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Abstract. A simple geometric construction on the moduli spaces M0,n of curves
of genus 0 with n ordered marked points is described which gives a common frame-
work for many irrationality proofs for zeta values. This construction yields Apéry’s
approximations to ζ(2) and ζ(3), and for larger n, an infinite family of small lin-
ear forms in multiple zeta values with an interesting algebraic structure. It also
contains a generalisation of the linear forms used by Ball and Rivoal to prove that
infinitely many odd zeta values are irrational.

1. Introduction

1.1. Summary. A folklore conjecture states that the values of the Riemann zeta func-
tion at odd integers ζ(3), ζ(5), . . . and π are algebraically independent over Q. Very
little is known about this conjecture, except for the following remarkable facts:

(1) That π is transcendental, proved by Lindemann in 1882.
(2) That ζ(3) is irrational, proved by Apéry in 1978.
(3) That the Q-vector space spanned by the odd zeta values ζ(3), ζ(5), . . . is infinite

dimensional (proved by Ball and Rivoal [32, 4]).
(4) That at least one amongst ζ(5), ζ(7), ζ(9), ζ(11) is irrational (Zudilin [39]).

The irrationality of ζ(5), or ζ(3)/π3, are open problems. All of the above results can
be proved by constructing small linear forms in zeta values using elementary integrals.
Quantitive results, such as bounds on the irrationality measures of ζ(2) and ζ(3) [30,
31], and bounds on the transcendence measure of π2 [35], can also be obtained by
similar methods.

The starting point for this paper is the observation that the integrals in all these
proofs are equivalent, after a suitable change of variables, to period integrals on the
moduli space M0,n of curves of genus zero with n marked points. Conversely, we
know by [7], or [22] together with [9], that all period integrals on M0,n are linear
forms in multiple zeta values. This provides a huge family of potential candidates for
generalising the above results. Unfortunately, the typical period integral involves all
multiple zeta values up to weight n − 3 and is ill-adapted for an irrationality proof.
In this paper, we describe a narrower class of period integrals on M0,n, based on a
variant of the classical dinner table problem [3, 29], in which certain multiple zeta values
vanish. We show that this restricted family of integrals has some special properties,
and reproduces most, and possibly all, the results alluded to in the first paragraph.

1.2. Structure of irrationality proofs. The basis for the above results is the con-
struction of small linear forms in zeta values. More generally, suppose that we have:

(1) For all n ≥ 0, a non-zero Q-linear combination

In = a(1)
n ζ1 + . . . + a(k)

n ζk ,

where a
(i)
n ∈ Q, and ζ1, . . . , ζk are fixed multiple zeta values.

1
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(2) A bound on the linear forms In. For example, they satisfy an inequality

0 < |In| < εn

for all n ≥ 0, where ε is a small positive real number.

(3) Some control on the coefficients a
(i)
j . At its most basic, this is simply a bound

on the denominators of a
(k)
n as a function of n. This is often a function of

dn = lcm{1, . . . , n}
The prime number theorem implies that limn→∞ d

1/n
n = e.

Only in very specific cases, when the bounds (3) on the coefficients are favourable
compared to the constant ε in (2), can one deduce irrationality results. For Apéry’s
theorem, k = 2 and one constructs linear forms In = anζ(3) + bn, for example, as
integrals (9.2). In this case, a bound on the denominators of an, bn suffices: we have

ε = (
√

2 − 1)4 and an ∈ Z, d3
nbn ∈ Z

and the inequality

e3ε = 0.591 . . . < 1

is enough to deduce the irrationality of ζ(3). For Ball and Rivoal’s theorem, one
constructs linear forms in odd zeta values ζ(2m + 1) and applies a criterion due to
Nesterenko [25] which depends on the size of both the denominators and the numerators

of the coefficients a
(i)
j to deduce a lower bound for dimQ〈ζ1, . . . , ζk〉Q. 1

Unfortunately, there are very few cases where this works, which motivates trying to
reach a better understanding of the general principles involved. We refer to Fischler’s
Bourbaki talk for an excellent survey of known results [18].

1.3. Periods of moduli spaces M0,n. A large supply of linear forms satisfying (1)−
(3) comes from period integrals on moduli spaces. Let n ≥ 3 and let M0,n denote the
moduli space of curves of genus zero with n ordered marked points. It is isomorphic
to the complement in affine space Aℓ, where ℓ = n − 3, of a hyperplane configuration

M0,n = {(t1, . . . , tℓ) ∈ Aℓ : ti 6= tj , ti 6= 0, 1} .

A connected component of M0,n(R) is given by the simplex

Sn = {(t1, . . . , tℓ) ∈ Rℓ : 0 < t1 < . . . < tℓ < 1} .

Examples of period integrals on M0,n can be expressed as

(1.1)

∫

Sn

∏
tai

i (1 − tj)
bj (ti − tj)

cij dt1 . . . dtℓ

for suitable ai, bj, cij ∈ Z such that the integral converges. For such a family of
integrals, the first property (1) is guaranteed by the following theorem:

Theorem 1.1. The periods of moduli spaces M0,n are Q[2πi]- linear combinations of
multiple zeta values of total weight ≤ ℓ.

A general recipe for constructing linear forms in multiple zeta values is to consider
a family of convergent integrals

(1.2) If,ω(N) =

∫

Sn

fNω

1Condition (2) must be slightly modified: one can assume by clearing denominators that In has

integer coefficients, and one needs to know that |In|1/n has a small positive limit as n → ∞.
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where ω ∈ Ωℓ(M0,n; Q) is a regular ℓ-form, and f ∈ Ω0(M0,n; Q). If, furthermore, one
imposes that the rational function f has zeros along the boundary2 of Sn, then the
integrals Iℓ will be small, and condition (2) will automatically hold as well, for some
small ε. The proof of theorem 1.1 given in [7] is effective and should in principle yield

explicit bounds on the denominators (and numerators) of the rational coefficients a
(i)
j

as a function of the order of the poles of the integrand. Furthermore,

Proposition 1.2. All diophantine constructions mentioned above (with the possible
exception of Zudilin’s theorem (4)) can be expressed as integrals of the type (1.2).

The proof of this proposition uses results due to Fischler to convert the integrals
listed in Appendix 1 into a form equivalent to (1.2). Nonetheless, finding good linear
forms in zeta values amongst the integrals (1.2) is significantly harder than finding a
needle in a haystack. For example, the general integral yielding linear forms in multiple
zeta values of weight at most 5 (of interest, if one seeks linear forms in 1 and ζ(5))
depends on 20 independent parameters, which is hopelessly large.

1.4. Vanishing of coefficients. Therefore examples such as (1.2) provide an enor-
mous supply of candidates IN for irrationality proofs. The problem with this approach
is that the linear forms IN involved are rather weak, and only enable one to deduce
linear independence of a small fraction of the numbers ζi. Furthermore, the generic
integral (1.1) contains all multiple zeta values of weight up to and including ℓ. Thus,
the presence of terms such as ζ(2n), for example, for which one already knows the
linear independence by Lindemann’s theorem, blocks any further progress.

One therefore requires, in addition to (1) − (3) above:

(4) Vanishing theorems for some of the coefficients a
(i)
j .

This is already clear in the case of Apéry’s proof for ζ(3). Indeed, the generic period
integral on M0,6 gives rise to linear forms in 1, ζ(2) and ζ(3), and a naive attempt at
constructing linear forms IN only gives back a proof that one of the two numbers ζ(2)
and ζ(3) is irrational. The entire difficulty is thus to find integrals IN for which the
coefficient of ζ(2) always vanishes (without destroying properties (1) − (3)). The key
insight of Ball and Rivoal’s proof, likewise, is the use of very well-poised hypergeometric
series to construct linear forms in odd zeta values, and odd zeta values only.

The vanishing problem (4) can be rephrased in terms of algebraic geometry, and
more precisely, the cohomology of moduli spaces. In principle, this part of the problem
is purely combinatorial. An integral of the form (1.2) can be expressed as a period of
a certain relative cohomology group first introduced in [22]

m(A, B) = Hℓ(M0,n\A, B\(B ∩ A))

where A, B are boundary divisors on the Deligne-Mumford compactification M0,n.
The divisor A is determined from the singularities of the integrand, and B contains the
boundary of the closure of the domain of integration. It was shown in [22] that m(A, B)
is a mixed Tate motive over Z (which, by [9], gives another proof that its periods are
multiple zeta values). Its de Rham realisation m(A, B)dR is a finite-dimensional Q-
vector space graded in even degrees, and a naive observation (theorem 11.2) is that

grW
2km(A, B)dR = 0 ⇒ vanishing of coefficients a

(i)
j in weight k .

2or more precisely, the boundary of the inverse image of Sn in the Deligne-Mumford-Knudsen
compactification M0,n of M0,n



4 FRANCIS BROWN

This gives a sufficient condition for all multiple zeta values of weight k to disappear.3

The dimensions of the graded weight pieces grW
2km(A, B)dR can be computed from the

data of the divisors A, B, and so reduces to a (rather tricky) combinatorial problem. I
expect that the recent work of Dupont [15, 16] may shed light on how to understand
the vanishing problem (4) from this viewpoint.

As a final remark, an irreducible boundary divisor D occurs in A if and only if a
certain linear form ℓD in the exponents ai, bj, cij of the integrand (1.1) is negative.
Thus the flow of information goes as follows:

(1.3) linear inequalities ℓD ≤ 0 in the exponents of (1.1)

−→ vanishing of certain components grW
2km(A, B)dR

−→ vanishing of coefficients a
(i)
j

The challenge is to make this philosophy work, or failing that, to show that one cannot
construct moduli space motives m(A, B) with arbitrary vanishing properties. Moti-
vated by (1.3), I was only able to find a general method to force the coefficients of
sub-maximal weight 2ℓ−2 to vanish (corresponding to MZV’s of weight ℓ−1), via the
following construction.

1.5. A variant of the dinner table problem [3]. Suppose that we have n guests
for dinner, sitting at a round table. Since it could be boring to talk to the same person
for the whole duration of the meal, the guests should be permuted after the main
course in such a way that no-one is sitting next to someone they previously sat next
to. We can represent the new seating arrangement (non-uniquely) by a permutation
σ on {1, . . . , n}, which we write as (σ(1), . . . , σ(n)). The number of dinner table
arrangements was first computed by Poulet in 1919 [29].

1

4 3

52

1

34

5 2

δ0 σδ0

Figure 1. The first solution for the classical dinner table problem
is for n = 5, and is unique up to symmetries. On the left is the
original seating plan of guests; on the right, the new arrangement
after applying a permutation σ. No two neighbours are consecutive.

We need the following variant. Let δ0 denote the standard circular arrangement on
{1, . . . , n} given by the integers modulo n (the initial seating plan), and let σ be any
permutation on {1, . . . , n} (the new seating plan). Call a permutation σ convergent if
no set of k elements in {1, . . . , n} are simultaneously consecutive for δ0 and σδ0, for
all 2 ≤ k ≤ n − 2. For n ≤ 7 this is equivalent to the classical dinner table problem
but for n ≥ 8 this imposes a genuinely new condition. The figure below illustrates a
seating arrangement σ = (2, 4, 1, 3, 6, 8, 5, 7) which is a solution to the classical dinner
table problem but fails our condition for k = 4.

3It is not a necessary condition: there could be more subtle reasons for the vanishing of coefficients

a
(i)
j . For example, the action of a group of symmetries on the m(A, B)dR together with representation-

theoretic arguments might give more powerful vanishing criteria.
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5 1

8 3

2

6

7 4

σδ0

Figure 2. An arrangement of 8 guests which is not convergent: the
guests 1, 2, 3, 4 (and 5, 6, 7, 8) are consecutive for both δ0 and σδ0.

Now, given a permutation σ we associate a rational function and regular n-form

f̃σ =
∏

i∈Z/nZ

(zi − zi+1)

(zσ(i) − zσ(i+1))
and ω̃σ =

dz1 . . . dzn∏
i∈Z/nZ(zσ(i) − zσ(i+1))

on the space Cn = {(z1, . . . , zn) ∈ (P1)n : zi 6= zj} of configurations of n distinct points
in P1. They are defined up to an overall sign, which plays almost no role and shall be
ignored. They are both PGL2-invariant. The former descends to a rational function
fσ on M0,n = PGL2\Cn, the latter, after dividing by an invariant volume form on
PGL2, descends to a regular ℓ-form ωσ on M0,n.

Define the basic cellular integral to be

(1.4) Iσ(N) =

∫

Sn

fN
σ ωσ

It converges if and only if σ is a convergent permutation, as defined above. This integral
can be written in the form (1.1) by substituting (0, t1, . . . , tℓ, 1,∞) for (z1, . . . , zn) and
formally omitting dz1dzn−1dzn and all factors equal to ∞.

Clearly, the definition of the forms f̃σ, ω̃σ, and hence fσ, ωσ only depend on the di-
hedral ordering defined by the permutation σ. Furthermore, the domain of integration
in the integrals (1.4) admits a second dihedral symmetry of order 2n, and these two
dihedral symmetry groups define an equivalence relation on the set of permutations
σ. Two equivalent permutations give rise to the same family of integrals, and we call
the equivalence class a configuration. A list of convergent configurations for small n
is given in Appendix 2, together with the corresponding basic cellular integrals. As
mentioned above, the basic cellular integrals reproduce Apéry’s theorems for ζ(2) and
ζ(3) and a one-dimensional subfamily of the (two-parameter family) of linear forms in
odd zeta values used in the proof of Ball and Rivoal.

A generalisation of this construction involves replacing f̃n
σ with

f̃σ(a, b) =
∏

i∈Z/NZ

(zi − zi+1)
ai,i+1

(zσ(i) − zσ(i+1))
bσ(i),σ(i+1)

where ai,i+1 and bσ(i),σ(i+1) are integers satisfying

aσi−1,σi + aσi,σi+1 = bσi−1,σi + bσi,σi+1

for all indices i modulo Z/nZ. It descends again to a rational function fσ(a, b) on
M0,n and we define an n-parameter family of integrals

(1.5) Iσ(a, b) =

∫

Sn

fσ(a, b)ωσ
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It converges under some linear conditions on the indices a, b, and specialises to the
basic cellular integrals if one sets all parameters equal to n. For n = 5, 6, this family of
integrals reproduces precisely Rhin and Viola’s integrals for ζ(2) and ζ(3), and hence
gives the best irrationality measures for these numbers which are presently known.4 For
other convergent configurations, it gives n-parameter generalisations of the Ball-Rivoal
linear forms, and many new families which remain to be explored.

1.6. Contents. Section 2 consists of reminders on moduli spaces M0,n and basic facts
about their geometry. Section 3 defines dinner table configurations, and establishes
convergence properties for the corresponding cellular integrals. In section 4 we show
that the basic cellular integrals satisfy recurrence relations and study the effect of
duality upon them. Section 5 is concerned with properties of general cellular integrals,
and section 6 studies a certain multiplicative structure on cellular integrals coming
from functorial maps between moduli spaces. In section 7, it is shown that a very
specific family of configurations, after an appropriate change of variables, gives back
the linear forms in odd zeta values discovered by Ball and Rivoal. Section 8 discusses
the vanishing problem (4) from the cohomological point of view and some more subtle
structures, such as Poincaré-Verdier duality, which are not obviously apparent from an
inspection of integrals.

For the convenience of the reader, appendix 1 gives a list of existing integrals from
the literature which have led to the main diophantine results for zeta values. They
nearly all arise as special cases of generalised cellular integrals. Appendix 2 tabulates
some examples of basic cellular integrals in low degrees. Finally, appendix 3 is devoted
to a somewhat technical computation of the motives underlying Apery’s proofs of the
irrationality of ζ(2) and ζ(3).

1.7. Outlook and related work. Whether the ideas in this paper lead to new dio-
phantine applications remains to be seen. Insofar as it contains the linear forms of [4],
[30], [31] as special cases, it is fair to expect that it could lead to an improvement in
quantitative diophantine results. The methods described here also lead to new approx-
imations to single odd zeta values such as ζ(5) (§7.1) but it is unclear if they could
lead to an irrationality proof. Much more optimistically still, one might hope to prove
the transcendence of ζ(3) by optimizing our polynomial forms in ζ(3) along the lines of
[35]. Finally, it would be interesting to combine the geometric methods of this paper
with the conditions on numerators studied in [12, 13, 19, 37] to obtain linear forms in
antisymmetric multiple zeta values with odd arguments. There are connections with
disparate subjects such as the theory of hypergeometric functions on the one hand,
and operads [1] on the other, which remain to be explored. It would also be interesting
to compare our method with the quantum cohomology computations of [20, 21].
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independently, Christian Bogner, for the algorithmic computation of Feynman inte-
grals. Many thanks to Erik Panzer, Stephane Fischler, Clement Dupont for comments
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4The record for ζ(2) has recently been broken by Zudilin [41].
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2. Moduli spaces M0,n: geometry and periods

2.1. Coordinates. Let n ≥ 3, and let S denote a set with n elements. Let M0,S

denote the moduli space of Riemann spheres with n points labelled with elements of
S. If (P1)S

∗ denotes the space of n-tuples of distinct points zs ∈ P1, for s ∈ S, then

M0,S = PGL2\(P1)S
∗ ,

where PGL2 is the group of automorphisms of P1 acting diagonally by Möbius trans-
formations. Throughout this paper, we shall set

(2.1) ℓ = n − 3 .

When S = {s1, . . . , sn}, we often write i instead of si, and M0,n instead of M0,S.
Since the action of PGL2 on P1 is triply transitive, we can place the coordinates z1 at
0, zn−1 at 1, and zn at ∞ (note that this convention differs slightly from [7]).

We define simplicial coordinates t1, . . . , tℓ on M0,n to be:

(2.2) t1 = z2 , . . . , tℓ = zℓ+1 .

The above argument shows that M0,n is isomorphic to the complement of a hyperplane
arrangement in affine space Aℓ of dimension ℓ:

(2.3) M0,n
∼= {(t1, . . . , tℓ) ∈ Aℓ : ti /∈ {0, 1}, ti 6= tj for all i 6= j} .

Cubical coordinates x1, . . . , xℓ are defined by

(2.4) t1 = x1 . . . xℓ , t2 = x2 . . . xℓ , . . . , tℓ = xℓ .

We can also identify M0,n with a complement of hyperbolae:

(2.5) M0,n
∼= {(x1, . . . , xℓ) ∈ Aℓ : xi /∈ {0, 1}, xi . . . xj 6= 1 for all i < j} .

2.2. Compactification. There is a smooth projective compactification M0,S ⊂ M0,S

defined by Deligne, Mumford and Knudsen [24] such that the complement M0,S\M0,S

is a simple normal crossing divisor. A boundary divisor D is a union of irreducible
components of M0,S\M0,S. We shall only require the following basic facts.

(1) The irreducible boundary divisors are in one-to-one correspondence with stable
partitions S = S1 ∪ S2, where |S1|, |S2| ≥ 2 and S1 ∩ S2 = ∅. They can be
denoted by DS1|S2

or simply DS1 (or DS2) when S is clear from the context.
(2) There is a canonical isomorphism

DS1|S2
∼= M0,S1∪x ×M0,S2∪x

which can be pictured as a bouquet of two spheres joined at a point x, with
the points S1 lying in one of these spheres, the points S2 on the other.

(3) Given two distinct stable partitions S1|S2 and T1|T2 of S, the divisors DS1|S2

and DT1|T2
have non-empty intersection if and only if

Si ⊆ Tk and Tl ⊆ Sj for some {i, j} = {k, l} = {1, 2} .

By taking repeated intersections of boundary divisors one obtains a stratification on
M0,S by closed subschemes. The irreducible strata of codimension k are indexed by
trees with k internal edges and |S| leaves labelled by every element of S. The large
stratum M0,S is indexed by a corolla with no internal edges, and divisors DS1|S2

by two
corollas with leaves labelled by S1 and S2 respectively, joined along a single internal
edge. The inclusion of strata corresponds to contracting internal edges on trees.
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2.3. Real components and dihedral structures. The set of real points M0,S(R)
is isomorphic to the space of configurations of |S| distinct points on P1(R). Therefore
the set of connected components is in one-to-one correspondence

π0(M0,S(R)) ↔ {Dihedral structures on S} .

A dihedral structure δ on S is an equivalence class of cyclic orderings on S, where a
cyclic ordering is equivalent to its reversed ordering. If S = {1, . . . , n}, we denote the
standard dihedral ordering 1 < 2 < . . . < n < 1 by δ0. In simplicial coordinates, the
corresponding connected component is the open simplex

Sδ0 = {(t1, . . . , tℓ) ∈ Rℓ : 0 < t1 < . . . < tℓ < 1} .

We say that an irreducible boundary divisor D of M0,S is at finite distance with respect

to a dihedral structure δ if D(C) meets the closure of Sδ0 in M0,S(C) in the analytic
topology. Equivalently, D = DS1|S2

is at finite distance if and only if the elements of S1

and S2 are consecutive with respect to δ. Let δf denote the set of irreducible divisors at
finite distance with respect to δ. If one depicts a dihedral structure δ as a set of points
S around a circle (up to reversing its orientation), then the set of divisors at finite
distance correspond to chords in the circle which separate S into the two subsets S1

and S2. All remaining irreducible boundary divisors are said to be at infinite distance
with respect to δ. Let δ∞ denote the set of irreducible divisors at infinite distance with
respect to δ.

Example 2.1. On M0,4, δ0
f = {D{1,2}|{3,4} , D{2,3}|{1,4}} and δ0

∞ = {D{1,3}|{2,4}}.
2.4. Periods. We shall consider periods of M0,S of the form

(2.6) I =

∫

Sδ

ω

where ω ∈ Ωℓ(M0,S ; Q) is a global regular ℓ-form on M0,S . Such an integral can be
written as a Q-linear combination of integrals (1.1). It converges if and only if the order
of vanishing along all divisors D at finite distance with respect to δ is non-negative:

(2.7) vD(ω) ≥ 0 for all D ∈ δf .

The singular locus of ω is defined to be the set of irreducible divisors (necessarily
boundary divisors) along which ω has a pole:

Sing(ω) = {D irred. s.t. vD(ω) < 0}
Then condition (2.7) is equivalent to Sing(ω) ⊆ δ∞.

The set of permutations σ of S which preserve a dihedral structure δ is isomorphic
to the dihedral group Dδ on 2|S| elements. We have

(2.8)

∫

Sδ

ω =

∫

Sδ

σ∗(ω) for all σ ∈ Dδ .

Remark 2.2. It is sometimes convenient to write period integrals on M0,S in terms of
the dihedral ‘coordinates’ uc indexed by chords in an |S|-gon, which were defined in [7].
The convergence condition (2.7) and symmetry (2.8) are obvious in these coordinates.

Let S = {1, . . . , n}. In cubical coordinates, the domain Sδ0 is isomorphic to the unit
hypercube [0, 1]ℓ, and a general period integral (2.6) can be written in the form

(2.9)

∫

[0,1]ℓ

P (x1, . . . , xℓ)∏
1≤i<j≤ℓ(1 − xi . . . xj)cij

dx1 . . . dxℓ

where cij ∈ Z and P is a polynomial with rational coefficients. All examples in
Appendix 1 are either of this form, or equivalent to it by a change of variables.
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2.5. Denominators. The algorithm of [7] for computing integrals (1.1) by taking
primitives in a bar complex is effective, and should lead to bounds on the denomina-
tors. The basic observation is that a differential form P (x)dx where P (x) ∈ Z[x] is a
polynomial of degree n − 1, has a primitive

∫
P (x)dx ∈ 1

dn
Z[x]

where dn = lcm(1, 2, . . . , n). The denominator is thus bounded by dn, where n is the
order of the pole at infinity. An analysis of the steps in [7], working with Z coefficients,
should lead to effective bounds on the denominators of the coefficients of the linear
forms §1.2 in terms of the orders of the poles at infinity of the integrand.

3. Configurations and cellular integrals

3.1. Convergent configurations.

Definition 3.1. A configuration on a finite set S is an equivalence class [δ, δ′] of pairs
(δ, δ′) of dihedral structures on S modulo the equivalence relations

(3.1) (δ, δ′) ∼ (σδ, σδ′) for σ ∈ Σ(S) .

A pair of dihedral structures (δ, δ′) is convergent if it satisfies (see §2.3)

(3.2) δf ∩ δ′f = ∅ .

A configuration is convergent if it has a convergent representative (δ, δ′).

Let CS denote the set of convergent configurations on S. We can view convergent
configurations as pairs of connected components of M0,S up to automorphisms

(3.3) CS →֒ Σ(S)\
(
π0(M0,S(R)) × π0(M0,S(R))

)

Definition 3.2. The dual of a pair of dihedral structures (δ, δ′) is

(δ, δ′)∨ = (δ′, δ) .

It is well-defined on configurations, and defines an involution ∨ : CS → CS .

In order to write down convergent configurations, it is convenient to identify S with
{1, . . . , n}. A pair of dihedral structures (δ, δ′) is equivalent to (δ0, σδ0) where δ0 is
the standard dihedral ordering, where σ ∈ Σ(n) is a permutation on n letters. Define
an equivalence relation σ ∼ σ′ on permutations if (δ0, σδ0) ∼ (δ0, σ′δ0), and denote
the equivalence classes by [σ]. The condition (3.2) is equivalent to the condition that
no set of k consecutive elements (where the indices are taken modulo n)

{σi, σi+1, . . . , σi+k}
is itself a set of consecutive integers modulo n, for all 2 ≤ k ≤ n − 2. It does not
depend on the choice of representative for [σ].

The above equivalence relation on permutations can be spelt out as follows. Consider
the space of double cosets of bijections

D2n\Bij({1, . . . , n}, {1, . . . , n})/D2n

where the dihedral groups act on the source and target respectively as symmetries of
δ0. A double coset is represented by an equivalence class of permutations (σ1, . . . , σn),
where σ ∈ Σ(n), modulo the group generated by cyclic rotations

(σ1, . . . , σn) ∼ (σ2, . . . , σn, σ1)

(σ1, . . . , σn) ∼ (σ1 + 1, . . . , σn + 1)
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where the entries are taken modulo n in the second line, and the reflections

(σ1, . . . , σn) ∼ (σn, . . . , σ1)

(σ1, . . . , σn) ∼ (n + 1 − σ1, . . . , n + 1 − σn)

Given such a class of permutations σ, the pair of dihedral structures (δ0, σδ0) is well-
defined modulo the relations (3.1). This establishes a bijection between configurations
and equivalence classes of permutations. The dual of the configuration corresponding
to [σ] is the configuration represented by the inverse permutation [σ]∨ = [σ−1].

3.2. Cellular forms. To any dihedral structure δ we associate the connected compo-
nent Sδ of M0,S(R). This will serve as a domain of integration. We can also associate
a regular ℓ-form as follows. Let

ω̃δ = ±
∏

i∈Z/nZ

dzi

zδ(i) − zδ(i+1)
∈ Ωℓ+3((P1)S

∗ ; Q) ,

where the indices are taken modulo n. Clearly ω̃δ is homogeneous of degree zero and
is easily verified to be PGL2-invariant. Furthermore σ∗ω̃δ = ±ω̃σδ for any σ ∈ Σ(S),
which acts on (P1)S

∗ by permuting the components. Let

π : (P1)S
∗ → M0,S

be the natural map obtained by quotienting by PGL2. We can divide ω̃ by a rational
invariant volume form v on PGL2 to obtain a differential form [11]

ωδ ∈ Ωℓ(M0,S ; Q) .

It satisfies π∗(ωδ) ∧ v = ω̃δ for any local trivialisation of π. If we normalise v so that
ωδ = ±1, whenever |S| = 3, then ωδ is unique up to a sign for all δ. It follows that

(3.4) σ∗ωδ = ±ωσ(δ) for all σ ∈ Σ(S) .

Remark 3.3. It is possible to fix all the signs by considering cyclic structures instead
of dihedral structures, as was done in [11]. The sign plays no role for us.

Lemma 3.4. The form ωδ has a simple pole along every irreducible boundary divisor
at finite distance with respect to δ, and no other poles. In other words,

Sing(ωδ) = δf .

Proof. This is proposition 2.7 in [11]. �

When S = {1, . . . , n}, the form ωδ can be written explicitly in simplicial coordinates
as follows. We can assume by dihedral symmetry that δ(n) = n, in which case

ωδ = ± dt1 . . . dtℓ∏n−2
i=1 (tδ(i) − tδ(i+1))

where we write t0 = 0 and tn−1 = 1.

3.3. Basic cellular integrals. Given a pair of dihedral structures (δ, δ′) consider the
rational function on (P1)∗S defined as follows:

f̃δ/δ′ = ±
∏

i

zδ(i) − zδ(i+1)

zδ′(i) − zδ′(i+1)
∈ Ω0((P1)∗S ; Q) .

It is PGL2-invariant. It therefore descends to a rational function

±fδ/δ′ ∈ Ω0(M0,S; Q) .
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Duality corresponds to inversion:

(3.5) fδ/δ′ = ±
(
fδ′/δ

)−1
,

and furthermore,

(3.6) fδ/δ′ ωδ = ±ωδ′ .

Definition 3.5. For all N ≥ 0, and any pair of dihedral structures (δ, δ′) define the
family of basic cellular integrals to be

(3.7) Iδ/δ′(N) =
∣∣∣
∫

Sδ

(
fδ/δ′

)N
ωδ′

∣∣∣

It may or may not be finite.

The numbers Iδ/δ′ (0) are essentially the cell-zeta values studied in [11].

Lemma 3.6. The integral Iδ/δ′ (N) is finite if and only if (δ, δ′) satisfy δf ∩ δ′f = ∅.
Proof. See §3.4. �

Since Sδ, ωδ′ , and fδ/δ′ are Σ(S)-equivariant (up to orientation and sign) we have

Iδ/δ′ (N) = Iσδ/σδ′ (N) for all σ ∈ Σ(S) .

In particular, we obtain a well-defined map

CS × N −→ R≥0

([δ, δ′], N) 7→ Iδ/δ′ (N) .

Remark 3.7. Let δ be a dihedral structure with δ(n) = n. Then the function fδ0/δ can
be written explicitly in simplicial coordinates

fδ0/δ = ± t1(t2 − t1) · · · (tℓ − tℓ−1)(1 − tℓ)∏n−2
i=1 tδ(i)−δ(i+1)

where t0 = 0 and tn−1 = 1. In particular, it has no zeros or poles on the open standard
simplex Sℓ, and is therefore either positive or negative definite on Sℓ.

Notice that, in the case when (δ, δ′) is convergent, we have

(3.8) Iδ/δ′(N) ≤
(
max
t∈Sℓ

|fδ/δ′(t)|
)N

Iδ/δ′ (0) .

One can write fδ/δ′ as a product of dihedral coordinates [6], [7] which take value in

[0, 1] on Sℓ. This immediately implies that the maximum of |fδ/δ′(t)| on Sℓ is strictly
less than 1. One can certainly obtain much sharper bounds.

When σ ∈ Σ(n) is a permutation, we shall sometimes write

fσ for fδ0/σδ0 and ωσ for ωσδ0 .

3.4. Proof of convergence. We wish to compute the order of vanishing of fδ/δ′ along
an irreducible boundary divisor D of M0,S . For this, define

ID(i, j) =
1

2

(
I({i, j} ⊂ S1) + I({i, j} ⊂ S2)

)

for any i, j ∈ S and where D corresponds to the stable partition S1 ∪ S2 of S. The
symbol I on the right-hand side denotes the indicator function: I(A ⊂ B) is 1 if A is
a subset of B, and 0 otherwise. In [7], corollary 2.36, it was shown that

ordD
(zi − zj)(zk − zl)

(zi − zk)(zj − zl)
= ID(i, j) + ID(k, l) − ID(i, k) − ID(j, l)
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where the cross-ratio on the left is viewed in Ω0(M0,S; Q). If we define

ID(σ) =
∑

i∈Z/nZ

ID({σ(i), σ(i + 1)}) ∈ 1

2
N ,

then it follows from the definition of fδ/δ′ that

(3.9) ordDfδ/δ′ = ID(δ) − ID(δ′) .

Lemma 3.8. Let σ be a dihedral ordering on S. Then ID(σ) ≤ n
2 − 1 with equality if

and only if D ∈ σf , i.e., D is at finite distance with respect to σ.

Proof. Let D = DS1|S2
. Since S1 ( {1, . . . , n}, the sum

∑
i I({σ(i), σ(i + 1)} ⊆ S1) is

bounded above by |S1| − 1 and attains the maximum if and only if the elements of S1

are consecutive with respect to σ. Likewise for
∑

i I({σ(i), σ(i + 1)} ⊆ S2). Therefore

ID(σ) ≤ 1
2 (|S1| + |S2| − 2) = n

2 − 1 with equality if and only if D ∈ σf . �

Corollary 3.9. Let δ, δ′ be two dihedral structures. Then

ordDfδ/δ′ > 0 for all D ∈ δf ⇐⇒ δf ∩ δ′f = ∅

Proof. Let D ∈ δf . By the previous lemma

(3.10) ordD(fδ/δ′ ) = ID(δ) − ID(δ′) =
n

2
− 1 − ID(δ′)

which is strictly positive if and only if D /∈ δ′f . �

We can now prove lemma 3.6. Let δ, δ′ be two dihedral structures. Then by (2.7),
the integral (3.7) converges if and only if

(3.11) ordD(fN
δ/δ′ωδ′) ≥ 0 for all D ∈ δf .

Now, if δf ∩ δ′f = ∅, then lemma 3.4 implies that ordD(ωδ′) = 0, and the previous

corollary implies that ordD(fN
δ/δ′) ≥ N for all D ∈ δf . Therefore (3.11) holds. On the

other hand, if D ∈ δf ∩ δ′f then ordD(ωδ′) = −1 by lemma 3.4 and ordD(fN
δ/δ′) ≤ 0 by

(3.10). Therefore (3.11) fails for this divisor D.

Remark 3.10. The above argument shows that when the integral I
(δ,δ′)
N converges,

its integrand vanishes to order at least N along every boundary component of the
compactification of the domain of integration:

ordD(fN
δ/δ′ωδ′) ≥ N for all D ∈ δf

This explains why it decays rapidly as N → ∞.

The following lemma (which implies lemma 3.4) is stated here for later use.

Lemma 3.11. For any dihedral structure σ and irreducible boundary divisor D

(3.12) ordD(ωσ) =
ℓ − 1

2
− ID(σ) .

Proof. See [11] equation (2.7). �
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4. Picard-Fuchs equations

The family of basic cellular integrals satisfy interesting recurrence relations. We
briefly sketch their properties. Let (δ, δ′) be any convergent configuration and fix signs
of fδ/δ′ , ωδ′ throughout this section. Define the generating series

Fδ/δ′ (t) =
∑

N≥0

∫

Sδ

fN
δ/δ′tN ωδ′ =

∫

Sδ

ωδ/δ′(t)

where

ωδ/δ′(t) =
1

1 − tfδ/δ′

ωδ′ .

The series Fδ/δ′ (t) converges for t ≤ 1 by (3.8) and the remarks which follow. Define

a hypersurface in M0,S × A1 by the vanishing locus of the following equation

Hδ/δ′ : 1 − tfδ/δ′ = 0 .

Let Hδ/δ′ denote its Zariski closure in M0,S × A1. It is well-known how to construct,

over some open U ⊂ A1 defined over Q containing 0, an algebraic vector bundle

Hrel
dR = Hℓ

dR((M0,S\(Hδ/δ′ ∪ Aδ′), Aδ\((Hδ/δ′ ∪ Aδ′ ) ∩ Aδ))/U)

where Aσ denotes the boundary divisor
⋃

D∈Sing(ωσ) D for any dihedral structure σ,

equipped with an integrable Gauss-Manin connection

∇rel : Hrel
dR −→ Ω1

U/Q ⊗OU/Q
Hrel

dR .

Its analytic vector bundle corresponds to a complex local system Hrel
B . It is the sheaf

whose stalks at t ∈ U are the relative singular cohomology groups

(4.1) (Hrel
B )t = Hℓ

B(M0,S\(Hδ/δ′(t) ∪ Aδ′), Aδ\((Hδ/δ′(t) ∪ Aδ′) ∩ Aδ)) ⊗ C

where Hδ/δ′(t) denotes the fiber of Hδ/δ′ over the point t. Here, and later on in this

section, Hℓ
B(X, Y ) denotes Hℓ(X(C), Y (C)), for X, Y defined over Q.

The differential form ωδ/δ′(t) is defined over Q and has singularities in Hδ/δ′ ∪Aδ′ ,

so defines a section ωrel
δ/δ′ of Hrel

dR. There is a polynomial Drel
δ/δ′ ∈ Q[t, ∂t], such that

Drel
δ/δ′(ωrel

δ/δ′(t)) = 0

where ∂t stands for ∇rel
∂/∂t. Finally, since the boundary of the closure of the real simplex

Sδ is contained in Aδ(C), its relative homology class defines a locally constant section
of (Hrel

B )∨ near t = 0, and we obtain the homogeneous Picard-Fuchs equation:

Drel
δ/δ′(Fδ/δ′(t)) =

∫

Sδ

Drel
δ/δ′(ωrel

δ/δ′ (t)) = 0 .

This equation is equivalent to a recurrence relation on the coefficients of Fδ/δ′ (t).

4.0.1. Duality. The effect of duality is not yet visible due to the asymmetric roles
played by δ and δ′. To remedy this, consider, as above, the algebraic vector bundle
(perhaps after making U smaller) denoted by

HdR = Hℓ
dR((M0,S\(Hδ/δ′ ∪ Aδ′ ∪ Aδ))/U)

equipped with the Gauss-Manin connection ∇. Its complex local system HB has stalks

(HB)t = Hℓ
B(M0,S\(Hδ/δ′(t) ∪ Aδ′ ∪ Aδ)) ⊗ C

at t ∈ U . As before, the class of ωδ/δ′(t) defines a section ωδ/δ′ of HdR, which is
annihilated by an operator we denote by Dδ/δ′ ∈ Q[t, ∂t].

Lemma 4.1. Let (δ, δ′) be convergent. For all t ∈ A1, Hδ/δ′(t) ∩ Aδ = ∅.
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Proof. By corollary 3.9, fδ/δ′ vanishes along any irreducible component D of Aδ. �

There is a natural map (Hrel
dR,∇rel) → (HdR,∇) which sends ωrel

δ/δ′ to ωδ/δ′ . There

is a corresponding map on local systems Hrel
B → HB . Let t ∈ U and consider the sets

U1 = M0,S\Aδ ⊃ A1 = ∅
U2 = M0,S\(Hδ/δ′(t) ∪ Aδ′) ⊃ A2 = Aδ\(Aδ′ ∩ Aδ)

in M0,S . The second ⊃ follows from the previous lemma, which also gives

U1 ∪ U2 = M0,S\(Aδ ∩ Aδ′) ⊃ A1 ∪ A2 = A2

U1 ∩ U2 = M0,S\(Hδ/δ′(t) ∪ Aδ ∪ Aδ′) ⊃ A1 ∩ A2 = ∅

A relative Mayer-Vietoris sequence gives

→ Hℓ
B(U1 ∪ U2, A1 ∪ A2) → Hℓ

B(U1, A1) ⊕ Hℓ
B(U2, A2) → Hℓ

B(U1 ∩ U2, A1 ∩ A2) →

The natural morphism Hrel
B → HB corresponds on stalks to the second map, restricted

to the second component in the middle. Its kernel has stalks at t ∈ U the image of

ker
(
Hℓ

B(U1 ∪ U2, A1 ∪ A2) → Hℓ
B(U1, A1)

)

in Hℓ
B(U2, A2). This has no dependence on t, and is therefore constant. Thus the

kernel of the morphism (Hrel,an
dR ,∇rel) → (Han

dR,∇) of vector bundles on Uan has the

trivial connection. It follows that Dδ/δ′ωrel
δ/δ′ is a section of Om

U for some m. By clearing

denominators, we obtain an inhomogenous Picard-Fuchs equation of the form

(4.2) Dδ/δ′Fδ/δ′(t) = Pδ/δ′ (t)

where Pδ/δ′(t) ∈ C[t]. The duality is finally visible for the operator Dδ/δ′ because on

the open set M0,S\(Hδ/δ′(t) ∪ Aδ′ ∪ Aδ), we have the identity

tωδ/δ′(t) = ±ωδ′/δ(t
−1)

which follows from equation (3.6), and relates Dδ/δ′ and Dδ′/δ. If we write (4.2) as a
recurrence relation between the coefficients of Fδ/δ′ in the form

(4.3) p0(n)un + . . . + pk(n)un+k = 0

where pi ∈ Q[t], then the corresponding recurrence relation for Fδ′/δ is its dual:

(4.4) p∨0 (n)un + . . . + p∨k (n)un+k = 0

where (after possibly multiplying p∨i by (−1)i owing to sign ambiguities),

p∨i (t) = pk−i(−k − 1 − t) for all 0 ≤ i ≤ k .

In particular, if a convergent configuration [δ, δ′] is self-dual, then the coefficients of the
generating series Fδ/δ′ (t) satisfy a recurrence relation (4.3) whose coefficients satisfy
pi(t) = λ pk−i(−k − 1 − t) for all 0 ≤ i ≤ k, and some λ ∈ Q×.

Remark 4.2. The multiplicative structures on cellular integrals §6 implies that for
certain convergent configurations [δ1, δ

′
1] and [δ2, δ

′
2], there exists a convergent config-

uration [α, α′] such that Fα/α′ (t) is the Hadamard product of Fδ1/δ′

1
(t) and Fδ2/δ′

2
(t).
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5. Generalised cellular integrals

5.1. Definition. Let n = |S| ≥ 5 and let δ, δ′ be a pair of dihedral structures on S.
Define a rational function on (P1)∗S by the following formula:

(5.1) f̃δ/δ′(a, b) = ±
∏

i∈Z/nZ

(zδi − zδi+1)
aδi,δi+1

(zδ′

i
− zδ′

i+1
)
bδ′

i
,δ′

i+1

where the indices i are taken cyclically in Z/nZ and a = (aδi,δi+1), b = (bδ′

i,δ
′

i+1
) are

integers satisfying the homogeneity equations :

(5.2) aδi−1,δi + aδi,δi+1 = bδ′

j−1,δ′

j
+ bδ′

j ,δ′

j+1
whenever δi = δ′j ,

and all indices are considered modulo n. With these conditions, f̃δ/δ′(a, b) is PGL2-

invariant and descends to a rational function fδ/δ′(a, b) ∈ Ω0(M0,S; Q).

Definition 5.1. Let S, δ, δ′ be as above and suppose that δf ∩ δ′f = ∅. With a, b

parameters satisfying (5.2), define a generalised cellular form to be

(5.3) fδ/δ′(a, b)ωδ′ ∈ Ωℓ(M0,S ; Q)

Call the set of parameters a, b convergent if (5.3) has no poles along divisors D at finite
distance with respect to δ. In this case define the generalised cellular integral to be

(5.4) Iδ/δ′ (a, b) = ±
∫

Sδ

fδ/δ′(a, b)ωδ′ .

It converges by (2.7). The action of Σ(S) extends to an action on pairs of dihedral
structures (δ, δ′) and also on parameters a, b by permuting indices. Clearly (5.4) is
invariant under this action, up to a sign.

For any convergent pair (δ, δ)′, setting all ai,j , bk,l = N clearly defines a solution to
(5.2) and gives back the basic cellular integrals (3.7). We now show that there is a
non-trivial n-parameter family of convergent integrals of the form (5.4).

5.2. Parametrization. Let S = {1, . . . , n} and let σ ∈ Σ(n) be a choice of permuta-
tion such that (δ, δ′) ∼ (δ0, σδ0). To simplify the notations, we can write

(5.5) f̃σ(a, b) = ±
∏

i

(zi − zi+1)
ai,i+1

(zσi − zσi+1)
bσi,σi+1

It descends to a rational function fσ(a, b) ∈ Ω0(M0,S ; Q). In the case when n is even,
taking the alternating sum of the equations (5.2) yields the condition:

(5.6)

n∑

i=1

(−1)i(aσi−1,σi + aσi,σi+1) = 0

When n = 2k + 1 odd, the equations (5.2) uniquely determine the bσi,σi+1 in terms of
the ai,i+1, and we take the ai,i+1 as parameters in Zn. This defines a map

ρσ : Z2k+1 −→ Ωℓ(M0,S ; Q)(5.7)

a 7→ fσ(a, b)ωσ

where b is determined from a via (5.2). In the case n = 2k is even, we can choose a
parameter b ∈ b. Equation (5.6) defines a lattice Hσ ⊂ Z2k isomorphic to Z2k−1. We
can parametrize the space of generalised cellular integrands in this case by

ρσ,b : Hσ × Z −→ Ωℓ(M0,S; Q)(5.8)

(a, b) 7→ fσ(a, b)ωσ

where the remaining indices b are determined from (a, b) using (5.2).
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Proposition 5.2. Let D ⊂ M0,n be an irreducible boundary divisor isomorphic to

M0,n−1 which is neither at finite distance with respect to σδ0 nor to δ0. Then

(5.9) vD

(
fσ(a, b)ωσ

)
≥ 0

for all a, b satisfying the equations (5.2).
Let F ⊂ M0,n be an irreducible boundary divisor in δ0

f . Then

(5.10) vF

(
fσ(a, b)ωσ

)
≥

∑

i∈I

ai,i−1 −
∑

j∈J

bσj ,σj+1

where |I| = n− 2 and |J | < n− 2 are certain subsets of {1, . . . , n} depending on F . It
has strictly fewer terms with negative coefficients than with positive coefficients.

Proof. By lemma 3.4, ωσ has no poles along any such divisor D. Therefore

vD

(
fσ(a, b)ωσ

)
≥ vD(fσ(a, b)) .

For the latter, we have by (5.5)

(5.11) vD(fσ(a, b)) =
∑

i∈Z/nZ

ai,i+1ID({i, i + 1}) − bσi,σi+1ID({σi, σi+1}) .

A divisor D isomorphic to M0,n−1 corresponds to a partition S∪T of {1, . . . , n}, where
S = {p, q}, and p, q are not consecutive with respect to δ0 and σδ0. Then

(5.12) 2 vD(fσ(a, b)) =
∑

i∈Z/nZ

ai,i+1 I({i, i + 1} ⊆ T ) − bσi,σi+1 I({σi, σi+1} ⊆ T )

where T is the complement of S in {1, . . . , n}. If we denote by

A =
∑

i∈Z/nZ

ai,i+1 and B =
∑

i∈Z/nZ

bσi,σi+1

then equation (5.2) implies that A = B. Adding B − A to (5.12) gives

2 vD(fσ(a, b)) = ap−1,p + ap,p+1 + aq−1,q + aq,q+1 − bp−,p − bp,p+ − bq−,q − bq,q+

where p± are the adjacent neighbours of p with respect to the ordering σ, and likewise
for q. This quantity vanishes by (5.2) and proves the first part.

For the second part, consider a stable partition S, T where the elements of S and T
are consecutive (with respect to the standard dihedral ordering). Then by lemma 3.8,
the first sum in equation (5.11) yields n − 2 terms which occur with a plus sign, and
the second sum contributes at most n − 3 terms, which occur with a minus sign. �

Remark 5.3. The conditions (5.9) mean that the integrand is ‘weakly cellular’ in the
sense that its polar locus is contained in the set of divisors σf with certain extra divisors
corresponding to stable partitions S ∪ T where |S|, |T | ≥ 3. With a little more work,
one can find further constraints on the set of extra divisors which can occur, and yet
more constraints under the assumption that the integrand is convergent.

The region of convergence for generalised forms in parameter space is defined by
hyperplane inequalities. We know it is not compact because it contains the infinite
family of basic cellular integrals. The following corollary shows that it is genuinely
n-dimensional (i.e. not contained in a hyperplane).

Corollary 5.4. Let Rσ denote the region in the parameter space (5.7) or (5.8), de-
pending on the parity of n, which consists of points corresponding to convergent forms.
Consider the region Cn ⊂ Nn defined for all n ≥ 0 by

Cn = {(x1, . . . , xn) ∈ Nn : for all i, |xi − m| < m
n2 for some m ∈ N} .
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It contains the diagonal N →֒ Nn. Then if n = 2k + 1 is odd,

C2k+1 ⊂ Rσ ⊂ N2k+1

and if n = 2k is even,

C2k+1 ∩ (Hσ × Z) ⊂ Rσ ⊂ (Hσ ∩ N2k) × Z

Proof. For the upper bound, observe that an application of formula (5.11) for the order
of vanishing along a divisor at finite distance D corresponding to a stable partition
{i, i + 1} ∪ {1, . . . , i − 1, i + 2, . . . , n} gives

(5.13) ordD

(
fσ(a, b)

)
= ai,i+1

One verifies using (3.12) that ordD(ωσ) = 0 for such divisors D. Therefore, by (2.7),
convergence requires that all indices ai,i+1 be ≥ 0.

For the lower bound, consider the case n = 2k. The case when n is odd is similar.
Choose a cyclic ordering on σ, and assume without loss of generality that b = bσn,σ1 .

Consider a linear form (5.11). Substitute an equation (5.2) of the form

(5.14) bσ1,σ2 = aσ2−1,σ2 + aσ2,σ2+1 − bσ2,σ3

to replace the indeterminate bσ1,σ2 with its successor bσ2,σ3 . Proceed in this manner
until (5.11) is written in terms of the ai,i+1 and b only. At the end there will be at most
n2 terms. Furthermore, the sum of the positive coefficients will exceed the sum of the
negative coefficients by at least one by proposition 5.2 and since (5.14) preserves the
number of positive minus the number of negative terms. Any linear form with these
properties takes positive values on Cn. By (5.10), this region is contained in Rσ. �

The above upper and lower bounds on Rσ can easily be improved if one wishes.

5.3. Examples.

5.3.1. Dixon’s integrals [14] for 1, ζ(2). Let n = 5 and σ = (5, 2, 4, 1, 3). The gener-
alised cellular integrand is

f̃σ(a, b) = ± (z1 − z2)
a1,2(z2 − z3)

a2,3(z3 − z4)
a3,4(z4 − z5)

a4,5(z5 − z1)
a5,1

(z5 − z2)b5,2(z2 − z4)b2,4(z4 − z1)b4,1(z1 − z3)b1,3 (z3 − z5)b3,5

where the exponents satisfy a1,2 + a2,3 = b5,2 + b2,4, . . ., a5,1 + a1,2 = b4,1 + b1,3. Since
n is odd, we can take as our set of parameters ai = ai,i+1 for i ∈ Z/5Z and solve for
the bi,j. The generalised cellular integral in simplicial coordinates is

∫

0≤t1≤t2≤1

ta1
1 (t2 − t1)

a2(1 − t2)
a3

t
b1,3

2 (1 − t1)b2,4

dt1dt2
(1 − t1)t2

where b1,3 = a1 + a2 − a4 and b2,4 = a2 + a3 − a5, which follows from solving the
homogeneity equations (5.2). By (5.13) and (3.12), the valuation of the integrand
along the divisor D{12}|{345} is a1,2. There are exactly five divisors at finite distance
obtained from this one by cyclic symmetry, and therefore the convergence conditions
are exactly ai ≥ 0 for i ∈ Z/5Z. Now one can change variables to transform the
previous integral into cubical coordinates t1 = xy, t2 = y. This results in the integrals

I(a1, a2, a3, a4, a5) =

∫

[0,1]2

xa1(1 − x)a2ya4(1 − y)a3

(1 − xy)a2+a3−a5

dxdy

1 − xy

which coincide with (9.3). This family of integrals has a large group of symmetries
[31]. A geometric derivation of these transformations in terms of natural morphisms
between moduli spaces was given in [7] §7.7.
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This family of integrals yields linear forms in 1 and ζ(2). The order of vanishing of
the integrand along the five divisors at infinity are ai−2 − ai − ai+1 − 1 for i ∈ Z/5Z.
If any of these forms is ≥ 0, the coefficient of ζ(2) in I vanishes, by lemma 11.4.

5.3.2. Rhin-Viola’s integrals for ζ(3). Let n = 6 and σ = (1, 4, 2, 6, 3, 5). We choose
parameters ai = ai,i+1 and b = b3,6. Then equation (5.6) is the equation

a4 + a5 = a1 + a2 .

The generalised cellular form (up to an overall sign chosen to ensure that it is positive
on the simplex 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1) is

(5.15)
ta1
1 (t2 − t1)

a2(t3 − t2)
a3(1 − t3)

a4

t
b1,4

3 (t3 − t1)b2,4 (1 − t2)b3,5

dt1dt2dt3
t3(t3 − t1)(1 − t2)

.

Using the homogeneity equations (5.2) it can be rewritten in terms of our parameters
via b1,4 = a6 + a3 − b, b2,4 = a4 − a6 + b, and b3,5 = a2 + a3 − b. The convergence
conditions for the six divisors obtained from {12|3456} by cyclic permutations lead,
by equation (5.13) and (3.12), to inequalities ai ≥ 0 for all i ∈ Z/6Z . There are three
further divisors at finite distance, which, on applying (5.11) yield the following linear
forms, which can be reduced to our choice of parameters using (5.2):

123|456 : 1
2 (a1,2 + a2,3 + a4,5 + a1,6 + 2) = a1 + a2 + 1 ≥ 0

126|345 : 1
2 (a1,2 + a3,4 + a4,5 + a1,6 − b2,6 − b3,5) = a4 + b − a2 ≥ 0

156|234 : 1
2a2,3 + a3,4 + a5,6 + a1,6 = a6 + a2 + a3 − a4 − b ≥ 0

Thus, in our choice of parameter space, the region of convergence is defined by the
second and third hyperplanes (since the first linear form is trivially non-negative).

Lemma 5.5. Rhin and Viola’s family of integrals (9.4) for ζ(3) coincides, up to
reparametrization, with the family of generalised cellular integrals for σ = (1, 4, 2, 6, 3, 5).

Proof. Pass to cubical coordinates t1 = xyz, t2 = yz, t3 = z, and rename the parame-
ters (a1, a2, a3, a4, a6, b) by (l, s, k, q, r, r− q−h+s+k) respectively. Then (5.15) leads
to the family of period integrals on M0,6 of the form

∫

[0,1]3

xl(1 − x)syl+s(1 − y)kzl+s−q(1 − z)q

(1 − xy)k−h+s(1 − yz)h+q−r

dxdydz

(1 − xy)(1 − yz)
,

depending on the six new parameters h, k, l, q, r, s. The convergence conditions above
translate into the inequalities h, l, s, k, q, r ≥ 0, l + s − q ≥ 0, r + k − h ≥ 0. This is
exactly the family of integrals (9.4), after applying the change of variables

(5.16) (x, y, z) 7→
(
1 − xy,

1 − y

1 − xy
, z

)
.

�

In particular, this family of integrals gives linear forms in 1, ζ(3) by [31].

5.3.3. Generalised cellular family for σ = (8, 2, 7, 3, 6, 4, 1, 5). Choose as parameters
ai = ai,i+1 for i ∈ Z/8Z and b = b5,8. The equation (5.6) is then the relation

Hσ : a6 + a7 + a8 = a2 + a3 + a4

A reduced set of convergence conditions are given by ai ≥ 0 for all i ∈ Z/8Z, and

128|34567 a1 + b − a7 ≥ 0
1278|3456 a3 + a4 − a6 ≥ 0
1234|5678 a5 + a6 + a7 − b + 1 ≥ 0
456|12378 a1 + a2 + b − a6 − a7 ≥ 0
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The corresponding divisor is indicated on the left hand-side. All other convergence
conditions are a consequence of these ones. The integral is given by

I(a, b) =

∫

S5

ta1
1 (t2 − t1)

a2(t3 − t2)
a3(t4 − t3)

a4(t5 − t4)
a5(1 − t5)

a6

(1 − t1)b2,7(1 − t2)b3,7t
b1,4

3 t
b1,5

4 (t5 − t2)b3,6 (t5 − t3)b4,6

ωσ

where

ωσ =
dt1 . . . dt5

(1 − t1)(1 − t2)(t5 − t2)(t5 − t3)t3t4
and the parameters in the denominator are given by

b2,7 = a1 + a6 − a3 − a4 + b , b4,6 = a4 + a5 + a6 + a7 − a1 − a2 − b

b3,7 = a3 + a4 + a7 − a1 − b , b1,4 = a1 + a2 + a3 − a5 − a6 − a7 + b

b3,6 = a1 + a2 − a4 − a7 + b , b1,5 = a4 + a5 − b

Using the symbolic integration programs due to Erik Panzer [27, 28], or [10], one can
compute many examples of such generalised cellular integrals and finds experimentally
that they are linear combinations of 1, ζ(3), ζ(5) only.5. I made a half-hearted attempt
to search for I(a1, . . . , a7, b) in which the coefficient of ζ(3) vanishes. Tantalisingly,
I found the following examples, which could be part of an infinite sequence of ap-
proximations to ζ(5) (perhaps after applying a symmetry argument or modifying the
numerators of the family I(a, b)), or could just be accidental:

I(1, 0, 0, 1, 0, 0, 0, 0) = 2ζ(5) − 2

I(2, 0, 0, 2, 0, 0, 0, 0) = 2ζ(5) − 33

16

I(3, 2, 0, 3, 2, 0, 2, 2) = 60ζ(5) − 161263

2592

In a different direction, a residue computation shows that a large family of these
integrals has vanishing ζ(5) coefficient, and hence gives linear forms in 1, ζ(3). It can
be made explicit by applying a version of lemma 11.4 and computing the order of
vanishing of the integrand along a cellular boundary divisor corresponding to σ. It
would be interesting to know whether this leads to new approximations to ζ(3).

6. Multiplicative structures

There are partial multiplication laws between cellular integrals generated by ‘prod-
uct maps’ between moduli spaces.

6.1. Product maps. Let S be a set with n ≥ 3 elements, and let S1, S2 ⊂ S be
subsets satisfying

|S1 ∩ S2| = 3 and S = S1 ∪ S2 .

A product map, defined in [7] §2.2, §7.5, is the product of forgetful maps

m : M0,S −→ M0,S1 ×M0,S2 .

It follows from the assumptions on S1 and S2 that is an open immersion, and that the
dimensions of the source and target are equal.

Now if δ1, δ2 are dihedral structures on S1, S2 then

m−1(Sδ1 × Sδ2) =
⋃

δ:δ|Si
=δi

Sδ

5Wadim Zudilin has very recently proved that this family of integrals is equivalent to another
family considered by Viola [36], and similar to integrals in [37], [38] (private communication)
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where the union is over the set of dihedral structures δ on S whose restrictions to
S1, S2 coincide with δ1, δ2. Let ωi ∈ Ω|S|i−3(M0,Si) for i = 1, 2. Then

(6.1)

∫

Sδ1

ω1 ×
∫

Sδ2

ω2 =

∫

m−1(Sδ1
×Sδ2

)

m∗(ω1 ⊗ ω2)

in the case when all terms converge. This formula can be used to multiply two cellular
integrals. It gives a third cellular integral under certain conditions on δ1, δ2.

6.2. Multiplication of pairs of dihedral structures. Fix a set

T = {1, 2, 3}
on three elements, with the ordering 1 < 2 < 3. Define a triple in a set S with n ≥ 3
elements to be an injective map t : T →֒ S.

Definition 6.1. Let (δ, δ′) be a pair of dihedral structures on S, and let t : T →֒ S be
a triple. We say that (δ, δ′) is multipliable along t if:

(1) The elements t(1), t(2), t(3), in that order, are consecutive with respect to δ.
(2) The elements t(1), t(3) are consecutive with respect to δ′.

We say that a configuration on S is multipliable, if for some, and hence any represen-
tative (δ, δ′), there exists a triple t in S satisfying (1) and (2).

Remark 6.2. Note that (δ, δ′) is multipliable along t : T →֒ S if and only if it is

multipliable along t̃ : T →֒ S, where (t̃(1), t̃(2), t̃(3)) = (t(3), t(2), t(1)).

Suppose that we have two pairs of dihedral structures (δ1, δ
′
1) on S1 and (δ2, δ

′
2) on

S2, and ti : T →֒ Si, for i = 1, 2 such that

(δ1, δ
′
1) and (δ2, δ

′
2)

∨ = (δ′2, δ2) are multipliable along t1, t2 respectively .

Note that it is the dual of (δ2, δ
′
2) which must be multipliable along t2. Let

S = S1 ∪t1=t2 S2

denote the disjoint union of the sets S1 and S2 modulo the identification t1(i) = t2(i)
for i = 1, 2, 3. Finally, we can define the product to be

(δ1, δ
′
1) ⋆t1,t2 (δ2, δ

′
2) = (α, α′)

where α (respectively α′) is the unique dihedral structure on S whose restrictions to
Si coincide with δi (respectively, δ′i) for i = 1, 2. In the language of [11], α is a relative
shuffle of (cyclic structures representing) δ1 and δ2, and similarly for α′, δ′1, δ

′
2.

Example 6.3. In the following examples, a tuple (s1, . . . , sn) denotes the dihedral
structure in which si are arranged consecutively around a circle (considered modulo
reflections). Firstly, the pair of dihedral structures

(
(p1, p2,p3,p4,p5), (p2,p4, p1,p3,p5)

)

is multipliable along (1, 2, 3) 7→ (p3, p4, p5). Consider the pair of dihedral structures
(
(q1, q2, q3,q4,q5, q6), (q6, q2,q4,q1,q5, q3)

)
.

Its dual is multipliable along (1, 2, 3) 7→ (q4, q1, q5). Let S = {p1, p2, p3, p4, p5, q2, q3, q6}.
The product of these two dihedral structures is

(
(p1, p2, p3, q3, q2, p4, q6, p5), (p3, p1, p4, p2, p5, q3, q6, q2)

)

The configuration class of this pair is denoted by 8π1 in appendix 1.

Note that the multiplication laws on configurations are not unique: two configura-
tions can have different representatives which multiply together in different ways.
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p3

p4p5

p1

p2

q4

q1q5 q6

q2

q3

p3

p4p5

p1

p2

q6

q2

q3

7→

Figure 3. A graphical depiction of the left-hand factors in example
6.3: a dihedral structure can be depicted as a set of points around the
triangle ti(T ). The triangle on the right is obtained by superimposing
the two triangles on the left and identifying p3 = q4, p5 = q5, p4 = q1.

6.3. Multiplication of generalised cellular integrals.

Lemma 6.4. Let (δ, δ′) be a pair of dihedral structures which is multipliable along
t : T →֒ S, and let aδi,δi+1 , bδ′

i,δ
′

i+1
denote parameters which are defined whenever

{δi, δi+1} 6⊂ t(T ) (resp. {δ′i, δ′i+1} 6⊂ t(T ))

and satisfy the homogeneity equations

aδi−1,δi + aδi,δi+1 = bδ′

j−1,δ′

j
+ bδ′

j,δ′

j+1
if δi = δ′j ,

whenever all terms are defined. Then there is a unique way to define parameters
aδi,δi+1 , bδ′

i,δ
′

i+1
for all i such that the homogeneity equations (5.2) hold.

Furthermore, if all parameters aij and bij which were initially defined were equal to
N , then the extended set of parameters are also all equal to N .

Proof. For simplicity, we can renumber labels so that t(T ) = (1, 2, 3), and the dihedral
orderings can be assumed to be of the form

δ = (. . . , p1ℓ, 1, 2, 3, p3r, . . .) and δ′ = (1, q1r, . . . , q2ℓ, 2, q2r, . . . , q3ℓ, 3)

The extra homogeneity equations which need to be satisfied are of the form

ap1ℓ,1 + a1,2 = b3,1 + b1,q1r

a1,2 + a2,3 = bq2ℓ2 + b2q2r

a2,3 + a3,p3r = bq3ℓ3 + b31

which can be uniquely solved for a1,2, a2,3 and b3,1. �

The lemma is clearly true if one replaces a pair of dihedral structures by their dual.
Now let (δ1, δ

′
1) and (δ2, δ

′
2)

∨ be two pairs of dihedral structures on S1, S2 and let
(α, α′) denote their product with respect to ti : Ti →֒ Si for i = 1, 2 as defined above.
Then α, α′ are dihedral structures on S = S1 ∪t1=t2 S2.

Consider a set of parameters a, b:

aαi,αi+1 ∈ Z and bα′

i,α
′

i+1
∈ Z

which satisfy the homogeneity equations (5.2). Since the restrictions of α, α′ to Si are
δi, δ

′
i, the restriction of the sets of parameters a, b to those terms whose indices lie in

Si satisfy the conditions of lemma 6.4. Denote their extensions defined in the lemma
by ai, bi, for i = 1, 2.

Proposition 6.5. With the above notations,

(6.2) Iα/α′(a, b) = ±Iδ1/δ′

1
(a1, b1) Iδ2/δ′

2
(a2, b2)
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The integral on the left-hand side is finite if and only if both integrals on the right-hand
side are finite.

In particular, in the case when all parameters are equal to N , we obtain a multi-
plicative formula for basic cellular integrals

(6.3) Iα/α′ (N) = Iδ1/δ′

1
(N)Iδ2/δ′

2
(N) for all N ≥ 0 .

Proof. The proof is an application of the product formula (6.1). Let

m : M0,S −→ M0,S1 ×M0,S2

be the product map. By construction, α is the unique dihedral structure on S which
restricts to δ1 and δ2, so the domain of integration is m−1(Sδ1 × Sδ2) = Sα.

Therefore it suffices to show that

m∗(fδ1/δ′

1
(a1, b1)ωδ′

1
⊗ fδ2/δ′

2
(a2, b2)ωδ′

2
) = ± fα/α′(a, b)ωα′ .

The case when all parameters are equal to zero is the identity m∗(ωδ′

1
⊗ ωδ′

2
) = ±ωα′

and follows from [11], proposition 2.19, since α′ is the unique dihedral structure which
restricts to δ′1, δ

′
2. It remains to show that

(6.4) m∗(fδ1/δ′

1
(a1, b1) ⊗ fδ2/δ′

2
(a2, b2)) = ± fα/α′(a, b) .

To see this, denote the marked points of S1 by x1, . . . , xr and S2 by y1, . . . , ys. Us-
ing PGL2, we can place the elements of t1(T ) ⊂ S at 0, 1,∞, and so (x1, x2, x3) =
(0, 1,∞) = (y1, y2, y3). The expression fδ1/δ′

1
(a1, b1) ⊗ fδ2/δ′

2
(a2, b2) is given by the

limit, as both (x1, x2, x3) and (y1, y2, y3) tend to (0, 1,∞), of

∏

i∈Z/rZ

(xδ1(i) − xδ1(i+1))
aδ1(i),δ1(i+1)

(xδ′

1(i) − xδ′

1(i+1))
bδ′

1
(i),δ′

1
(i+1)

×
∏

i∈Z/sZ

(yδ2(i) − yδ2(i+1))
aδ2(i),δ2(i+1)

(yδ′

2(i) − yδ′

2(i+1))
bδ′

2
(i),δ′

2
(i+1)

since terms of the form (xi − xj)
n or (yi − yj)

n where i, j ∈ {1, 2, 3}, will drop out in
the limit. Denote the marked points of S by (z1, . . . , zr+s−3). The map m sends

(z1, . . . , zr+s) 7→ (z1, . . . , zr) × (z1, z2, z3, zr+1, . . . , zr+s)

By definition of the dihedral structures α, α′ the left-hand side of (6.4) is exactly the
limit as (z1, z2, z3) tends to (0, 1,∞) of the following expression

∏

i∈Z/(r+s−3)Z

(zαi − zαi+1)
aαi,αi+1

(zα′

i
− zα′

i+1
)
bα′

i
,α′

i+1

which is fα/α′(a, b) up to a sign. �

7. Linear forms in odd zeta values

The Ball-Fischler-Rivoal integrals, which can be used [4, 32, 18] to prove that the
Q-vector space generated by odd zeta values is infinite dimensional, are a special case
of a certain family of generalised cellular integrals.

Definition 7.1. Let m ≥ 3. Consider the family of convergent configurations defined
by the equivalence class of permutations

(7.1) πm
odd = (2m, 2, 2m− 1, 3, 2m− 2, 4, . . . , m, 1, m + 1)

Proposition 7.2. Let 1 ≤ r < m. With the special choice of parameters

am,m+1 = a2m,1 = bm+1,2m = bm,1 = rn

and setting all other parameters a, b equal to n, the generalised cellular integrals I(a, b)
coincide with the family of integrals (9.8) where a = 2m.

In particular, the basic cellular integrals for πm
odd correspond to the case r = 1.
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Proof. Set p = m−1, and π = πm
odd. The integrand corresponding to this configuration

is fn
π grnωπ where fπ is the basic cellular integrand (all parameters equal to 1), and g

is the function represented by the cross-ratio

g =
(zm − zm+1)(z2m − z1)

(zm+1 − z2m)(zm − z1)
.

Writing these in cubical coordinates x1, . . . , x2p−1 gives

fπ =

∏p−1
i=1 (xi . . . x2p−i)

∏2p−1
i=1 (1 − xi)∏p−1

i=1 (1 − xi . . . x2p−i)(1 − xi+1 . . . x2p−i)
, g =

xp − 1

xp
.

Perform the following change of variables in two stages. First set xp = 1 − s2p−1, and

xi =
s2i−1 − 1

s2i − 1
, xp+i =

s2p−2i − 1

s2p−2i+1 − 1
for 1 ≤ i < p .

Next perform the change of variables si = y1 . . . yi for 1 ≤ i ≤ 2p − 1. One easily
verifies that this gives the integral (9.8). The details are somewhat tedious and are
omitted, but one checks that in the new variables is:

fπ =

∏2p−1
i=1 yi(1 − yi)

(1 − y1 . . . y2p−1)
∏p−1

i=1 (1 − y1 . . . y2i)
, g =

y1 . . . y2p−1

1 − y1 . . . y2p−1

The differential form ωπ can be computed similarly and becomes

dy1 . . . dy2p−1

(1 − y1 . . . y2p−1)
∏p−1

i=1 (1 − y1 . . . y2i)

Finally, one must check that the above change of variables defines a homeomorphism of
the unit hypercube {(x1, . . . , x2p−1) : 0 ≤ xi ≤ 1} with {(y1, . . . , y2p−1) : 0 ≤ yi ≤ 1}.

The generalised cellular integrals for the above choice of parameters is then
∫

[0,1]2p−1

fn
π grn ωπ

which coincides with the family of integrals (9.8). �

In particular, by [32, 4] this family of integrals yield linear forms in odd zeta values
1, ζ(3), . . . , ζ(2m− 3). It is highly likely that the same holds for Iπm

odd
(a, b) (including

the example of §5.3.3), for any convergent values of the parameters.

Remark 7.3. The evidence suggests that these families of integrals have symmetry
groups and identities of hypergeometric type generalising those discovered by Rhin
and Viola. It would be interesting to study these groups with a view to applying the
group method of Rhin and Viola to linear forms in odd zeta values.

Proposition 7.4. Let m ≥ 2. The generalised cellular integrals corresponding to the
sequence of convergent configurations

(7.2) πm
even = (2m + 1, 2, 2m, 3, 2m− 1, 4, . . . , m + 2, 1, m + 1)

with parameters given by

a1,2m+1 = am+1,m+2 = bm+1,2m+1 = b1,m+2 = rn

and all other parameters equal to n, are equal to the family (9.8) where a = 2m − 1.
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Proof. Write the integrand corresponding to this configuration in cubical coordinates
x1, . . . , x2m−2 . Perform the change of variables, xm = 1 − s2m−2, and

xi =
s2i−1 − 1

s2i − 1
for 1 ≤ i < m , xm+i =

s2m−2i − 1

s2m−2i+1 − 1
for 1 < i ≤ m .

A final change of variables si = y′
1 . . . y′

i gives the integral (9.8). �

This family seems to yield linear forms in even zeta values 1, ζ(2), . . . , ζ(2m − 2)
for all values of the parameters. Note that there are many other families with an
(apparently) similar property such as the following family for all n ≥ 2:

(2n + 1, n, 2n− 1, n − 1, . . . , 2, n + 2, 1, n + 1)

It would be interesting to know if they can be used to improve on the presently known
transcendence measures for π2.

7.1. The dual linear forms. The generalised cellular integrals of the configurations(
πm

odd

)∨
which are dual to (7.1) experimentally produce linear forms in

1, ζ(2), . . . , ζ(2m − 6), ζ2m−3

where ζ2m−3 is a polynomial in odd zeta values and even powers of π of weight 2m−3.
As discussed in §8, we can define motivic versions of the generalised cellular integrals
taking values in motivic multiple zeta values. It now makes perfect sense to project
the ζm(2) to zero, yielding linear forms in 1 and ζm(2m − 3) only. Taking the period
gives linear forms in 1 and ζ(2m − 3). These linear forms are often small.

Example 7.5. Consider the case m = 4, denoted 8π
∨
8 in Appendix 1. Then

ω
8π∨

8
=

dt1 . . . dt5
(t1 − t3)t3(1 − t4)(t4 − t2)(t2 − t5)

and an example of a generalised cellular integral is:

∫

S8

t81(t1 − t2)
8(t2 − t3)

8(t3 − t4)
7(t4 − t5)

8(t5 − 1)8

(t1 − t3)6t93(1 − t4)9(t4 − t2)6(t2 − t5)10
ω

8π∨

8
= a0 + a1ζ(2) + a2ζ5

where ζ5 = 2ζ(2)ζ(3) + ζ(5) and a0, a1, a2 ∈ Q. Either by computing with motivic
multiple zeta values, or working with relative cohomology classes, one can ensure the
coefficients ai are well-defined. We obtain using [28] a linear form a0 + a2ζ(5) where

a0 = −48144548550856003417243773593

19289340000
, a2 = 2407028604043866880

The Z-linear form obtained by clearing denominators is less than 1, which is what
is required for an irrationality proof. There are many similar examples. An infinite
family of such examples would suffice to prove the irrationality of ζ(5).

8. Cohomology

A proper understanding of problem (4) seems to require cohomological and motivic
methods. For this reason, I include a brief discussion of these ideas.
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8.1. Moduli space motives. The integrals (1.1) are periods of the motives considered
in [22]. For |S| ≥ 4 let A, B ⊂ M0,S be a pair of boundary divisors such that A and
B have no common irreducible components. Let ℓ = |S| − 3 and define

m(A, B) = Hℓ(M0,S\A, B\(B ∩ A))

in the category MT (Z) of mixed Tate motives over Z. In particular, it has a de Rham
realisation m(A, B)dR which is a finite dimensional graded vector space over Q, and a
Betti realisation m(A, B)B which is a finite dimensional vector space over Q, equipped
with an increasing weight filtration W . There is a comparison isomorphism

compB,dR : m(A, B)dR ⊗Q C
∼−→ m(A, B)B ⊗Q C

which is compatible with weight filtrations, where the weight filtration on m(A, B)dR

is the filtration associated to its grading. A convergent period integral of the form

I =

∫

Sδ

ω where ω ∈ Ωℓ(M0,S\A; Q)

can be interpreted as follows. Let A = ∪D∈Sing(ω)D and B = ∪D∈δf
D. By (2.7), A

and B have no common irreducible components. The integrand ω defines a relative
cohomology class [ω] ∈ m(A, B)dR via the surjective map of global forms

Ωℓ(M0,S\A, B\(A ∩ B); Q) −→ Ωℓ(M0,S\A; Q)

It is surjective because the irreducible components of B have dimension ℓ − 1 and
so the restriction of ω to B necessarily vanishes. On the other hand, the domain
Sδ defines a relative homology cycle in singular (Betti) homology of the underlying
complex manifolds with Q coefficients:

[Sδ] ∈ HB
ℓ (M0,S\A, B\(B ∩ A)) =

(
Hℓ

B(M0,S\A, B\(B ∩ A))
)∨

Thus we have [ω] ∈ mdR(A, B) and [Sδ] ∈ m(A, B)∨B , and the period integral can be
interpreted via the Betti-de Rham comparison map

∫

Sδ

ω = 〈compB,dR [ω], [Sδ]〉 ∈ C

The pair of divisors A, B - which are described by combinatorial data - determine the
numbers which can occur in the previous integral, as we shall presently explain.

8.2. Motivic periods and vanishing. We refer to [8], §2 for background on motivic
periods. The ring of motivic periods of MT (Z) is defined to be

Pm = O(IsomMT (Z)(ωdR, ωB)) .

It is a graded ring, equipped with a period homomorphism

per : Pm −→ C

by evaluating on compdR,B. We apply this construction to integrals on moduli spaces.
Let ω, Sδ, be as above and define the motivic period integral to be

Im(ω, Sδ) = [m(A, B), [ω], [Sδ]]
m ∈ Pm ,

which is the function φ 7→ 〈φ(ω), Sδ〉 : IsomMT (Z)(ωdR, ωB) → A1. Its period is

per Im(ω, Sδ) =

∫

Sδ

ω .
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Theorem 8.1. The motivic period Im(ω, Sδ) is a Q-linear combination of motivic
multiple zeta values of weights ≤ ℓ. Furthermore, if

grW
2mm(A, B) = 0

then the coefficients of motivic multiple zeta values of weight m in Im(ω, Sδ) vanish.

Proof. The motivic period Im(ω, Sδ) is in fact a real, effective motivic period because
Sδ is invariant under real Frobenius, and m(A, B) has weights in [0, ℓ] (see [8], §2).
The first part follows from [8], proposition 7.1 (i), which is a corollary of [9]. 6

Now let {[ω(m)
i ]} be a basis for grW

2m m(A, B)dR for 0 ≤ m ≤ ℓ. Then there exist

rational numbers a
(m)
i ∈ Q such that

[ω] =
∑

i,m

a
(m)
i [ω

(m)
i ]

and hence, by bilinearity of motivic periods,

Im(ω, Sδ) =
∑

i,m

a
(m)
i [m(A, B), [ω

(m)
i ], [Sδ]]

m ,

where [m(A, B), [ω
(m)
i ], [Sδ]]

m ∈ Pm are motivic periods of weight m, since the weight-
grading is determined from the de Rham grading [8] (2.13). The second part is imme-
diate. �

Applying the period homomorphism immediately gives the

Corollary 8.2. The integral I is a Q-linear combination of multiple zeta values of
weights ≤ ℓ. If grW

2mm(A, B)dR vanishes, then this linear combination does not involve
multiple zeta values of weight m.

Thus a simple-minded method to achieve vanishing is to find boundary divisors
A, B, such that certain graded pieces of the de Rham cohomology m(A, B)dR vanish.
This is possible for Apéry’s approximations to ζ(2) and ζ(3) (Appendix 3).

Remark 8.3. A more promising approach to force vanishing of coefficients, which I
have not explored, is via representation theory. Suppose that there is a finite group
G which acts upon m(A, B)dR (for instance, via birational transformations of M0,S).
Then each graded piece (m(A, B)dR)n is a finite-dimensional Q[G]-module. Let V
be an irreducible representation of G over Q and πV the corresponding projector.
Consider the motivic periods πV Im(ω, Sδ) = Im(πV ω, Sδ) . If the representation V
does not occur in a component grW

2mm(A, B)dR, then πV Im(ω, X) cannot contain a
motivic multiple zeta value of weight m.

8.3. Remarks on the Galois coaction. The ring of motivic periods carries an action
of the de Rham motivic Galois group GdR = Isom(ωdR, ωdR). This is equivalent to a
coaction by O(UdR), where UdR is the unipotent radical of GdR. General nonsense
provides an abstract formula for this coaction (see for example [8], equation (2.12).)

Problem 8.1. Find a combinatorial formula for the motivic coaction on the Im(ω, Sδ).

The analogous problem for motivic multiple zeta values is known, due to Goncharov,
Ihara, and [9]. The reason this problem is relevant for irrationality questions is the
fact that a motivic period which is primitive for this coaction is necessarily a linear
combination of single motivic zeta values only ([9]). Thus a solution to this problem

6This proof uses the main theorem of [9] and is not effective. It would be interesting to have a
version along the lines of proof of [7] which actually enables one to control denominators.
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would give a criterion for obtaining linear forms in single zeta values, as opposed to
multiple zeta values. It is already an interesting problem to try to prove geometrically
that the examples of §7 are primitive.

8.4. Duality. Poincaré-Verdier duality states that

(8.1) m(A, B) = m(B, A)∨ ⊗ Q(−ℓ)

where both sides have weights in the interval [0, 2ℓ], since M0,S is smooth projective
and A ∪ B normal crossing. In particular,

(8.2) grW
m m(A, B)dR

∼= grW
2ℓ−mm(B, A)dR ,

which enables us to transfer vanishing theorems from m(A, B) to m(B, A).
The effect of duality on motivic periods is more subtle, and requires some more

definitions. In [8], (2.20), we defined a canonical homomorphism

(8.3) π = πu,m+ : Pm,+
MT (Z) −→ O(UdR)

where Pm,+
MT (Z) ⊂ Pm

MT (Z) denotes the subspace of effective motivic periods. The kernel

of π is the ideal generated by Lm, the motivic version of 2πi. There is an antipode

S : O(UdR) −→ O(UdR),

which corresponds to duality in the Tannakian category MT (Z). Since, in a graded
Hopf algebra there is a recursive formula for the antipode in terms of the coproduct,
the map S can be computed explicitly on the level of unipotent de Rham versions of
motivic multiple zeta values (see [8], §2.4). In particular, we have

(8.4) S(ζu(2n + 1)) = −ζu(2n + 1) ,

where ζu is the image of ζm under the map (8.3).
The periods of m(A, B) and m(B, A) are therefore related by passing to unipotent

de Rham periods via the map π, which kills ζm(2), and applying the antipode S.
To state this cleanly we make some simplifying assumptions. Let A, B be boundary
divisors on M0,S with no common components, and let ℓ = |S| − 3. Suppose that

ω ∈ m(A, B)dR and ω′ ∈ m(B, A)dR

X ∈ m(A, B)∨B and X ′ ∈ m(B, A)∨B
and to simplify matters, let us assume that

grW
0 m(A, B) ∼= Q(0) and grW

2ℓ m(A, B) ∼= Q(−ℓ) .

Then the same is true for m(B, A), by duality (8.1). For any object M ∈ MT (Z)
satisfying W−1M = 0, we defined in [8], (2.21) a map of Q-vector spaces

ct
0 : M∨

B −→ M∨
dR

as the dual of the map c0 : MdR = ⊕grW
2kMdR → grW

0 MdR
∼= grW

0 MB = W0MB ⊂ MB.
With the above assumptions, the classes of ω and tc0(X

′)(−ℓ) in grW
2ℓ m(A, B)dR differ

by a rational number. Therefore let α ∈ Q such that

[tc0(X
′)(−ℓ)] = α [ω] ∈ grW

2ℓ m(A, B)dR

Likewise, let α′ ∈ Q such that [tc0(X)(−ℓ)] = α′ [ω′] ∈ grW
2ℓ m(B, A)dR.

Lemma 8.4. With these assumptions, we have

α′ πIm(ω, X) ≡ α S(π(Im(ω′, X ′)))

where the equivalence means modulo the image under the map π of motivic multiple
zeta values of weight ≤ ℓ − 1.
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Proof. We have Im(ω′, X ′) = [m(B, A), ω′, X ′]m and hence by [8], (2.22),

π[m(B, A), ω′, X ′]m = [m(B, A), ω′, tc0(X
′)]u

The antipode S on matrix coefficients [M, v1, v2]
u is [M∨, v2, v1]

u, so we have

SπIm(ω′, X ′) = [m(B, A)∨, tc0(X
′), ω′]u = [m(A, B)(ℓ), tc0(X

′), ω′]u

Now [V (r), v1(r), v2(r)]
u = (Lu)r[V, v1, v2]

u, and since Lu = 1, we have [V, v1, v2]
u =

[V (r), v1(r), v2(r)]
u for all r ∈ Z. Since πIm(ω, X) = [m(A, B), ω, tc0X)]u, the state-

ment follows. �

In other words, the highest weight part of Im(ω, X) is related, modulo ζm(2), to the
highest weight part of Im(ω′, X ′) via the antipode on unipotent de Rham periods.

Remark 8.5. In the case when the motive m(A, B) is self-dual, these observations give
some non-trivial constraints on the periods which can occur. For example, via the
equation S(ζu(3, 5)) = ζu(3, 5) + 5ζu(3)ζu(5), we see that ζ(3, 5) can never occur as a
period of a self-dual motive. Therefore the self-dual cellular values for M0,11 (which
we expect to be periods of self-dual motives) should evaluate to polynomials in single
zeta values only.

9. Appendix 1: A short compendium of integrals

The literature which has grown out of Apéry’s irrationality proofs for ζ(2) and ζ(3),
and in particular, Beuker’s interpretation (found independently by Cordoba) using
elementary integrals [5], is vast. I have selected a very incomplete list of integrals with
various irrationality applications and reproduced them here in their original notations.
The integrals below are referred to in the main text, but there are many others that
could also have been included.

9.1. Beukers’ integrals for ζ(2) and ζ(3). The following family of integrals:

(9.1)

∫ 1

0

∫ 1

0

xn(1 − x)nyn(1 − y)n

(1 − xy)n+1
dxdy [5], Eqn.(5)

for n ≥ 0, are linear forms in 1 and ζ(2), and give exactly Apéry’s proof of the
irrationality of ζ(2). In [5], Beukers introduces the following family of integrals

(9.2)

∫ 1

0

∫ 1

0

∫ 1

0

xn(1 − x)nyn(1 − y)nwn(1 − w)n

(1 − (1 − xy)w)n+1
dxdydw [5], Eqn. (7)

and proves that they give linear forms in 1 and ζ(3), identical to those considered by
Apéry, and hence leads to the irrationality of ζ(3) ([5], [18] §1.3).

9.2. Rhin and Viola’s generalisations to several parameters. In [30], Rhin and
Viola consider a generalisation of (9.1) depending on parameters h, i, j, k, l ≥ 0

(9.3)

∫ 1

0

∫ 1

0

xh(1 − x)iyj(1 − y)k

(1 − xy)i+j−l

dxdy

1 − xy

which give linear forms in 1, ζ(2). These integrals had previously been considered by
Dixon [14] in 1905.

In [31], Rhin and Viola consider a family of integrals generalising (9.2) which depend
on parameters h, j, k, l, m, q, r, s ≥ 0:

(9.4)

∫ 1

0

∫ 1

0

∫ 1

0

xh(1 − x)lyk(1 − y)szj(1 − z)q

(1 − (1 − xy)z)q+h−r

dxdydz

1 − (1 − xy)z

subject to the conditions j+q = l+s and m = k+r−h. This family yields linear forms
in 1, ζ(3). The families (9.3) and (9.4), combined with the group method initiated in
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the same papers yield the best irrationality measures for ζ(2) and ζ(3) which are
presently known (see [31], [18] §3.1).

9.3. Sorokin’s integrals in ζ(2n). In [35] Sorokin considers the integrals

(9.5)

∫ 1

0

. . .

∫ 1

0

n∏

j=1

un
j (1 − uj)

nvn
j (1 − vj)

n

( 1
u1v1...uj−1vj−1

− ujvj)n+1
dujdvj

and proves that they give linear forms in even zeta values to deduce a new proof of the
transcendence of π. By clearing the terms in the denominator and renaming variables
in accordance with [17] (7), one obtains the family for n = 2p even:

(9.6)

∫

[0,1]N

(y1y2)
p(N+1)−1(y3y4)

(p−1)(N+1)−1 . . . (yN−1yN)N

∏
k∈{2,...,N} even(1 − y1y2 . . . yk)N+1

×
N∏

k=1

(1 − yk)Ndy1 . . . dyN .

This family of integrals are periods of the moduli space M0,2n+3 of the form (2.9). I
do not know if this family of integrals can be written as special cases of generalised
cellular integrals on M0,2n+3.

9.4. Rivoal and Fischler’s integrals for odd zeta values. Rivoal’s linear forms
[32] are equivalent to the following family of integrals:

(9.7)

∫

[0,1]a+1

∏a
i=0 xrn

i (1 − xi)
n

(1 − x0 . . . xa)(2r+1)n+2
dx0 . . . dxa

where n ≥ 0 and a, r ≥ 1 such that (a + 1)n > (2r + 1)n + 2. He proves in particular
that if n is even and a is odd ≥ 3 then it gives linear forms in odd zeta values 1, ζ(3),
. . . , ζ(a) and goes on to deduce that infinitely many of them are irrational. This
integral has weight drop in the sense that it is an a + 1-fold integral whose periods
are of weight at most a. I did not consider weight-drop integrals here, although the
apparent simplicity of (9.7) suggests that it would be interesting to do so.

Instead, at the end of section 2.4 in [18], Fischler gives a variant of the above
integrals (which are very well-poised, as opposed to simply well-poised), by multiplying
the integrand of (9.7) by (1 + x0 . . . xa)/(1 − x0 . . . xa) ([18], §2.3.1). He proves that
the latter integrals are equivalent (with slightly different notation) to:

(9.8)

∫

[0,1]a−1

∏a−1
j=1 yrn

j (1 − yj)
ndyj

(1 − y1y2 . . . ya−1)rn+1
∏

2≤2j≤a−2(1 − y1y2 . . . y2j)n+1

where n ≥ 0, a ≥ 3 and 1 ≤ r < a
2 are integers. In the case when a is even, it gives

linear forms in the odd zeta values 1, ζ(3), . . . , ζ(a − 1) ([18], proposition 2.5). The
relationship between (9.7) and (9.8) is discussed in the two paragraphs preceding §3
of [18] and builds on theorem 5 in [40]. See the discussion below. Note that when a is
odd, (9.8) apparently gives linear forms in even zeta values 1, ζ(2), . . . , ζ(a − 1).

9.5. Generalisations. Some generalisations of Rivoal’s integrals (9.7) to a three-
parameter family of integrals yielding linear forms in 1, ζ(2), . . . , ζ(n) are given in
[33], theorem 1. In [40] equation (70), Zudilin considers the family of integrals

(9.9) Jk(a0, . . . , ak, b1, . . . , bk) =

∫

[0,1]k

∏k
j=1 x

aj−1
j (1 − xj)

bj−aj−1

Qk(x1, . . . , xk)a0
dx1 . . . dxk



30 FRANCIS BROWN

generalising work of Vasilyev and Vasilenko. Here, k ≥ 4 and

Qk(x1, . . . , xk) = 1 − x1(1 − x2(1 − · · · (1 − xk))) .

In [40], theorem 5, he relates a certain sub-family of these integrals to hypergeometric
series, and proves as a consequence that if

b1 + a2 = b2 + a3 = . . . = bk−1 + ak

then the integrals Jk(a, b) yield linear forms in odd zeta values when k is odd, and even
zeta values when k is even. For example, when k = 5, this gives a 6-parameter family
of integrals which are linear forms in 1, ζ(3), ζ(5) (note that our generalised cellular
integrals for π8

odd apparently yields an 8-parameter family which is strictly bigger, with
the same property). A version of this family of integrals is considered by Fischler in
[17] (5). His family of integrals is denoted by

(9.10) I(a1, . . . , an, b1, . . . , bn, c) =

∫

[0,1]n

∏n
k=1 xak

k (1 − xk)bk

δn(x)c

dx1 . . . dxn

δn(x)

where he writes δn(x) for Qn(xn, . . . , x1) and is clearly equivalent to (9.9). These
families of integrals are not obviously of moduli space type.

However, in [17] equation (9), Fischler defines the family of integrals

K(A1, . . . , An, B1, . . . , Bn, C2, . . . , Cn) =

∫

[0,1]n

∏n
k=1 yAk

k (1 − yk)Bk

∏n
k=2(1 − y1 . . . yk)Ck+1

dy1 . . . dyn

which are evidently period integrals on M0,n+3 written in cubical coordinates y1, . . . , yn.
By applying a carefully-constructed change of variables, he proves that the K(A, B, C)
can be re-expressed as integrals of the form

(9.11)

∫

[0,1]n

∏n
k=1 xeak

k (1 − xk)
ebk

∏n
k=2 Qk(xn, . . . , xn+k−1)eck

dx1 . . . dxn

in new parameters ã, b̃, c̃ expressible in terms of the A, B, C. In addition he shows
that the families of integrals (9.10), and hence (9.9), form a sub-family of the integrals
K(A, B, C). Thus all the integrals considered in this section are in fact equivalent to
periods of moduli spaces M0,n. Both Fischler and Zudilin construct symmetry groups
for their respective families of integrals (9.9) and (9.10), similar to those introduced
by Rhin and Viola [30, 31].

10. Appendix 2: Examples of basic cellular integrals

10.1. Convergent configurations. Let CN denote the number of convergent config-
urations of size N . Then we find that

N 4 5 6 7 8 9 10 11
CN 0 1 1 5 17 105 771 7028

Here follows a list of convergent configurations of size N , where 4 ≤ N ≤ 8.

10.1.1. N = 5. There is a unique convergent configuration:

5π = 5π
∨ = [5, 2, 4, 1, 3]

10.1.2. N = 6. There is a unique convergent configuration:

6π = 6π
∨ = [6, 2, 4, 1, 5, 3]
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10.1.3. N = 7. There are five convergent configurations. There are two pairs of con-
figurations and their duals:

7π1 = [7, 2, 4, 1, 6, 3, 5] , 7π
∨
1 = [7, 2, 5, 1, 4, 6, 3]

7π2 = [7, 2, 4, 6, 1, 3, 5] , 7π
∨
2 = [7, 3, 6, 2, 5, 1, 4]

and a single self-dual configuration:

7π3 = 7π
∨
3 = [7, 2, 5, 1, 3, 6, 4]

10.1.4. N = 8. There are 17 convergent configurations, comprising 7 pairs of configu-
rations and their duals:

8π1 = [8, 2, 4, 1, 5, 7, 3, 6] , 8π
∨
1 = [8, 2, 5, 1, 7, 4, 6, 3]

8π4 = [8, 2, 4, 7, 1, 6, 3, 5] , 8π
∨
4 = [8, 2, 4, 7, 3, 6, 1, 5]

8π5 = [8, 2, 5, 3, 7, 1, 6, 4] , 8π
∨
5 = [8, 2, 6, 1, 5, 3, 7, 4]

8π7 = [8, 2, 4, 6, 1, 3, 7, 5] , 8π
∨
7 = [8, 2, 5, 1, 6, 3, 7, 4]

8π8 = [8, 2, 5, 1, 6, 4, 7, 3] , 8π
∨
8 = [8, 2, 4, 1, 7, 5, 3, 6]

8π9 = [8, 2, 5, 7, 3, 1, 6, 4] , 8π
∨
9 = [8, 3, 6, 1, 5, 2, 7, 4]

8π10 = [8, 2, 5, 7, 3, 6, 1, 4] , 8π
∨
10 = [8, 2, 5, 7, 4, 1, 6, 3]

and three self-dual configurations:

8π2 = 8π
∨
2 = [8, 2, 4, 1, 6, 3, 7, 5]

8π3 = 8π
∨
3 = [8, 2, 5, 1, 7, 3, 6, 4]

8π6 = 8π
∨
6 = [8, 3, 6, 1, 4, 7, 2, 5]

10.2. Basic cellular integrals.

10.2.1. n=5. In simplicial coordinates (t1, t2), and σ = (5, 2, 4, 1, 3) we have

fσ =
t1(t1 − t2)(t2 − 1)

(t1 − 1)t2
and ωσ =

dt1dt2
(t1 − 1)t2

From theorem 1.1, for example, we know that Iσ(N) is a linear form in 1 and ζ(2).
Furthermore, we verify that

Iσ(N) =

∫

S5

fN
σ ωσ = aNζ(2) − bN

where aN , bN are solutions to the recurrence A005258 in [34]

(10.1) (N + 1)2uN+2 − (11N2 + 11N + 3)uN+1 − N2uN = 0 .

with initial conditions a0 = 1, a1 = 3, b0 = 0, b1 = 5. This is precisely Apéry’s
sequence for ζ(2). It is self-dual; i.e., the polynomial p(N) = 11N2 + 11N + 3 satisfies
p(−1 − N) = p(−N) (equivalently, the coefficient of N2 equals the coefficient of N).

Remark 10.1. Changing to cubical coordinates via t1 = xy, t2 = y, we get

Iσ(N) =

∫ 1

0

∫ 1

0

(xy(1 − x)(1 − y)

(1 − xy)

)N dxdy

1 − xy

which, is exactly Beuker’s integral for (9.1).
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10.2.2. n=6. There is again a unique convergent configuration up to symmetry, namely
σ = (6, 2, 4, 1, 5, 3). In simplicial coordinates (t1, t2, t3), we have

(10.2) fσ =
t1(t2 − t1)(t3 − t2)(t3 − t1)

t2(t1 − 1)(t2 − 1)t3
and ωσ =

dt1dt2dt3
t2(t1 − 1)(t2 − 1)t3

It follows, for example, from theorem 1.1 that Iσ(N) is a linear form in 1 and ζ(3)
only, i.e., the coefficient of ζ(2) that could have occurred by theorem 1.1 vanishes.
Furthermore

Iσ(N) =

∫

0≤t1≤t2≤t3≤1

fNω = 2 aNζ(3) − bN

where aN , bN satisfy the recurrence (A005259 in [34])

(10.3) (N + 1)3uN+2 − (2N + 1)(17N2 + 17N + 5)uN+1 + N3uN = 0 .

which is precisely Apéry’s sequence for ζ(3), with initial conditions a0 = 1, a1 = 5 and
b0 = 0, b1 = 6. This equation is again self-dual, which implies that the coefficient of
uN+1 is of the form (2N + 1)(aN2 + aN + b) for some a, b ∈ Q. By passing to cubical
coordinates t1 = xyz, t2 = yz, t3 = z and applying the change of variables (5.16), we
see that this family of integrals exactly coincides with Beuker’s integrals (9.2). This
follows on setting all parameters in (5.15) equal to N .

10.2.3. n=7. For σ one of the five convergent configurations 7πi, for i = 1, . . . , 5 listed
above, the integrals Iσ(N) are distinct linear forms

aNζσ + bNζ(2) + cN

for some Iσ(0) = ζσ ∈ Q×ζ(4), and aN , bN , cN are solutions to an equation

p
(i)
3 uN+3 + p

(i)
2 uN+2 + p

(i)
1 uN+1 + p

(i)
0 uN = 0

where p
(i)
j are polynomials of degree 6 in N . The sequences aN appear to satisfy

interesting congruence properties along the lines of [26].
The numbers which are observed to occur as basic cellular integrals (or indeed as

generalised cellular integrals) are indicated in the table below. A dark • indicates that
the corresponding period can occur with non-zero coefficient, a 0 indicates that the
corresponding period is not observed to occur in the generalised cellular integrals. The
sign of Iπ(0) has been chosen to make the integral positive.

Configurations 1 ζ(2) ζ(3) ζ(4) Iπ(0)

7π1 • • 0 • 17
10ζ(2)2

7π2 • • 0 • 27
10ζ(2)2

7π3 • • 0 • ζ(2)2

7π
∨
1 • • 0 • 7

10ζ(2)2

7π
∨
2 • • 0 • 3

10ζ(2)2

For 7π3 = (7, 2, 5, 1, 3, 6, 4), the basic cellular integrals satisfy I7π3
n =

(
I5π1
n

)2
, the

square of the Apéry sequences for ζ(2). The configuration π7
even of §7 is 7π∨

1 .

10.2.4. n=8. Experimentally, we find that the 17 convergent configurations only give
rise to 13 distinct families of linear forms, given in the table below.
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Configurations 1 ζ(2) ζ(3) ζ(4) ζ(5) ζ(3)ζ(2) Iπ(0)

8π1 , 8π
∨
1 • • • 0 0 • 2ζ(2)ζ(3)

8π2 , 8π
∨
3 • • • 0 • • ζ(5) + ζ(3)ζ(2)

8π4 , 8π5 • • • 0 • • 9ζ(5) − 2ζ(2)ζ(3)

8π
∨
4 , 8π

∨
5 • • • 0 • • 9ζ(5) − 4ζ(3)ζ(2)

8π6 • • • 0 • • 16ζ(5) − 8ζ(3)ζ(2)

8π7 • • • 0 • • ζ(5) + 3ζ(3)ζ(2)

8π
∨
7 • • • 0 • • ζ(3)ζ(2) − ζ(5)

8π8 • 0 • 0 • 0 2ζ(5)

8π
∨
8 • • 0 0 • • 2ζ(5) + 4ζ(3)ζ(2)

8π9 • • • 0 • • 6ζ(3)ζ(2) − 7ζ(5)

8π
∨
9 • • • 0 • • 4ζ(3)ζ(2) − 7ζ(5)

8π10 • • • 0 • • 5ζ(3)ζ(2) − 8ζ(5)

8π
∨
10 • • • 0 • • 8ζ(5) − 3ζ(3)ζ(2)

The values of the integrals Iπ(0) are consistent with Poincaré-Verdier duality:

|Iπ(0)| ≡ |Iπ∨(0)| (mod ζ(2))

as expected, since the antipode acts by −1 on single odd zeta values (8.4). The first
set of entries of the table gives the series which is the product of the Apéry sequences
for ζ(2), ζ(3) via the multiplicative structure §6 (example 6.3)

I
8π1(N) = I

5π1(N)I
6π1(N)

There is a unique entry, 8π8 = 8πodd which gives a linear form in 1, ζ(3), ζ(5) only. It
is amply sufficient to prove that dimQ〈1, ζ(3), ζ(5)〉Q ≥ 2 but insufficient to prove their
linear independence. The dual 8π

∨
8 of this sequence gives linear forms in 1, ζ(2) and

2ζ(5) + 4ζ(3)ζ(2) from which we can extract linear forms in 1, ζ(5) (see §7.1).

10.2.5. n=9. There are 105 convergent configuration classes. By computing all of
them in low degrees, one observes that all the linear forms vanish in weight 5, and so
in particular, the coefficient of ζ(5) and ζ(2)ζ(3) always vanishes. All possible products
of previously occurring sequences arise, namely, the product of the canonical sequence
for M0,5 with one of the five sequences for M0,7, and the square of the canonical
sequence for M0,6. Other than that there are five configurations

[9, 2, 4, 1, 8, 6, 3, 5, 7] , [9, 2, 4, 6, 8, 1, 3, 5, 7] , [9, 2, 5, 8, 1, 4, 7, 3, 6]

[9, 2, 6, 1, 5, 7, 4, 8, 3] , [9, 4, 8, 3, 7, 2, 6, 1, 5]

which give distinct irreducible sequences (i.e., not reducing to products of previously-
occuring sequences) which are new linear forms in 1, ζ(2), ζ(2)2, ζ(2)3. Generalising
such families may lead to new estimates for the transcendence measure of π2.

Finally, there are exactly four self-dual configurations

[9, 2, 4, 1, 5, 7, 3, 8, 6] , [9, 2, 4, 1, 5, 8, 6, 3, 7] , [9, 2, 4, 6, 1, 7, 5, 8, 3] , [9, 2, 4, 7, 5, 1, 6, 8, 3]

which give (the same) linear forms in 1, ζ(3), ζ(3)2.
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10.2.6. n=10. There are 771 convergent configurations. They all (experimentally) van-
ish in sub-leading weight. Many cases are products of previously occurring sequences.
We find some new phenomena:

(1) Odd zeta values only. A unique configuration π10
odd which gives rise to a family

of linear forms in 1, ζ(3), ζ(5), ζ(7). It vanishes in weights 1, 2, 4, 6.

(2) Dual of the previous case. The configuration (π10
odd)∨ gives a family of linear

forms in 1, ζ(2), ζ(4), ζ7 where ζ7 denotes a multiple zeta value of weight 7. It
vanishes in weights 1, 3, 5, 6.

(3) Double vanishing at next to leading order. Two families of linear forms (rep-
resented by (10, 2, 4, 1, 6, 8, 5, 3, 9, 7) for the first, and its dual for the second)
which give linear forms in quantities

1, ζ(3), ζ(4) and ζ7

where ζ7 is an MZV of weight 7. These families vanish in weights 1, 2, 5, 6.

(4) Vanishing in the middle. A unique family of self-dual linear forms (represented
by (10, 2, 4, 1, 6, 3, 8, 5, 9, 7)), which give rise to linear forms in the quantities

1, ζ(2), ζ5 and ζ7

where ζ5 and ζ7 are certain multiple zeta values of weights 5 and 7 respectively.
Therefore this family vanishes in weights 1, 3, 4, 6.

These (experimental) examples show that the vanishing phenomena can be quite
diverse. It would be interesting to know if it is possible to find sequences of higher
order with stronger vanishing properties.

11. Appendix 3

The purpose of this section is to prove some vanishing of cohomology of the moduli
space motives m(A, B) in certain cases which covers Apéry’s theorems.

11.1. Statement.

Definition 11.1. Let A ⊂ M0,S denote a boundary divisor. Say that A is cellular if
there exists a dihedral structure δ on S such that the irreducible components of A are
exactly the divisors at finite distance with respect to δ. Equivalently,

A =
⋃

S=S1∪S2

DS1|S2

where the union is over all stable partitions of S with S1, S2 consecutive for δ.

A divisor A is cellular if it is the Zariski closure of the boundary of a cell Sδ for
some δ. The following theorem states that cellular divisors always fulfil cohomological
vanishing in sub-maximal weights.

Theorem 11.2. Suppose that A, B ⊂ M0,n are cellular boundary divisors with no
common irreducible components. Let ℓ = n − 3. Then

(11.1) grW
2 m(A, B) = grW

2ℓ−2m(A, B) = 0

and grW
0 m(A, B) and grW

2ℓ m(A, B) are both 1-dimensional.

In the case n = 5 and n = 6, there is a unique choice of divisors A, B satisfying
the conditions of the previous theorem, up to automorphisms of M0,n. Denote the
corresponding motives m(A, B) by m5 and m6 respectively. They could be called
Apéry motives by the following corollary.
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Corollary 11.3. The basic cellular integrals for n = 5 and n = 6 (§10.1.1, §10.1.2)
are periods of m5, m6 respectively. These motives satisfy

grW
• m5

∼= Q(0) ⊕ Q(−2)

grW
• m6

∼= Q(0) ⊕ Q(−3) .

In particular, this implies that the basic cellular integals for n = 5 give linear forms in
1, ζ(2), and for n = 6 in 1, ζ(3) only.

Proof. Use equations (3.9) and (3.12) to verify that for all N ≥ 0,

Sing(fN
δ/δ′ωδ′) = Sing(ωδ′)

is cellular for n = 5, 6. For n = 5 this is trivial, for n = 6 one must check the divisor of
singularities using (3.10) and (3.12). Therefore the basic cellular integral Iδ/δ′ (N) is a
period of m(A, B) where A = Sing(ωδ′), which is cellular by lemma 3.4 and where B
is the Zariski closure of the boundary of the domain of integration Sδ, which is cellular
by definition. �

Unfortunately, the basic cellular integrals for n ≥ 7 marked points have divisors
which are not cellular, but are weakly cellular in the sense, for example, of remark 5.3.
It would be interesting to generalise the previous theorem to cover this case (and even
the case of generalised cellular integrals). This would explain the observed vanishing
of subleading coefficients in all cases.

11.2. Cohomology computations. We require the following general observations.
Let X be a smooth projective scheme over a field k of characteristic 0, and A ∪ B a
simple normal crossing divisor in X . Denote the irreducible components of A and B
by Ai, Bi, respectively, and write C∅ = X , and CI = ∩i∈ICi, whenever C = A or
C = B, and I is an indexing set. All cohomology has Q coefficients.

The relative cohomology spectral sequence is:

(11.2) Ep,q
1 =

⊕

|I|=p

Hq(BI\(BI ∩ A)) ⇒ Hp+q(X\A, B\(B ∩ A))

The other spectral sequence we need is the weight (or Gysin) spectral sequence

(11.3) Ep,q
1 =

⊕

|I|=−p

H2p+q(AI)(p) ⇒ Hp+q(X\A)

which degenerates at E2 for reasons of purity. The following lemmas give some control
over the lowest graded weight pieces of moduli space motives.

We shall say that a boundary divisor D ⊂ M0,S1 × . . . × M0,Sr is at finite (resp.
infinite) distance with respect to dihedral structures δ1 on S1, . . . , δr on Sr if its
irreducible components are of the form M0,S1×. . .×Di×. . .×M0,Sr where D ⊂ M0,Si

is at finite (resp. infinite) distance with respect to δi.
When D is at finite distance, we say that D is complete if its set of irreducible

components consists of all divisors at finite distance, and broken otherwise.

Lemma 11.4. Let δi be a dihedral structure on Si, for i = 1, 2, where |Si| ≥ 3. Let
C ⊂ M0,S1 ×M0,S2 be a boundary divisor at finite distance with respect to δ1, δ2. If
n = |S1| + |S2| − 6 > 0 then

grW
0 Hn(M0,S1 ×M0,S2 , C) ∼=

{
Q(0) if C is complete

0 if C is broken
.
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Proof. The relative cohomology spectral sequence, applied to X = M0,r×M0,s, A = ∅,
B = C, degenerates at E2 because Ep,q

1 is pure of weight q in this case. This implies

that grW
0 Hn(M0,r ×M0,s, C) is the nth cohomology group of the complex

(11.4) E•,0
1 = H0(C∅) →

⊕

|I|=1

H0(CI) →
⊕

|I|=2

H0(CI) → · · · →
⊕

|I|=n

H0(CI)

By assumption, the irreducible components of C are in one-to-one correspondence with
a subset of the set of facets of the product Xδ1×Xδ2 where Xδ = Sδ denotes the closure
of a cell in the analytic topology. They have the combinatorial structure of Stasheff
polytopes. Consider the simplical complex S which is dual to the one generated by
the facets of Xδ1 ×Xδ2 . Then the 0-simplices of S are indexed by facets of Xδ1 ×Xδ2 ,
the 1-simplices by codimension 2 faces of Xδ1 × Xδ2 , and so on. Since each Xδi is
homotopic to a ball, the same is true of Xδ1 ×Xδ2 , and therefore S is homotopic to its
boundary, which is a sphere Sn−1 of dimension n − 1. The complex (11.4), shifted by
one to the left, computes the reduced cohomology of the simplical subcomplex T ⊂ S
whose 0-simplices correspond to irreducible divisors of C. Therefore, if C is complete,
then T = S and the (n − 1)th reduced cohomology group of S is that of Sn−1 and
one-dimensional. If C is broken, then T ( S is a simplicial subcomplex of a punctured
n − 1-sphere, and homotopic to a simplical complex in Rn−2. Therefore its (n − 1)th

cohomology group vanishes. �

The following lemma provides a canonical basis for H2(M0,S) for every dihedral
ordering δ on S.

Lemma 11.5. Let |Si| ≥ 3, with dihedral orderings δi on Si, for i = 1, . . . , r. Then

H2(M0,S1 × . . . ×M0,Sr)
∼=

⊕

D∈δ∞

[D]Q(−1)

where δ∞ is the set of irreducible divisors at infinite distance, and for each D ∈ δ∞,
[D] is the image of the canonical class of H0(D) under the Gysin map

H0(D)(−1) → H2(M0,S1 × . . . ×M0,Sr ) .

Proof. Let r = 1. By the results of Keel [23], the Gysin map
⊕

D∈δf∪δ∞

H0(D)(−1) −→ H2(M0,S)

where the left-hand sum is over all irreducible boundary divisors D, is surjective, and
its kernel is generated by relations

(11.5)
∑

{j,k}∈S1,{i,l}∈S2

[DS1|S2
] =

∑

{i,k}∈S1,{j,l}∈S2

[DS1|S2
]

for all sets of four distinct elements i, j, k, l ∈ S. We first show that

(11.6)
⊕

D∈δ∞

H0(D)(−1)−→H2(M0,S)

is surjective. For this, choose i, j, k, l ∈ S such that i < j < k < l are in order with
respect to δ and the pairs {i, j} and {k, l} are consecutive, and {j, k} ,{l, i} are not
consecutive. Then there is a single term in (11.5) which corresponds to a divisor in
δf , namely DS1|S2

with S1 = {j, j + 1, . . . , k}, S2 = {l, l + 1, . . . , i}. This proves that
the [D]S1|S2

for S1, S2 consecutive are linear combinations of [D] with D ∈ δ∞. On

the other hand, we know from [23], page 550, that the dimension of H2(M0,S) is
2n−1 −

(
n
2

)
− 1, which by a straightforward calculation, is the cardinality of δ∞, so

(11.6) is injective. The case when r ≥ 2 follows from the Künneth formula. �
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The basis is functorial in the following sense. Let S have a dihedral structure δ, and
let B be an irreducible divisor at finite distance on M0,S corresponding to a stable

partition S1 ∪ S2 of S. Then B = M0,S1∪x ×M0,S2∪x and S1 ∪ x and S2 ∪ x inherit
canonical dihedral structures from δ. The restriction morphism in this basis is

[D] 7→ [D ∩ B] : H2(M0,S) −→ H2(B) .

The key geometric property of cellular divisors is the following.

Lemma 11.6. Let C ⊂ M0,S be a cellular boundary divisor and let D be an irreducible
boundary divisor such that D ( C and C ∩ D 6= ∅. Then for all k ≥ 0,

grW
0 Hk(D, D ∩ C) = 0 .

Proof. Apply the relative cohomology spectral sequence with X = D, A = ∅ and
B = C ∩ D. It suffices to show that the complex

(11.7) E•,0
1 = H0(D) →

⊕

i

H0(D ∩ Ci) →
⊕

i,j

H0(D ∩ Ci,j) → . . .

is acyclic. Consider the simplicial complex T whose k-dimensional simplices are given
by codimension k intersections of irreducible components (D ∩ C)I , where |I| = k.
Then (11.7) computes the reduced homology of T . Now C is cellular with respect to a
dihedral ordering δ, and its irreducible components are indexed by stable partitions of
S which are consecutive with respect to δ. Since D ( C, the divisor D corresponds to
a partition V1 ∪ V2 of S where Vi are not consecutive with respect to δ. The set S can
be written as a disjoint union of subsets S = I1∪I2∪ . . .∪Ir , where each Ik is maximal
such that its elements are consecutive for δ, and each Ik is alternately contained in
either V1 or V2. The irreducible components of C ∩D are indexed by stable partitions
S = P ∪ (S\P ) where |P | ≥ 2 and P ranges over all consecutive subsets of each Ik

(see example below). Choose a k such that |Ik| ≥ 2. Then the divisor corresponding
to P = Ik intersects the divisors corresponding to all other Pi. It follows that the
simplical complex T is a cone with apex P , and is therefore contractible. �

Example 11.7. Let S = {1, . . . , 7} and δ = δ0. Then irreducible components of
C are divisors corresponding to stable partitions S1, S2 of S where S1, S2 consist
of consecutive elements. Let D be the divisor corresponding to the stable partition
{1, 4}∪ {2, 3, 5, 6, 7}. Then write S = {1}∪ {2, 3}∪ {4}∪ {5, 6, 7}, and the irreducible
components of D ∩ C correspond to stable partitions Pi ∪ (S\Pi) where

P1 = {2, 3} , P2 = {5, 6} , P3 = {6, 7} , P4 = {5, 6, 7}
Denote by Pij = Pi ∩ Pj , and Pijk = Pij ∩ Pk. The simplical complex T has vertices
P1, . . . , P4, lines P12, P13, P14, P24, P34 and 2-faces P134, P124. Since P4 meets all other
Pi, the complex T is a cone, with apex P4, over the subcomplex generated by P1, P2, P3.

Lemma 11.8. Let C ⊂ M0,S be a cellular boundary divisor with respect to δ. Then

grW
2 Hk+2(M0,S , C) = 0 for all k > 0

and grW
2 H2(M0,S , C) has dimension equal to the number of irreducible divisors D ∈ δ∞

on M0,S which do not meet C.

Proof. Apply the relative cohomology spectral sequence, with X = M0,S , A = ∅
and B = C. It degenerates at E2 by purity. Thus grW

2 Hk+2(M0,S , C) is the kth

cohomology group of the complex

E•,2
1 = H2(M0,n) →

⊕

i

H2(Ci) →
⊕

i,j

H2(Ci,j) → . . .
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By lemma 11.5, this complex splits as a direct sum of complexes, one for each irre-
ducible divisor D ∈ δ∞. The previous complex is isomorphic to

⊕

D∈δ∞

(
H0(D) →

⊕

i

H0(D ∩ Ci) →
⊕

i,j

H0(D ∩ Ci,j) → . . .
)
⊗ Q(−1)

This is a direct sum of complexes (11.7), which are acyclic in the case that C∩D 6= ∅ by
lemma 11.6. The only contributions are from the divisors D ∈ δ∞ such that C∩D = ∅,
which each contribute a Q(−1) to E0,2

1 and nothing else. �

By way of example: on M0,6, with the standard dihedral ordering, there is a unique
irreducible boundary component which does not meet the standard cell, namely the
divisor defined by {135} ∪ {246}. On M0,5 there are none.

11.3. Proof of theorem 11.2. Let ℓ = n − 3. The restriction map

grW
0 Hℓ(M0,n, B)

∼−→ grW
0 Hℓ(M0,n\A, B\(B ∩ A))

is an isomorphism by a relative version of the Gysin sequence. Therefore grW
0 m(A, B) ∼=

Q(0) follows from lemma 11.4, and grW
2ℓ m(A, B)dR

∼= Q(−ℓ) follows by duality.

Next, apply the relative cohomology spectral sequence (11.2) with X = M0,n. By
general facts about mixed Hodge structures (or from (11.3)), we know that

Ep,q
1 =

⊕

|I|=p

Hq(BI\(BI ∩ A))

has weights in the interval [q, 2q]. Therefore it suffices to prove that

grW
2ℓ−2E

0,ℓ
1 = 0 and grW

2ℓ−2E
1,ℓ−1
1 = 0 .

First of all,

grW
2ℓ−2 E0,ℓ

1 = grW
2ℓ−2H

ℓ(M0,n\A) ∼= (grW
2 Hℓ(M0,n, A))∨

by duality. This vanishes for ℓ > 2 on application of lemma 11.8. For ℓ = 2 (n = 5),
it vanishes from the second part of the same lemma and the remark following it.

On the other hand,

grW
2ℓ−2E

1,ℓ−1
1 =

⊕

i

grW
2ℓ−2 Hℓ−1(Bi\(Bi ∩ A)) ∼=

⊕

i

(grW
0 m(Bi, Bi ∩ A))∨

by duality. The summands on the right vanish by lemma 11.6, since A is cellular.
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impairs, Inventiones Mathematicae, 146 (1) 193-207 (2001).
[5] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc. 11 (1979),

268-272.
[6] F. Brown, Périodes des espaces des modules M0,n et multizêtas, C.R. Acad. Sci. Paris, Ser. I

342 (2006), 949-954.

[7] F. Brown, Multiple zeta values and periods of moduli spaces M0,n, Ann. Scient. Éc. Norm. Sup.,
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