2πi

(n− 1)!
lnn−1 (z) .

This determines the analytic continuation of classical polylogarithms. We notice that

with each walk around the point 0, the polylogarithm itself remains unchanged. With

each walk around 1 the polylogarithms are changed by adding logarithms, and these in

turn change with walks around 0 by adding powers of 2πi.

Multiple polylogarithms in one variable can be expressed as

(2.4.2) Lin1,...,nr
(z) =

∫

γ

ω0...ω0
︸ ︷︷ ︸

nr−1 times

ω1... ω0...ω0
︸ ︷︷ ︸

n1−1 times

ω1.

In the special case of z = 1 this provides an integral representation for multiple zeta values

found by Kontsevich (see [209]). The differential equations of eq. 2.1.8 can be written as

dLin1,...,nr
(z) =







ω0Lin1,...,nr−1(z) for nr > 1,

ω1Lin1,...,n(r−1)
(z) for nr = 1.

As we have seen, iterated integrals with 1-forms in ΩP are sufficient to express classical

polylogarithms and multiple polylogarithms in one variable. For multiple polylogarithms

of several variables, we require a more general set of 1-forms. For a set of numbers Σ ⊂ C

including 0 ∈ Σ let us define the set of 1-forms

ΩΣ =

{

ω(σ; x) =
dx

x− σ
for all σ ∈ Σ

}

.

The resulting iterated integrals are called hyperlogarithms. They were studied by Kum-

mer [136], Poincaré [174] and extensively by Lappo-Danilevsky [139, 140]. They are

recursively defined by

Lσ1,...,σr
(z) =

∫ z

0

ω(σ1; x)Lσ2,...,σr
(x)(2.4.3)
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where σi ∈ Σ for i = 1, ..., r. In the case of all 1-forms being ω(0) = dx
x

one defines

L0, ..., 0
︸ ︷︷ ︸
n times

(z) =
1

n!
lnn (z) ,

as we did in eq. 2.3.2. For a path γ in C\Σ from tangential basepoint x0 = 0 to z we can

more elegantly write

Lσ1,...,σr
(z) =

∫

γ

ω1...ωr

with ωi = ω(σi; x) ∈ ΩΣ for i = 1, ..., r. We have the familiar type of differential equation

(2.4.4) dLσ1,...,σr
= ω1Lσ2,...,σr

.

Goncharov found [112, 111] that hyperlogarithms can be used to express the multiple

polylogarithms as

(2.4.5) (−1)r Lin1,...,nr

(
σ2
σ1
,
σ3
σ2
, ...,

z

σr

)

= L 0, ..., 0
︸ ︷︷ ︸

nr−1 times

,σr ,..., 0, ..., 0
︸ ︷︷ ︸
n1−1 times

,σ1
(z).

Hyperlogarithms will not be in the main focus of this thesis, but they will play an

auxiliary role in chapter 4. Note that in eq. 2.4.5 the last argument of the multiple

polylogarithm Lin1,...,nr
is somehow special. It depends on the variable z, while the other

arguments are fractions of the fixed numbers σi. In chapter 4 we will apply a different set

of iterated integrals for multiple polylogarithms whose 1-forms involve several variables

instead.

Very briefly we mention some further properties of multiple polylogarithms:

• We have seen that a product of multiple polylogarithms can be computed in

two ways: Based on the series representation using the quasi-shuffle product

as in eq. 2.1.11 or based on hyperlogarithms using the shuffle product of eq.

2.2.8. For the same product of multiple polylogarithms, one usually obtains two

different expressions in these ways. This gives rise to identities between multiple

polylogarithms and therefore also between multiple zeta values. An important

conjecture states, that this interplay of quasi-shuffle and shuffle multiplication

is in a certain sense the only source of algebraic relations between multiple zeta

values. We refer to [203] for an overview.

• The words of differential 1-forms form a commutative algebra with the above

shuffle product. In eq. 2.2.9 we have furthermore introduced the co-product of

de-concatenation, which can be used to express the path concatenation formula

2.2.5. These structures together define a bi-algebra, which due to the existence

of an antipode

S (ω1...ωr) = (−1)r ωr...ω1

furthermore constitutes a Hopf algebra. In chapter 4 we will make extensive use

of the product and co-product while the antipode will play a minor role in the
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computation of certain limits. For recent explicit applications of the Hopf algebra

structure in Feynman integral computations we refer to [98, 99].

• Apart from relations given by shuffle and quasi-shuffle multiplication, classical

and multiple polylogarithms satisfy functional equations, relating multiple poly-

logarithms with different arguments to each other. Some standard examples are

(see e.g. [210])

Li2

(
1

z

)

= −Li2 (z)− ζ(2)− 1

2
ln2 (−z) ,(2.4.6)

Li2 (1− z) = −Li2 (z) + ζ(2)− ln (z) ln (1− z) ,(2.4.7)

Li2 (x) = n
∑

zn=x

Li2 (z) for n ∈ N,(2.4.8)

Li2 (x) + Li2 (y) + Li2 (z) =
1

2

(

Li2

(

−xy
z

)

+ Li2

(

−yz
x

)

+ Li2

(

−xz
y

))

for
1

x
+

1

y
+

1

z
= 1,(2.4.9)

Li2 (x) + Li2 (y) = −Li2

(
1− x

1− xy

)

− Li2 (1− xy)− Li2

(
1− y

1− xy

)

+ζ(2)− ln (x) ln (1− x)− ln (y) ln (1− y)

+ ln

(
1− x

1− xy

)

ln

(
1− y

1− xy

)

,(2.4.10)

where the two latter equations are known as the six-term relation of Kummer

and Newman and the five-term relation discovered by Spence and several other

authors thereafter. From a physicist’s point of view, such relations can be useful

for the analytic continuation and the simplification of a result.

• We have seen that for every homotopy invariant iterated integral there is an in-

tegrable word of 1-forms and that a hyperlogarithm admits the same differential

behavior as the multiple polylogarithm in one of the variables. It is furthermore

possible to construct an integrable word which reflects the differential behavior

of the multiple polylogarithm in all of its variables. Such words will be the back-

bone of our work to be discussed in chapter 4. In this discussion, we will fix

certain boundary conditions such that the iterated word entirely determines the

function (up to monodromy).

In some computations, it is sufficient to know the differential behavior of the

function and to compute with integrable words without fixing the boundary con-

ditions. This is the idea behind the use of the so-called symbol [113, 115, 100]

in particle physics (also see [99] for an introduction and further references). This

strategy has been successful in two ways: Firstly, if a result is expressed in terms

of hyperlogarithms, its simplicity may be obscured and the expression may be

much longer than necessary as symmetries and functional relations may not be
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manifest. Associating the corresponding integrable words can lead to drastic sim-

plifications, as was shown in [115] and later references. Secondly, the assumption

that a quantity can be expressed in terms of multiple polylogarithms and fur-

ther known properties of the quantity may determine the result completely. In

such cases, one constructs all integrable words of a desired weight and eliminates

the ones contradicting the known physical properties. Recent results with such

approaches include [95, 96, 97].

Hyperlogarithms are very well established in mathematics and in particle physics today

and all of the mentioned aspects are extensively discussed in the literature. We recommend

chapter 3 of Panzer’s PhD thesis [170] for a recent and very thorough introduction to

this important class of functions.

2.5. Related developments in particle physics

Some aspects of the above framework of functions have been known for a long time.

However, the general attention on these functions has apparently grown just in the last few

decades2. Therefore it is not a surprise that particle physicists have not always referred

to these functions as discussed above. In some cases, different names were used for the

same objects while in other cases, alternative functions have appeared more convenient

to express certain results. Let us quickly go through some of these notions which play

some role in the physics literature.

A first appearance of polylogarithms in quantum field theory may be3 the article

[177] in the context of quantum electrodynamics. Eq. 39 of this reference introduces the

function

R(x) =

∫ x

0

ln(1 + y)
dy

y

which is clearly equal to −Li2(−x). The author does not use the term “dilogarithm” and

does not refer to the mathematical literature at this point, but he mentions the series

expansion and the functional equation we have seen in eq. 2.4.6.

An important early benchmark in the systematic computation of Feynman integrals

are t’Hooft and Veltman’s results for the four one-loop integrals given by the graphs in

figure 2.5.1 to order ǫ0 in dimensional regularization [200]. The results for the graphs in

fig. 2.5.1 (a) and (b) involve the logarithm while the results for (c) and (d) furthermore

involve the dilogarithm. The authors use the term Spence function and clarify that this

is just another name for the dilogarithm. The term was used in some later references as

well. The result for fig. 2.5.1 (d) was simplified in [94]. Together with the methods of

[173, 156] these results show, that for one-loop integrals in general, no function more

2This development is documented in Zagier’s article [210]: In the first version, published in 1988, he
refers to the dilogarithm as a “remarkable and too little-known function”. In the extended second version,
published fifteen years later, he adds: The comment about “too little-known” is now no longer applicable,
since the dilogarithm has become very popular in both mathematics and mathematical physics, due to its
appearance in algebraic K-theory on the one hand and in conformal field theory on the other. [...]
3We are referred to this article by a remark in [182].
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(a) (b) (c) (d)

Figure 2.5.1. The first four one-loop Feynman graphs

complicated than the dilogarithm is required at order ǫ0. For an overview of these results

we refer to [93].

Another important benchmark was the introduction of harmonic polylogarithms [182]

to the particle physics literature. These functions are defined by

H(0, ..., 0
︸ ︷︷ ︸

n times

; z) =
1

n!
lnn(z),

H(m1, m2, ..., mn; z) =

∫ z

0

ω(m1; z
′)H(m2, ..., mn; z

′)

where in the latter equation mi ∈ {0, 1,−1}, not all of these numbers being zero, and

ω(mi; z) = (−1)δ1mi
dx

x−mi
with δ1mi

= 1 for mi = 1 and δ1mi
= 0 otherwise. These

functions are hyperlogarithms with Σ = {−1, 0, 1} and can be written as

H(m1, ..., mn; z) = (−1)|{i|mi=1}|Lm1,...,mn
(z).

Harmonic polylogarithms were applied in numerous computations and are implemented

for applications with computer algebra systems [150, 151, 202].

In [182] it is noted that harmonic polylogarithms contain the so-called Nielsen poly-

logarithms as a subset. These were introduced in [166] as

Sn,p(z) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0

lnn−1(x) lnp(1− zx)
dx

x
,

studied in [132] and received some further attention in the physics literature. The class

of Nielsen polylogarithms contains the classical polylogarithms as

Lin(z) = Sn−1,1(z)

and is itself contained in the class of harmonic polylogarithms due to

Sn,p(z) = H(0, ..., 0
︸ ︷︷ ︸

n times

, 1, ..., 1
︸ ︷︷ ︸

p times

; z)

and in the class of hyperlogarithms because of

Sn,p(z) = (−1)pL0, ..., 0
︸ ︷︷ ︸
n times

,1, ..., 1
︸ ︷︷ ︸
p times

(z).
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As Nielsen polylogarithms only involve the differential 1-forms dx
x

and dx
x−1

, they are also

contained in the multiple polylogarithms in one variable due to eq. 2.4.2. We schemati-

cally summarize the hierarchy on the above classes of functions:

− ln(1− z) ∈ {Lin(z)} ⊂ {Sn,p(z)} ⊂ {Lin1,...,nr
(z)} ⊂ {H(m1, ..., mr; z)} ⊂ {Lm1,...,mr

(z)} .

The success of harmonic polylogarithms has motivated several extensions in the parti-

cle physics literature. The two-dimensional harmonic polylogarithms defined in [108] can

be seen as the subset of hyperlogarithms defined by the set Σ = {0, 1, 1− y,−y} for some

y ∈ C. In [12] a generalization with differential 1-forms including certain square-roots in

the denominators such as dx/
√

x (4± x) was introduced. In [51] it was shown that these

functions can be expressed in terms of hyperlogarithms. In [5] the definition of cyclotomic

harmonic polylogarithms extends the set of differential 1-forms by introducing cyclotomic

polynomials in the denominator. A computer program allowing for manipulations with

cyclotomic harmonic polylogarithms was presented in [1]. Furthermore, iterated integrals

for iterated binomial sums were introduced in [2]. In [39], as a generalization of the

two-dimensional harmonic polylogarithms, certain 1-forms with quadratic dependences

on variables were introduced, which however could be expressed in terms of linear 1-forms

by an Euler transformation.

For a last development to be mentioned here, let us turn to the series representations of

generalized polylogarithms. In [159] multiple polylogarithms are generalized by allowing

for a finite upper bound in the summation. This leads to the definition of Z-sums

Z(m;n1, ..., nr; z1, ..., zr) =
∑

m>j1>...>jr>0

zj11 ...z
jr
r

jn1
1 ...jnr

r

and S-sums

S(m;n1, ..., nr; z1, ..., zr) =
∑

m≥j1≥...≥jr≥1

zj11 ...z
jr
r

jn1
1 ...j

nr
r

.

In [159] these series were applied to expand hypergeometric series around certain values

of their arguments. Computer programs for this task, based on Z-sums and S-sums, were

presented in [158, 205]. Every Z-sum can be expressed in term of S-sums and vice versa.

The multiple polylogarithms are contained in this class of series as

Lin1,...,nr
(z1, ..., zr) = Z(∞;nr, ..., n1; zr, ..., z1).

Furthermore, the special cases Z(m;nr, ..., n1; 1, ..., 1) are known as Euler-Zagier sums

[104, 209] and S(m;n1, ..., nr; 1, ..., 1) are known as harmonic sums [201].

In this chapter we have seen that multiple polylogarithms are a very general framework

of functions. Hyperlogarithms provide a representation in terms of iterated integrals and

we will discuss an alternative in chapter 4. We have not discussed q-analogues and elliptic

generalizations of polylogarithms so far. In contrast to all of the above functions, such

generalizations have been very rarely applied in particle physics to this point. In chapter

28



5 we will discuss one such class of generalizations and its application to the computation

of certain Feynman integrals, for which multiple polylogarithms are not sufficient. We

will also point out some of the connections between this class of functions and some of

the known elliptic generalizations in the literature.
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CHAPTER 3

Feynman integrals, periods and some computational methods

In this chapter we recall basic notions of Feynman integrals and briefly review two

methods for their analytic computation: the method of parametric integration and the

method of differential equations. Both methods will play a central role in the subsequent

chapters of the thesis.

3.1. Basic notions

A Feynman graph G is a labeled, oriented graph which is allowed to have multiple

edges (i.e. each two vertices may be connected by more than one edge) and external

edges (i.e. half-edges with only one end attached to a vertex). The orientation is chosen

arbitrarily. We assume our Feynman graphs to have one connected component and to

be one-particle irreducible (1PI), i.e. there is no edge in the graph whose removal would

increase the number of connected components. This assumption does not restrict the

class of integrals as for graphs which are not 1PI the Feynman integrals factorize and in

this sense, every Feynman graph is trivially reduced to 1PI graphs.

Let L be the first Betti-number of the graph, also called the loop-number. Let E + 1

be the number of the external edges and N be the number of the internal edges. Every

external edge is labeled by an external momentum pi, i = 1, ..., E + 1, which by our

convention is said to be incoming at the vertex. Every internal edge is labeled by an

internal momentum qi, i = 1, ..., N. We denote the number of space-time dimensions by

D and all momenta are D-dimensional Lorentz vectors1.

Consider an internal edge which is labeled by a momentum q and oriented from vertex

v1 to vertex v2. Then we say that q is incoming at v2 and −q is incoming at v1. In

every Feynman graph, momentum conservation is implemented by the condition that at

each vertex the sum of all incoming momenta is zero. This implies that only E of the

external momenta are linearly independent. Furthermore, every internal momentum qi

can be expressed as a Q-linear combination of a linearly independent set of momenta

{p1, ..., pE, k1, ..., kL} where the ki are called loop-momenta. In general the loop-momenta

can be introduced in several ways such that momentum conservation is satisfied. The

Feynman integral will not depend on this choice. Finally, each internal edge ei of the

graph is labeled with a particle mass mi, which is treated as a real-valued variable in this

thesis.

1Feynman integrals will be considered as functions of scalar quantities and none of our main considerations
will make use of Lorentz vectors.
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To every internal edge ei labeled with momentum qi and mass mi, we associate a scalar

Feynman propagator
1

Pi
=

1

−q2i +m2
i − iδ

.

The term iδ with a small, real number δ was introduced by Feynman to shift the pole

of the propagator away from the integration contour. Equivalently, the contour can be

deformed to circumvent the point q2i = m2
i . The sign of the iδ keeps track of the side on

which the contour passes the pole. In the following we omit this term.

Let M = E + L. With the momenta p1, ..., pE, k1, ..., kL we can form L(L+1)
2

+ LE

independent scalar products lilj = ljli with li ∈ {k1, ..., kL} and lj ∈ {p1, ..., pE, k1, ..., kL} .
In the case of L(L+1)

2
+ LE ≤ N, all of these scalar products can be expressed as linear

combinations of the q2i and products of external momenta. In the other case, there are

B = L(L+1)
2

+LE −N remaining scalar-products which can not be expressed in this way.

These are called the irreducible scalar-products in this context. Let us denote these scalar

products by S1, ..., SB.

To a Feynman graph G we associate the scalar Feynman integrals2

(3.1.1) I =

(
L∏

j=1

∫
dDkj
iπD/2

)
N∏

i=1

P−νi
i

B∏

j=1

S
−νN+j

j

with all νi ∈ Z. We call this expression the momentum space representation.

We consider Feynman integrals in dimensional regularization [50, 78, 193, 199] (also

see [102] and chapter 4 of [86]), which implies thatD is treated as a complex variable3. As

one is usually interested in the Feynman integral of a theory in four space-time dimensions,

one considers the expansion

(3.1.2) I =

∞∑

i=−2L

Iiǫ
i

where ǫ is defined by D = 4 − 2ǫ. In this expansion, all the infrared and ultraviolet

divergences are manifest as poles in ǫ and no poles worse than ǫ−2L can appear. Therefore

it is common practice to compute the relevant Feynman integrals as such an expansion

and to use the pole-terms in a renormalization procedure to remove ultraviolet divergences

and to make cancellations of infrared divergences explicit.

For some purposes, it is interesting to consider a Feynman integral in a dimension

different than four and to define ǫ by D = 2m− 2ǫ for some positive integer m. Tarasov’s

method [196, 197] provides linear relations between Feynman integrals in different di-

mensions. We will make use of such relations in chapter 5. Furthermore, this method has

2Usually, momenta and masses are assigned a physical mass dimension µ and a general prefactor
(
µ2
)ν−LD/2

with ν =
∑N+B

i=1
νi is introduced to define the Feynman integral as dimensionless. While in

refs. [6, 7, 8, 9, 11] the mass dimension µ is written explicitly, it will be omitted in the present text.
3To a reader who is unfamiliar with the general concept of dimensional regularization it may be more
instructive to consider eq. 3.1.5 as the definition of the Feynman integral. Here D appears only in
exponents of the integrand and in arguments of the gamma-function and it is not necessary to artificially
relate a complex number to the dimension of a vector space.
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an important implication on Feynman integrals with a tensor structure. Tensor integrals

arise in theories with fermions due to the fact that the numerator of the fermion prop-

agator involves a momentum vector with a free Lorentz-index. Tarasov’s method allows

us to express every Standard Model Feynman integral with a tensor structure as a linear

combination of certain standard tensors whose coefficients are scalar Feynman integrals as

defined in eq. 3.1.1. (For one-loop integrals, such tensor reductions are already provided

in [156, 173].) Therefore, the problem of computing a Standard Model Feynman integral

can always be reduced to the problem of computing scalar Feynman integrals.

In eq. 3.1.1 the integration is over components of loop-momenta. For many purposes it

is very advantageous to express the Feynman integral by integrations over scalar variables

which do not play the role of momentum components. Such a representation can be

derived with the help of the relation

1

AB
=

∫ 1

0

dx

(xA + (1− x)B) 2

which was applied by Feynman in [105] and is nowadays called the Feynman trick. In

[85, 163] this formula was generalized to

(3.1.3)
1

∏n
i=1A

νi
i

=
Γ(ν)

∏n
i=1 Γ(νj)

∫ 1

0

(
n∏

i=1

dxix
νi−1
i

)

δ (1−∑n
i=1 xi)

(
∑n

i=1 xiAi)
ν

where ν =
∑n

i=1 νi. Applying this formula to the integrand of eq. 3.1.1, one introduces

N + B new integrations over the so-called Feynman parameters xi. In the resulting de-

nominator on the right-hand side of eq. 3.1.3 one completes the square with respect to

the loop-momenta such that these can be integrated out by Gaussian integration. These

steps are demonstrated in full detail in [164].

In order to express the result of this computation in a convenient way, let us introduce

some widely used auxiliary objects. For the propagators Pi and irreducible scalar products

Si of the Feynman integral in eq. 3.1.1 we consider

(3.1.4)
N∑

a=1

xaPa +
B∑

b=1

xbSb = −
L∑

i=1

L∑

j=1

Mijkikj +
L∑

i=1

2Qiki + J

where the right-hand side is an expansion in loop-momenta by which we define the k-

independent coefficients Mij = Mji, Qi and J for i, j = 1, ..., L. Let M be the symmetric

L × L-matrix whose elements are Mij. All of these coefficients depend on the Feynman

parameters and the Qi and J furthermore depend on external momenta in general. Let

us assume that the matrix M is invertible4. Then we define

U = det (M) ,

F = det (M)

(
L∑

i=1

L∑

j=1

M−1
ij QiQj + J

)

.

4It is easy to show that this is always the case if the irreducible scalar products are chosen such that none
of them is quadratic in the loop-momenta.
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With these functions, the Feynman integral can be expressed as

(3.1.5) I = Γ

(

ν − L
D

2

)(N+B∏

i=1

∫ ∞

0

dxix
νi−1
i

Γ (νi)

)

δ (H)Uν−(L+1)D
2 FLD

2
−ν

with ν =
∑N+B

i=1 νi and where H = 1 −∑N+B
i=1 cixi with ci ≥ 0 and not all of the ci

being zero. We refer to this expression as the parametric representation. Note that

furthermore a closely related representation is obtained by the so-called Schwinger trick

and yet another parametric formula was recently introduced in [145].

Feynman integrals with irreducible scalar-products play a role in certain computations,

for example in integration-by-parts (IBP) reductions [83]. However, in many cases one

can avoid their presence and deal only with Feynman integrals where no irreducible scalar

products are involved, i.e. νi = 0 for i = N +1, ..., N +B. In this case, we see in eq. 3.1.4

that every Feynman parameter xi is associated to one propagator Pi and therefore to one

edge ei of the graph.

The functions U and F are polynomials in the Feynman parameters, known as the first

and second Symanzik polynomial respectively. For Feynman integrals without irreducible

scalar products they have the following properties: Both polynomials are homogeneous

in the Feynman parameters and their degrees are deg (U) = L and deg (F) = L+ 1. The

polynomial U is always linear in each Feynman parameter while F is linear in the case

of vanishing masses. In U all coefficients of monomials in the Feynman parameters are 1

while the coefficients in F involve masses and external momenta.

An elegant construction [164] for the Symanzik polynomials is given by

U =
∑

T∈T1

∏

ei /∈T

xi,(3.1.6)

F =
∑

(T1,T2)∈T2




∏

ei /∈(T1,T2)

xi



 s(T1,T2) + U
N∑

i=1

xim
2
i(3.1.7)

with

(3.1.8) s(T1,T2) = −




∑

pj∈PT1

pj



 ·




∑

pk∈PT2

pk



 .

Here T1 is the set of spanning trees of the Feynman graph G. These are all sub-graphs of G

each containing all vertices of G, having one connected component and no loops. The set

T2 is the set of spanning two-forests, which are all sub-graphs with all vertices of G, two

connected components and no loops. In eqs. 3.1.7 and 3.1.8 such two-forests are denoted

(T1, T2) where T1 and T2 are the components. By PTi
we denote the set of incoming

external momenta at the component Ti for i = 1, 2. Here we see that the Feynman

integral depends on the external momenta only in terms of the scalar coefficients s(T1,T2)

which we will refer to as the kinematic invariants of the Feynman graph.
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Figure 3.1.1. A two-loop example

Let us recall one further feature of Symanzik polynomials. Let F0 = F|mi=0 for i=1,...,N

and let U(G) and F0(G) denote the polynomials associated to the graph G. Furthermore

let a regular edge of G be an edge whose removal does not increase the number of connected

components and which furthermore is not a tadpole, i.e. it is not connected to the same

vertex at both of its ends. Then for every regular edge ei of G we have the deletion-

contraction relations

U (G) = U (G/ei) + xiU (G\ei) ,
F0(G) = F0(G/ei) + xiF0(G\ei),

where the graphs on the right-hand side of these relations are not necessarily 1PI. Here

G\ei is the graph obtained by removing ei from G and G/ei is the graph obtained by

contracting ei in G, where the latter means that the end-points of ei are identified and

ei is removed. These operations will play a certain role in one of the computational

methods below. Further properties of Symanzik polynomials such as their relation to

certain matrices and matroids are reviewed in [49].

Example. We illustrate some of the above notions for the two-loop graph G in fig.

3.1.1 (a). In this picture we have labeled the external edges with incoming momenta

p1, p2, p3 and we have named the internal edges e1, e2, e3, e4. We clearly have L = 2,

N = 4, E = 2. To the internal edges we associate momenta

q1 = k1,

q2 = k2,

q3 = k1 + k2 + p2,

q4 = k1 − p1

and the corresponding propagators P−1
i = (−q2i +m2

i )
−1

for i = 1, ..., 4. It is easy to

check that there is an orientation on G such that momentum conservation is satisfied by

this choice. The loop-momenta are involved in L(L+1)
2

+ LE = 7 linearly independent
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scalar-products and we may write

k21 = q21,

k22 = q22,

k1 · k2 = −1

2

(
q21 + q22 + p22 + 2S1 + 2S3 − q23

)
,

k1 · p1 =
1

2

(
q21 + p21 − q24

)
,

with S1 = k1 · p2, S2 = k2 · p1, S3 = k2 · p2 as irreducible scalar-products.

The generic Feynman integral without irreducible scalar-products reads

I =

∫
dDk1
iπD/2

∫
dDk2
iπD/2

4∏

i=1

P−νi
i

in momentum space representation and

I = Γ (ν −D)

(
4∏

i=1

∫ ∞

0

dxix
νi−1
i

Γ (νi)

)

δ

(

1−
4∑

j=1

xj

)

FD−ν

U 3D
2
−ν

in parametric representation with

U = x2x3 + (x1 + x4) (x2 + x3) ,

F = −p21x1x4 (x2 + x3)− p22x1x2x3 − p23x2x3x4 + U
4∑

i=1

xim
2
i .

The spanning trees for the construction of U are indicated in fig. 3.1.1 (b). In fig. 3.1.1

(c) we see an example for graphs which appear in deletion-contraction relations for G.

The upper part of this picture shows G/e1 while the lower part shows G\e1.

3.2. Periods and Feynman integrals

Before we turn to the computational methods which play a main role in this thesis,

let us briefly discuss a rather new perspective on Feynman integrals, which has influenced

both of these methods in the last decade. In this new viewpoint, Feynman integrals play

the role of members of a certain class of numbers called periods or, more generally, of

functions evaluating to such numbers at algebraic arguments. These periods are related

to periodic functions, satisfying a particular type of differential equations and to spaces

on which these functions are defined.

Example. We introduce some of the concepts by a classical example (cf. [75, 126,

134]). Consider the complex plane of a variable z ∈ C and the lattice of points L = Z+τZ,

with τ ∈ C, Im(τ) > 0, see fig. 3.2.1 (a). A function f(z) is called elliptic with respect to

the lattice L if

(3.2.1) f(z) = f(z + λ) for λ ∈ L.

Without loss of information, a function with this property can be restricted to just one

cell of the lattice (the grey area in fig. 3.2.1), as it behaves exactly the same way in all the
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Figure 3.2.1. (a) A lattice in the complex plane and (b) a torus

other cells. Such a cell is isomorphic to an elliptic curve E and the periodicity is visualized

by gluing the opposite edges of the cell together to obtain a torus C/L.

Instead of one specific elliptic curve, one often considers a family of elliptic curves,

parametrized by a complex variable, say t. Here we consider the Legendre family Et given

by the solutions of the cubical equation

y2 = x (x− 1) (x− t) .

On Et one considers the differential 1-form

ω =
dx

y
=

dx
√

x (x− 1) (x− t)

which is closed and has a well-defined cohomology class [ω] . This class can be written in

terms of a basis. At first we notice, simply by looking at the torus, that there are two

classes of cycles on Et which can not be contracted to a point or transformed into each

other. In other words, the first homology H1 (Et;Z) is generated by two elements and as

a basis we can choose two cycles δ and γ as in fig. 3.2.1 (b). Furthermore let δ⋆ and γ⋆ be

the basis of the first cohomology H1 (Et;Z) which is dual to δ and γ, i.e.
∫

δ

δ⋆ =

∫

γ

γ⋆ = 1.

With respect to this choice one obtains the basis-decomposition

[ω] = δ⋆
∫

δ

ω + γ⋆
∫

γ

ω.

The coefficients

g1(t) =

∫

δ

ω and g2(t) =

∫

γ

ω

are called periods of ω and they indeed determine the periodicity of an elliptic function

as Et corresponds to a lattice as defined above with τ given by

τ =

∫

γ
ω

∫

δ
ω
.
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For example one can choose the basis such that we obtain explicitly

g1(t) =

∫

t≤x≤1

dx
√

x (x− 1) (x− t)
,(3.2.2)

g2(t) =

∫

1≤x≤∞

dx
√

x (x− 1) (x− t)
.(3.2.3)

Using the fact that ω and its derivative belong to different cohomology classes, one derives

the second order differential equation

t (t− 1)
d2

dt2
g(t) + (2t− 1)

d

dt
g(t) +

1

4
g(t) = 0

which is solved by the periods. This equation is called Picard-Fuchs equation in this

context.

In chapter 5 periods of a family of elliptic curves will play an important role in the

computation of the massive sunrise integral. In the above example, g1 and g2 are functions

of t and they evaluate to a certain class of numbers at t ∈ Q. We will use the term period

for both, the functions and the numbers they evaluate to at algebraic arguments.

Periods can be defined in a much more general geometrical context as integrals
∫

C
ω

over n-forms ω and n-chains C defined on varieties with certain properties. In [134]

Kontsevich and Zagier present a comprehensive theory of these numbers and introduce

the following unifying, elementary definition:

Definition 1. (Kontsevich and Zagier [134]) A period is a complex number whose real

and imaginary parts are values of absolutely converging integrals of rational functions with

rational coefficients, over domains in Rn given by polynomial inequalities with rational

coefficients.

Equivalently, one obtains the same class of numbers by replacing the word “rational”

by “algebraic” in this definition. Let P denote the set of periods. This set contains all

algebraic numbers and many transcendental numbers. However, as the set P is countable

while C is not, it is clear that not every transcendental number is a period. Therefore

periods are an interesting set in between the algebraic and complex numbers:

Q ⊂ P ⊂ C.

Clearly, for t ∈ Q the functions g1 and g2 in the above example evaluate to numbers

in P. One of many other well-known examples is the number

π =

∫∫

x2+y2≤1

dx dy.

From integral representations discussed in the previous chapter, it is furthermore clear

that multiple polylogarithms evaluate to periods at algebraic arguments and in particular

the set of multiple zeta values is contained in P.
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Now let us consider the parametric representation

(3.2.4) I = Γ

(

ν − L
D

2

)( N∏

i=1

∫ ∞

0

dxix
νi−1
i

Γ (νi)

)

δ (H)
FLD

2
−ν

U (L+1)D
2
−ν

for a Feynman integral without irreducible scalar products and let us summarize some of

the known correspondences with periods. We distinguish the following cases:

• Assuming a graph without external edges, we set F = 1. We furthermore assume,

that for some even integer value ofD of interest the integral in (but not necessarily

the gamma prefactor) in eq. 3.2.4 is finite. The conditions for this to be the

case are well-known from Dyson’s power-counting theorem [101, 204]. Feynman

integrals of this case obviously belong to the set P and are sometimes called

Feynman periods. Due to a correspondence sometimes referred to as “cutting

and gluing” (see [83, 60]), they are relevant not only for vacuum graphs but also

for graphs with one kinematic invariant.

The idea to view such Feynman integrals as periods of an underlying space arose

from the work of Bloch, Esnault and Kreimer [41] where a particular Feynman

integral was shown to be a period of a motive. This correspondence between

Feynman integrals and algebraic geometry was furthermore strengthened in [14,

15, 16, 87, 60, 61, 155]. As it was already known from [55, 56] that many

Feynman periods evaluate to linear combinations of multiple zeta values, the

question arose whether this might be a general feature. This question attracted

the attention of algebraic geometers as on the other hand multiple zeta values

are the periods of certain motives. A related conjecture of Kontsevich on the

point-count over finite fields of the zero-set of the first Symanzik polynomial was

disproved in [31], but the idea to address the mentioned question by such point-

counts led to the results of [69, 66] which imply, that multiple zeta values are

not sufficient to express Feynman periods in general.

Nevertheless, mathematical properties of Feynman periods are very well studied

today [64, 187, 170, 171] and for φ4-theory these numbers are known to a

very high loop-order [185], thanks to the results of Broadhurst and Kreimer

[55, 56], the numerical methods and the technique of graphical functions invented

by Schnetz [186, 110] and also thanks to work based on the method of parametric

integration [64, 170, 167, 168] to be discussed below.

• Let us again set F = 1 but introduce no further assumptions on possible diver-

gences. Viewed as functions of D, such Feynman integrals are known to be Igusa

zeta functions. It was shown in [32] that the coefficients of the Laurent series (as

in eq. 3.1.2) of such integrals are in P.
• Consider the case of generic Symanzik polynomials U and F . As a trivial conse-

quence of the parametric representation in eq. 3.2.4, every finite number which

the Feynman integral evaluates to at some even integer D and algebraic values
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of the masses and the kinematic invariants will be in P. In the divergent case,

we again consider the Laurent series as in eq. 3.1.2. It was shown in [48] that if

the integral is evaluated at algebraic values of kinematic invariants and masses in

the Euclidean momentum region, i.e. all kinematic invariants non-positive, every

coefficient in this series is in P.

We recommend the recent reviews of Brown [64] and Todorov [198] for further reading.

We already mentioned that the method of parametric integration was influenced by

the geometric viewpoint and we will see that it depends strongly on the properties of the

Symanzik polynomials whether this method can be applied. Also the method of differen-

tial equations benefits from the geometric point of view. We have seen in the example of

the Legendre family, that the periods satisfy a differential equation of a particular type,

called Picard-Fuchs equations, and it is pointed out in [134], that this is true for every

period. We refer to [20] for a standard reference on Picard-Fuchs equations. In gen-

eral it is not known how to determine, whether a given linear differential equation is of

Picard-Fuchs type. However, Kontsevich and Zagier [134] summarize three conjectures,

of which one might be particularly interesting with respect to Feynman integrals: A linear

differential equation is of Picard-Fuchs type if it only has regular singular points and a

monodromy group contained in SL
(
n,Q

)
, where n is the order of the equation.

Indeed, the recent literature on differential equations for Feynman integrals has put

some emphasis on the property of having only regular singular points and has discussed al-

gorithms to make this property manifest (see [121] and references therein). Furthermore,

by use of methods for the derivation of Picard-Fuchs equations in algebraic geometry, a

new way to derive differential equations was found in [161, 160]. We will briefly come

back to some of these points below.

At this point let us mention one further interesting aspect of periods, which to the

best of our knowledge has not found an explicit application to Feynman integrals so far.

It is conjectured in [134], that if a period can be expressed by two different integrals,

one can pass from one expression to the other by using only the following computational

steps, where all functions and domains of integration are algebraic with coefficients in Q:

• Additivity:
∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx,

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

• Change of variables:
∫ f(b)

f(a)

F (y)dy =

∫ b

a

F (f(x)) f ′(x)dx

for an invertible change of variables y = f(x).
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• Newton-Leibniz formula:
∫ b

a

f ′(x)dx = f(b)− f(a).

It was shown in [21] that if this conjecture is true a similar statement should hold as

well for Laurent series, whose coefficients are periods. Therefore we may hope, that this

conjecture implies useful restrictions on relations which are possible between Feynman

integrals. The standard source of linear relations between Feynman integrals is the IBP

method [83]. Currently it is not known whether the resulting set of relations is exhaustive

or whether other approaches like the ones suggested in [129, 143] can provide genuinely

new relations.

3.3. The method of differential equations

In [13] Almkvist and Zeilberger describe the method of differentiating under the in-

tegral sign as the following trick, which apparently was one of Feynman’s favourite tools

to compute integrals [106]: Given a function F (x, y) of two variables x and y and being

interested in the computation of the integral

R(x) =

∫ ∞

−∞

F (x, y)dy,

one differentiates R(x) with respect to x, explicitly differentiating F (x, y) under the inte-

gral, and, by possibly using changes of variables and integration by parts, one derives a

differential equation for R(x). Then one evaluates R(x) and its derivatives at some point,

serving for the boundary conditions, and solves the differential equation. In [13] a theory

of this method is presented for holonomic functions.

A short time later, the same method was introduced to the computation of Feynman

integrals by Kotikov [135] and Remiddi [179] and developed into one of the most pow-

erful techniques in the field since then. Let I be a Feynman integral in momentum space

representation and let Φ be its set of inverse scalar propagators Pi and irreducible scalar

products Si and Λ its set of squared particle masses and kinematic invariants. We differ-

entiate I with respect to a chosen x ∈ Λ and (using the same notation as in eq. 3.1.1) we

write
d

dx
I =

(
L∏

j=1

∫
dDkj
iπD/2

)

d

dx

1

D
with

D =
N∏

i=1

P νi
i

B∏

j=1

S
νN+j

j .

We evaluate the differentiation under the integral sign. The result can be expressed as a

quotient with the same denominator as the original integrand:

d

dx

1

D =
N
D .
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Figure 3.3.1. The mass-less one-loop two-point graph

It is a simple but crucial observation that the numerator N is always a polynomial in Φ

whose coefficients are rational functions of Λ ∪ {D} ∪ {νi} . Therefore, we always obtain

a differential equation of the type

d

dx
I =

∑

i

ciIi

where the Ii are scalar Feynman integrals (obtained from I by raising and lowering some

of the powers νj by integer values) and the coefficients ci are are rational functions of

Λ ∪ {D} ∪ {νi} .

Example. For the simple Feynman graph of fig. 3.3.1 we consider the Feynman

integral

I (ν1, ν2) =

∫
dDk

iπD/2

1

P ν1
1 P

ν2
2

with P1 = −k2 +m2
1 and P2 = − (p− k)2 +m2

2. The integral is a function of p2, m2
1, m

2
2

and D. We differentiate with respect to p2 :

d

dp2
I (ν1, ν2) =

∫
dDk

iπD/2

d

dp2
1

P ν1
1 P

ν2
2

=
1

2p2

∫
dDk

iπD/2
pµ

d

dpµ

1

P ν1
1 P

ν2
2

=
−ν2
2p2

∫
dDk

iπD/2

−2p2 + 2k · p
P ν1
1 P

ν2+1
2

=
−ν2
2p2

∫
dDk

iπD/2

P1 − P2 − p2 +m2
1 −m2

2

P ν1
1 P

ν2+1
2

=
−ν2
2p2

(
I (ν1 − 1, ν2 + 1)− I (ν1, ν2) +

(
−p2 +m2

1 −m2
2

)
I (ν1, ν2 + 1)

)
.

We have obtained an ordinary differential equation of the type

d

dp2
I + c0I = c1I1 + c2I2

for I = I (ν1, ν2) , involving new Feynman integrals I1 = I (ν1 − 1, ν2 + 1) and I2 =

I (ν1, ν2 + 1) in the inhomogeneous part.

At this point, the new integrals in the differential equation are usually reduced by use

of the IBP method. Without reviewing this method here, let us just focus on the general

concept, which is best understood by looking at the bigger picture: As we mentioned
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briefly in chapter 1, the typical computation begins with a large number of Feynman

integrals which by use of the IBP method are expressed in terms of a smaller set of

Feynman integrals, called master integrals. Let us call the latter setM. It depends strongly

on the details of the reduction which integrals are in M and the computer programs

[153, 189] provide ways to choose a preferred selection of integrals. In order to compute

the master integrals, we apply the above method to derive a differential equation for each

integral in M. We apply the IBP method to the new integrals arising in these equations

with the aim to express them in terms of the integrals in M. For this purpose the original

set M may have to be extended.

In this way we obtain a system of first order differential equations for the master

integrals. Let I = (I1, ..., IN)
T with N = |M | be the vector of all integrals in M in some

ordering and let again x be the squared mass or kinematic invariant with respect to which

we differentiate. We write the system of differential equations as

d

dx
I = AI

where A is an N×N -matrix. Such systems are extensively studied in the recent literature

(see e.g. [121]). Let us emphasise four relevant questions for such a system:

(1) Are all singular points of A regular?

(2) Is A of Fuchsian type?

(3) Is A triangular?

(4) Is A of the form ǫB where B is an N ×N -matrix independent of ǫ?

Questions 1 and 2 are closely related. Let X = {x1, ..., xn} be the set of singular points

of A. A point xi ∈ X is regular singular if A has a pole of first order at this point and

A is said to be Fuchsian in xi if this pole is manifest, i.e. if the matrix is of the form

A = 1
x−xi

A′ with A′ being regular and non-vanishing at xi. From the results on Feynman

integrals and periods and the conjecture on Picard-Fuchs equations mentioned in section

3.2, we may expect the existence of a system with only regular singular points. This does

not necessarily imply, that A is of Fuchsian type. However, if A has only regular singular

points, it can always be transformed into a matrix which is Fuchsian with respect to all

singular points except for at most one remaining point. We refer to [144] and references

therein for details. In practice it is very common that A can be transformed into Fuchsian

type with respect to all regular singular points, such that we can write

A =
n∑

i=1

1

x− xi
Ai.
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Let us turn to question 3. If the matrix A is of lower triangular form, i.e.

d

dx









I1

I2
...

I|M |









=












A11 0 0 . . . 0

A21 A22 0 . . . 0

A31 A32 A33
...

...
. . . 0

AN1 . . . ANN




















I1

I2
...

IN









,

we can attempt to solve the equations for I1, ..., IN integral by integral in this ordering. If

we have results for the first n − 1 integrals I1, ..., In−1, every term in the inhomogeneous

part of the differential equation

(3.3.1)
d

dx
In −AnnIn =

n−1∑

i=1

AniIi

is determined.

It is very common that these differential equations have to be expanded in the param-

eter ǫ of dimensional regularization in order to find solutions. This leads to question 4

whose relevance was pointed out by Henn in [120]. Let us assume a system of the type

d

dx
I = ǫBI

where B does not depend on ǫ. In the differential equations

(3.3.2)
d

dx
In = ǫ

n∑

i=1

BniIi

for n = 1, ..., N we replace the Feynman integrals by their Laurent series

In =
∞∑

i=an

I(i)n ǫi,

each beginning at some integer an. We write I
(i)
n = 0 for i < an. Separating the orders in

ǫ, we obtain differential equations for the coefficients of the integrals:

d

dx
I(k)n =

n∑

i=1

BniI
(k−1)
i

for k ≥ an. As the inhomogeneous part in each of these equations only involves coefficients

of lower orders one can solve the system iteratively to arbitrary order. The results are

built up as iterated integrals. Henn pointed out in [120] that many systems of Feynman

integrals admit this property and criteria for this to be the case were discussed in [121]

and references therein. A first algorithm to obtain systems with this explicit property

was presented in [144] and we mention [109, 157, 176, 195] for further recent progress.

Let us now assume a system with regular singular points as expected and the matrix

A of Fuchsian type. If also the properties of question 3 and 4 are satisfied, we have a

very pleasant situation. Because of the triangular shape of A we can solve the system

integral by integral and because of the form A = ǫB we obtain solutions order by order
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in ǫ in terms of integrals over functions we have already computed in this iteration. As

A is of Fuchsian type, we can use a combination of partial fraction decompositions and

partial integrations to reduce all integrals which we have to compute to non-elementary

integrations of the form

(3.3.3) I =

∫ x 1

x′ − xi
J(x′)dx′.

If all of the functions J(x′) are hyperlogarithms, the result is clearly a hyperlogarithm as

well. Therefore, by induction, the Feynman integrals satisfying such a system of differ-

ential equations can be computed to all orders and the results can be expressed in terms

of multiple polylogarithms. Of course we have assumed here, that we know sufficient

boundary conditions for each integral.

A systematic solution in terms of hyperlogarithms can still be admissible if only one

of the properties of questions 3 and 4 is missing. However, if the answer to both of these

questions is “no”, i.e. the equations neither decouple nor are they of the form of eq. 3.3.2,

we have a substantial problem: We can not use the above concept to build up the solutions

in terms of hyperlogarithms by iteratively integrating over results of previous steps.

Let us consider this problem from a slightly different point of view. From every system

of N differential equations of first order, we obtain a differential equation of N -th order

for the last integral IN by simple differentiations and eliminations. For example, from

d

dx

(

I1

I2

)

=

(

A11 A12

A21 A22

)(

I1

I2

)

we obtain the second order differential equation

LI2 = (A′
21 + A21A11) I1

with the operator

L =
d2

dx2
−A22

d

dx
− A′

22 − A21A12

and where A′
ij = d

dx
Aij . If A12 = 0 the above system is of lower triangular form and in

this case the operator L factorizes into differential operators of first order:

L =
d

dx

(
d

dx
− A22

)

.

In the general case of a triangular system of N equations, the corresponding N -th order

differential operator for IN factorizes completely into differential operators of first order.

This is another way to see that if the condition of question 3 is satisfied, the solution can

be built up in terms of iterated integrals.

The latter perspective is relevant for differential equations for Feynman integrals de-

rived in an alternative approach by Müller-Stach, Weinzierl and Zayadeh [161, 160].

Here a given Feynman integral is considered in parametric representation and by use of

methods from algebraic geometry [116] a Picard-Fuchs differential equation, possibly of
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higher order, is derived from the varieties given by the zero-sets of the Symanzik polyno-

mials. If the Picard-Fuchs operator of this equation factorizes into pieces of first order,

the result can be constructed as an iterated integral.

In chapter 5 of this thesis, we will consider a system of differential equations for

Feynman integrals which fails the conditions of questions 3 and 4. We will see that

the corresponding Picard-Fuchs operators do not factorize into operators of first order.

However, by use of the elliptic generalizations of polylogarithms to be introduced in

chapter 5 we will be able to solve these integrals and even use the concept of iterated

integration to provide results to arbitrary order in ǫ.

3.4. The method of parametric integration

The second method for the analytic computation of master integrals which plays a

central role in this thesis is the method of parametric integration. Here again the result is

built up as an iterated integral. However, in contrast to the method of differential equa-

tions, we integrate over Feynman parameters instead of kinematic invariants or squared

particle masses. The basic concept was applied early in the literature. However, for a

long time, these ideas were applied using quite restricted classes of iterated integrals, for

example the Nielsen polylogarithms mentioned in section 2.5, and in general it was not

clear for which cases the method would succeed. More recently, Brown presented a com-

prehensive, modern version of the method [60] based on the very general framework of

hyperlogarithms and introduced a sufficient, algorithmic criterion for the method to ap-

ply to a given integral. The approach is fully implemented in Panzer’s program HyperInt

[169] and in our program MPL [47, 45] to be discussed below. Related computational

tools were applied in [3, 4, 58, 92]. In this section, we briefly recall some main aspects

of Brown’s work [60] and of later refinements.

Before we may apply the method, we have to make sure, that we deal with integrals

which are finite at the integer value of the dimension D which we are interested in. For

many Feynman integrals this is of course not the case. However, several methods exist by

which we can express a given divergent Feynman integral in terms of finite integrals over

Feynman parameters. For Feynman integrals with ultraviolet divergences, the method

of Brown and Kreimer [67] provides a systematic way to introduce counter-terms in

the integrand such that the resulting Feynman integral is renormalized. In [133] an

implementation of this method is reported on and results for the 6-loop beta function and

anomalous dimensions of φ4-theory are obtained from parametric integration.

For Feynman integrals with possibly both ultraviolet and infrared divergences, there

are methods to expand the integral in ǫ of dimensional regularization such that the coef-

ficients are given as finite integrals over Feynman parameters. One such method widely

used for numerical computations is sector decomposition by Binoth and Heinrich [38].

We also mention versions of the method of R⋆-operations (see [80, 81, 82, 84, 26]).

For a combination with the method of parametric integration, the method of analytic
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regularization by Panzer [168], later combined with the IBP-method in [152], may be the

most appropriate approach. The finite integrals resulting from this decomposition only

involve Symanzik polynomials of Feynman graphs in the integrand. Special properties of

such polynomials (some of which we mentioned in section 3.1) are usually the reason for

the method to succeed.

Let us assume that with the help of one of these methods we have renormalized a

given Feynman integral, or we have obtained its Laurent series

I =
∞∑

k=−2L

Ikǫ
k

where the Ik are finite integrals over Feynman parameters x1, ..., xN . The integrands

of the latter may be of a slightly more general (however of course D-independent) type

compared to the parametric representation of I. Let us consider one of these integrals Ik

and let some xj denote the first Feynman parameter which we want to integrate out. We

may assume that the integral is of the type

(3.4.1) Ik =

∫ ∞

0

N∏

i = 1

i 6= j

dxiI
(j)
k

with

(3.4.2) I
(j)
k =

∫ ∞

0

dxj

∏

Qi∈Q
Qαi

i
∏

Pi∈P
P βi

i

J (xj)

where Q, P ⊂ Q [x1, ..., xN ] are sets of irreducible polynomials whose coefficients possibly

depend on squared particle masses and kinematic invariants, all αi, βi ∈ N∪ {0} and J is

either a constant or a hyperlogarithm whose differential 1-forms are in

ΩHyp =

{

dxj
xj

,
dxj

xj − ρi
with ρi = −Pi|xj=0

∂Pi

∂xj

, Pi ∈ Pj

}

where Pj ⊆ P ⊂ Q [x1, ..., xN ] is a subset of P whose polynomials are linear in xj .

A few remarks about this type of integral are in order. Instead of only two Symanzik

polynomials, we allow for an arbitrary number of polynomials in Q, P. We furthermore

allow for a hyperlogarithm J whose distinguished variable is xj . Notice that the differential

forms in ΩHyp are defined such that

(3.4.3)
dxj
Pi

=
dxj

xj − ρi

(
∂Pi

∂xj

)−1

where ∂Pi

∂xj
does not depend on xj due to the condition that Pi is linear in xj . We can

evaluate the integration over xj and obtain a result in terms of hyperlogarithms if I
(j)
k
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can be reduced to integrands of the type

dxj
xj − a

J (xj)

where a does not depend on xj. This is the same integration step as in the method of

differential equations with the only difference that here we integrate over a Feynman

parameter.

When can this computation be done? The polynomials Qi are irrelevant for this

question, as we can always perform a sequence of partial integrations and partial fraction

decompositions such that we only have to consider integrands with unity in the numerator.

Only the polynomials in the denominator are relevant for this question. We have to express

each dxj/Pi by in terms of dxj/(xj − a) which is only possible if Pi is linear in xj and

leads to eq. 3.4.3. Let us call a polynomial at most linear in xj if it is of degree 0 or 1 in

xj .

Consequently, the integral I
(j)
k in eq. 3.4.2 can be computed and the result is obtained

in terms of hyperlogarithms if all polynomials in P are at most linear in xj . In the

computation of the integral Ik in eq. 3.4.1 the result which we obtain for I
(j)
k is then an

integrand of a next integration and can be written in the same form as the integrand of

eq. 3.4.2. We denote the set of polynomials in the denominator of the new integrand

by P(j). More generally, let σ be a permutation on {1, ..., N} and let P(σ(1),σ(2),...,σ(i))

denote the set of polynomials in the denominator of the integrand of eq. 3.4.2 after the

parameters xσ(1), xσ(2), ..., xσ(i) have been integrated out in this order. If a polynomial in

P(σ(1),σ(2),...,σ(i)) fails to be at most linear in xσ(i+1) then the integration over this variable

can not be done with this method and a corresponding set P(σ(1),σ(2),...,σ(i),σ(i+1)) does not

exist.

By these considerations one arrives at a condition for Ik to be computable with the

method of parametric integration: If there is a permutation σ on {1, ..., N}, defining the

ordering of integration variables, such that the sequence of sets

P, P(σ(1)), P(σ(1),σ(2)), ..., P(σ(1),...,σ(N))

exists, we can integrate over xσ(1), xσ(2), ..., xσ(N) in this order. The condition implies that

for every i = 1, ..., N − 1 every polynomial in P(σ(1),σ(2),...,σ(i)) is at most linear in xσ(i+1).

General experience with the method shows, that many Feynman integrals can be

computed in this way. A comprehensive overview can be obtained from [170]. If an

integral Ik can be computed, usually not all permutations {1, ..., N} provide an admissible

ordering of integration variables. Searching for admissible orderings by trial and error,

while not knowing whether they exist at all, would be cumbersome and time consuming

in practice.

This search is crucially improved by the polynomial reduction algorithms of Brown

[60, 61]. For a set of irreducible polynomials P and a permutation σ on {1, ..., N}, such
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an algorithm constructs a sequence

(3.4.4) S{σ(1)}, S{σ(1),σ(2)}, ..., S{σ(1),σ(2),...,σ(k)}, k ≤ N,

of sets of irreducible polynomials such that for every P(σ(1),σ(2),...,σ(i)) of the above integra-

tion procedure, a corresponding set S{σ(1),σ(2),...,σ(i)} exists and

(3.4.5) P(σ(1),σ(2),...,σ(i)) ⊆ S{σ(1),σ(2),...,σ(i)}.

The important advantage of these algorithms is their computational simplicity. The sets

S{σ(1),σ(2),...,σ(i)} are constructed just by simple operations on polynomials without eval-

uating any integral. Therefore, the algorithms can very quickly construct the sequences

with respect to all possible permutations σ. Every permutation for which the sequence of

eq. 3.4.4 is constructed completely for k = N defines an ordering in which all Feynman

parameters can be integrated out.

We recall one of the reduction algorithms [60] implemented in Panzer’s HyperInt [169]

and in our program MPL [45], which will be discussed in chapter 4 in more detail. For a set

S ⊂ Q [x1, ..., xN ] we denote its set of irreducible factors, disregarding constants, by Sirred.

Following [60, 61] and using conventions of [170], the basic operations on polynomials P

are denoted

[P, 0]i = P |xi=0,

[P,∞]i =







∂P
∂xi

if ∂P
∂xi

6= 0,

P |xi=0 otherwise,

[Pj, Pk]i =
∂Pj

∂xi
Pk|xi=0 −

∂Pk

∂xi
Pj |xi=0.

Let S be a set of irreducible polynomials at most linear in xi. One defines the simple

reduction of S with respect to xi by

Si = {[P, 0]i , [P,∞]i : P ∈ S}
irred

∪
{
[Pj, Pk]i : Pj , Pk ∈ S

}

irred
.

By use of this operation, the Fubini reduction of the set P with respect to the permutation

σ is constructed as the sequence of sets

(3.4.6) S{σ(1),σ(2),...,σ(i)} = ∩k∈{σ(1),σ(2),...,σ(i)}S
{σ(1),σ(2),...,σ(i)}\{k}
k ,

where the initial set of the recursion is S∅ = P. In the intersection on the right-hand side,

only sets S{σ(1),σ(2),...,σ(i)}\k are included in which all polynomials are at most linear in xk.

If there are none of these sets, S{σ(1),σ(2),...,σ(i)} is not defined.

It is shown in [60] that the sets defined by eq. 3.4.6 satisfy eq. 3.4.5. In fact, this

statement remains true, if in eq. 3.4.5 we replace P(σ(1),σ(2),...,σ(i)) by P(λ(σ(1)),λ(σ(2)),...,λ(σ(i)))

where λ is any permutation on {σ(1), σ(2), ..., σ(i)} . In other words, if there is a permu-

tation σ on {1, ..., N} such that all sets S{σ(1),σ(2),...,σ(i)} for i = 1, ..., N defined by the

Fubini algorithm exist, then the method of parametric integration can be applied and the
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Feynman parameters can be integrated out in the ordering given by xσ(1), ..., xσ(N). In this

case, we say that the initial set P is Fubini reducible.

Notice that according to eq. 3.4.5 the sets S{σ(1),σ(2),...,σ(i)} give an upper bound but

might not coincide with the sets of polynomials which will actually appear in the denom-

inators of integrands. In fact it might happen, that a polynomial is contained in some set

S{σ(1),σ(2),...,σ(i)} but cancels in the integration procedure. If such a polynomial is of degree

greater than one in one or several Feynman parameters, the algorithm might stop because

of this polynomial and fail to predict the computability of the integral. An attempt to

avoid such cases was made in [61] with a new algorithm which constructs a more refined

upper bound by use of certain compatibilities among the polynomials. A variant of this

refined algorithm was later presented in [170] and implemented in [169]. We have imple-

mented the above Fubini algorithm and the latter version of the refined algorithm in our

program MPL.

In conclusion of this chapter, let us briefly return to the question whether a given

Feynman integral can be expressed in terms of multiple polylogarithms. We have seen

that above methods provide criteria to address this question. The discussion in section 3.3

shows that if the corresponding system of differential equations is of Fuchsian type and

can be written in triangular form or admits a special form with respect to ǫ, we can build

up the result in terms of hyperlogarithms. In the present section we have furthermore

seen that if the Symanzik polynomials (or related polynomials obtained after one of the

preliminary procedures to extract the divergences) are Fubini reducible (or reducible with

respect to a refined algorithm), then all Feynman parameters can be integrated out and

the result is again obtained in terms of hyperlogarithms and can of course be rewritten in

terms of multiple polylogarithms (see eq. 2.4.5). Other computational approaches which

can not be discussed in detail here provide further criteria. For example if we are able

to express a Feynman integral in terms of generalized hypergeometric functions, methods

for the expansion of these functions [71, 70, 124, 125, 159, 128, 127, 130, 206]

imply further sufficient conditions for the integral to be expressible in terms of multiple

polylogarithms. For a Feynman integral which can not be expressed in terms of multiple

polylogarithms, we expect all of such conditions to fail.
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CHAPTER 4

Iterated integrals on moduli spaces of curves and the program

MPL

The first direction of our work to be presented in this thesis addresses the computation

of a class of Feynman integrals, which can be expressed in terms of multiple polyloga-

rithms, and provides an automatization of the method of parametric integration (see

section 3.4). Our main contributions here are our joint article with Brown [47] where

explicit algorithms for this purpose are presented, and our article [45] where the resulting

computer program MPL is introduced. Both articles are re-printed in the appendix. In

the present chapter, we give an introduction to the main steps of this work.

4.1. Moduli spaces of curves of genus zero

In chapter 2 we have discussed iterated integrals on spaces C\Σ with finite sets Σ ⊂ C

and 0 ∈ Σ. These integrals were defined by use of differential 1-forms dx
x−σ

with σ ∈ Σ and

we have seen that all of these iterated integrals are homotopy invariant by construction.

For Σ = {0, 1} we obtained the classical polylogarithms and multiple polylogarithms in

one variable while a generic Σ gives rise to hyperlogarithms, which serve as an integral

representation of multiple polylogarithms (see eq. 2.4.5). Due to the fact that hyper-

logarithms are defined on a complex one-dimensional space, one of the variables in the

arguments of the multiple polylogarithm is distinguished in the latter representation (see

section 2.4).

In this chapter, as an alternative to hyperlogarithms, we represent multiple polyloga-

rithms by use of a class of iterated integrals, which are defined on complex m-dimensional

spaces with m ∈ N. These spaces, denoted M0,n with n = m+3, are the moduli spaces of

curves of genus zero with n ordered, marked points. Let us briefly introduce these spaces.

Moduli spaces of curves are constructed such that each point of such a space corre-

sponds to an equivalence class of algebraic curves of a given genus, where the equivalence

is given by the isomorphisms. There is a canonical bijection between such isomorphism

classes and the isomorphism classes of Riemann surfaces (see e.g. [162]). Therefore we

can equivalently consider each point of the moduli space corresponding to an isomorphism

class of Riemann surfaces of the given genus.

Every Riemann surface of genus zero (without further data assigned to it) is isomorphic

to the Riemann sphere C∪{∞}. Hence, there is only one isomorphism class at genus zero

and the corresponding moduli space M0 consists of only one point. More interesting

moduli spaces are obtained by marking points on the Riemann surfaces. Let S and

S ′ be two Riemann surfaces of genus zero with n marked points each, z1, ..., zn on S and
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z′1, ..., z
′
n on S ′.We say that S and S ′ are isomorphic, if there is an isomorphism of Riemann

surfaces which maps zi to z′i for i = 1, ..., n. Despite this restriction, one can show that

for Riemann surfaces with n ≤ 3 marked points such isomorphisms are contained in the

group of automorphisms PGL2 (C) (the Möbius transformations) of the Riemann sphere,

and therefore the corresponding moduli spaces still only have one point. However, for

n > 3 there is more than one isomorphism class.

The moduli spaces of curves of genus zero with n ordered, marked points are

M0,n (C) = {(z1, ..., zn) ∈ Cn ∪ {∞} distinct} /PGL2 (C) .

On a Riemann surface with n ≥ 3 marked points, three of the points can always be

mapped to 0, 1 and ∞ by an automorphism in PGL2 (C) . By convention, we can always

set

z1 = 0, zn−1 = 1, zn = ∞.

Let us consider the case of n = 4 distinct, marked points. The point z2 = t1 may be

located anywhere on the Riemann surface, except of course at z1 = 0, z3 = 1 or z4 = ∞,

so we have t1 ∈ C\ {0, 1} . There is an isomorphism class for every possible value, so we

can parametrize the corresponding moduli space by t1 and obtain

M0,4
∼= C\ {0, 1} .

Recall that this is the space on which the iterated integrals for classical polylogarithms

and multiple polylogarithms in one variable are defined. For every further marked point

on the Riemann surface, every possible location of the point, which of course may not

coincide with the previous points, corresponds to a new isomorphism class. One obtains

M0,n (C) ∼=
{
(t1, ..., tn−3) ∈ Cn−3|ti 6= tj and ti /∈ {0, 1} for i, j = 1, ..., n− 3

}
.

The variables ti are called simplicial coordinates. After the change of variables

(4.1.1) x1 =
t1
t2
, x2 =

t2
t3
, ..., xn−4 =

tn−4

tn−3
, xn−3 = tn−3

the moduli spaces are parametrized as

(4.1.2) M0,n (C) ∼=
{

(x1, ..., xn−3) ∈ Cn−3|
∏

i≤k≤j

xk /∈ {0, 1} for all 1 ≤ i ≤ j ≤ n− 3

}

.

The variables xi are called cubical coordinates. In the following we denote by m = n− 3

the dimension of M0,n.

The spaces M0,n play an important role in algebraic geometry. In [114] Goncharov

and Manin conjectured, that all periods of these spaces are multiple zeta values. In [59]

Brown proved this statement and developed a theory of the iterated integrals on M0,n

for this purpose. These integrals are used in the following and our work relies on results

of [59] to a large extent.
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4.2. Differential forms and iterated integrals on M0,n

In simplicial coordinates one considers the differential 1-forms

(4.2.1) ωij =
dti − dtj
ti − tj

for 0 ≤ i, j ≤ m+ 1

with t0 = 0 and tm+1 = 1. They satisfy the linear relations

ωij = ωji and ωii = 0,

and the quadratic relations

(4.2.2) ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij = 0.

The exterior algebra, generated by the Q-span of these 1-forms, modulo the latter qua-

dratic relations is an explicit model for the de Rham cohomology on M0,n (see [59]).

Translating the 1-forms in eq. 4.2.1 to cubical coordinates by eq. 4.1.1 one obtains

the set of closed differential 1-forms

(4.2.3) Ωm =

{

dx1
x1

, ...,
dxm
xm

,
d
(∏

a≤i≤b xi
)

∏

a≤i≤b xi − 1
for 1 ≤ a ≤ b ≤ m

}

.

Let Am denote the Q-vectorspace spanned by Ωm. We will work with iterated integrals in

these 1-forms.

We define the auxiliary sets

Ω̄F
m =

{

dxm
xm

,

(∏

a≤i≤m−1 xi
)
dxm

∏

a≤i≤m xi − 1
for 1 ≤ a ≤ m

}

,

ΩF
m =

{

dxm
xm

,
d
(∏

a≤i≤m xi
)

∏

a≤i≤m xi − 1
for 1 ≤ a ≤ m

}

,

and let ĀF
m and AF

m denote the Q-vectorspaces spanned by Ω̄F
m and ΩF

m respectively. We

notice that

Ωm = ΩF
m ∪ Ωm−1 and AF

m ⊆ Am.

Furthermore we define the isomorphism

λm : ĀF
m → AF

m

by

dxm
xm

7→ dxm
xm

,

(∏

a≤i≤m−1 xi
)
dxm

∏

a≤i≤m xi − 1
7→

d
(∏

a≤i≤m xi
)

∏

a≤i≤m xi − 1
.

For a given m we call λm the lift, Am the total space, ĀF
m the fiber, AF

m the lifted fiber

and Am−1 the base.

Transforming the quadratic relations to cubical coordinates, we obtain for wedge-

products of 1-forms in the lifted fiber:
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dxm
xm

∧ d (xi...xm)

xi...xm − 1
= −

m−1∑

k=i

dxk
xk

∧ d (xi...xm)

xi...xm − 1
,(4.2.4)

d (xj ...xm)

xj ...xm − 1
∧ d (xi...xm)

xi...xm − 1
=

d (xi...xj−1)

xi...xj−1 − 1
∧
(
d (xi...xm)

xi...xm − 1
− d (xj ...xm)

xj ...xm − 1

)

−
j−1
∑

k=i

dxk
xk

∧ d (xi...xm)

xi...xm − 1
.(4.2.5)

Note that on the right-hand side of these relations, one of the factors in each wedge-

product is in the base and one is in the lifted fiber. We will make use of this property in

the algorithms below.

Let us consider the integrable words of 1-forms in Am. (Notice that not every word in

Am is integrable.) According to Chen’s theorem [79] discussed in section 2.2, every such

word defines a homotopy invariant iterated integral for a given path γ. As in section 2.2

we fix all our paths to begin at the origin as a tangential basepoint. As a generalization

of eq. 2.3.3 these iterated integrals admit expansions of the type

I =
∑

j=(i1,...,im)

fj (x1, ..., xm)
m∏

k=1

ln (xk)
ik

where the fj converge at the origin. Therefore, the regularization of these functions is

achieved by re-defining the logarithm at the origin to zero as in section 2.2. We further-

more normalize these functions by the condition that the regularized value vanishes at

the origin, i.e.

(4.2.6) f(0,...,0) (0, ..., 0) = 0.

Together with these conditions, each integrable word in Am determines the iterated in-

tegral as a multivalued function on M0,n whose arguments are given by the end-point

of the path. Therefore, using Chen’s isomorphism, we will denote each iterated integral
∫

γ
ω1...ωr by the word [ω1|...|ωr] . Recall that according to our conventions, the iterated

integration begins with the rightmost 1-form and proceeds to the left.

We define V (Ωm) to be the Q-vectorspace of homotopy invariant iterated integrals of

1-forms in Am admitting the above regularization and normalization conditions. Analo-

gously we define V
(
Ω̄F

m

)
to be the auxiliary Q-vectorspace of iterated integrals of 1-forms

in ĀF
m, which in fact consists of hyperlogarithms in cubical coordinates.

4.3. The main algorithms

The fact that all iterated integrals in V (Ωm) can be written as words of differential

forms in Am is a great advantage for practical computations. To give a flavour of how

computations are performed in the program MPL, we briefly sketch the main algorithms

here, referring to our work with Brown [47] for details and to [59] for the mathematical

foundation.
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As a first element of these algorithms we define the map

ρi : V
(
Ω̄F

m

)
→ Ωm−1 ⊗ V

(
Ω̄F

m

)

as follows: Consider [ω1|...|ωr] ∈ V
(
Ω̄F

m

)
with 1-forms ωi ∈ Ω̄F

m for i = 1, ..., r. We take

a pair ωi, ωi+1 of neighbouring 1-forms in this word, apply the lift λm and then consider

the wedge-product of these forms:

(4.3.1) λmωi ∧ λmωi+1 =
∑

j

cjηj ∧ αj .

According to the quadratic relations in eqs. 4.2.4 and 4.2.5, this defines certain ηj ∈
Ωm−1, αj ∈ ΩF

m, cj ∈ Q on the right-hand side of the equation. With these terms we

define

(4.3.2) ρi [ω1|...|ωr] =
∑

j

cjηj ⊗
[
ω1|...|ωi−1|λ−1

m αj |ωi+2|...|ωr

]
.

In other words, the map ρi replaces the i-th pair of neighbouring 1-forms by a correspond-

ing wedge-product an pulls the base-factor out of the word. Notice that the words in the

second factor on the right-hand side of eq. 4.3.2 are of length r−1 and therefore the map

ρi can serve for recursive computations.

This operation ρi is useful for the construction of integrable words in Am, and hence of

homotopy invariant iterated integrals in V (Ωm) . For this purpose, we define the symbol

map

(4.3.3) Ψ : V
(
Ω̄F

m

)
→ V (Ωm)

by

Ψ ([ωi]) = [λnωi] ,(4.3.4)

Ψ ([ωi1 |...|ωir ]) = [λnωi1] ⊔Ψ ([ωi2|...|ωir ])−
∑

1≤i<r

⊔ ((id ⊗Ψ) ρi [ωi1 |...|ωir ]) ,(4.3.5)

with 1 < r and where ⊔w1w2 = w1 ⊔ w2 denotes the concatenation of words w1, w2. In

order to see that Ψ ([ω1|...|ωr]) is an integrable word for any w ∈ V
(
Ω̄F

m

)
, we recall Chen’s

integrability condition in eq. 2.2.11. As we are working with closed differential forms, the

condition simplifies to

r−1∑

j=1

[ω1|...|ωj−1|ωj ∧ ωj+1|ωj+2|...|ωr] = 0.

We see that every Ψ ([ω1|...|ωr]) satisfies this condition by construction, as by a wedge-

multiplication applied to the right-hand side of eq. 4.3.5 we obtain the difference between

the left-hand side and the right-hand side of the quadratic relation eq. 4.3.1, and hence

obtain zero.

The symbol map Ψ is the unique linear map which satisfies the relation

(id ⊗Ψ) ◦ ∇T = d ◦ ∇T
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where the total connection

(4.3.6) ∇T : V
(
Ω̄F

m

)
→ Am ⊗ V

(
Ω̄F

m

)

is computed as

∇T [ω1|...|ωr] = d [ω1|...|ωr]−
∑

1≤i<r

ρi [ω1|...|ωr]

with the ordinary differentiation

(4.3.7) d [ω1|ω2|...|ωr] = ω1 ⊗ [ω2|...|ωr] .

An alternative algorithm for Ψ, making use of the correspondence to these differentiations,

is discussed in [46].

The symbol map is related to the symbol as constructed in [113, 115, 100] and was

named after this correspondence. The symbol as used in the latter constructions and

the image of the symbol map Ψ both have the crucial property to satisfy the differential

equations of multiple polylogarithms with respect to all variables. For a hyperlogarithm

w ∈ V
(
Ω̄F

m

)
which represents the multiple polylogarithm, this statement is only true with

respect to one variable. Furthermore, in contrast to common notions of the symbol, the

function Ψ (w) is actually identical to the corresponding multiple polylogarithm due to

the above regularization and normalization conditions.

In [59] it was shown that there is an isomorphism of algebras

(4.3.8) V (Ωm) ∼= V (Ωm−1)⊗ V
(
Ω̄F

m

)
.

As a consequence, the vectorspace V (Ωm) can be recursively constructed by

µ (id⊗Ψ) : V (Ωm−1)⊗ V
(
Ω̄F

m

)
→ V (Ωm)

where µ denotes the multiplication, performed by the shuffle product. Let Vk (Ωm) ⊂
V (Ωm) be the subspace of iterated integrals [ω1|...|ωr] ∈ V (Ωm) with r ≤ k. Then the

mentioned construction provides a unique basis Vk (Ωm) for each k. Furthermore in the

other direction, each element of V (Ωm) can be decomposed into elements of V (Ωm−1)⊗
V
(
Ω̄F

m

)
by a so-called unshuffle map. See [47, 45] for details and examples.

The main application of the algorithms is the computation of a certain class of definite

integrals and ultimately of Feynman integrals. For this purpose, primitives and limits

have to be computed. Let us at first consider the case of hyperlogarithms. For a 1-form

ω0 ∈ Ω̄F
m and a hyperlogarithm [ω1|...|ωr] ∈ V

(
Ω̄F

m

)
, the primitive is simply obtained by

left-concatenation of the 1-form to the word: ω0 ⊔ [ω1|...|ωr] = [ω0|ω1|...|ωr] . This is a

direct consequence of the differential equation eqs. 2.4.4 and 4.3.7. If we proceeded in the

same simple way with functions in V (Ωm) , we would clearly generate iterated integrals

which fail the integrability condition and do not belong to V (Ωm) anymore. A theorem

of [59] implies that V (Ωm) is closed under taking primitives, so it is always possible to

construct primitives in V (Ωm) .
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A naive computation of such primitives would take a detour via hyperlogarithms: We

could use the unshuffle map to express a function in V (Ωm) in terms of hyperlogarithms,

then we could apply simple left-concatination as above, and finally map the result back

to V (Ωm) by use of the symbol map. Such a computation would be more cumbersome

than necessary.

It is more efficient to use the following auxiliary structures instead: For 0 ≤ i < k we

define Ci (Ωm)k to be the Q-vector space of words [ω1|...|ωk] of length k with ω1, ..., ωi ∈
Ωm−1, ωi+1 ∈ ΩF

m and ωj ∈ Ωm for all i+ 1 < j ≤ k. In the following construction, these

words are not necessarily integrable and therefore they might not represent functions. For

i < k we define the map

⋆i : Ci−1 (Ωm)k → Ci (Ωm)k

by

⋆i[ω1|...|ωi−1|ωi|ωi+1|...|ωk] = [ω1|...|ωi−1|ωi+1|ωi|...|ωk] if ωi+1 ∈ Ωm−1,

⋆i[ω1|...|ωi−1|ωi|ωi+1|...|ωk] = −
∑

j

cj[ω1|...|ωi−1|ηj |αj|ωi+2|...|ωk] if ωi+1 ∈ ΩF
m,

where the cj , ηj, αj are defined by the quadratic relation

ωi ∧ ωi+1 =
∑

j

cjηj ∧ αj.

Notice the similarities with eqs. 4.3.2 and 4.3.1. By use of this map, the primitive of a

function [ω1|...|ωk] ∈ V (Ωm) with respect to a 1-form ω0 ∈ Ω̄F
m is constructed as

(4.3.9) ω0 ⋆ [ω1|...|ωk] = (1 + ⋆1 + ⋆2 ⋆1 +...+ ⋆k...⋆1)[λmω0|ω1|...|ωk].

A further ingredient for the computation of definite integrals is the derivation of certain

limits of functions in V (Ωm) . In order to compute integrals from 0 to 1, we need to

compute limits at these values. Considering the underlying moduli space M0,n of eq.

4.1.2 we notice that each such point can be reached from inside the m-dimensional unit-

cube via a continuous path starting at the origin. Due to our normalization condition eq.

4.2.6, all functions in V (Ωm) are defined to vanish at the origin. Another special point is

(x1, ..., xm) = (1, ..., 1) /∈ M0,n.

In order to compute limits at this point, one considers the compactification M0,n which

is defined by use of a blow-up of this point to a higher-dimensional hypersurface. For

example, in the showcase of m = 2, the point (1, 1) is blown-up to a line such that the

unit-square is deformed to a pentagon. For our computations, this compactification has

the important implication, that multiple limits will depend on the ordering in which they

are computed. Different orderings of limits can be thought of as different directions from

which the blown-up point is approached. For example in the case m = 2, the two-fold

limits limx1→1 limx2→1 and limx2→1 limx1→1 will lead to different results in general. For

details we refer to [59] and section 2.4.3 of [47].
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We briefly sketch the algorithm for the computation of limits limxi→u f with u ∈ {0, 1} ,
f ∈ V (Ωm) , 1 ≤ i ≤ m. It is known from [59] that every such limit is a Z-linear

combination of elements of V (Ωm−1) , where Z is the Q-vectorspace of multiple zeta

values (eq. 2.1.10). The main strategy of the computation is to expand f as a series in

xi = u and to evaluate the coefficient of ln (xi − u)0 . In this computation, one iteratively

uses the isomorphism 4.3.8 to reduce the problem to the one-variable case V (Ω1) , i.e. the

multiple polylogarithms in one variable. For the latter case, the limits at u = 0 are zero

by our normalization and the limits at u = 1 can be obtained in terms of multiple zeta

values by a well-known procedure (see e.g. [63]), relying on basic properties of iterated

integrals such as eq. 2.2.2.

With combinations of the above algorithms, we are in the position to compute integrals

of the type

(4.3.10) I =

∫ 1

0

dxm
q

∏

i p
ai
i

f

analytically. Here f ∈ V (Ωm) , the ai are non-negative integers, q is some polynomial in

the xi and the pi are in
{

xm, 1−
∏m

j=1 xi|1 ≤ j ≤ m
}

, i.e. they coincide with denomina-

tors of 1-forms in Ω̄F
m. We refer to these as cubical integrals. Such integrals arise as period

integrals of the moduli spaces M0,n and in many other contexts, such as irrationality

proofs for zeta values (see [35, 65]) or the expansion of hypergeometric functions. Sev-

eral of such examples are computed in [45, 47].

However, our main interest in cubical integrals is given by the fact, that they can be

used in the computation of Feynman integrals by the method of parametric integration

(section 3.4). We apply the following steps:

• We apply one of the techniques mentioned in section 3.4 to express the Feynman

integral I in terms of finite parametric integrals of the type

(4.3.11) Ik =

N∏

i=1

∫ ∞

0

dαi

∏

Qi∈Q
Qαi

i
∏

Pi∈P
P βi

i

J (αj)

with the integrand defined as in eqs. 3.4.1 and 3.4.2. We use the letter α for

Feynman parameters here, to avoid confusion with the cubical coordinates. Each

of these integrals gives rise to a set P = {P1, ...} of relevant polynomials in

the denominator of the integrand and in the denominator of the differential 1-

forms defining the hyperlogarithm J. If we have used one of the techniques of

[67, 168, 152], these polynomials will be Symanzik polynomials.

• We attempt the polynomial reduction of P. If this set is reducible with respect to

one of the algorithms discussed in section 3.4, we choose an admissible ordering of

Feynman parameters ασ(1), ..., α(N), given by a permutation σ on {1, ..., N}. It is

important to notice, that the reducibility of the polynomials depends strongly on

the chosen parametrization of the kinematic invariants. According to the chosen

order, we iterate the following steps for each parameter.
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• With respect to the next Feynman parameter, say αj, a change of variables1

given in [47] is applied, such that the integral is partly expressed in terms of

cubical integrals as in eq. 4.3.10 and the integration over αj from 0 to infinity is

expressed as integration over xm from 0 to 1.

• The integral over xm is computed by use of the above algorithms. The result is

a Z-linear combination of functions in V (Ωm−1) .

• By the inverted change of variables, we express the result in terms of only Feyn-

man parameters again. There is a subtlety in this step: The functions in V (Ωm−1)

and the hyperlogarithms in the Feynman parameters are each normalized to van-

ish at the origins of the corresponding parameter spaces, but these are two dif-

ferent points in general. Our way of translating iterated integrals on M0,n to

hyperlogarithms has to regard this difference in the normalization conditions,

as detailed in [47]. In this computation, certain multiple limits of the involved

functions have to be computed. As our above algorithms only allow for the com-

putation of limits at variables equal to u ∈ {0, 1}, approaching these points from

inside the unit-cube, there are cases of integrals, for which a change of variables

where only such limits are necessary, can not be constructed. As a consequence,

this last step gives rise to a further, technical restriction on the class of Feyn-

man integrals which can be computed with the above algorithms. We say that

the set P is properly ordered at the tangential basepoint 0 if this condition is

satisfied. The condition is not a restriction to the general method of parametric

integration. We have commented on these points in great detail in section 4.2 of

[45].

For a Feynman integral admitting the mentioned conditions, this procedure provides an

analytical result. Except for the first step, the entire computation is automated in the

program MPL [45] to be discussed as follows.

4.4. The program MPL

MPL is a publicly available computer program based on the computer algebra system

Maple for computations with multiple polylogarithms in terms of iterated integrals on

the moduli spaces M0,n. A special focus lies on the computation of Feynman integrals by

the method of parametric integration. The program is based on the algorithms of [47]

as summarized above and was introduced in [45]. Additional details and examples are

given in a user manual obtained with the program. In this section we highlight some main

features of MPL.

Let us demonstrate how certain functions are represented in MPL for the example of

the multiple polylogarithm

Li1,1(x1, x2) =
∑

0<j1<j2

xj11 x
j2
2

j1j2
.

1I want to thank Erik Panzer again for his help with this step.

59



At first we notice, that this function satisfies the differential equations

∂

∂x1
Li1,1(x1, x2) = −

(
1

x1
+

1

1− x1

)

Li1 (x1 · x2) +
1

1− x1
Li1 (x2) ,(4.4.1)

∂

∂x2
Li1,1(x1, x2) =

1

1− x2
Li1 (x1 · x2) .(4.4.2)

By use of eq. 2.4.5 the function can be expressed as a hyperlogarithm:

(4.4.3) Li1,1

(
σ2
σ1
,
z

σ2

)

= Lσ2,σ1 (z) =

∫ z

0

dz′

z′ − σ2

∫ z′

0

dz′′

z′′ − σ1
.

Using

(4.4.4) x1 =
σ2
σ1
, x2 =

z

σ2

and the bar-notation we obtain the representation

(4.4.5) Li1,1(x1, x2) =

[
dx2

1− x2
| x1dx2
1− x1x2

]

.

The differential 1-forms of the latter expression are in Ω̄F
2 and we recognize this hyper-

logarithm as a function in V
(
Ω̄F

2

)
.

In order to work with this hyperlogarithm in MPL, we have to declare our set of

cubical coordinates at first. After the command

>MPLCoordinates(x, 2):

we can compute with x[1], x[2] as cubical coordinates. Making use of the bar-notation,

the above hyperlogarithm is expressed as

>f:=bar((d(x[2])/(1-x[2]),x[1]*d(x[2])/(1-x[1]*x[2]);

Now we make use of the symbol map ψ of eq. 4.3.3 to obtain the corresponding iterated

integral in V (Ω2) . Applying

>MPLSymbolMap(f);

the program returns

bar(d(x[2])/(1-x[2]), (x[2]*d(x[1])+x[1]*d(x[2]))/(-x[1]*x[2]+1))

-bar(d(x[1])/(1-x[1]), (x[2]*d(x[1])+x[1]*d(x[2]))/(-x[1]*x[2]+1))

+bar(d(x[1])/(1-x[1]), d(x[2])/(1-x[2]))

-bar(d(x[1])/x[1], (x[2]*d(x[1])+x[1]*d(x[2]))/(-x[1]*x[2]+1))

So we have the representation

(4.4.6) Li1,1(x1, x2) =

[
dx2

1− x2
− dx1

1− x1
− dx1

x1
| d (x1x2)
1− x1x2

]

+

[
dx1

1− x1
| dx2
1− x2

]

where the latter expression is in V (Ω2) .

The difference between the representations of eq. 4.4.5 and of eq. 4.4.6 is best under-

stood by differentiating the latter. We have introduced total differentiation of iterated

integrals in eq. 4.3.7 as simple de-concatination of the left-most 1-form2. Applying this

2In MPL, the command MPLd serves for this simple operation.
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operation to the iterated integral in eq. 4.4.6 we obtain

d

([
dx2

1− x2
− dx1

1− x1
− dx1

x1
| d (x1x2)
1− x1x2

]

+

[
dx1

1− x1
| dx2
1− x2

])

(4.4.7) =

(
dx2

1− x2
− dx1

1− x1
− dx1

x1

)

⊗
[
d (x1x2)

1− x1x2

]

+
dx1

1− x1
⊗
[
dx2

1− x2

]

.

Noticing that

Li1 (x1 · x2) =
[
d (x1x2)

1− x1x2

]

and Li1 (x2) =

[
dx2

1− x2

]

we see that eq. 4.4.7 clearly expresses the differential behaviour of Li1,1 with respect to

both variables as given in eqs. 4.4.1 and 4.4.2. On the contrary, in the representation

of eq. 4.4.5 only the differential behaviour with respect to the second variable x2 is

manifest. We see that it is a special feature of iterated integrals in V (Ωm) to have the

differential behaviour of multiple polylogarithms with respect to all m variables, similar

to the mentioned constructions of the symbol in the literature. By use of the command

MPLBasis(x,m,w) a unique basis of the subspace of V (Ωm) including words up to length w

can be automatically generated. Let us just mention that further basic operations such as

generating the sets of 1-forms Ω̄F
m and Ωm, the shuffle multiplication of iterated integrals,

the mentioned unshuffle map and the total connection ∇T of eq. 4.3.6 are implemented

in MPL as well.

We continue this discussion with the computation of primitives. Let us consider the

multiple polylogarithm

Li1,2(x1, x2) =
∑

0<j1<j2

xj11 x
j2
2

j1j
2
2

.

This function can be represented by the hyperlogarithm −L0,σ2,σ1 (z) , defined by

(4.4.8) L0,σ2,σ1 (z) =

∫ z

0

dz′

z′
Lσ2,σ1 (z

′)

with σ1, σ2 as in eq. 4.4.4. Notice that Lσ2,σ1 on the right-hand side was used in eq. 4.4.3 to

represent the function Li1,1. In bar-notation and cubical coordinates, the hyperlogarithm

L0,σ2,σ1 reads

(4.4.9)

[
dx2
x2

| dx2
1− x2

| x1dx2
1− x1x2

]

∈ V
(
Ω̄F

2

)
.

We see again that in the bar-notation of hyperlogarithms, the integration on the right-

hand side of eq. 4.4.8 is simply done by left-concatenation of the corresponding 1-form,

in this case of dx2

x2
.

Let us now consider the integration of a function of V (Ω2) instead. We consider the

representation

(4.4.10) f =

[
dx2

1− x2
− dx1

1− x1
− dx1

x1
| d (x1x2)
1− x1x2

]

+

[
dx1

1− x1
| dx2
1− x2

]

∈ V (Ω2)
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of the function Li1,1 given in eq. 4.4.6 and compute the indefinite integral

F =

∫
dx2
x2

f.

As we mentioned in section 4.3, there are two ways to do this computation. As a first

option, we may consider the hyperlogarithm corresponding to f (given in eq. 4.4.5),

then perform left-concatenation to obtain eq. 4.4.9 and finally apply the symbol map

ψ. Alternatively, we can apply the algorithm for the operator ⋆ of eq. 4.3.9. The latter

strategy is implemented in the MPL procedure MPLPrimitive by which F is computed

as

>MPLPrimitive(d(x[2])/x[2],f,3);

which leads to the result

F =

[
dx2
x2

| dx2
1− x2

− dx1
1− x1

− dx1
x1

| d (x1x2)
1− x1x2

]

−
[
dx1

1− x1
+
dx1
x1

|dx1
x1

+
dx2
x2

| d (x1x2)
1− x1x2

]

+

[
dx2
x2

| dx1
1− x1

| dx2
1− x2

]

+

[
dx1

1− x1
|dx2
x2

| dx2
1− x2

]

.

The application of the symbol map ψ to eq. 4.4.9 leads to the same expression. Clearly,

F is the representation of Li1,2(x1, x2) in V (Ω2) .

Limits of functions in V (Ωm) are computed with the command MPLLimit and more

generally, several limits can be conveniently computed with the command MPLMultipleLimit.

To give an example, let us again consider the iterated integral f of eq. 4.4.10 and let us

define the lists of equations

>S1:=[x[1]=1, x[2]=1]:

>S2:=[x[2]=1, x[1]=1]:

which define two orderings of limits. Computing

>MPLMultipleLimit(f,S1);

0

>MPLMultipleLimit(f,S2);

-ζ(2)

shows that

lim
xj→1

(

lim
xi→1

f

)

=







0 for i = 1, j = 2,

−ζ(2) for i = 2, j = 1.

In all computations of limits and definite integrals, MPL returns exact multiple zeta

values in symbolic notation. In order to obtain simplified expressions, it is convenient to

use MPL together with a program to express multiple zeta values in terms of a basis. In

our computations we have applied the basis of [37] for this purpose.

Definite integrals of cubical type as defined in eq. 4.3.10 can be computed by use of

the command MPLCubicalIntegrate. As an example, let us consider the integrand

g =
x1

3 (1− x1)x2
4 (1− x2)x3

3 (1− x3) x4
2 (1− x4)

2

(1− x1x2x3)
2 (1− x2x3x4)

2 (1− x1x2x3x4)
2 (1− x1x2)

.
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After declaring the four cubical coordinates x1, x2, x3, x4 by

>MPLCoordinates(x, 4):

we integrate over all four variables from 0 to 1 by

>MPLCubicalIntegrate(g,x[4],4);

and obtain (
4∏

i=1

∫ 1

0

dxi

)

g =
5

3
ζ (3) +

26

9
ζ (2)− 17

5
(ζ (2))2 +

22

9
.

As we mentioned above, such integrals arise in many contexts and give rise to possible

applications of the program MPL beyond particle physics.

We conclude this chapter with the main purpose of the program: the computation of

Feynman integrals. Let us assume that by use of one of the strategies mentioned in section

4.3 we have expressed a given Feynman integral in terms of finite integrals of the type

of eq. 4.3.11 over Feynman parameters a1, ..., aN . Let M furthermore be the number of

kinematic invariants and squared particle masses which the Feynman integral depends on

and let us denote these variables by aN+1, ..., aT where T = N +M. In order to compute

with these variables and corresponding differential 1-forms in Maple, we have to begin

with the declaration

>defform(a=0):

The integrand defines a set of relevant polynomials P in these variables. In a first step,

we apply

>R:=MPLPolynomialReduction(P,aList);

where the first argument is the set P of polynomials and the second argument is the list

of all Feynman parameters. The program returns a list whose elements correspond to the

sets S{σ(1),σ(2),...,σ(k)} of polynomials as in eq. 3.4.4. Depending on the value of a global

variable which can be changed by the user, these sets are either constructed by use of

the Fubini reduction algorithm [60] (see section 3.4) or by the refined version which uses

compatibility graphs [61, 170]. From this result, all orderings with respect to which P
is reducible are easily extracted.

We furthermore check the technical condition of properly ordered P as mentioned at

the end of section 4.3. This condition, which implies that all multiple limits necessary

for the changes of variables between Feynman parameters and cubical coordinates can be

approached from inside the unit-cube, is tested by use of the command

>MPLCheckOrder(R, FP, AP);

Here the first argument is the list generated by the previous command MPLPolynomialReduction.

The second argument is the list of Feynman parameters, ordered such that reducibility

is satisfied (assuming the existence of such an ordering). The third argument is the list

of all parameters, including the kinematic invariants and particle masses. The program

returns a message to inform the user, whether the chosen ordering is permissible.

Assuming that this is the case, the integral can be computed with the command
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>MPLFeynmanIntegrate(I, FP, AP);

Here the first argument is the integrand, written as in eq. 4.3.11 and the second and third

argument are the same as in the previous command. The program returns the result as

a Z-linear combination of hyperlogarithms which are defined in terms of the kinematic

invariants and squared masses. Notice that only the parameters in the second argument

are integrated out, so we can easily generate intermediate results by canceling Feynman

parameters in this list. Detailed examples of Feynman integral computations with MPL

can be found in [47, 45] and in the user manual attached to the program. MPL also

includes procedures supporting the comparison of results with Panzer’s program [169].
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CHAPTER 5

Elliptic generalizations of polylogarithms and the sunrise and

kite integrals

In chapter 3 we have quickly reviewed the method of differential equations and the

method of parametric integration which both allow us to compute Feynman integrals in

terms of multiple polylogarithms, if certain conditions are satisfied. In the case of the

first method, the system of differential equations has to be of triangular shape or admit a

certain property with respect to ǫ of dimensional regularization, while in the other case,

the polynomials in the integrand have to be reducible. Usually, the integrals can be writ-

ten in several ways and it will depend on choices of master integrals or parametrizations

whether the conditions are satisfied respectively. However, for some Feynman integrals

it is quite clear, that these methods will not succeed, as long as they rely on the use of

multiple polylogarithms. In order to address such cases, we have to search for an appro-

priate alternative class of functions. This search motivates our second line of research,

summarized in this chapter.

In this search, we take a special point of view which can be motivated by the material

of the previous chapters: We have seen that the use of multiple polylogarithms is very

advantageous in the computation of Feynman integrals, in particular due to their double-

nature as nested sums and iterated integrals. If we have to use a different class of functions,

it would be very desirable to still keep these advantages if possible. Therefore, we will

prefer functions which are obtained as further generalizations of polylogarithms.

In our joint work with Adams and Weinzierl [8, 11] we have introduced such a class

of generalizations beyond multiple polylogarithms. By use of these functions, we have

been able to compute Feynman integrals associated to the sunrise graph fig. 1.0.2 (a)

in [8, 9, 11]. In joint work with the same authors and Schweitzer we have applied

this framework furthermore to the kite graph of fig. 1.0.2 (b) in [6]. These Feynman

integrals admit the mentioned problem that they can not be expressed in terms of multiple

polylogarithms. In this chapter, we discuss our generalized framework of functions and

summarize the main aspects of our sunrise and kite computations.

5.1. A class of elliptic generalizations of polylogarithms

The class of functions introduced in our work with Adams and Weinzierl [8, 11] is

related to an elliptic curve in a special way. We have already recalled in the example at

the beginning of section 3.2 that a cell of points L = Z + τZ in the complex plane with

Im(τ) > 0 is isomorphic to an elliptic curve E. We mentioned that a function f on the
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complex plane is called elliptic with respect to L if it satisfies

(5.1.1) f(x) = f(x+ λ)

for λ being a point in the lattice L.

Let us introduce a simple change of variables and consider the function f ′(z) of z ∈ C⋆

given by

f ′
(
e2πix

)
= f (x) .

If f is elliptic with respect to L, the function f ′ clearly satisfies

(5.1.2) f ′ (z) = f ′ (zq)

where q = e2πiλ for λ ∈ L. There is a simple way to construct functions which satisfy the

latter equation. If there is an auxiliary function g(z) such that the sum

(5.1.3) f ′(z) =
∑

n∈Z

g (zqn)

is defined, the latter will satisfy eq. 5.1.2 by construction.

This principle was used to define elliptic polylogarithms. A first version of an elliptic

dilogarithm was defined by Bloch in [40]. For the single-valued Bloch-Wigner dilogarithm

D(z) = Im (Li2 (z) + ln (1− z) ln |z|) , z ∈ C\ {0, 1} ,

the elliptic dilogarithm of [40] is defined as

(5.1.4) D (q; z) =
∑

n∈Z

D (zqn) , |q| < 1.

The series converges with exponential rapidity for every complex value of z. Based on

a generalization of the Bloch-Wigner dilogarithm to single-valued polylogarithms by Ra-

makrishnan [178], elliptic polylogarithms were defined by Zagier in [208]. Further versions

of elliptic polylogarithms were studied thereafter [30, 107, 147, 207]. In particular, let

us mention the functions

(5.1.5) EBL
m (z; u; q) =

∑

n∈Z

unLim (zqn)

defined by Brown and Levin [68], where u is a certain damping factor to guarantee

the convergence. In the same reference, the authors furthermore develop a theory of

elliptic multiple polylogarithms and a corresponding framework of iterated integrals. In

the following discussion, we will use the term elliptic more loosely, to distinguish new

versions of generalized polylogarithms from the ones discussed in previous chapters. We

will use the term for functions given by power series in the nome q of an elliptic curve.

Our functions will not necessarily satisfy eq. 5.1.2. We always assume |q| < 1.

A first computation of a Feynman integral in terms of an elliptic polylogarithm was

achieved by Bloch and Vanhove in [44]. Here the sunrise integral (to be discussed below) in

D = 2 space-time dimensions and in the case of three equal particle masses was expressed
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in terms of an elliptic dilogarithm defined as

(5.1.6) EΘ(q) =
∑

n≥0

h (qn)− h (1)

2

where

h (x) =
i

2

(
Li2
(
xr56
)
+ Li2

(
xr46
)
− Li2

(
xr26
)
− Li2 (xr6)

)

with the n-th root of unity defined as

rn = e
2πi
n .

Differences between this function and the elliptic dilogarithm of eq. 5.1.4 are discussed

in the mentioned reference.

The class of elliptic generalizations of polylogarithms defined in our joint work with

Adams and Weinzierl is related to the functions above. In [8] we define

(5.1.7) ELin;m(x; y; q) =

∞∑

j=1

∞∑

k=1

xj

jn
yk

km
qjk.

and in [11] we define the multivariate generalization

ELin1,...,nl;m1,...,ml;2o1,...,2ol−1
(x1, ..., xl; y1, ..., yl; q)

=

∞∑

j1=1

...

∞∑

jl=1

∞∑

k1=1

...

∞∑

kl=1

xj11
jn1
1

...
xjll
jnl

l

yk11
km1
1

..
ykll
kml

l

qj1k1+...+jlkl

∏l−1
i=1 (jiki + ... + jlkl)

oi
.(5.1.8)

We will refer to these as ELi-functions. Multiplication of any of these functions with the

(l = 1)-case ELin;m and integration over dq
q

leads to a result in the same class of functions.

Explicitly we have

ELin1,...,nl;m1,...,ml;2o1,...,2ol−1
(x1, ..., xl; y1, ..., yl; q)

(5.1.9) = Io1ELin1;m1(x1; y1; q
′)ELin2,...,nl;m2,...,ml;2o2,...,2ol−1

(x2, ..., xl; y2, ..., yl; q
′)

where the operator Ioi denotes the oi-fold integration

Ioi =

∫ q

0

dq1
q1

∫ q1

0

dq2
q2
...

∫ qoi−2

0

dqoi−1

qoi−1

∫ qoi−1

0

dq′

q′
for oi > 0

and I0 = 1. This property will be crucial in our use of these functions with the method

of differential equations.

In the computations of Feynman integrals discussed below, these functions appear in

specific combinations which we will refer to as E-functions. They are defined by

(5.1.10)

En;m(x; y; q) =







1
i

(
1
2
Lin(x)− 1

2
Lin(x

−1) + ELin;m(x; y; q)− ELin;m(x
−1; y−1; q)

)
for n +m even,

1
2
Lin(x) +

1
2
Lin(x

−1) + ELin;m(x; y; q) + ELin;m(x
−1; y−1; q) for n +m odd,

and for l > 1 by

En1,...,nl;m1,...,ml;2o1,...,2ol−1
(x1, ..., xl; y1, ..., yl; q) =
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(5.1.11)

Io1 (En1;m1(x1; y1; q
′)− En1;m1(x1; y1; 0))ELin2,...,nl;m2,...,ml;2o2,...,2ol−1

(x2, ..., xl; y2, ..., yl; q
′) .

In the case of the kite graph it will be convenient to use a slightly different combination

without classical polylogarithms, defined by

(5.1.12) En;m(x; y; q) =







1
i
(ELin;m(x; y; q)− ELin;m(x

−1; y−1; q)) for n+m even,

ELin;m(x; y; q) + ELin;m(x
−1; y−1; q) for n+m odd,

En1,...,nl;m1,...,ml;0,2o2,...,2ol−1
(x1, ..., xl; y1, ..., yl; q) =

(5.1.13) En1;m1(x1; y1; q)En2,...,nl;m2,...,ml;2o2,...,2ol−1
(x2, ..., xl; y2, ..., yl; q)

and

En1,...,nl;m1,...,ml;2(o1+1),...,2ol−1
(x1, ..., xl; y1, ..., yl; q) =

(5.1.14)

∫ q

0

dq′

q′
En1,...,nl;m1,...,ml;2o1,...,2ol−1

(x1, ..., xl; y1, ..., yl; q
′) .

We summarize some relations with known functions. Firstly, the l = 1 cases of the

ELi-functions can be written as the series of classical polylogarithms

ELin;m(x; y; q) =

∞∑

k=1

yk

km
Lin(q

kx).

Notice that the sum here is over the positive integers while the summation in eq.

5.1.3 is over all integers. The negative integers are however included implicitly in the

E-functions and we can derive relations with the functions of Brown and Levin of eq.

5.1.5. For example, by use of the functional relation eq. 2.4.6 we obtain [10]

E2;0(x; y; q) =
1

i

(

EBL
2 (x; y; q)− 1

2

1 + y

1− y
ζ(2)− 1

4

1 + y

1− y
ln2(−x)

− y

(1 − y)2
ln(−x) ln(q)− 1

2

y (1 + y)

(1 − y)3
ln2(q)

)

.(5.1.15)

Relations between EΘ of eq. 5.1.6 and the ELi- or E-functions can be derived as well.

Furthermore the functions En;m(x; y; q) evaluate to Clausen- and Glaisher-functions for q

going to zero (see [9]). We recall that Clausen functions are defined by

Cln (ϕ) =







1
2i
(Lin (e

iϕ)− Lin (e
−iϕ)) for n even,

1
2
(Lin (e

iϕ) + Lin (e
−iϕ)) for n odd,

and Glaisher functions are defined by

Gl (ϕ) =







1
2
(Lin (e

iϕ) + Lin (e
−iϕ)) for n even,

1
2i
(Lin (e

iϕ)− Lin (e
−iϕ)) for n odd.
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We have the relations

limq→0En;m

(
eiϕ; y; q

)
= Cln (ϕ)

for m being zero or even and

limq→0En;m

(
eiϕ; y; q

)
= Gln (ϕ)

for m being odd.

We conclude this quick review of functions with a remark on the q-exponential function

eq(z) =
1

∏∞
n=0 (1− zqn)

, |z| < 1,

and its logarithm

ln (eq(z)) =
∞∑

n=0

∞∑

m=1

zm

m
qmn

as studied in [131, 212]. Due to a certain resemblance in the limit of q going to 1,

the latter function was named quantum dilogarithm in [212]. This function is obviously

related to one of the ELi-functions by

ln (eq(z)) = Li1(z) + ELi1;0(z; 1; q).

We expect many other correspondences between ELi- or E-functions and interesting

q-series. In particular, it would be very desirable to exhibit relations to elliptic multiple

zeta values (e.g. [57]) or other q-analogues of multiple zeta values (e.g. [22]) in future

work.

5.2. The massive sunrise integral

The massive sunrise graph of fig. 1.0.2 (a) was considered by many authors [23, 29, 28,

27, 33, 44, 43, 42, 53, 54, 72, 74, 73, 88, 89, 90, 117, 118, 127, 138, 175, 180, 181].

To this graph we associate the scalar Feynman integral

(5.2.1) S(D, t) =

∫
dDk1d

Dk2

(iπD/2)
2

1

(−k21 +m2
1) (−k22 +m2

2)
(
− (p− k1 − k2)

2 +m2
3

)

where we define the kinematic invariant as

t = p2.

For the general case of D space-time dimensions and arbitrary particle masses, a full result

was presented in [33]. This result is a linear combination of Lauricella functions of type

C, which are defined as

FC(a1, a2; b1, b2, b3; x1, x2, x2, x3) =
∑

0≤j1

∑

0≤j2

∑

0≤j3

(a1)j1+j2+j3
(a2)j1+j2+j3

(b1)j1 (b2)j2 (b3)j3

xj11
j1!

xj22
j2!

xj33
j3!

with the Pochhammer symbol

(a)n =
Γ (a + n)

Γ (a)
.
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As the Feynman integral is divergent in D = 4 dimensions, a Laurent expansion in the

regularization parameter is required. As the arguments a1, a2 and b1, b2, b3 are rational

functions of D, the Lauricella functions FC would have to be expanded at D = 4 for this

purpose. Today, several powerful approaches for the expansion of generalized hypergeo-

metric functions are available. The resulting series usually involve multiple polylogarithms

in the coefficients. However, to the best of our knowledge, none of these techniques suffices

for an expansion of generic Lauricella functions of type C in terms of multiple polyloga-

rithms or another well-understood class of functions1. In this sense, it is not possible to

extract poles in say ǫ = 4 − D/2 from the mentioned result. The missing expansion of

the functions FC can be seen as one manifestation of the problem, that this integral can

not be expressed in terms of multiple polylogarithms alone.

In the Feynman parametric representation of eq. 3.1.5 the sunrise integral reads

S(D, t) = Γ (3−D)

(
3∏

i=1

∫ ∞

0

dxi

)

δ (H)
U3−3D

2

F3−D

where the Symanzik polynomials are

U = x1x2 + x2x3 + x1x3,(5.2.2)

F = −x1x2x3t +
(
x1m

2
1 + x2m

2
2 + x3m

2
3

)
(x1x2 + x2x3 + x1x3) .(5.2.3)

The second Symanzik polynomial F is quadratic in each of the three Feynman parame-

ters. Therefore, the set {U , F} is obviously not reducible with respect to the algorithms

discussed in section 3.4 and the method of parametric integration fails. A change of vari-

ables to safe the reducibility could not be found. This is the second manifestation of the

mentioned problem.

Thirdly, the differential equations arising from the sunrise integral do not admit the

properties discussed in section 3.3 which would be necessary to obtain a solution in terms

of multiple polylogarithms. The differential equations involve the tadpole integral

T
(
D,m2

)
=

∫
dDk

iπ
D
2

1

(−k2 +m2)
= Γ

(

1− D

2

)
(
m2
)D

2
−1

in the inhomogeneous part. For the general case of D dimensions and arbitrary particle

masses, one obtains a fourth-order differential equation

(5.2.4) L4(D)S(D, t) = c12T12 + c13T13 + c23T23

with a differential operator

L4(D) = P4
d4

dt4
+ P3

d3

dt3
+ P2

d2

dt2
+ P1

d

dt
+ P0

and with

Tij = T
(
D,m2

i

)
T
(
D,m2

j

)
.

1In [7] we have derived an expansion in terms of unevaluated infinite sums over Z-sums
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The coefficients P0, P1, P2, P3, P4, c12, c13, c23 are polynomials in the squared particle masses,

in D and in t. They are listed explicitly in [9]. This differential equation can either be

extracted from the results of [72], derived by use of the method [161] or generated by the

program Reduze [194, 153].

In the case of three equal particle masses,

Sem(D, t) = S(D, t)|m1=m2=m3=m,

the sunrise integral in D dimensions satisfies a second order differential equation

(5.2.5) Lem
2 Sem(D, t) = −6m4T

(
D,m2

)2

with a differential operator

Lem
2 (D) = P em

2

d2

dt2
+ P em

1

d

dt
+ P em

0

whose coefficients P em
0 , P em

1 , P em
2 are polynomials in m2, t, D [54, 138].

Differential operators will be denoted by

L
(j)
r,i (D).

Here the space-time dimension is indicated in the argument and the subscript r is the

order of the operator. In the case that the operator is obtained from an expansion in

ǫ at a special value of D, the superscript j denotes the order in ǫ. The number i is an

additional label to distinguish several operators whose numbers r,D, j are the same. In

the following discussion, we will consider the cases of D = 2 and D = 4 space-time

dimensions. As in these cases neither one of the differential operators in eqs. 5.2.4 and

5.2.5 factorizes into pieces of only first order, the solutions can not be constructed in

terms of multiple polylogarithms only. Instead the results are obtained in terms of the

generalizations defined above as ELi- and E-functions.

5.3. The case of two dimensions

The starting point of our series of computations is the sunrise integral S(D, t) inD = 2

dimensions with three non-zero, arbitrary particle masses. Without loss of generality we

assume

0 < m1 ≤ m2 ≤ m3.

In D = 2 dimensions the sunrise integral is finite. Its parametric representation simplifies

to

S(2, t) =

(
3∏

i=1

∫ ∞

0

dxi

)

δ (H)
1

F ,

so the integrand involves only the second Symanzik polynomial eq. 5.2.3. We may as well

consider this function as an integral in projective space

S(2, t) =

∫

σ

ω

F
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with

ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2,
σ =

{
[x1 : x2 : x3] ∈ P2|xi ≥ 0, i = 1, 2, 3

}
.

Using the polynomial F , Müller-Stach, Weinzierl and Zayadeh [160] derived a second-

order differential equation

L2(2)S(2, t) = p3(5.3.1)

with a Picard-Fuchs operator

(5.3.2) L2(2) = p2
d2

dt2
+ p1

d

dt
+ p0.

The coefficients p0, p1, p2 are polynomials in the squared masses and t while p3 furthermore

involves logarithms of the squared masses.

A key to a solution of this equation and all further steps is the consideration of an

elliptic curve arising from the second Symanzik polynomial. Here we generalize ideas of

the work of Bloch and Vanhove [44] to the case of arbitrary masses. We consider the

variety defined by

F = 0

and the Euclidean momentum region where

t ≤ 0.

This condition guarantees that the variety of F intersects the integration domain only at

its boundary. We have an intersection only in the three points

(5.3.3) Q1 = [1 : 0 : 0] , Q2 = [0 : 1 : 0] , Q3 = [0 : 0 : 1] .

We consider these points as three possible choices for an origin. Together with such a

choice, the zero-set of F defines an elliptic curve. We denote the elliptic curve with the

origin Qi by Ei with i = 1, 2, 3. In each case, the elliptic curve can be transformed into

Weierstrass normal form

(5.3.4) Ê : y2z = 4x3 − g2xz
2 − g3z

3.

Here x, y, z are polynomials in the squared masses, the Feynman parameters and in t.

The explicit changes of variables are given in [8].

Following standard literature on elliptic curves, we consider the chart z = 1 of the

Weierstrass normal form. Here we have

g2 = −4 (e1e2 + e2e3 + e1e3) ,

g3 = 4e1e2e3

and the factorization of the cubical polynomial in x

y2 = 4 (x− e1) (x− e2) (x− e3)
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with the three roots

e1 =
1

24

(

−t2 + 2Mt +∆+ 3
√
δ
)

,

e1 =
1

24

(

−t2 + 2Mt +∆− 3
√
δ
)

,

e1 =
1

24

(
2t2 − 4Mt− 2∆

)
,

where

M = m2
1 +m2

2 +m2
3,

∆ = µ1µ2µ3µ4,

δ =
(
t− µ2

1

) (
t− µ2

2

) (
t− µ2

3

) (
t− µ2

4

)
,

0 = e1 + e2 + e3

with

µ1 = m1 +m2 −m3, µ2 = m1 −m2 +m3, µ3 = −m1 +m2 +m3, µ1 = m1 +m2 +m3.

We define the period integrals (cf. the standard example in section 3.2)

ψ1 = 2

∫ e3

e2

dx

y
and ψ2 = 2

∫ e3

e1

dx

y
.

It is well-known that these integrals can be written as complete elliptic integrals of the

first kind

K(z) =

∫ 1

0

dz
√

(1− z2) (1− x2z2)
.

We have

ψ1 =
4

δ
1
4

K(k) and ψ2 =
4i

δ
1
4

K(k′)

with

k =

√
e3 − e2
e1 − e2

and k′ =

√
e1 − e3
e1 − e2

.

These period integrals are solutions of the homogeneous differential equation

L2(2)ψi = 0 for i = 1, 2,

with the above Picard-Fuchs operator.

In [7] we used the period integrals to construct a solution of eq. 5.3.1 as

S(2, t) = S(2, 0) + Sspecial(t)

where the boundary value S(2, 0) is a linear combination of Clausen functions Cl2 obtained

from [149, 34, 90]. By classical variation of constants, the special solution reads

Sspecial(t) =

∫ t

0

dt′
p3(t

′)

p2(t′)W (t′)
(ψ1(t)ψ2(t1) + ψ2(t)ψ1(t1))
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with the Wronski determinant

W (t) = ψ1(t)
d

dt
ψ2(t)− ψ2(t)

d

dt
ψ1(t).

By use of two associated period integrals and the Legendre relation, the special solution

is simplified. We arrive at a result in terms of integrals over complete elliptic integrals in

[7]. Similar functions have been used in the literature before, e.g. in [138] and also later

in [52, 180, 181].

The success of iterated integrals in the computation of Feynman integrals serves as our

main motivation to consider elliptic generalizations of polylogarithms as an alternative.

We partly follow the mentioned work by Bloch and Vanhove which leads to the mentioned

result of the equal-mass case of S(2, t) in terms of the elliptic dilogarithm EΘ of eq. 5.1.6.

In [8] we use the above periods ψ1, ψ2 to define the ratio

(5.3.5) τ =
ψ2

ψ1

and the nome

q = eiπτ

of the elliptic curve given by F . The dependence on the kinematic invariant t is now

expressed as a dependence of q and by slight abuse of notation we write S(2, t) = S(2, q)

and ψ1(t) = ψ1(q). One can show that t and q are related by

t

δ
= − η

(
τ
2

)24
η (2τ)24

m2
1m

2
2m

2
3η (τ)

48

with Dedekind’s η-function

η (τ) = q
1
12

∞∏

n=1

(
1− q2n

)
.

We find that the sunrise integral in D = 2 dimensions can be expressed as

(5.3.6) S (2, q) =
ψ1(q)

π

3∑

j=1

E2;0 (wj(q);−1;−q)

where E2;0 is the elliptic dilogarithm defined in eq. 5.1.10. The arguments w1, w2, w3

of this function are obtained from the three intersection points of eq. 5.3.3 and the

transformations which the elliptic curve has implicitly undergone so far in this discussion.

Notice that we started from three elliptic curves Ei, i = 1, 2, 3, given by F = 0 and the

three possible choices Qi as the origin. After a first change of variables, we arrived at the

same Weierstrass normal form Ê of eq. 5.3.4 in each case. The periods obtained from this

representation define the quotient τ of eq. 5.3.5 which defines a lattice L as in fig. 3.2.1,

discussed in the example of section 3.2. Here, gluing together boundaries of the lattice,

the elliptic curve C/L is viewed as a torus. This is the parametrization of the beginning

of section 5.1 where we discussed the periodicity of elliptic functions with respect to

x → x + λ with λ ∈ L. Finally, as we have seen in the further discussion of section 5.1,

this condition turns into the periodicity with respect to z → zq after a change of variables
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z = e2πix. By this change, we have arrived at the Jacobi uniformization C⋆/q2Z. It is

clear from our discussion in section 5.1 that arguments of elliptic polylogarithms should

be given in this parametrization and the arguments w1, w2, w3 are indeed obtained as a

result of the mentioned mappings:

Ei → Ê → C/L→ C⋆/q2Z.

The explicit expressions are given in [8].

Compared with our previous result in terms of integrals over elliptic integrals, the

result of eq. 5.3.6 has numerous obvious advantages. Firstly, the expression is very

compact and reveals the nature of the sunrise integral as a product of a period and an

elliptic polylogarithm which both are derived from the same elliptic curve. The period is

a well-known elliptic integral and no further unevaluated integrations are involved here.

The function E2;0 is understood as an elliptic generalization of the dilogarithm, belonging

to the class of E-functions discussed in section 5.1 which admits an iterated integral

structure due to eq. 5.1.11.

It is worth to emphasize again that the case of D = 2 dimensions satisfies the optimal

preconditions for the above considerations: The integral is finite and involves only one

Symanzik polynomial which defines our elliptic curve. In the remaining sections of this

thesis, we will make the remarkable observation, that we can still make use of the above

principles in cases where some of these conditions are violated. In sections 5.4 and 5.5 we

consider the case D = 4 and higher orders in ǫ respectively. Here the integrand involves

also the first Symanzik polynomial. In section 5.6 we consider the kite integral whose

integrand involves two different Symanzik polynomials. Nevertheless, we will be able to

use the same framework of functions and even the same nome q.

5.4. Four dimensions

The dimension shift relations of Tarasov [196, 197] relate Feynman integrals of dif-

ferent space-time dimensions and different powers of propagators. To keep track of these

propagator powers, let us define the family of sunrise integrals

Sν1ν2ν3(D, t) =

∫
dDk1d

Dk2

(iπD/2)
2

1

(−k21 +m2
1)

ν1 (−k22 +m2
2)

ν2
(
− (p− k1 − k2)

2 +m2
3

)ν3

with ν1, ν2, ν3 taking integer values. Obviously, the integral defined in eq. 5.2.1 is the

member S111(D, t) of this family. In the Feynman parametric representation, the family

of integrals reads

Sν1ν2ν3(D, t) = Γ (|ν| −D)

∫

σ

ω

(
3∏

i=1

xνi−1
i

Γ (νi)

)

Uν− 3
2
D

Fν−D

with ν = ν1+ν2+ν3 and with the above definitions for ω, σ,U ,F . For this family, Tarasov’s

relations read

Sν1ν2ν3(D, t) = ν1ν2S(ν1+1)(ν2+1)ν3 (D + 2, t)+ν2ν3Sν1(ν2+1)(ν3+1) (D + 2, t)+ν1ν3S(ν1+1)ν2(ν3+1) (D + 2, t)
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and we furthermore have

d

dt
Sν1ν2ν3(D, t) = ν1ν2ν3S(ν1+1)(ν2+1)(ν3+1) (D + 2, t) .

In [9] we consider the sunrise integral in D = 4− 2ǫ dimensions:

S111(4− 2ǫ, t) = S
(−2)
111 (4, t)ǫ−2 + S

(−1)
111 (4, t)ǫ−1 + S

(0)
111(4, t) +O (ǫ)

with the known pole terms

S
(−2)
111 (4, t) = −1

2
M,

S
(−1)
111 (4, t) =

1

4
t− 3

2
M +

3∑

i−1

m2
i ln
(
m2

i

)
.

By use of the above dimension shift relations, S111(4− 2ǫ, t) can be expressed in terms of

four integrals of the sunrise family in D = 2− 2ǫ dimensions. For the coefficient S
(0)
111(4, t)

we obtain a linear combination

(5.4.1) S
(0)
111(4, t) = c+ L̃0S

(0)
111(2, t) + L̃1S

(1)
111(2, t)

where S
(0)
111 and S

(1)
111 are defined by the expansion

(5.4.2) S111(2− 2ǫ, t) = S
(0)
111(2, t) + S

(1)
111(2, t)ǫ+O

(
ǫ2
)

and where L̃0 and L̃1 are differential operators of the type

L̃ = C0 +
3∑

i=1

Cim
2
i

∂

∂m2
i

.

Notice that due to

∂

∂m2
i

xνi−1
i FD−νUν− 3

2
D = (D − ν) xνii FD−ν−1Uν− 3

2
D+1

and
Γ (ν −D)

Γ (νi)
= − νi

(D − |ν|)
Γ (ν + 1−D)

Γ (νi + 1)

the differentiation with respect to particle masses is related to shifts of propagator powers

by
∂

∂m2
i

Sν1ν2ν3 (D, t) = −Sν1ν2ν3 (D, t) |νi→νi+1 · νi
for i = 1, 2, 3. All of the above coefficients c, C0, C1, C2, C3 are explicitly given in [9].

On the right-hand side of eq. 5.4.1 the term S
(0)
111(2, t) is of course the function S(2, t)

of section 5.3 for which we obtained the result in eq. 5.3.6. It remains to compute the

ǫ-coefficient S
(1)
111(2, t). In order to find a suitable differential equation for S

(1)
111(2, t) we

consider the fourth-order differential equation 5.2.4 and replace S(D, t) by the expansion

of S111(2− 2ǫ, t) (eq. 5.4.2) and the operator L4(D) by its expansion

L4(2− 2ǫ) =
5∑

j=1

ǫjL
(j)
4 (2).
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In this way we obtain a coupled system of differential equations for the coefficients in

eq. 5.4.2 where the inhomogeneous part of the differential equation for S
(k)
111(2, t) involves

coefficients S
(j)
111(2, t) with j < k. In particular we obtain a differential equation

L
(0)
4 (2)S

(1)
111(2, t) = I1(t)

where

I1(t) = −L(1)
4 (2)S

(0)
111(2, t) +R

with R being some polynomial in t, the squared particle masses and their logarithms. We

find that the fourth-order differential operator L
(0)
4 (2) factorizes as

L
(0)
4 (2) = L

(0)
1,a(2)L

(0)
1,b(2)L

(0)
2 (2)

where L
(0)
1,a(2), L

(0)
1,b(2) are certain first-order operators and L

(0)
2 (2) is precisely the Picard-

Fuchs operator L2 of eq. 5.3.2. Using this factorization, we obtain the second-order

differential equation

L
(0)
2 (2)S

(1)
111(2, t) = I2(t)

where I2 is obtained as a two-fold integral over a combination of I1 and solutions of the

homogeneous first-order differential equations given by L
(0)
1,a(2), L

(0)
1,b(2). In other words,

S
(1)
111(2, t) satisfies a similar second-order as S

(0)
111(2, t) with the only difference being a more

complicated function in the inhomogeneous part. Therefore we can construct the solution

in a similar way as in the previous section. In terms of q-integrals we obtain

S
(1)
111(2, t) = K1ψ1 +K2ψ2 −

ψ1

π

∫ q

0

dq′

q′

∫ q′

0

dq′′

q′′
I2(q

′′)ψ1(q
′′)3

πp2(q′′)W (q′′)2

where K1, K2 are integration constants. By use of this expression we obtain the result as

a q-series which allows us to construct the function in closed form in terms of E-functions.

This result involves multiple polylogarithms and the E-functions E1;0, E2;0, E3;1, E0,1;−2,0;4

whose arguments again include the terms w1, w2, w3 discussed above. By insertion into

eq. 5.4.1 one obtains the desired result for S
(0)
111(4, t).

5.5. Higher orders in ǫ

In the next step we shed light on the higher orders in the ǫ-expansion of the sunrise

integral [11]. As the previous section has shown, higher-orders of the four-dimensional

case S111(4−2ǫ, t) can be obtained by computing higher orders of the two-dimensional case

S111(2 − 2ǫ, t). For simplicity, we consider the latter integral in the case of equal masses

m1 = m2 = m3 = m. In this section we drop the above superscript ’em’, understanding

that all integrals and operators refer to the equal-mass case. It will be convenient to

consider the Laurent series of the Feynman integral

S111(2− 2ǫ, t) = e−2γǫ
∞∑

j=0

ǫjS
(j)
111(2, t)

where γ is Euler’s constant.

77



Our starting point is the differential equation eq. 5.2.5. In D = 2 − 2ǫ dimensions,

the differential operator can be expanded as

L2(2− 2ǫ, t) = L
(0)
2 (2) + ǫL

(1)
2 (2) + ǫ2L

(2)
2 (2)

with

L
(0)
2 (2) = t

(
1−m2

) (
t− 9m2

) d2

dt2
+
(
3t2 − 20tm2 + 9m4

) d

dt
+ t− 3m2

and some further non-zero expressions for L
(1)
2 (2), L

(2)
2 (2). It turns out that the expansion

of the differential equation simplifies, if we consider it as an equation for an auxiliary

integral S̃111(2− 2ǫ, t) which we define by

S111 (2− 2ǫ, t) = Γ(1 + ǫ)2
(

3
√
t

m (t−m2) (t− 9m2)

)ǫ

S̃111(2− 2ǫ, t).

This equation reads

L̃2S̃111(2− 2ǫ, t) = −6

(
(t−m2) (t− 9m2)

3m3
√
t

)

where the differential operator is obtained as

L̃2(2− 2ǫ, t) = L̃
(0)
2 (2) + ǫ2L̃

(2)
2 (2)

with

L̃
(0)
2 (2) = L

(0)
2 (2)

and

L̃
(2)
2 (2) = − (t+ 3m2)

4

4t (t−m2) (t− 9m2)
.

Notice that in contrast to L2(2 − 2ǫ, t) the operator L̃2(2 − 2ǫ, t) has no ǫ-term. As a

consequence, each coefficient of S̃111(2− 2ǫ, t) satisfies the differential equation

L
(0)
2 (2)S̃

(j)
111(2, t) =

6

j!
lnj

(
(t−m2) (t− 9m2)

3m3
√
t

)

+
(t+ 3m2)

4

4t (t−m2) (t− 9m2)
S̃
(j−2)
111 (2, t).

Here we define S̃
(j)
111(2, t) = 0 for j < 0. By use of this differential equation, we can

compute S̃111(2 − 2ǫ, t) and hence S111 (2− 2ǫ, t) iteratively to arbitrary order in terms

of E-functions. For this purpose it is now crucial that this class of functions admits an

iterated integral structure as pointed out in section 5.1.

As L
(0)
2 (2) is just the equal-mass case of our previous second-order Picard-Fuchs op-

erator, we can construct the solutions in a similar way as in our previous computations

as

S̃
(j)
111(2, t) = C1ψ1(t) + C2ψ2(t) + S̃

(j)
111special(2, t)

where C1 and C2 are constants determined from certain boundary conditions and ψ1, ψ2

now denote the equal-mass versions of the above period integrals. The special solution
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can be expressed as

(5.5.1) S̃
(j)
111special(2, t) = −ψ1

π

∫ q

0

dq′

q′

∫ q′

0

dq′′

q′′
ψ1 (q

′′)3

πp2 (q′′)W (q′′)2
I (q′′)

with W and p2 being the equal-mass cases of the previous quantities and with the function

I involving S̃
(j−2)
111 (2, t).

In the computation of these integrals over q we consider a general problem, which will

appear again in the discussion of the kite graph below and hopefully of further Feynman

integrals in the future: We obtain the solution via integrations of the type

S(q) =

∫ q

0

dq′

q′
f (q′)ELin1,...,nl;m1,...,ml;2o1,...,2ol−1

(x1, ..., xl; y1, ..., yl; q
′)

where f is some function of q′. If f can be expressed as a linear combination of the (l = 1)-

case of our ELi-functions ELin,m, then by use of eq. 5.1.9 we obtain a result for S in terms

of ELi-functions. A similar concept of course has been central to our computations with

multiple polylogarithms discussed in previous chapters as well. For example an integral

S ′(z) =

∫ z

0

ω(x)Lw(x)

with Lw being a hyperlogarithm can be expressed in terms of hyperlogarithms, if we are

able to express ω in terms of 1-forms of the type dx
x−σ

(see eq. 2.4.3).

We find that all functions f arising in the computation of S̃
(j)
111special(2, t) by eq. 5.5.1

can be expressed in terms of ELi-functions and therefore every S̃
(j)
111special(2, t) can be

computed in terms of ELi-functions by application of eq. 5.1.9. We show in [11] that this

is true for all orders j and provide explicit results for the lowest orders.

In general, it is not obvious whether a given function of q can be expressed in terms

of ELi-functions. As an example arising from our computation of S̃
(j)
111special(2, t) let us

mention the logarithm

ln

(
(t−m2) (t− 9m2)

3m3
√
t

)

=
1

2
ln (−q) + 12ELi1;0 (−1; 1;−q) + ELi1;0 (r3;−1;−q)

+ELi1;0
(
r−1
3 ;−1;−q

)
− 3ELi1;0 (r3; 1;−q)− 3ELi1;0

(
r−1
3 ; 1;−q

)
.

We notice that the singular points t ∈ {0, m2, 9m2} of this logarithm and of the coefficient

of d2

dt2
in L

(0)
2 (2) coincide. In other words, if we re-write the homogeneous differential

equation, solved by the periods, ψ1, ψ2, as
(
d2

dt2
+ p′1

d

dt
+ p′0

)

ψ1/2 = 0

then these points are the regular singular points of this equation. This appears to be a

reasonable condition for an expression in terms of ELi-functions of q, as this q is implicitly

defined by the latter operator via the period integrals. We expect that for functions with

further singular points the definition of q has to be altered to allow for such an expression.

79



Figure 5.6.1. Master integrals for the kite graph

A general method to express functions of q in terms of ELi-functions is currently

missing. Such a method may be the key to the systematic application of ELi- and E-

functions in the computation of further Feynman integrals. However, we are already able

to address one further Feynman graph, to be discussed in the following section.

Concluding our discussion of sunrise integrals, let us mention the recent results of

Bloch, Kerr and Vanhove [43, 42], including a result for a three-loop extension of the

sunrise graph in terms of an elliptic trilogarithm and a new result for the arbitrary mass

case of the two-loop graph. Let us also mention the recent computation of Feynman

integrals of a conformal scalar field theory by use of elliptic polylogarithms in [123].

5.6. The kite integral

We consider the family of the kite integral

Iν1ν2ν3ν4ν5(D, t) =
∫
dDk1

iπ
D
2

∫
dDk2

iπ
D
2

(−1)ν

(k21 −m2)
ν1 (k22)

ν2
(
(k1 − k2)

2 −m2
)ν3 (

(k1 − p)2
)ν4 (

(k2 − p)2 −m2
)ν5

with ν =
∑5

i=1 νi and t = p2. We refer to I11111 as the kite integral. This graph was already

studied in the early sixties by Sabry [183] and later in [54]. Much more recently, Remiddi

and Tancredi computed the integral by use of dispersion relations in terms of integrals

over elliptic integrals in [181]. This result motivated our re-consideration of the integral

by use of our framework of functions in [6]. In the first steps we loosely follow Remiddi

and Tancredi’s work as we consider linear combinations of master integrals for the kite

family and a corresponding system of first-order differential equations. Our explicit choice

of this system differs from theirs.

We begin with the eight integrals I20200, I20210, I02210, I02120, I21012, I10101, I20101, I11111

which form a set of IBP master integrals to express the members of the kite family. The

graphs of these integrals are shown in fig. 5.6.1. In this set we recognize the sunrise
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integrals

I10101(D, t) = S111(D, t) and I20101(D, t) = S211(D, t).

The presence of these integrals suggests, that the kite integral can not be expressed

in terms of multiple polylogarithms. Now we define eight integrals I1, ..., I8 as certain

linear combinations of these master integrals. The first five integrals I1, ..., I5 are linear

combinations of I20200, I20210, I02210, I02120, I21012 (see [6]). The integrals I6 and I7 involve

the sunrise integrals and can be written as

I6(D, t) = (D − 4)(D − 5)t I10101(D − 2, t),

I7(D, t) = 2 (D − 4)m2t I20101(D − 2, t).

Notice that by these relations the four-dimensional case I6(4−2ǫ, t), I7(4−2ǫ, t) is directly

obtained from our above results for the sunrise integral in 2− 2ǫ dimensions to arbitrary

order. The last integral I8 is directly related to the kite integral by

I8(D, t) = (D − 4)(D − 5)tI02210(D, t) + (D − 3)(D − 4)2(D − 5)tI11111(D, t).

Our goal is the computation of I8 in four dimensions.

In the previous sections, the fact that multiple polylogarithms were not sufficient to ex-

press the result was visible due to the presence of higher-order differential operators which

did not factorize into first-order operators only. Here we see the problem manifesting itself

in the system of differential equations which is obtained for the vector I = (I1, ..., I8)
T by

the classical approach discussed in section 3.3, for example by use of the program Reduze

[194, 153]. One obtains

(5.6.1)
d

dt
I =

(
1

t
A0 +

1

t−m2
A1 +

1

t− 9m2
A9

)

I

with
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A0 =


















0 0 0 0 0 0 0 0

0 ǫ 0 0 0 0 0 0

0 0 ǫ 0 0 0 0 0

0 0 −4ǫ 0 0 0 0 0

0 0 0 0 2ǫ 0 0 0

0 0 0 0 0 −2ǫ −3
2
− 3ǫ 0

0 0 0 0 0 2
3
+ 2ǫ 2 + 3ǫ 0

0 0 0 0 −1 − 2ǫ −3ǫ 0 ǫ


















,

A1 =


















0 0 0 0 0 0 0 0

−ǫ −2ǫ 0 0 0 0 0 0

0 0 −2ǫ ǫ 0 0 0 0

0 0 4ǫ −2ǫ 0 0 0 0

0 −2ǫ 0 0 −4ǫ 0 0 0

0 0 0 0 0 0 0 0

− ǫ
4

0 0 0 0 −1
2
− 3

2
ǫ −1− 2ǫ 0

1
2
+ ǫ 0 −1− 2ǫ 0 0 8

3
ǫ 0 −2ǫ


















,

A9 =


















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
9
4
ǫ 0 0 0 0 −1

6
− 1

2
ǫ −1 − 2ǫ 0

0 0 0 0 0 0 0 0


















.

Let us recall the criteria discussed in section 3.3. At first we notice that the system has

only regular singular points which are given by t ∈ {0, m2, 9m2} . The fact that these are

precisely the singular points we had in the previous section may be seen as an indication

that we will be able to use our framework of functions with the same q as above. The

system is readily written in Fuchsian form here. The two remaining criteria discussed in

section 3.3 are the questions, whether the system is in triangular form and whether its

equations factorize in ǫ as eq. 3.3.2. Obviously, the system fails both criteria. However,

if we consider the sub-system for the first five integrals I1, ..., I5 the corresponding blocks

in the above matrices satisfy the factorization property in ǫ. Therefore these five integrals

are easily computed to arbitrary order in ǫ in terms of multiple polylogarithms and in fact

harmonic polylogarithms are sufficient in this case. Even though this computation does

not require E-functions, the use of these functions will be advantageous for the further

steps.
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Therefore we change variables from t to q in the same way as in the previous section.

We obtain

q
d

dq
I =

(
ψ2
1

iπW t
A0 +

ψ2
1

iπW (t−m2)
A1 +

ψ2
1

iπW (t− 9m2)
A9

)

I

where the coefficients of all three matrices A0, A1, A9 can be expressed in terms of our

functions as

ψ2
1

iπW t
= 1− 4E0;−1 (r3;−1;−q) ,

ψ2
1

iπW (t−m2)
= −3

2
E0;−1 (r3;−1;−q) + 3

2
E0;−1 (r3; 1;−q) + 3E0;−1 (−1; 1;−q) ,

ψ2
1

iπW (t− 9m2)
=

1

2
E0;−1 (r3;−1;−q)− 9

2
E0;−1 (r3; 1;−q) + 3E0;−1 (−1; 1;−q) .

This property of the coefficients is crucial for our computation and may be expected from

the consideration of the regular singular points.

The above system of differential equations comes with one further advantage: The

equation for I8 does not involve I7. Therefore the consideration of the remaining six

integrals is sufficient. The first five integrals I1, ..., I5 are easily computed due to the

mentioned sub-system and I6 is the known sunrise integral. For convenience we introduce

the function E111 by

S111 (2− 2ǫ, t) =
ψ1

π
E111 (2− 2ǫ, q) .

Expanding the differential equation of I8 we obtain for its jth coefficient the equation

q
d

dq
I
(j)
8 =

(
1− 4E0;−1 (r3;−1;−q)

) (

−2I
(j−1)
5 − I

(j)
5 + I

(j−1)
8

)

+3
(
E0;−1 (−1; 1;−q)− E0;−1 (r6; 1;−q)

)
(

I
(j−1)
1 +

1

2
I
(j)
1 − 2I

(j−1)
3

−I(j)3 − 2I
(j−1)
8

)

− 36E0;−1 (r3; 1;−q)
(

E
(j−2)
111 + 2E

(j−3)
111

)

.

Assuming that we already know I
(j−1)
8 , all terms on the right-hand side are known in

terms of ELi-functions and therefore we can integrate over q by use of eq. 5.1.9. In this

way we can compute the integral to arbitrary order in ǫ. We present explicit results for

the three lowest orders in [6].

This computation of the kite integral shows, that important advantages of the method

of differential equations survive beyond multiple polylogarithms. If the system admits the

properties discussed here and in section 3.3, integrals can be computed by use of known

results for simpler integrals of the same family, possibly to all orders in ǫ. Our framework

of functions has proven to be well-suited for such computations and will hopefully find

applications for many further integrals in the future.
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CHAPTER 6

Conclusions

This cumulative thesis is dedicated to the analytical computation of Feynman integrals

by use of generalizations of polylogarithms. In chapters 2 and 3 we have reviewed some

well-established classes of functions and computational methods in this field, providing

the basis of our research. In chapters 4 and 5 we have summarized the main aspects of

our own work. The corresponding publications are reprinted in the appendix to provide

the reader with all details.

We have strongly emphasized the advantages of using multiple polylogarithms in Feyn-

man integral computations. As we have recalled in chapter 2, multiple polylogarithms

are usually defined in terms of nested sums and can be represented in terms of iterated

integrals known as hyperlogarithms. These functions are deeply studied in the mathe-

matical literature and widely used in particle physics. In chapter 3 we have reviewed the

method of parametric integration and the method of differential equations which exploit

the strengths of this framework of functions, particularly by use of iterated integrals1.

Our work summarized in chapter 4 is based on iterated integrals on certain moduli

spaces of curves of genus zero, providing an alternative framework to represent multiple

polylogarithms. The algorithms presented in our work with Brown serve for various

computations with these functions, including the computation of a certain type of definite

integrals which we called cubical integrals. Furthermore, by systematically expressing

integrals over Feynman parameters in terms of these cubical integrals, the algorithms

serve for the analytic computation of a certain class of Feynman integrals. These are

Feynman integrals whose integrands involve polynomials which are reducible with respect

to the Fubini algorithm or its refined version and which have a further technical property

which we described as being properly ordered near a tangential basepoint. We have

furthermore discussed the main features of our computer program MPL which is based on

these algorithms. Apart from the computation of Feynman integrals, this program may

be useful to address problems arising from various other fields of science, as the examples

in our publications show.

If a given Feynman integral is expressible in terms of multiple polylogarithms, chances

are good that one of the well-established methods and corresponding computer programs

1Of course there are further methods for the computation of Feynman integrals which are however less
relevant for this thesis. In the context of generalized polylogarithms we have also briefly mentioned the
expansion of hypergeometric functions.
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can be applied for their computation2. On the other hand, if the class of multiple poly-

logarithms is not sufficient to express the Feynman integral, the situation is usually very

different. Alternative classes of functions, which have usually been applied to such cases

so far, do not have a representation in terms of known frameworks of iterated integrals.

Therefore, computational techniques which at least partly rely on iterated integrals can

not be applied to their full capacity. The method of parametric integration can not be

applied without iterated integrals at all. The method of differential equations can be

useful in such cases, but the systematic computation of integrals of the same family and

of higher orders in ǫ of course requires iterated integrals.

In chapter 5 we have summarized our work with Adams and Weinzierl on the massive

sunrise integral and with the same authors and Schweitzer on the kite integral. Both

integrals belong to the class of Feynman integrals which can not be expressed in terms of

multiple polylogarithms. We have computed the lowest orders in ǫ of the sunrise integral

in the case of arbitrary masses in two and four dimensions and to arbitrary order in the

equal mass case. We have furthermore computed the kite integral to arbitrary order in

four dimensions. In all of these computations we have applied the method of differential

equations. Considering the elliptic curves defined by the variety of the second Symanzik

polynomial of the sunrise graph, we have derived period integrals, serving as homogeneous

solutions and defining the corresponding nome q. We were able to express all of our results

in terms of a new framework of elliptic generalizations of polylogarithms, defined as power

series in q.

Let us emphasize the common philosophy behind the two directions of our research

discussed in chapters 4 and 5. In both cases we have started from the parametric repre-

sentation of the Feynman integral and considered period integrals related to the geometry

which is defined by Symanzik polynomials. In our work with Brown, the varieties of these

polynomials determine whether the method of parametric integration can be applied and

they determine the arguments of the resulting multiple polylogarithms. In this line of

research, we were able to avoid a case-by-case study of varieties of certain Symanzik poly-

nomials to extract the corresponding periods. Instead we have mapped a class of such

problems, restricted by the mentioned conditions of reducibility and proper ordering, to

the well-understood geometry of moduli spaces of curves of genus zero with several marked

points. The iterated integrals which include the periods of these spaces were used as our

main tool to build up the results of the Feynman integrals. For the integrals addressed

in our work with Adams, Weinzierl and Schweitzer, it was clear that we would not be

able to use this strategy and it is yet unknown, whether these integrals can be related to

moduli spaces of curves of higher genus. Therefore we were forced to study the variety of

a particular Symanzik polynomial explicitly. This approach again led to period integrals

serving as crucial ingredients to build up the solutions of the Feynman integrals.

2Of course the general complexity of the problem reflected in the loop-number and the number of variables
will always set limits to practical computability.
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In the well-behaved cases were multiple polylogarithms are sufficient to express the re-

sults, we have automatized the computation of an entire class of integrals. This approach

and the corresponding computer program MPL may be extended in several ways in the

future. Firstly, the condition of properly ordered polynomials may be relaxed by a more

involved strategy of computing limits. Secondly, the criterion of linear reducibility reflects

the fact that the applicability of the method depends on the parametrization of integra-

tions and kinematic invariants. An “optimal” parametrization, such that the polynomials

of every Feynman integral which can be expressed in terms of multiple polylogarithms are

linearly reducible, is unknown so far.

For Feynman integrals beyond multiple polylogarithms, it would be very desirable to

develop algorithms and computer programs based on elliptic generalizations of polylog-

arithms which serve for whole classes of integrals. Our computation of the kite integral

gives rise to the hope that such developments may be possible in the near future. In the

computation of this integral, it was not necessary to start from scratch. We have applied

the same class of functions which served for the sunrise integral and we have even used

the same nome q. It will be interesting to explore ways to proceed to further Feynman

integrals. We expect further computations to be possible with the same class of functions

by carefully adapting the nome q to the geometry given by the corresponding graphs. Fu-

ture research may also address more conceptual questions on the class of functions such

as their analytical continuation3, an underlying framework of iterated integrals, possible

correspondences between special values and q-analogues of multiple zeta values and the

efficient numerical evaluation. Progress in any of these directions would be very desir-

able in view of future automatizations of Feynman integral computations beyond multiple

polylogarithms.

If we wanted to summarize this thesis in just one main message, it could be: Geometry

helps us to reveal the functions which are appropriate to compute Feynman integrals, and

whenever we are confronted with a new integral, it may be worthwhile to investigate its

underlying geometry at first. In some cases, this investigation will show that the problem

is solvable with known methods. In other cases, new paths have to be explored, but

geometry keeps guiding us.

The work presented in this thesis and many related developments of the recent past

show, that the influence of algebraic geometry and number theory in perturbative quantum

field theory today not only helps us to understand or classify Feynman integrals. It has

become an influence with a strong impact on practical computations with direct relevance

for phenomenology at particle colliders. We have all reasons to be very optimistic that

many further insights and improvements will come from this source in the future.

3A first approach to this problem was very recently presented by Passarino [172].
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simplicial coordinates, 52

spanning trees, 34

Spence function, 26

S-sums, 28

Symanzik polynomial, 34
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