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Chapter 1

Introduction

The notion of fields is certainly one of the most successful concepts in
physics. A prominent example is the theory of classical Electrodynamics
which describes the dynamics of charged bodies in terms of interactions
with an electromagnetic field. On one hand, electric charges generate an
interacting electromagnetic field; the electromagnetic field, on the other
hand, produces forces on the electric charges. A quantitative description of
these interactions is provided by Maxwell’s equations and the Lorentz force
law. These laws successfully explain many phenomena above the atomic
length scale. Below this scale, quantum effects can not be neglected and
require concepts from quantum theory.

Quantum Field Theory provides a set of methods to quantize classi-
cal field theories such as Electrodynamics. In combination with perturba-
tive techniques, it reproduces the classical predictions in the low-energy
limit. On the other hand, additional quantum corrections emerge in the
high-energy regime. Due to these quantum corrections, Quantum Electro-
dynamics has been able to explain of new effects such as the Lamb shift,
photon-photon scattering, or soft Bremsstrahlung. Further results of Quan-
tum Electrodynamics provided crucial refinements of our understanding of
physical quantities. For example, it transpires that the electric charge is
not a physical constant, but rather a dynamical parameter whose magni-
tude increases with increase of energy. Another prominent example is the
anomalous magnetic moment of the electron ae, which describes the dif-
ference between Quantum Electrodynamics and the classical field theory in
the coupling-strength of a spin-1/2 electron to a magnetic field. The theo-
retical prediction [1, 2]

ath
e = 1 159 652 181.664(23)(16)(763)× 10−12 (1.1)

1
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agrees with the most recent experimental value of [3]

aexp
e = 1 159 652 180.73(0.28)× 10−12 (1.2)

to such an extreme precision that its theoretical estimation was the key to
the most precise determination of the mass of the electron [4]. Here, it is
important to note that the actual challenge that underlies these predictions
is the computation of an enormous number of Feynman graphs.

Despite enormous successes in comparing perturbative Quantum Elec-
trodynamics to experiments, the theory and the quantization procedures
are still lacking a rigorous mathematical foundation. Nonetheless, the the-
ory of quantized fields provides heuristic arguments which propose many
global properties and restrictions; for instance causality, unitarity, gauge
invariance, and renormalizability, to name but a few. Unfortunately, in
many cases it is far from obvious how these properties affect Feynman
graphs or how they can be exploited in perturbative calculations. This mo-
tivates our basic proposal to study the relation between global properties
of Quantum Field Theory and its perturbative sector. This thesis intends
to conduct such an enquiry for the topic gauge invariance and indeed we
conclude that global symmetry properties as Ward identities [5, 6, 7] and
the Landau-Khalatnikov transformation [8] are indeed a consequence of
structural properties of Feynman graphs.

On a technical level, the computation of Feynman graphs requires in-
volved mathematical methods to handle divergent expressions which emerge
in the associated integrals. These techniques are referred to as renormal-
ization and form a core part of our research and this thesis. In [9], Kreimer
discovered that the perturbative sector of a Quantum Field Theory pos-
sesses an underlying Hopf algebra structure; this Hopf algebra of Feynman
graphs provides a mathematically rigorous description of the renormaliza-
tion process. Furthermore, Kreimer’s discovery might be seen as the start-
ing point for a course of research that revealed beautiful connections of
Feynman graphs in scalar Quantum Field Theory and mathematical con-
cepts from algebra, algebraic geometry, combinatorics, and number theory.
To name only a few, we refer to the work of Bloch and Kreimer on Cutkosky
rules [10], Brown’s construction of the cosmic Galois group [11], Schnetz’s
proof of the zigzag conjecture [12], and algebraic lattices [13, 14]. The full
extent of these structures and how they can be exploited in perturbative
computations is the subject of ongoing research. Further, it is an interest-
ing questions how these findings convey to gauge theories such as Quantum
Electrodynamics. In this thesis, we start with exploring the Hopf algebra
structure and its applications in perturbative computations for Quantum
Electrodynamics and its non-abelian analogue Quantum Chromodynamics.
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Computational methods

A major effort that underlies this thesis has been the computation of a
large number of Feynman graphs. This paragraph gives a short account on
our computational setup and acknowledges the software components and
programs that have been used in is course.

We use QGRAF [15] to generate all one-particle irreducible Feynman
graphs of a specific external leg type and loop order. As a preparation for
the actual computation, the notation of these Feynman graphs must be re-
arranged in a way compatible with succeeding programs and libraries. This
is accomplished by a Python script developed by the author. It utilizes the
RE library for convenient support of regular expressions and the NETWORKX
library which provides a broad arsenal of objects and algorithms pertain-
ing to graph theory. By searching for graph isomorphisms, every Feynman
graph of the generated list is mapped to an archetype graph defined in our
external library. This identifies the topology of a Feynman graph and pro-
vides an appropriate labelling of its edges. Eventually, the PYTHON script
produces the following output: a first list that describes the kinematics of
every Feynman graph with appropriate momentum labellings, a second list
of expressions to compute the color factors of every Feynman graph, and a
visualization of each Feynman graph in form of a png-file generated by the
GRAPHVIZ package.

For the consecutive evaluation of these Feynman graphs, we use FORM
[16] and its parallel version TFORM [17] which are symbolic manipula-
tion systems tailor-made for this task. The color factors are evaluated with
the COLOR package by van Ritbergen, Schellekens, and Vermaseren [18].
On the other hand, the MINCER package [19, 20] evaluates the kinematics
in dimensional regularization and provides us with an epsilon expansion at
D = 4− 2ε dimensions. The computation of a Feynman graph is completed
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by combining the derived color factors with the epsilon expansion of that
graph. Finally, the derivation is completed by summing up the results of
every Feynman graph. It worth remarking that we were computing a num-
ber of Feynman graph of the magnitude 10.000. Therefore, all described
steps have been automatized with usage of GNU MAKE scripts.

In a consecutive computation, we used the PYTHON based computer
algebra system SAGEMATH to derive renormalized Green’s functions and
renormalization group functions from the output of our FORM setup.

Further, we like to acknowledge the usage of the AXODRAW packages
[21, 22, 23] to draw and display the Feynman graphs in this thesis and the
usage of YED for the creation of the flowchart above.

Outline of the thesis

The succeeding chapter describes computational and diagrammatic tech-
niques for Quantum Electrodynamics.

Section 2.1 provides some introductory material of Quantum Electrody-
namics concerning its quantization, symmetries, and anomalies. In follow-
ing section, we introduce the cancellation identities of Quantum Electrody-
namics and demonstrate how cancellations among Feynman graphs imply
global properties as Ward identities in paragraph 2.2.2. In addition to that,
we show the cancellation identities are useful to determine the dependence
on the covariant gauge parameter in paragraph 2.2.3.

Section 2.3 introduces essential methods of renormalization. Followed
by a discussion of the Hopf-algebraic renormalization of Quantum Electro-
dynamics in the linear covariant gauge in section 2.4.

These results are applied to the massless self-energy of the electron in
section 2.5. A non-perturbative argument proves the well-known conjec-
ture that the anomalous dimension of the electron only depends on the
gauge parameter at first order in perturbation theory.

Chapter 3 reports on our enquiry and applications of the Hopf algebra
structure for the renormalization of non-abelian gauge theories; it can be
understood as prerequisite for a generalization of our diagrammatic tech-
niques to scrutinize the gauge dependence. Paragraph 3.6 contains the de-
rived renormalization group functions in the M̃OMq and M̃OMh schemes.



Chapter 2

Quantum Electrodynamics

Quantum Electrodynamics is the Quantum Field Theory which is the main
subject of our enquiry. In an introductory section, we start with a discussion
of the classical Lagrangian theory, which is referred to as Spin-1

2
Electrody-

namics, and discuss its symmetry properties and applications of perturba-
tion theory, following the classic approach of [24]. This culminates in a
description of the perturbative sector by Feynman rules.

In the subsequent section, the analysis of the Feynman rules yields can-
cellation identities and it is shown that these diagrammatic identities are
the reason for crucial global properties of the Green’s functions. Namely,
Ward identities and a characterization of the gauge dependence are a con-
sequence of a purely combinatorial analysis of the resulting cancellations
among Feynman graphs.

A naive evaluation of a Feynman graph beyond the tree-level results in
divergent expressions. Therefore, the consecutive step in our enquiry is the
renormalization of Quantum Electrodynamics. For this propose, we follow
[9, 25, 26] and generalize their concepts of Hopf-algebraic renormaliza-
tion to the case of Quantum Electrodynamics with a linear covariant gauge
fixing. Remarkably, the Hopf algebra allows for another global result —
the closed formula for the coproduct of Green’s functions which proves the
Callan-Symanzik equation and trivializes the combinatorics of kinematic
renormalization schemes.

Finally, the combination of both techniques cancellation identities and
Hopf-algebraic renormalization allows for a study of the gauge dependence
of renormalized Green’s functions. This is demonstrated in an analysis of
the self-energy of the electron. A non-perturbative argument proves a well-
known conjecture that the anomalous dimension of the electron is gauge
dependent only at the first loop order.

5
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2.1 Spin-1/2 Electrodynamics
Spin-1

2
Electrodynamics is a field theory consisting of an electromagnetic

field with the covariant four-potential Aµ coupled to the spin-1
2

Dirac field ψ

L = −1

4
FµνF

µν + ψ
(
i/∂ − e /A−m

)
ψ. (2.1)

Here, the Dirac adjoint is denoted by ψ := ψ†γ0, m is the mass of the
electron, and e is the positive elementary charge, whereas results within
the course of this thesis will be mainly expressed in terms of the so-called
fine-structure constant

α =
e2

4π
. (2.2)

It should be remarked that we are employing natural units (c = 1, ε0 = 1,
~ = 1) throughout this thesis. Further notice that we might use the terms
four-potential, electromagnetic field and gauge field synonymously in a
slight abuse of language. Appendix A provides the full set of our conven-
tions to an interested reader. Here, we like to conclude with the equations
of motion which restricts the Dirac field to satisfy(

i/∂ − e /A−m
)
ψ = 0 (2.3)

and the gauge field obeys

∂µF
µν = eψγνψ. (2.4)

The construction of an exact solution of this coupled system of partial dif-
ferential equations provides an enormous challenge. Two topics might be
useful to approach this kind of task. Symmetries are expected to provide
some insight into the properties of solutions and the next paragraph is de-
voted to this topic. Furthermore, perturbative techniques will be intro-
duced in the sequel.

2.1.1 Symmetries
The action of Spin-1

2
Electrodynamics is defined as the spacetime integral

of the Lagrangian density (2.1). It is symmetric under the following set of
transformations:
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1. Spacetime translations. Given a four-vector a ∈ R3,1 in the Minkowski
space, the action is invariant under the transformation

A(x) 7→ Aµ(x− a)

ψ(x) 7→ ψ(x− a)

}
(2.5)

which can be regarded as a consequence that the Lagrangian density
does not explicitly depend on the spacetime

L
(
A(x), ψ(x), ψ(x), x

)
= L

(
A(x), ψ(x), ψ(x)

)
. (2.6)

2. Lorentz invariance. An appropriate representation of the proper or-
thochronous Lorentz group for the Dirac and gauge field is defined
by

Aµ(x) 7→ M(Λ)µ
νAν(Λ

−1x)

ψ(x) 7→ S(Λ)ψ(Λ−1x)

ψ(x) 7→ ψ(Λ−1x)S−1(Λ)

 . (2.7)

This guarantees Lorentz invariance by construction if combined with
the compatibility condition

S−1(Λ)γµS(Λ) =M(Λ)µ
νγν . (2.8)

3. Gauge invariance. For a local function ω : R3,1 → R with appropriate
regularity, the following set of transformations

Aµ(x) 7→ Aµ(x) + ∂µω(x)

ψ(x) 7→ e−ieω(x)ψ(x)

ψ(x) 7→ ψ(x)eieω(x)

 (2.9)

leaves the Lagrangian invariant. Further, taking ω = const yields the
conserved fermion current jµ = eψγµψ.

While the above transformation are symmetries of the full action including
the mass term, the following transformations yield symmetries in the limit
of a vanishing fermion mass m = 0 only.

4. Chiral symmetry. Introduce the right-handed and left-handed fermionic
spinors as

ψR := 1
2
(1 + γ5)ψ and ψL := 1

2
(1− γ5)ψ, (2.10)
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then the massless Lagrangian respectively respects the following vec-
tor and axial symmetries

ψL 7→ eiθV ψL

ψR 7→ eiθV ψR

}
and

ψL 7→ eiθAψL

ψR 7→ e−iθAψR

}
. (2.11)

Note that the vector current coincides with jµ from above, whereas
the axial current reads jµ5 = ψγµγ5ψ.

5. Dilation invariance. If α ∈ R is a real scalar, then the massless action
remains invariant under the following scale transformations

A(x) 7→ eαA(eαx)

ψ(x) 7→ e
3/2αψ(eαx)

ψ(x) 7→ ψ(eαx)e
3/2α

 . (2.12)

6. Special conformal transformations. For a four-vector c ∈ R3,1 in the
Minkowski space, define the conformal scale

σ(x, c) = 1 + 2(c · x) + c2x2. (2.13)

Then, a finite special conformal transformation reads [27]

xµ 7→ x′µ =
xµ + cµx

2

σ(x, c)

Aµ(x) 7→ ∂xν

∂x′µ
Aν(x)

ψ(x) 7→ σ(x, c)(1 + /c/x)ψ(x)

 (2.14)

and leaves the massless action invariant.

All these symmetries give raise to conservation laws which are encoded
in conserved Noether currents. Appendix B gives a comprehensive account
on the infinitesimal generators of the above transformations, their confor-
mal algebra, and the resulting Noether currents.

2.1.2 Perturbation theory and quantization
For the sake of a first perturbative analysis, let us focus on the equations
of motion of the Dirac field (2.3) and assume that the gauge field only
contributes a static term /A. In order to construct solutions, it is convenient
to employ the method of Green’s functions — that is, instead of directly
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approaching the homogeneous differential equation, one rather solves the
distribution-valued equation(

i/∂ − e /A(x)−m
)
SA(x) = iδ(4)(x) (2.15)

in the unknown distribution SA. Once one has determined such an distri-
bution SA, a solution of the homogeneous differential equation is readily
provided by the spacial integral of the product of SA with an initial value
ψ0 at a particular time [24]. It should be remarked that SA further allows
to construct solutions if an inhomogeneous term is added to the differen-
tial equation (2.3). Therefore, SA is called fundamental solution or Green’s
function in the context of classical field theory. However, the quantization
of fields leads to a more complicated notion of Green’s functions; hence SA
and suchlike distributions are termed propagator.

The above distribution-valued differential equation can equivalently be
formulated as an integral equation

SA(x) = SF (x)− ie
∫
d4ySF (x− y) /A(y)SA(y), (2.16)

where SF denotes the Dirac propagator which is a solution of the free Dirac
equation (

i/∂ −m
)
SF (x) = iδ(4)(x). (2.17)

Of course, a closed solution of the differential or integral equations are
known only for very few occasions of the gauge field /A. At this point,
it becomes necessary to introduce some kind of physically convenient ap-
proximation and it turns out that a large class of problems can be handled
accordingly by means of perturbative techniques.

Under the assumption that the electromagnetic field induces only small
perturbations to the free propagator, it is possible to solve the integral equa-
tion in terms of a formal Neumann series in the electromagnetic charge.
Abstaining from a discussion of convergence, the solution reads

SA(x) = SF (x)− ie
∫
d4ySF (x− y) /A(y)SF (y)

+ (−ie)2

∫
d4yd4zSF (x− y) /A(y)SF (y − z) /A(z)SF (z) + · · · .

(2.18)
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This series determines the Dirac propagator in presence of the (static)
gauge field Aµ as a sequence of position space integrals. In the following,
Fourier transformation will be applied in order to substitute the position
space integrations by integrations over momentum space variables. This
appears to be a convenient procedure as a Fourier transform translates the
differential equation (2.17) into an algebraic equation such that the free
propagator becomes a rational function in momentum space. In momen-
tum space, the formal Neumann series reads

SA(p) = SF (p)− ie
∫
d4qSF (p) /A(q)SF (p− q)

+ (−ie)2

∫
d4q1d

4q2SF (p) /A(q1)SF (p− q1) /A(q2)SF (p− q1 − q2) + · · · .

(2.19)

Here, SA and SF represent the Fourier transformed propagators, which is
indicated by their momentum space arguments p, q, q1, and q2; in slight
abuse of notation we use the same symbol for the Fourier transformed ex-
pressions. As an alternative to the algebraic description of this series, each
term might be depicted by a graph which consists of straight and wavy
edges to represent the free Dirac propagators and the electromagnetic field,
respectively. In this way, the solution of the integral equation is cast into
the elegant diagrammatic representation

p
=

p
+

×

p p− q

q

+

× ×

p p−q1

q1 q2

p−q1− q2
+ · · · . (2.20)

The double-lined propagator represents SA and the other algebraic expres-
sions (2.19) are reconstructed by employing the following set of rules to
the graphs

µ

= −ieγµ (2.21)

p
= i

(
/p+m

p2 −m2

)
(2.22)

×
q µ = Aµ(q), (2.23)

where the Dirac propagator is obtained by solving the Fourier transformed
free Dirac equation (2.17). Further, momentum conservation holds at every



2.1. SPIN-1/2 ELECTRODYNAMICS 11

vertex and hence restricts the parametrization by momentum variables. In-
deed, this course was prominently propagated by Feynman [24] and these
graphs and rules are customarily referred to as Feynman graphs and Feyn-
man rules.

It is worth remarking that the distribution-valued equation (2.17) does
not give raise to an unique propagator, but rather requires the specification
of further boundary conditions. This freedom is fixed by adopting the Feyn-
man prescription to regulate the propagator — a condition necessary for
compatibility with quantization. The physical reason for this choice might
be due to Stückelberg’s interpretation [28] that negative wave frequencies
can be understood as antiparticles propagating with reversed time.

Further, the reader should be aware that the dynamical character of
the gauge field and its evolution under the equation (2.4) has been ne-
glected in this course. Taking the dynamical character into account leads
to the conclusion that the photon source (2.23) must be replace by another
perturbation series which is determined by the equations of motion of the
gauge field.

Quantization

So far, the perturbation series only contains tree-level Feynman graphs.
This underlines its entirely classical character. Quantum Field Theory pro-
vides a set of methods to quantize fields such as canonically quantization
[29] and path integrals [30]. Unfortunately, none of these formalisms is
capable of providing a mathematically rigorous definition of a theory of
interacting quantum fields and we will not go into further details of field
quantization. Instead, we will view a quantized field theory as determined
by its perturbative sector and refer to it as perturbative Quantum Electrody-
namics; that is to define the quantized theory by means of Feynman graphs
and Feynman rules, which can be deduced in the scope of classical field the-
ory. This point of view is certainly close to the classical approach suggested
by Feynman in [31].

As a result of quantization, Feynman graphs are not restricted to tree
structures anymore, but rather contain loops which might be interpreted
as self-interactions mediated via virtual particles. As outlined above, the
tree-level terms originate from perturbation theory of classical field theory.
The additional quantum contributions to the propagators and the interac-
tion vertices give rise to the definition of Green’s functions which can be re-
duced to consist of all one-particle irreducible (that is two-edge-connected)
Feynman graph of a certain external leg structure. These Green’s functions
can be thought of as the building blocks for the renormalization process
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as discussed in paragraph 2.4.2. Beside of that, the discussion of cancella-
tion identities in paragraph 2.2.3 requires us to consider Green’s functions
which consist of connected Feynman graphs, rather then one-particle irre-
ducible.

2.1.3 Gauge fixing
It is instructive to apply perturbative techniques of the preceding paragraph
to the gauge field or, more precisely, to its free equations of motion

(gµν �− ∂µ∂ν)Aν = 0. (2.24)

However, employing a Fourier transform to these equations reveals an ob-
stacle. The momentum space expression of this differential operator is not
invertible. Therefore, it is not possible to derive a propagator for these
equations of motion. The standard approach to resolve this issue is to add
a gauge fixing term LGF to the Lagrangian (2.1) that breaks gauge invari-
ance and further modifies the equations of motion for the gauge field in
such a way that its Fourier transform allows for an inverse. In this sense,
any kind of perturbative approach for a gauge theory requires a gauge fix-
ing.

Obviously, there is not an unique choice for such a gauge fixing. Nonethe-
less, there is a customary choice for the sake of minimizing the number of
terms in the perturbation series. This is the (linear) covariant gauge

LGF = − 1

2ξ
(∂µA

µ)2 , (2.25)

where ξ denotes the gauge parameter. One can think of ξ as a Lagrangian
multiplier, which implies that the gauge field obeys the Lorenz gauge con-
dition

∂µA
µ = 0. (2.26)

This consideration is the reason for identifying LGF as a gauge fixing. Fur-
ther, the reader should be aware that it does not alter the physical electric
and magnetic fields, hence it is considered to be a non-physical term —
physical results should not depend on the non-physical gauge parameter ξ.
This motivates us to ascertain how Green’s functions and other quantities
depend on the non-physical gauge parameter in the succeeding sections.

Note that within this thesis, statements concerning the gauge depen-
dence will always refer to the class of linear covariant gauges. Therefore,
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the characterization of the gauge dependence is understood as a character-
ization of the dependence on the gauge parameter ξ.

Finally, we note that the added gauge fixing term yields the modified
equations of motion (

gµν �+ (
1

ξ
− 1)∂µ∂ν

)
Aν = 0, (2.27)

(2.28)

which gives raise to a perfectly invertible operator after a Fourier transfor-
mation.

2.1.4 Feynman rules in the covariant gauge
After addition of the covariant gauge fixing, a perturbative analysis of the
equations of motion of the gauge field results in an explicit expression for
the photon propagator in straight analogy to our discussion of the Dirac
field. Conclusively, the Feynman rules of Quantum Electrodynamics in the
linear covariant gauge read

µ

ji
= ieγµij (2.29)

p
ji = i

(
/p+m

p2 −m2

)
ij

(2.30)

p
νµ = −i 1

p2

[
gµν − (1− ξ) p

µpν

p2

]
. (2.31)

Further, each closed fermion loop contributes a factor of −1 due to the
Pauli’s exclusion principle which can be shown to be a consequence of the
half-integer spin of the Dirac field [32]. It should be noted that ξ is the
gauge parameter specified by the linear covariant gauge. Although the
gauge parameter will be renormalized and hence change under the flow of
the renormalization group, it is sometimes convenient to choose a particu-
lar value for the gauge parameter. A commonly used value is the Feynman
gauge (ξ = 1); this choice minimizes the number of Lorentz tensors in
gauge-fixed photon propagator and hence substantially reduces the num-
ber of terms generated in the computation of Feynman graphs. Another
particular useful choice is the Landau gauge (ξ = 0), which reduces the
photon propagator to its transversal component. The importance of the
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Landau gauge is due to the fact that a Ward identity guarantees this value
to be a fixed point under the renormalization flow. For the general co-
variant gauge fixing, it is convenient to decompose the photon propagator
into its transversal and longitudinal components by means of the following
tensors

T µν(p) = gµν − pµpν

p2
and Lµν(p) =

pµpν

p2
. (2.32)

They fulfil the following projection rules

LµσLσν = Lµν , T µσTσν = T µν , (2.33)
T µσLσν = 0, and LµσTσν = 0. (2.34)

Here, we suppressed the explicit notation of the momentum dependence
as all tensor are supposed to depend on the same momentum. The latter
line implies that the transversal parts do not interfere with the longitudinal
parts in a chain of photon propagators.

2.1.5 Restoring gauge invariance
As the photon propagator clearly depends on the non-physical gauge fixing
term, the first question one likes to address is: how does a photon propa-
gator in Quantum Electrodynamics without specification of a gauge fixing
relates to the proposed photon propagator? This paragraphs provides a
naive attempt to answer this question.

We start with the Lagrangian of Spin-1
2

Electrodynamics L without a
gauge fixing. Then, the gauge fixing term LGF is added and immediately
subtracted such that the theory effectively remains gauge invariant

L = L + LGF︸ ︷︷ ︸
(i)

−LGF︸ ︷︷ ︸
(ii)

. (2.35)

The first part of the Lagrangian (i) allows for a perturbative analysis result-
ing in the Feynman rules as presented above. In particular, one obtains the
above expression of the photon propagator which we like to denote as

Pµν(p) =
−i
p2

(Tµν(p) + ξLµν(p)) , (2.36)

where T and L respectively denote the transversal and longitudinal tensors
with the momentum p. The second part (ii) contributes a new two-photon
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interaction term which has to be included in the perturbation series. This
term gives rise to the expression

Vµν(p) =
i

ξ
p2Lµν(p). (2.37)

In a Feynman graph, this novel vertex only couples in-between a pair of
photon propagators. Interpreting suchlike expressions as contributions to
an effective photon propagator, the novel vertex can indeed be absorbed.
This effective photon propagator consists of the original photon propagator
and all possible ways to build a chain of the novel vertex enclosed by two
photon propagators

P̃µν(p) = Pµν(p) + Pµσ1

∑
n≥1

Vσ1ρ1Pρ1σ2 · · ·VσnρnPρnν(p). (2.38)

Following this line thoughts, one indeed finds that the effective photon
propagator adopts the expected decomposition into a transversal and a lon-
gitudinal part

P̃µν(p) =
−i
p2

(
Tµν + ξ̃Lµν

)
, (2.39)

provided one introduces the effective gauge parameter ξ̃. However, this
parameter

ξ̃ := ξ
∑
n≥0

1 (2.40)

turns out to diverge and hence incorporates the pathological behaviour the
free equations of motion of the gauge field (2.4). This derivation suggests
the interpretation that adding the covariant gauge fixing (2.25) squeezes
the amplitude of the longitudinal part of the photon propagator to a finite
value. On the other hand, the gauge fixing does not affect the transversal
part of the propagator, which might therefore be considered as the physical
part.

2.1.6 Anomalies
The paragraph 2.1.1 summarized several symmetries of the Spin-1

2
Electro-

dynamics as a classical field theory. This paragraph gives a non-exhaustive
report on how these symmetries are modified due to self-interactions in
the quantization process. Special emphasis lies on the symmetries of the
massless Lagrangian.
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Firstly, consider the class special conformal transformations. It can be
shown that the linear covariant gauge fixing LGF (2.25) breaks the in-
variance under special conformal transformations and hence causes a non-
vanishing term which spoils the conservation of the conformal Noether cur-
rents. However, beside of this term, quantum corrections yield further con-
tributions which violate the conformal invariance. More precisely, pertur-
bative terms give raise to a non-vanishing trace in the energy-momentum
tensor; the interested reader finds an extensive discussion of the so-called
trace anomaly in [33] and references therein. This case illustrates what
is termed anomaly — contributions due to quantum corrections that spoil
classical conservation laws or affect the classical equations of motion.

In the light of this issue, recall that the literature suggests a customary
way to draw conclusions from the gauge invariance of a quantized field
theory: first define Green’s functions by means of time-ordered vacuum ex-
pectation values of operators which evolve in the interaction picture; then,
consider the derivative of a Green’s function which includes a classically
conserved current; apply the current conservation and work out additional
Schwinger terms, which are due to the time-ordering. This implies an iden-
tity, usually termed Ward identity, that relates a class of different Green’s
functions [34]. Alternatively, this kind of Ward identity can be derived by
exploiting invariance properties of the path integral [30].

Note that the same reasoning is readily applied to the case of dilation
invariance [35] and results in the identity( ∑

1≤i≤n

xµi
∂

∂xµi
− dG

)
G(x1, · · · , xn) = 0 (2.41)

with the scaling dimension

dG = dψNψ + dANA − 4 (2.42)

of the connected Green’s function G, where dψ = 3/2 and dA = 1 are the
scaling dimensions of the fermion and photon fields, and the number of
external fermion and gauge fields of the Green’s function G is denoted by
Nψ andNA. For the instance of the Fourier transformed electron propagator
S(p), Ward identity associated to scale invariance reads(

pµ
∂

∂pµ
+ 4− 2dψ

)
S(p) = 0, (2.43)

which is indeed respected by the tree-level approximation 1//p of the elec-
tron propagator. However, it turns out that quantum corrections also spoil
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the dilation invariance. For a qualitative understanding of this statement, it
suffices to consider the first-order correction (in the loop counting param-
eter α) to the electron propagator

S(p) =
1

/p

[
1 + ξ

( α
4π

)
L+ O

(
α2
)]
, with L = ln

(
−p2

µ2

)
. (2.44)

Obviously, the kinematic variable L depends on the momentum p and
yields a non-vanishing contribution which spoils the dilation Ward iden-
tity (2.43). However, at this order, the dilation identity can be restored by
replacing the scaling dimension dψ of the fermionic field by the coupling
dependent series

d̃ψ(α) = dψ + ξ
α

4π
+ O

(
α2
)
. (2.45)

The coupling dependent terms indicate that quantum corrections modify
the classical scaling behaviour and are hence called anomalous (scaling)
dimension of the electron. However, considering even higher orders of
quantum corrections, the scaling Ward identity ceases to persist and is re-
placed by the renowned Callan-Symanzik equation [36, 37, 38]

(∂L + βα∂α + δξ∂ξ − γ) /pS(p) = 0, (2.46)

where γ represents the anomalous dimension as introduced above and the
other renormalization group functions β and δ respectively describe the
scaling behaviour of the coupling parameter α and the gauge parameter ξ.
Further details on the Callan-Symanzik equation including a Hopf-algebraic
derivation can be found in paragraph 2.4.4.

As one expects the scaling behaviour of Green’s functions to be related
to observable quantities, it is worth emphasizing that the one-loop anoma-
lous dimension (2.45) immediately reveals a striking point: renormaliza-
tion group functions are gauge dependent objects. This observation funds
our motivation to characterize the dependence of Green’s function on this
non-physical parameter.

Another crucial remark pertains to the derivation of the Ward identity
(2.41). The derivation in the canonical or path integral formalism appears
to be insensitive to the possible emergence of anomalies. For this reason,
our enquiry aims to completely avoid the application of classical symme-
tries to Green’s functions; this includes gauge invariance and its residual
relatives. Instead, we rather commit ourselves to the perturbative regime
and study the analytic properties of Feynman rules to derive Ward identities
and characterize the gauge dependence.
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After, becoming aware of the anomalous behaviour of the special con-
formal transformations and dilations, it should be mentioned that the chiral
symmetry is also violated. The axial current is anomalous. However, due to
the Adler-Bardeen theorem [39], this anomaly is restricted to the first loop
order and it is possible to define a modified axial current that is indeed
conserved [40].

Finally, it is reasonable to remark that despite of their formidable ap-
pearance and the related breakdown of symmetries, anomalies should actu-
ally be appreciated as they provide excellent opportunities to compare the-
ory with experiments. A prominent instance of massive Quantum Electro-
dynamics is the anomalous magnetic moment of the electron as discussed
in the introduction.

2.2 Cancellation identities

This section constitutes our enquiry of global properties of Green’s func-
tions. It is perturbative by nature — that is, it is based on diagrammatic
identities which are a consequence of the analytical structure of the Feyn-
man rules. The discussion presented here is an extension of the results of
[41].

Firstly, it transpires that tree-level identities imply cancellation between
certain Feynman graphs. These cancellation identities apply in two dif-
ferent scenarios. The first pertains to Green’s functions with longitudinal
photon legs and implies the renowned Ward identities — as an example the
Ward-Takahashi identity [5, 6, 7] is derived. The second application per-
tains to the longitudinal part of the photon propagator where the resulting
cancellations allow for a characterization and reconstruction of the gauge-
dependent parts of the Green’s function. This characterization by means
of a Dyson-Schwinger type equation can be thought of as a perturbative
derivation of the famous Landau-Khalatnikov formula [8] and is readily
generalized to Quantum Electrodynamics at higher dimensions.

2.2.1 Diagrammatic cancellations
The cornerstone of our enquiry is a remarkably simple tree-level identity,
namely

γνk
ν =

(
/p+ /k −m

)
−
(
/p−m

)
. (2.47)



2.2. CANCELLATION IDENTITIES 19

This algebraic identity is useful when considering two electron propagators
that enclose a vertex with a longitudinal contracted photon leg

1

/p+ /k −m
γνk

ν 1

/p−m
=

1

/p−m
−

1

/p+ /k −m
,

the product which contains two fermionic propagators (three gamma ma-
trices) can be written as a sum of two fermionic propagators (one gamma
matrix each). The right-hand side appreciates some analytical simplifica-
tions; it is therefore reasonable to introduce a diagrammatic representation
for these terms

= − .

(2.48)

The novel representation includes cancelled electron propagators (visual-
ized by slashed electron lines) and a dashed line that couples to the electron
without contributing the usual γν factor. To be more precise, the analytic
expressions are visualized by means of the following set of auxiliary Feyn-
man rules.

µ
p

= pµ (2.49)

p
ji = i

(
/p−m
/p−m

)
ij

= iδij (2.50)

p
=

1

p2
(2.51)

ji
= ieδij (2.52)

= iξ (2.53)

The first equation introduces a convention: the orientation of the momen-
tum p is meant to be defined by the direction of the triangle. Also note that
the dashed line is associated with a scalar propagator and we introduced
a vertex that connects two dashed lines. These notations are anticipated
here; these will prove themselves useful for the description of the longitu-
dinal part of the photon propagator in paragraph 2.2.3.



20 CHAPTER 2. QUANTUM ELECTRODYNAMICS

Diagrammatic cancellation identities

The tree-level identity (2.48) replaces a longitudinal contracted Feynman
graph by the sum of two Feynman graphs with auxiliary edge and vertex
types. The actual simplification of this replacement is that the number
of gamma matrices decreases. This decrease is indicated by the slashed
electron propagators in the diagrammatic identity. Note that the slashed
propagator corresponds to a unit matrix in spinor space and can hence
be contracted to a point without changing the analytical structure of the
Feynman graph. In combination with the relative minus sign in the identity
(2.48), this leads to cancellations of the following type.

+

= − +

︸ ︷︷ ︸
=0

− (2.54)

This cancellation readily generalizes to the case of an electron line with an
arbitrary number of attached photon legs. Our first cancellation identity
reads

+ + · · ·+

= − . (2.55)

When considering all possible insertions of a momentum-contracted photon
vertex into an electron line, all terms cancel except for terms from the very
first and the very last insertion place. It is worth emphasizing that there is
no restriction on the photon lines below the horizontal fermion line. Pairs
of them might be connected with the photon propagator or even vacuum
polarization graphs. This feature enables the tree-level identity to describe
cancellations between Feynman graphs containing loops.

The second cancellation identity is concerned with the insertion of a
momentum-contracted photon leg to a closed electron loop. Let us denote
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the insertion of a graph γ into the graph Γ at an insertion point i by Γ ◦i
γ. Then, the sum over all possible insertions of a momentum-contracted
photon vertex into a closed electron loop vanishes

∑
insertion i

◦i = 0. (2.56)

This identity is easy conclusion of the first cancellation identity. To see this,
close the horizontal electron line in the first identity to a loop and contract
the slashed electron propagators. This yields two equivalent closed elec-
tron loops with a relative minus sign. The analytic terms assigned to these
graphs differ in the momentum running through the closed electron loop.
To cancel both graphs, one needs to shift the loop momentum assigned to
the closed electron loop. The reader should be aware that this provides
a restriction to the employed renormalization scheme. Within this thesis,
we restrict ourselves to dimensional regularization, which is well-known to
satisfy this requirement [42].

Note that the second cancellation identity already has strong implica-
tions on the global properties of the vacuum polarization Πµν . One of its
conclusions is the Ward identity

pµΠµν(p) = 0, (2.57)

which reveals the vacuum polarization to be transversal — that is it van-
ishes when one of its external photon legs are contracted with the assigned
momentum. Here, we visualize the instance of the second loop order.

0
(2.56)

=
∑

insertion i

◦i

= + + (2.58)

2.2.2 The Ward-Takahashi identity
The preceding graphical cancellation identities are useful to derive rela-
tions between different types of Green’s functions. In this regard, cancella-
tion identities enhance perturbative properties from Feynman graphs to the
global notion of Green’s functions and hence are capable to provide infor-
mation beyond perturbation theory. Indeed, we will now demonstrate that
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the Ward-Takahashi identity can be derived solely from the cancellation
identity (2.48).

In the following, the sum over all connected Feynman graphs of a par-
ticular external leg type is referred to as connected Green’s function and
will be denoted by attaching its external legs to a rectangular box. In a
similar way, circular boxes represent one-particle irreducible, or in other
words two-edge-connected, Green’s functions.

It is worth noticing that the cancellation identities interrelate certain
subclasses of Feynman graphs rather than entire Green’s functions. These
subclasses can be characterized by defining the following equivalence re-
lation. Let γ be a connected Feynman graph of vertex type, we write
res(γ) = to depict the external legs of the Feynman graph γ. For every
such a vertex graph γ, construct an electron propagator graph γ̃ which is
obtained by deleting both, the external photon leg and the adjacent vertex,
and connecting the electron edges which have been adjacent to the deleted
vertex. Now, a connected vertex Feynman graphs γ1 is ∼-related to another
connected vertex Feynman graph γ2 iff the deletion of their external photon
legs results in the same electron propagator graph, that is

γ1 ∼ γ2 :⇔ γ̃1 = γ̃2. (2.59)

The relation ∼ clearly inherits the properties reflexivity, symmetry, and
transitivity from the graph equality relation = in its definition and hence is
an equivalence relation. As a result, the set of connected vertex Feynman
graphs partitions into equivalence classes. Moreover, this set of equivalence
classes is bijective to the set of connected electron propagator graphs. To
prove this statement, map every equivalence class [γ] to the graph γ̃. This
mapping is injective (equivalence classes are disjoint) and surjective (given
an arbitrary target γ̃, insertion of an electron-photon vertex defines an ap-
propriate preimage). Denoting the set of connected Feynman graphs with
the external leg structure r by Cr, the above equivalence reads

C /∼ ∼= C . (2.60)

Now, given an electron propagator graph γ̃, this set equivalence assigns an
equivalence class of vertex type graphs to the graph γ̃. By definition, this
equivalence class consists of all graphs which reduce to γ̃ after removal
of their external photon legs. In other words, all graphs of the equiva-
lence class can be constructed by inserting an electron-photon vertex into
an electron edge of γ̃ in all possible ways. In this way, the set equivalence
(2.60) allows us to rewrite the sum over all connected vertex type Feynman
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graphs as the summation over all connected propagator graphs in combi-
nation with insertion of an electron-photon vertex in all possible ways.

=
∑
γ̃∈C

∑
insertion i

γ̃ ◦i

(2.56)
=

∑
γ̃∈C

∑
insertion j

γ̃ ◦i

(2.55)
=

∑
γ̃∈C

γ̃ − γ̃

= − (2.61)

Here, the summation over insertions i refers to all insertions of the electron-
photon vertex into an arbitrary electron propagator of γ̃, whereas the in-
sertions j are restricted to insertions into the external electron line — all
insertions into closed electron loops vanish as a consequence of the cancel-
lation identity (2.56). The remaining sum over insertions into the external
electron line allows to employ the cancellation identity (2.55). This re-
sults in a sum over electron propagator graphs which indeed yields the en-
tire connected electron propagator Green’s function due to the equivalence
(2.60).

A similar reasoning restricts the connected photon Green’s function.
For a Feynman graph of loop order one or higher, the longitudinally con-
tracted external photon leg is attached to a closed electron loop. Further, all
graphs which are generated by moving the longitudinal photon leg along
the closed electron loop are part of the connected Green’s function. The
sum over these classes of graphs vanishes due to the cancellation identity
(2.56). Therefore, the only remaining term of the longitudinally contracted
photon Green’s function is the tree-level contribution

= . (2.62)

Note that this argument generalizes to an arbitrary number of external
photon legs.

Finally, it is the Ward identity for the connected vertex function and the
Ward identity for the connected photon propagator function that restrict
the one-particle irreducible vertex function in the following way. Recall
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that the one-particle irreducible vertex function satisfies by definition

= . (2.63)

Due to the Ward identity (2.62), the longitudinally contracted photon Green’s
function on the left-hand side vanishes up to its tree-level contribution.
Further, we amputate the connected electron propagator functions by mul-
tiplication with their inverses. In our diagrammatic language, a superscript
minus one is assigned to the rectangular boxes to denote the inverse prop-
agator functions which satisfy the diagrammatic condition

−1

= S(p)S−1(p) = 14×4. (2.64)

Now, due to the Ward identity for the connected vertex function (2.61),
the one-particle irreducible vertex function with a longitudinally contracted
photon obeys the diagrammatic identity

=
−1

−
−1

. (2.65)

Denoting the momentum of the outgoing electron line by p and the momen-
tum of the incoming electron line by q, this diagrammatic identity translates
into the renowned Ward-Takahashi identity

(pµ − qµ)Γµ(p, q) =
1

S(p)
− 1

S(q)
. (2.66)

2.2.3 Reconstruction of the gauge dependence
The preceding section gave an account of how cancellation identities apply
to Feynman graphs with a longitudinally contracted external photon leg
and imply Ward identities. The essential point of this section is the obser-
vation that the gauge dependent terms of the photon propagator give rise
to a Lorentz tensor with a similar longitudinal structure. Therefore, cancel-
lation identities are also useful to study the gauge dependence of Green’s
functions. The highlights of this enquiry are closed formulas for the gauge
dependent terms of the electron and vertex Green’s function. As the photon
Green’s function is gauge independent, this provides a complete character-
ization of how generic Green’s functions depend on the gauge parameter.
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Consider the tree-level photon propagator of Quantum Electrodynamics
with a linear covariant gauge fixing

P µν(p) =
−i
p2

(
gµν − (1− ξ)p

µpν

p2

)
, (2.67)

where ξ denotes the gauge parameter.For the renormalization process, it
will be crucial to treat the gauge parameter as a renormalized variable.
However, at an intermediate stage, it is possible to evaluate the gauge pa-
rameter at a particular value. Here, we denote this value by the constant
ξ∗ such that the gauge-fixed version of the photon propagator reads

P µν
ξ∗ (p) =

−i
p2

(
gµν − (1− ξ∗) p

µpν

p2

)
. (2.68)

It is worth remarking that the Feynman gauge ξ∗ = 1 is particularly conve-
nient since this choice minimizes the number of Lorentz tensors in gauge-
fixed propagator and hence substantially reduces the number of terms gen-
erated by each Feynman graph.

Now, assume that we have evaluated the gauge parameter at ξ∗ and
have performed the Feynman graph computations in this particular gauge
fixing. Then we need to reconstruct the actual dependence on the gauge
parameter ξ in order to renormalize the divergent Green’s functions. This
is due to the fact that the gauge parameter needs to be understood as a
renormalized parameter which can be utilized to absorb divergences; for a
detailed discussion of the renormalization process, the reader is referred to
section 2.3.

Notice that the photon propagator in the general linear gauge can be
decomposed into the gauge fixed propagator Pξ∗ and a gauge parameter
dependent tensor

P µν(p) = P µν
ξ∗ (p)− i (ξ − ξ∗) p

µpν

(p2)2 . (2.69)

In the general linear gauge, evaluating a Feynman graph results in a poly-
nomial in the gauge parameter ξ and its degree is determined by the num-
ber of photon propagators which is bounded by the number of loops of the
considered Feynman graph. In the following, the result of a Feynman graph
is considered as an expansion in powers of the gauge parameter ξ at ξ∗.
The constant part of this expansion is obtained by replacing every photon
propagator with the gauge-fixed propagator Pξ∗. Starting from the con-
stant term, terms of higher order in the gauge parameter are constructed
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by inserting a gauge parameter dependent tensor

− pµ 1

p2
[i (ξ − ξ∗)] 1

p2
pν (2.70)

instead of a gauge-fixed propagator Pξ∗. Obviously, the number of these
gauge dependent tensors determines the order in the (shifted) gauge pa-
rameter — for instance the quadratic term in (ξ − ξ∗) is constructed by
considering all ways to choose two gauge-fixed propagators and replace
them with this longitudinal tensor. As indicated above, the gauge depen-
dent tensor can be represented by means of the auxiliary Feynman rules
(2.49-2.53) as two longitudinal photon legs which are connected to a two-
valent vertex by two scalar propagators. Rephrasing the previous example
in a diagrammatic language, the quadratic term in (ξ − ξ∗) of a Green’s
function is constructed by evaluating all Feynman graphs with exactly two
longitudinal photon propagators (2.70) (and an arbitrary number of the
gauge-fixed photon propagator Pξ∗).

Quenched Quantum Electrodynamics

At this point of the discussion, we will restrict ourselves to Feynman graphs
that contain no closed electron lines — this is usually referred to as the
quenched sector of Quantum Electrodynamics. The influence of closed
electron lines will be enquired in the next paragraph.

In the following, we define an equivalence relation that relates certain
classes of Feynman graphs containing the gauge dependent tensor (2.70)
such that cancellation identities apply to these classes of Feynman graphs
in a similar fashion as in the preceding discussion of the Ward-Takahashi
identity in paragraph 2.2.2.

Let r denote an external leg structure consisting of exactly one external
electron line and an arbitrary number of photon legs. Consider the set Crm
of all connected quenched Feynman graphs of the external leg structure r
which possess exactly m longitudinal photon edges

Crm = {γ : γ connected quenched Feynman graph with
m longitudinal photons and res γ = r} . (2.71)

Further, it is useful to consider the set of these kind of Feynman graphs
with an additional marking on one of the longitudinal photon edges

C̃rm = {(γ, e) : γ ∈ Crm, e longitudinal photon edge of γ} . (2.72)
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There is an equivalence relation on C̃rm by defining (γ1, e1) and (γ2, e2) to be
∼-related iff the considered Feynman graphs γ1 and γ2 are equal up to their
marked longitudinal photon edges

(γ1, e1) ∼ (γ2, e2) :⇔ (γ1 − e1) = (γ2 − e2) (2.73)

where the − denotes the deletion operation in the sense of deleting the
photon edge and forgetting its adjacent vertices to avoid the emergence of
two-valent electron vertices. As in the preceding discussion of the Ward-
Takahashi identity, the relation ∼ inherits all properties of an equivalence
relation due to the fact that equality between graphs is an equivalence
relation in its own right. Consequently, the relation ∼ decomposes the set
C̃rm into equivalence classes and by definition each equivalence class [(γ, e)]
can be represented by the connected quenched Feynman graph with (m−1)
longitudinal photon edges (γ− e). Mapping each equivalence class onto its
representative defines a bijective map and proves the equivalence

C̃rm/∼ ∼= Crm−1. (2.74)

Firstly, it should be remarked that by considering only quenched Feynman
graphs any kind of difficulty originating from tadpole subgraphs is avoided
and the considered Feynman graphs remain connected even after the dele-
tion of the marked longitudinal photon edges. Secondly, the number of
gauge-fixed photon edges is an invariant in the above definitions and hence
the equivalence classes can be refined by considering a specific number
gauge-fixed photon edges in C̃rm.

The following example illustrates these circumstances: consider the set
of connected quenched electron propagator graphs with exactly one longi-
tudinal and exactly one gauge-fixed photon propagator. In this case, the
marking is already determined since every Feynman graph possesses only
a single longitudinal photon edge. Deleting this marked longitudinal edge
yields a one-loop connected electron propagator graph in C0 . As there
is only one such a graph, the considered subset of C̃1 decomposes into a
single equivalence class{

, , , , ,

}
∼=
[ ]

(2.75)

where we used the one-loop graph of C0 as the representative of the
equivalence class in a slight abuse of notation.
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As seen from this example, the elements of a equivalence class are gen-
erated by considering all possible ways to attach a longitudinal photon edge
(and assigning the marking to this attached longitudinal edge) into the rep-
resentative graph of the equivalence class. By definition of the equivalence
relation ∼ and the representative of an equivalence class, this observation
is not a particular feature to this specific example, but remains true for
a generic equivalence class. However, instead of attaching a longitudinal
photon edge it is useful to rephrase this modification in terms of two it-
erated insertions of a longitudinal contracted electron-photon vertex and
connect the inserted vertices such that the longitudinal tensor (2.70) is
constructed.

Let us illustrate the iterated insertions in the context of the above exam-
ple. The one-loop representative graph possesses three places i ∈ {1, 2, 3}
for the first insertion of a longitudinal contracted electron-photon vertex.
This generates three Feynman graphs∑

i∈{1,2,3}

1 2 3 ◦i =
1 1′ 2 3

+
1 2 2′ 3

+
1 2 3 3′

(2.76)

and each of them possesses four successive insertion places j ∈ {1, 2, 3, i′}
for the second insertion of a longitudinally contracted electron-photon ver-
tex. All these insertion places are used for the two successive insertions into
the one-loop Feynman graph. This generates all graphs of the equivalence
class that is represent by this one-loop Feynman graph∑

i∈{1,2,3}
j∈{1,2,3,i′}

1 2 3 ◦i ◦j = 2
∑

γ∈[ ]

γ. (2.77)

Here the longitudinally contracted electron-photon legs are connected by
two scalar propagators and a two-valent vertex in convenience with the
auxiliary Feynman rules (2.49-2.53) such that they constitute the gauge
dependent tensor (2.70). The factor of 2 is due to the fact that permuting
both longitudinally contracted electron-photon vertices corresponds to a
different pair of insertions (i, j) that yields the same graph. To exemplify
this, consider the first graph of the right-hand side of (2.76). An insertion
of the second vertex either into the place 1 or into the place 1′ yields the
first graph of our accumulation of the equivalence class (2.75).

Eventually, up to the technical notion of the marking, a set of quenched
connected Feynman graphs with m longitudinal photon propagators de-
composes into equivalence classes such that all graphs of an equivalence
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class are generated by suchlike iterated insertions of two longitudinally
contracted electron-photon vertices. This kind of insertion obeys the can-
cellation identity (2.55) which can be iterated and simplifies the computa-
tion of the graphs of the equivalence class.

In the case of our example, this reads

+ + + + +

=
1

2
− +

1

2
(2.78)

where the three remaining graphs result from applying the cancellation
identity (2.55) twice to resolve the iterated insertion in the left-hand side
of (2.77).

In the general case of a connected quenched Green’s function with a sin-
gle external electron line and an arbitrary number of external photon legs,
consider the (ξ− ξ∗)m term of this Green’s function. Rewriting this term by
means of an iterated insertion and applying the cancellation identity (2.55)
shows that a term of order m in the gauge parameter is determined by the
term of order (m− 1).

m =
∑
γ∈Crm

γ =
1

m

∑
(γ,e)∈C̃rm

γ

=
1

2m

∑
γ∈Crm−1

∑
insert (i, j)

γ ◦i ◦j

=
1

m

∑
γ∈Crm−1

1

2
γ − γ +

1

2
γ


=

1

m

1

2
m−1 − m−1 +

1

2
m−1


(2.79)

Here, the factor of 1/m is introduced in the first line because every graph
with m longitudinal photon edges provides m different markings. In the
second line, we used that fact that the sum over an equivalence class can
be rewritten by means of an iterative insertion into the representative graph
of this equivalence class; notice that the set of representative graphs is char-
acterized by (2.74). In the third line, we applied the cancellation identity
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(2.55) twice to rewrite the iterated insertion. Finally, we rewrote every-
thing in terms of the connected quenched Green’s functions of order (m−1)
in the (shifted) gauge parameter.

Closed electron loops

Now, consider the set Πn
m consisting of all Feynman graphs which are con-

structed by drawing a closed electron loop and attaching n external pho-
ton legs, m longitudinal photons propagator, and an arbitrary number of
gauge-fixed propagators to the closed electron loop.

With this definition, ∪m≥0Π2
m is the set of Feynman graphs that defines

the quenched beta function. However, we will see that all gauge dependent
terms cancel such that effectively only Π2

0 contributes to the quenched beta
function.

First notice that every Feynman graph of Πn
m is one-particle irreducible

by construction and moreover each graph of this set remains one-particle
irreducible even after the deletion of one of its longitudinal photon propa-
gators

γ ∈ Πn
m, e longitudinal edge of γ ⇒ (γ − e) ∈ Πn

m−1. (2.80)

This property allows us to construct an equivalence relation in a very sim-
ilar way as in the quenched sector. Firstly, introduce the set of Feynman
graphs with a single closed electron loop, n external photon legs, and m
longitudinal photon edges where one of the longitudinal edges received a
marking

Π̃n
m = {(γ, e) : γ ∈ Πn

m and e longitudinal edge of γ} . (2.81)

Secondly, an equivalence relation ∼ is defined on Π̃n
m by setting

(γ1, e1) ∼ (γ2, e2) :⇔ (γ1 − e1) = (γ2 − e2). (2.82)

As a result, the set Π̃n
m decomposes into equivalence classes. Mapping such

an equivalence class [(γ, e)] onto the Feynman graph (γ−e) ∈ Πn
m−1 defines

a bijection such that every equivalence class possesses a natural represen-
tative Feynman graph

Π̃n
m/∼ = Πn

m−1. (2.83)

By construction, every Feynman graph of a particular equivalence class
can be generated by iterated insertion of two longitudinally contracted
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electron-photon vertices into the associated representative graph in strict
analogy to the quenched sector.

Given such an equivalence class [γ] where γ ∈ Πn
m−1 is the representa-

tive graph of the class, the cancellation identity (2.56) for insertions into
a closed electron loop applies whenever the sum over all graphs of this
equivalence class is considered∑

Γ∈[γ]

Γ =
1

2

∑
insertions (i, j)

γ ◦i ◦j (2.56)
= 0. (2.84)

Again, the number of gauge-fixed propagators is an invariant of the equiva-
lence relation and allows further decomposition of the equivalence classes
such that the cancellation remains valid. For instance, consider the two-
loop vacuum polarization with one longitudinal photon propagator. This
subset of Π2

1 is characterized by restricting to Feynman graphs without
gauge-fixed propagators; it consists of three Feynman graphs

+ +

=
1

2

∑
insert. (i, j)

◦i ◦j = 0. (2.85)

which can be rewritten as iterated insertion into the one-loop vacuum po-
larization. Due to the cancellation identity (2.56), the iterated insertion
vanishes. The three two-loop gauge parameter dependent terms cancel and
the two-loop vacuum polarization is independent of the (shifted) gauge pa-
rameter.

As a conclusion of the equation (2.84), the sum over all Feynman graphs
of the type closed electron loop possessing at least one longitudinal tensor
vanishes ∑

γ∈Πnm

γ = 0 for m ≥ 1. (2.86)

Or in other words, the gauge-dependent longitudinal tensor (2.70) is effec-
tively not inserted into closed electron loops.

Unquenched Green’s functions

In paragraph 2.2.2, we demonstrated that the photon Green’s function is
transversal at an arbitrary loop order. The argument presented there is not
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restricted to the case of two external photon legs, but naturally general-
izes to Green’s functions with an arbitrary number of external photon legs
as long as there are no external electron legs. As a result, every Green’s
function of this type can be considered to be transversal in the sense that
it vanishes whenever one of its external photon legs is contracted with the
associated external momentum. Consequently, the gauge-dependent ten-
sor does not couple to the external photon legs of a Green’s function of this
kind.

Combining this statement with the conclusion of the preceding para-
graph, the gauge-dependent tensor effectively neither couples to internal
edges nor to the external photon legs of closed electron loops. By effec-
tively we mean that an insertion into an individual Feynman graph might
yield a non-vanishing result, but these contributions cancel once all graphs
are considered.

Effectively, the gauge-dependent tensor couples only to external elec-
tron lines and hence the cancellation identities of the quenched sector apply
for these insertions. Therefore, the characterization of the gauge parame-
ter dependence in the quenched sector (2.79) generalizes to unquenched
Quantum Electrodynamics

m =
1

m

1

2
m−1 − m−1 +

1

2
m−1

 .

(2.87)

This formula relates the (ξ − ξ∗)m term of a connected Green’s function to
the term proportional to (ξ − ξ∗)m−1 of the same Green’s function. Given
a Green’s function with its gauge parameter evaluated at the particular
value ξ∗, the formula reconstructs the linear term of the expansion in the
shifted gauge parameter and iterative application of the formula eventually
determines the full dependence on the general covariant gauge parameter
ξ of that Green’s function. Therefore, the above formula provides a full
characterization of how a Green’s function in the linear covariant gauge
depends on gauge parameter.

The Landau-Khalatnikov formula revisited

It is instructive to employ the auxiliary Feynman rules (2.49-2.53) on the di-
agrammatic expressions of the last paragraph and to convey the characteri-
zation of the gauge dependence into a momentum space Dyson-Schwinger
equation. Recall that due to our conventions for the longitudinal tensor
(2.70), the two-valent vertex converts into a factor of the shifted gauge
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parameter (ξ − ξ∗). We divide this factor together with the factor m to
the left-hand side of the equation and rewrite this factor as derivative with
respect to the gauge parameter m/(ξ−ξ∗) ∼= ∂/∂ξ. Then, summation over all
powers in the (shifted) gauge parameter yields the following characteriza-
tion for a connected unrenormalized Green’s function

∂Gr

∂ξ
(q) = ie2

∫
dDp

(2π)D
1

(p2)2
[Gr(q + p)−Gr(q)] . (2.88)

Here, the index r refers to a single external electron line and an arbitrary
number of external photon legs. Further, it is crucial to remark that the
integration is understood in terms of dimensional regularization as this
implies that the (actually divergent) tadpole terms of the diagrammatic
formula (2.87) vanish.

This formula can be perceived to be a natural momentum space version
of the Landau-Khalatnikov formula which is discussed now. In [8], Landau
and Khalatnikov enquired how general gauge transformations affect the
Green’s functions of Quantum Electrodynamics. The prevailing assump-
tion underlying their work is the absence of anomalies in Green’s functions
under a general gauge transformation of the kind

Aµ 7→ A′µ = Aµ + ∂µω

ψ 7→ ψ′ = eieωψ

}
. (2.89)

More precisely, they claim that the change of a canonically quantized Green’s
function in a certain gauge is described by employing the gauge transfor-
mation on the fields in the correlator of that Green’s function〈

A′µ · · ·ψ′ · · ·ψ
′
〉

=
〈
(Aµ + ∂µω) · · · eieωψ · · · e−ieωψ

〉
. (2.90)

Considering Green’s functions as a series of Feynman graphs, this statement
restricts the effect of a general gauge transformation to external legs only;
internal edges in a Feynman graph are unaffected.

As a result of quantizing the free scalar field ω and identifying its prop-
agator with the longitudinal part of the photon propagator, Landau and
Khalatnikov proposed a position space formula for the gauge dependence
of the electron propagator. This result was extended by Zumino [43] with
respect to the discussion of several gauge-fixings, including the linear co-
variant gauge. Further, Zumino clarified that the Landau-Khalatnikov for-
mula refers to unrenormalized Green’s functions. For the electron propa-
gator function, the Landau-Khalatnikov formula reads

S ′F (x− y) = exp
{
ie2 [M(x− y)−M(0)]

}
SF (x− y), (2.91)
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where the function M within the exponential denotes the propagator of the
scalar field ω. This function is determined by the choice of a gauge-fixing.
In the setting from above (the transformation from a specific value ξ∗ to
another value ξ in the gauge parameter of the the linear covariant gauge),
it is given by

M(x) = (ξ − ξ∗)
∫

dDp

(2π)D
e−i(p·x)

(p2)2
. (2.92)

Note that the Landau-Khalatnikov formula (2.91) can be written as differ-
ential equation with respect to the gauge parameter

∂S ′F
∂ξ

(x− y) = ie2

∫
dDp

(2π)D
e−ip·(x−y) − 1

(p2)2
S ′F (x− y). (2.93)

Finally, replacing the electron propagator S ′F by its Fourier transform Ŝ ′F
translates the Landau-Khalatnikov formula into the position space

∂Ŝ ′F
∂ξ

(q) = ie2

∫
dDp

(2π)D
1

(p2)2

[
Ŝ ′F (q + p)− Ŝ ′F (q)

]
, (2.94)

which indeed coincide with our formula for the characterization of the
gauge dependence (2.88).

It should be remarked that for additional external photon legs, the
Landau-Khalatnikov formula involves additional expressions when com-
pared to our formula (2.88). This is because we have amputated the pho-
ton propagator of the external photon leg in our Green’s functions. Adding
the gauge-dependent longitudinal tensor (2.70) onto an external photon
leg yields the additional terms and is in convenience with the global pic-
ture of (2.90) where the external photon legs are modified by longitudinal
expressions originating from the scalar field ω.

Higher dimensions: QED6 and QED8

It is a remarkable fact that a class of scalar Quantum Field Theories in
different dimensions share the same behaviour at their fixed points under
the renormalization group flow. This property is called universality and
was first established for the non-linear sigma model in two dimensions and
ϕ4 theory in four dimensions [44]. This universality class was extended by
further O(N) scalar theories in six [45, 46, 47] and eight dimensions [48].

A similar construction applies to (non-abelian) gauge theories [49, 48].
For the abelian case, theories in six and eight dimensions were constructed
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and shown to accompany the universality class of customary four-dimensional
Quantum Electrodynamics [50, 48].

Notably, the theories within a universality class share a common sym-
metry — which is the U(1) gauge symmetry in the case of Quantum Elec-
trodynamics. Another shared property is the requirement of perturbative
renormalizability. That is the kinematic terms of the Lagrangian have a
classical scaling dimension that equals the considered space-time dimen-
sion and (coupling) parameters have vanishing scaling dimensions. These
properties constitute the prescription to construct higher dimensional theo-
ries within a universality class. For further details on this construction, the
reader is referred to [48].

Following this prescription, we construct the Lagrangians of Quantum
Electrodynamics in d = 6 and d = 8 dimensions

Ld=6 = −1

4
(∂µFνρ)(∂

µF νρ)− 1

2ξ
(∂µ∂

νAν)(∂
µ∂ρAρ) + iψ /Dψ, (2.95)

Ld=8 = −1

4
(∂µ∂νFρσ)(∂µ∂νF ρσ)− 1

2ξ
(∂µ∂ν∂

ρAρ)(∂
µ∂ν∂σAσ) + iψ /Dψ

+
g2

2

32
(FµνF

µν)(FρσF
ρσ) +

g2
3

8
FµνF

νρFρσF
σµ. (2.96)

At eight dimensions, two quartic tensors emerge which are respectively
multiplied by the coupling parameters g2 and g3. These tensors contribute
a four-photon interaction vertex that complicates the discussion of cancel-
lations and the gauge dependence. However, in the following we will show
that they do not couple to the gauge-dependent parts of the photon propa-
gator.

The higher derivative terms in the Lagrangians (2.95) and (2.96) re-
quire a slightly generalized version of Lagrange equations

0 =
∂L

∂Aµ
− ∂ν

∂L

∂ ∂νAµ
+ ∂ρ∂ν

∂L

∂ ∂ρ∂νAµ
− ∂σ∂ρ∂ν

∂L

∂ ∂σ∂ρ∂νAµ
. (2.97)

Discarding the interaction terms in the Lagrangians yields the free equa-
tions of motion at the varying dimensions.

d = 4 : 0 =

(
∂νFνµ +

1

α
∂µ∂

νAν

)
(2.98)

d = 6 : 0 = �

(
∂νFνµ +

1

α
∂µ∂

νAν

)
(2.99)

d = 8 : 0 = ��

(
∂νFνµ +

1

α
∂µ∂

νAν

)
(2.100)
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Structurally the equation of motion for the free gauge field match the four-
dimensional case. Therefore, the decompositions of the photon propagator
into a transversal and a longitudinal part remains valid at six and eight
dimensions. However, an increase of the dimension by two causes an addi-
tional factor of the D’Alembert operator� = ∂µ∂

µ. The appearance of these
D’Alembert operators translates into higher pole behaviour of the photon
propagator for increasing dimension. To conclude, the photon propagator
in d = 4, 6, and 8 dimensions reads

P µν
d (p, ξ) =

−i
(p2)(d−2)/2

(
gµν − (1− ξ)p

µpν

p2

)
. (2.101)

The six-dimensional Lagrangian Ld=6 does not introduce new inter-
actions and hence it satisfies the same cancellation identities (2.55) and
(2.56) as the four-dimensional version. Therefore, the diagrammatic for-
mula (2.87) which characterizes the gauge dependence remains valid. How-
ever, the higher pole structure in the Feynman rule for the photon propa-
gator alters the pole structure in the auxiliary Feynman rules for the scalar
edges (2.51) and the gauge-dependent tensor (2.70). As a result, the dif-
ferential equation for the connected unrenormalized Green’s function in six
dimension features a higher order infrared divergence

∂Gr

∂ξ
(q) = ie2

∫
dDp

(2π)D
1

(p2)d/2
[Gr(q + p)−Gr(q)] . (2.102)

Note that this result is in convenience with the description of Landau and
Khalatnikov [8] as discussed above.

The eight-dimensional Lagrangian Ld=8, on the other hand, introduces
a four-photon interaction vertex. As this vertex connects to the transversal
and the longitudinal parts of the photon propagator, new cancellation iden-
tities are necessary to guarantee the validity of the diagrammatic formula
(2.87).

In the following, we demonstrate that the emerging four-photon vertex
is transversal; that is it vanishes whenever one of its photon legs is con-
tracted with the associated momentum. In other words the four-photon
vertex can be thought of as a modification of the transversal Green’s func-
tion that describes light-by-light scattering. Consequently, the gauge-dependent
part of the photon propagator effectively does not couple to this four-
photon vertex and, in close analogy to the discussion of unquenched Green’s
functions in paragraph 2.2.3, the diagrammatic formula (2.87) remains
valid despite the additional interaction vertices.

To prove the transversality, both emerging interaction terms of the La-
grangian Ld=8 are analysed separately. This will determine each of them
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to be transversal. Therefore, each interaction term separately obeys gauge-
invariance.

First, the interaction term proportional to the coupling g2
2 is discussed.

This tensor is the square of a pair of contracted Electromagnetic field ten-
sors. Due to the square, the Feynman rule of this tensor factors into two
Lorentz tensors. That Lorentz tensor is determined by the expression

FµνF
µν = (∂µAν − ∂νAµ) (∂µAν − ∂νAµ) . (2.103)

Every Electromagnetic potential A contributes a photon leg which carries a
Lorentz index µ and a momentum p. Labelling them by 1 and 2, the above
tensor is proportional to the expression

T µ1µ2(p1, p2) = [(p1 · p2)gµ1µ2 − pµ2

1 p
µ1

2 ] . (2.104)

This tensor vanishes when contracted with pµ1

1 or pµ2

2 ; i.e. it is transversal.
The Feynman rule of the full vertex is given as a product of two of these
tensors with summation over all ways to associate a label to each Electro-
magnetic potential, which we denote as the sum over all permutations of
the four indices σ ∈ S4. This yields

V µ1µ2µ3µ4

2 (p1, p2, p3, p4) =
g2

2

32

∑
σ∈S4

4T µσ(1)µσ(2)(pσ(1)pσ(2))T
µσ(3)µσ(4)(pσ(3)pσ(4))

= g2
2 [ T µ1µ2(p1, p2)T µ3µ4(p3, p4)

+ T µ1µ3(p1, p3)T µ2µ4(p2, p4)

+T µ1µ4(p1, p4)T µ2µ3(p2, p3)] , (2.105)

which is clearly transversal in every Lorentz index

(pi)µiV
µ1µ2µ3µ4

2 (p1, p2, p3, p4) = 0 for i = 1, 2, 3, 4. (2.106)

A prove of the transversality of the second interaction term

FµνF
νρFρσF

σµ (2.107)

is more involved and requires us to introduce some notation. We decom-
pose every Electromagnetic field tensor

Fµν = ∂µAν − ∂νAµ (2.108)
∼= − (2.109)

and represent the first term by an arrow pointing northwest; the term with
a minus sign is represented by an arrowing pointing northeast. In this way,
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the chain of four contracted Electromagnetic field tensors decomposes into
a sum of 24 = 16 terms and each of them is represented by a cyclic sequence
of 4 arrows either pointing northwest or northeast

, , · · · . (2.110)

Again, the construction of the full contribution to the four-photon vertex
requires the summation over all labellings which is denoted as sum over all
permutations of the symmetric group of order four S4.

V µ1µ2µ3µ4

3 (p1, p2, p3, p4) ∼=
g2

3

8

∑
σ∈S4

∑
si∈A(i)

(−1)# sσ(1)sσ(2)sσ(3)sσ(4) (2.111)

Here, the second sum denotes all labelled arrows si which are either point-
ing northwest or northeast and carry a momentum pi and Lorentz index µi

A(i) =

{
pi
µi ,

pi
µi
}

(2.112)

and # is the number of arrows that point northeast. Note that a Lorentz
index is always set over the arrow and the associated momentum is always
placed under the arrow. In this arrow notation, the Feynman rules come in
a very natural form. Given a sequence of labelled arrows, a gap between
two arrows pairs the kinematic data of the arrows. A pair given of a mo-
mentum and a Lorentz index translates into a four-momentum by assigning
the Lorentz index to the momentum

µ1

p2

∼= pµ1

2 and
p1

µ2 ∼= pµ2

1 , (2.113)

while two enclosed momenta become a contracted scalar

p1 p2

∼= (p1 · p2), (2.114)

and two enclosed Lorentz indices translate into a metric tensor

µ1µ2 ∼= gµ1µ2 . (2.115)

In a second step, we need to remember the minus signs from the Electro-
magnetic field tensor (2.108). Therefore, we associate a minus sign to each
arrow that points northeast.

Note that the cyclic contracted tensor (2.107) yields a cyclic sequence
of arrows and hence kinematic data of the last arrows is contracted with
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data from the first arrow. The following examples might be helpful for the
reader.

p1

µ1

p2

µ2

p3

µ3

p4

µ4 ∼= (p1 · p2)gµ2µ3pµ4

3 p
µ1

4 (2.116)

p1

µ1

p2

µ2

p3

µ3

p4

µ4 ∼= (p1 · p4)gµ2µ3pµ1

2 p
µ4

3 (2.117)

These specific examples are useful for another reason: for both examples
the sequences of arrows exactly matches except for the first arrow. There-
fore, the expression from the first example carries a relative minus sign in
comparison to the expression from the second example. Further, contract-
ing the expression with the momentum pµ1

1 associated to the varying arrow
yields the same result.

(p1)µ1(p1 · p2)gµ2µ3pµ4

3 p
µ1

4 = (p1 · p2)(p1 · p4)gµ2µ3pµ4

3 (2.118)
(p1)µ1(p1 · p4)gµ2µ3pµ1

2 p
µ4

3 = (p1 · p2)(p1 · p4)gµ2µ3pµ4

3 (2.119)

Due to the relative sign, both terms eventually cancel in the sum (2.111)
when the corresponding Lorentz index is longitudinally contracted. By ex-
ploiting the cyclicity of the sequence of arrows and possibly by renam-
ing the external photon edges, this cancellation generalizes to the every
Lorentz index of the four-photon vertex proportional to g2

3

(pi)µiV
µ1µ2µ3µ4

3 (p1, p2, p3, p4) = 0 for i = 1, 2, 3, 4. (2.120)

Eventually, both contributions to the four-photon vertex are transversal
and the diagrammatic cancellations and the formula for gauge dependence
(2.87) remain valid. Therefore, Green’s functions in eight-dimensional
Quantum Electrodynamics Ld=8 also satisfy the differential equation (2.102).

It should be noted that the emerging interactions terms in the Lagrangian
Ld=8 are build from products of a pairwise-contracted Electromagnetic field
tensor and a chain of cyclic-contracted Electromagnetic field tensors. These
might be considered as the archetypes of interactions for Quantum Electro-
dynamics at even higher dimension. The arguments presented here eas-
ily generalize to longer chains of cyclic-contracted tensors and products of
chains and pairwise-contracted tensors.

2.3 Renormalization
Recall that only dimensional regularization is considered in the scope of
this thesis. In addition to that we will restrict our discussion to the massless
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limit of Quantum Electrodynamics from here on. It is well-known that a
wide class of Feynman graphs gives raise to divergent integrals. A new set
of tools is necessary to deal with these divergences and to construct finite
and physical meaningful quantities — this the purpose of renormalization.

Within this thesis, we are mainly interested in the Hopf-algebraic de-
scription of renormalization. However, in order to provide a broad overview
and relate this rather novel approach to the established methods, we also
include a discussion of the BPHZ prescription and the renormalization by
Z-factors. Parts of this section are based on the work [51].

2.3.1 Divergent Feynman graphs
The Feynman rules (2.29-2.31) map every graph to an analytic expression
in momentum space. Due to momentum conservation, there is exactly one
independent momentum for each loop of the graph and integration over all
loop momenta is understood. This paragraph provides a rudimentary dis-
cussion of the convergence behaviour of these integrals. Hereby, we focus
on so-called ultraviolet divergences, that is to say divergences originating
from a high modulus of the loop momentum.

For an one-particle irreducible subgraph γ ⊆ Γ of a Feynman graph Γ,
we define the superficial degree of divergence

ω(γ) = 4|γ| − Iψ(γ)− 2IA(γ) (2.121)

where |γ| denotes the loop number, Iψ(γ) counts the number of internal
fermionic edges, and IA(γ) the number of internal photon edges of the
subgraph γ. The superficial degree can be interpreted as leading power
when all momenta of the subgraph γ are rescaled by a common large factor
and is hence often referred to as power counting as originally proposed by
Dyson in [52]. This point of view suggests the postulate that a subgraph
γ ⊆ Γ gives raise to a divergent integral if

ω(γ) ≥ 0. (2.122)

A proof of this statement is due to the work of Weinberg [53] as well
as Hahn and Zimmermann [54]. We hence will refer to this result as
the power counting theorem. A one-particle irreducible subgraph γ with
ω(γ) ≥ 0 is referred to as subdivergence and a Feynman graph Γ with ω(Γ)
is called (superficially) divergent.

So far, the definition of the superficial degree of divergence does not
account for the specific edges and interactions of Quantum Electrodynam-
ics. In Quantum Electrodynamics, there are fermion and photon edges
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and one type of vertex that connects two fermion edges with one pho-
ton edge. Using these properties in combination with Euler’s characteristic
|γ| = Iψ(γ) + IA(γ) − V (γ) + 1, the superficial degree of a Quantum Elec-
trodynamics Feynman graph can be written as

ω(γ) = 4− 3

2
Eψ(γ)− EA(γ), (2.123)

where Eψ(γ) and EA(γ) count the number of external fermion and photon
edges, respectively. To conclude, the superficial degree of divergence of a
Quantum Electrodynamics Feynman graph is characterized by the external
leg structure of that graph.

This fact allows for a classification of divergent Feynman graphs. A
superficially divergent graph is of the following external leg type: fermion
propagator, photon propagator, electron-photon-vertex, three-photon inter-
action, or four-photon interaction. Note that the sum over all graphs with
three external photons vanishes due to Furry’s theorem [55]. The four-
photon interaction is called light-by-light scattering and supposed to be fi-
nite by renormalizability — in other words there is no interaction vertex in
Quantum Electrodynamics that could serve to absorb the divergences of the
four-photon type. Unfortunately, the author is not aware of a general argu-
ment beyond the first-loop order that proves this statement. In [56, 57], a
basis of Lorentz tensors was construct for the class four-photon graphs. An
alternative basis of Lorentz tensors that includes the anti-symmetric tensor
can be found in [58]. Abstaining from the anti-symmetric tensor, a ba-
sis consists of 138 Lorentz tensors and the challenge is to show that each
coefficient becomes finite when all graphs at a certain loop order are con-
sidered. Our analysis in the preceding section shows that the sum over
all one-particle irreducible four-photon graphs is transversal (it vanishes
whenever one of its external legs is contracted with the associated mo-
mentum). This global property restricts the possible occurrence of diver-
gences to 43 Lorentz tensors whose coefficients remain to be proven finite.
Nonetheless, we will assume that light-by-light scattering is indeed finite
and can be excluded (beside the three-photon interactions) from the renor-
malization process in the proceeding discussion.

2.3.2 The BPHZ renormalization prescription
After the characterization of divergent Feynman graphs, it is a natural step
to provide a method to renormalize the divergences of a Feynman graph
— that is to construct a physically reasonable and finite expression from a
divergent Feynman integral. This paragraphs gives a short overview of the
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renormalization prescription which due to Bogoliubov, Parasiuk, Hepp, and
Zimmermann [59, 60, 61].

First, let Γ be a Feynman graph that is superficially divergent but has
no proper subdivergences. Under these circumstances, the renormalized
value φR(Γ) is constructed by subtracting a counterterm with similar diver-
gent behaviour such that the superficial divergence is cancelled. To formal-
ize this procedure, define maps φ to map a Feynman graph to its integral
expression by means of (2.29-2.31) and a renormalization scheme T that
maps a Feynman graph to an appropriate counterterm — one specific way
to define such a T is to employ the regular Feynman rules but change the
values of the external momenta. Then, the renormalized value reads

φR(Γ) = φ(Γ)− T (Γ). (2.124)

Now, if Γ does contain proper subdivergences, the above prescription
still applies provided that there is a procedure which subtracts all proper
subdivergences from Γ. This procedure is denoted by φ(Γ), then the renor-
malized Feynman rules read

φR(Γ) = φ(Γ) + C(Γ), where C(Γ) = −T ◦ φ(Γ) (2.125)

denotes an appropriate counterterm in analogy to the preceding case. The
superficial degree of divergence provides a characterization of the diver-
gent domains in the momentum integration. Note that the momentum
integrations associated to disjoint subgraphs might diverge simultaneously.
To account for these divergent domains, it is necessary to consider all prod-
ucts of disjoint subdivergences rather than restricting to individual subdi-
vergences

φ(Γ) =
∑
γ/Γ

C(γ) Γ/γ, with C(γ) =
∏

i=1,...,n

C(γi) (2.126)

the sum goes over all subgraphs γ = γ1 . . . γn consisting of pairwise disjoint
subdivergences γi, Γ/γ is the graph obtained by shrinking each component
of γ to a point, and the counterterm of γ is determined by the countert-
erms of its factors. Note that the counterterm is meant to subtract only the
superficial divergence of a graph in order to avoid a multiple subtraction
of nested subdivergences. Therefore, one has to remove all subdivergences
before extracting the divergence

C(γi) = −T ◦ φ(γi) (2.127)
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in convenience with (2.125). This finishes the definition of the renormal-
ization prescription. Notice that the formula that determines φ(Γ) implic-
itly depends on its value of proper subdivergences φ(γ) and hence defines
a iterative procedure.

Zimmermann showed that this iteration can be solved by means of the
forest formula

φR[Γ] =
∑
f∈FΓ

(−1)|f |

(∏
γ∈f

T (γ)

)
φ(Γ/f). (2.128)

Here, the sum runs over all forest f (a set of divergent one-particle ir-
reducible subgraphs of Γ which are either nested or disjoint) and Γ/f is
obtained by contracting all components of the forest f in Γ. The Feynman
rules are denoted by φ and T is a renormalization scheme as above.

The forest formula allows to lift the renormalization procedure of Feyn-
man integrals to the level of Feynman graphs. In this sense the whole
renormalization process is understood as a combinatorial manipulation of
Feynman graphs. For every individual Feynman graph Γ, this prescription
guarantees a finite renormalized expression φR[Γ].

It is worth noting that contraction is sensible to the Lorentz structure of
a subgraph. The following example illustrates this issue.

/ = =
⊥

(2.129)

This example demonstrates the contraction of the first order photon subdi-
vergence, which is inserted into the first order electron self-energy graph.
In the first equation, the photon subgraph is contracted to a point. That
point represents the remaining Lorentz structure of the subdivergence which
the transversal tensor Tµν(k) = gµνk

2 − kµkν — recall the vacuum polar-
ization is transversal (2.57). This Lorentz structure projects both photon
propagators on their transversal parts and cancels one of them in the sec-
ond equation. It remains the transversal part (i.e. Laudau gauge term) of
the first order electron self-energy. This result might be anticipated from a
calculation of the second order graph. The evaluation of its photon subdi-
vergence yields a purely transversal result. Hence, in an evaluation of the
second order graph, only the transversal parts of the photon propagators
contribute, therefore the contraction should also yield a purely transversal
result.
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2.3.3 Z-factor renormalization
The renormalization by means of Z-factors provides an alternative to the
renormalization of individual Feynman graphs. Opposed to the BPHZ renor-
malization prescription, it allows for a direct construction of the renormal-
ized Green’s function rather than separately renormalizing each Feynman
graph and summing up the renormalized graphs.

As discussed in the paragraph 2.3.1, the set of superficially divergent
Green’s functions of Quantum Electrodynamics restricts to the electron
propagator, the photon propagator, and the electron-photon vertex. Fur-
ther, one has to assume that the divergences of these Green’s functions
only emerge in front of Lorentz tensors which are part of expressions pro-
vided by the Feynman rules (2.29-2.31). In this case, the divergences can
be absorbed by rescaling the vertex and edges with appropriate factors;
these factors are usually termed Z-factors.

This line of thought can also be pursued in the Lagrangian formalism.
In order to cancel the divergences of Feynman graphs described by the
massless Lagrangian (2.1), we add a counterterm Lagrangian LCT. This
defines the renormalized Lagrangian

LR = L + LCT. (2.130)

Every superficially divergent Green’s function requires us to introduce a
term in the counterterm Lagrangian and the external leg structure of such a
Green’s function determines the monomial in the fields. Hence, the charac-
terization of superficially divergent Green’s function implies that the mono-
mials of the counterterm Lagrangian agree with which of the original La-
grangian (up to constants which absorb the divergences). Therefore it is
possible to combine the expressions of both Lagrangians; this procedure
introduces now coefficients for the monomials which are the above men-
tioned Z-factors. As a result, the renormalized Lagrangian is represented
as

LR = −1

4
Z3FµνF

µν + iZ2ψ̄ /∂ψ − eZ1ψ̄ /Aψ −
1

2ξ
Z4(∂µA

µ)2, (2.131)

where the Z-factors are utilized to cancel the divergences, therefore the
fields are referred to as renormalized fields and similarly e and ξ are called
renormalized parameters. Note that the gauge fixing renormalization con-
stant is termed Z4; the other renormalization constants are labelled by the
traditional convention [52]. In a consecutive step, the renormalized La-
grangian LR is expressed in bare fields. Here, it is assumed that the renor-
malized Lagrangian matches the original Lagrangian L (ψB, AB, eB, ξB) when
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all fields and parameters are replaced by their bare equivalents. This deter-
mines the relationship between the bare and the renormalized fields and
parameters

e0 =
Z1

Z2Z
1/2
3

e, ψ0 = Z
1/2
2 ψ, Aµ0 = Z

1/2
3 Aµ, ξ0 =

Z3

Z4

ξ. (2.132)

Bare fields and parameters are indicated by assigning the subscript zero.
In the following, these Z-factors are related to the superficial divergent
Green’s functions to obtain conditions which described how to determine
the counterterms and Z-factors. We will refer to these conditions as renor-
malization conditions. Moreover, it is worth remarking that the global
properties of Green’s functions, as originating from Ward identities, im-
pose further relations on the Z-factors. This issue is best exemplified or the
instance of the vacuum polarization Πµν; that is the one-particle irreducible
Green’s function with two external photon legs.

First note that the renormalized Lagrangian when expressed in terms of
bare fields and parameters gives raise to Feynman rules similar to (2.29-2.31)
whereas all parameters are replaced by their bare equivalents. Therefore,
our discussion of Ward identities in section 2.2.2 immediately transverse to
the bare Green’s functions. For the vacuum polarization, the Ward identity
reads

kµΠµν
0 (k) = 0 and kνΠ

µν
0 (k) = 0. (2.133)

In other words, there is no longitudinal part in the vacuum polarization
and we can define the tensor reduced vacuum polarization function

Πµν
0 (k) =

(
gµνk2 − kµkν

)
Π0(k2). (2.134)

All divergences of the vacuum polarization graphs are proportional to the
transversal Lorentz tensor. This observation generalizes to the bare photon
propagator

Dµν
0 (k, ξ0) =

1

k2

(
gµν − kµkν

k2

)
1

1− Π0(k2)
+ ξ0

kµkν

k4
, (2.135)

where the longitudinal component is determined by the tree-level photon
propagator. Now , the bare photon propagator can be related to its renor-
malized equivalent by using equation (2.132) and substituting the bare by
renormalized fields in the time-ordered product of the field operators or
the path integral expression which implies

Dµν(k, α, ξ) =
1

Z3

Dµν
0 (k, α0, ξ0) (2.136)
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This equation indicates that the renormalization constants introduce a scal-
ing between bare and renormalized Green’s functions, but do not influence
the Lorentz structure; also the renormalized Green’s function satisfies the
Ward identities and obeys the same equation (2.135) as the bare Green’s
function. A comparison of their Lorentz structures implies the following
renormalization conditions:

Π(k2, α, ξ) = Π0(k2, α0, ξ0) + C3 − C3Π0(k2, α0, ξ0) (2.137)
Z4 = 1 (2.138)

The first equation explains the renormalization of the photon Green’s func-
tion by introduction of the counterterm C3, for counterterms the conven-
tion Zi = 1−Ci, i = 1, 2, 3, 4 is used. The latter condition derives from the
longitudinal part of the photon propagator and characterizes the renormal-
ization of the gauge parameter. Eventually, the gauge parameter renormal-
ization constant is solely determined by the renormalization of the vacuum
polarization, i.e. by the renormalization constant of the vacuum polariza-
tion

ξ0 = Z3ξ. (2.139)

From the perspective of Z-factors, this is the reason for dynamical character
of the gauge parameter under renormalization flow and its contributions to
the renormalization group equation. Another explanation is to due to the
structure of subdivergences of Green’s functions. This will be discussed in
detail in paragraph .

Renormalization conditions

As demonstrated for the vacuum polarization above, the transition from
bare to renormalized Green’s functions implies a set of renormalization
conditions. To summarize, the full set of conditions for the Green’s func-
tions reads

vertex Λν(q1, q2, α, ξ, µ) = Λν
0(q1, q2, α0, ξ0)− C1Λν

0(q1, q2, α0, ξ0)
(2.140)

electron Σ(q, α, ξ, µ) = Σ0(q, α0, ξ0) + C2 − C2Σ0(q, α0, ξ0)
(2.141)

photon Π(q, α, ξ, µ) = Π0(q, α0, ξ0) + C3 − C3Π0(q, α0, ξ0)
(2.142)

Primary, these conditions expose that renormalization is carried out in two
steps. First, a substitution of bare to renormalized variables is performed.
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Second, the remaining divergences are absorbed by defining appropriate
counterterms. Bare and renormalized parameters are connected by a prod-
uct of renormalization constants, which also might depend on the coupling
constant or gauge parameter. Therefore, the substitution replaces bare pa-
rameters by series of renormalized parameters. In case of the bare coupling
constant and its product with the gauge parameter, the expansion in the
renormalized coupling constant up to the second order reads

α0 =
Z2

1

Z2
2Z3

α = α + (−2C1 + 2C2 + C3)|1α +O(α3) (2.143)

ξ0α0 =
Z2

1

Z2
2Z3

Z3ξα = ξα + (−2C1 + 2C2)|1ξα +O(α3). (2.144)

At first order, bare parameters are directly rewritten in terms of renormal-
ized parameters, that is α0 = α + O(α2) for the coupling constant. This
observation simplifies the derivation of one loop counterterms. However,
at two loops, the coupling renormalization requires all one loop countert-
erms.

The Callan-Symanzik equation

As demonstrated above, the Z-factors relate bare and renormalized Green’s
functions. In our conventions, an one-particle irreducible Green’s functions
of external leg type r satisfies the equation

Gr(p2, α, ξ) = ZrG
r
0(p2, α0, ξ0), (2.145)

where Lorentz tensors have been amputated such that the Green’s function
only depends on square of the external momentum (the vertex function is
considered with zero momentum transfer at the photon leg). The Z-factors
are utilized to absorb the divergences of the bare Green’s function and
ensure finiteness of the renormalized qualities. Further, one expects the
renormalized Green’s function to be a finite function on the external kine-
matic data that shows singular behaviour for some particular kinematic
values or limits. Here, the external kinematics restricts to a single momen-
tum p whose Lorentz square parametrizes the singular behaviour. However,
the Lorentz invariant p2 is obviously a dimensional quantity, but arguments
of these singular functions should be dimensionless. Therefore, we expect
another scale µ that adjusts for the dimensionality of the external data
in the renormalized Green’s function. Depending on the renormalization
scheme, the scale µ is introduced due to the Z-factors or factorized from
the the coupling parameter. In either case, renormalized Green’s functions
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and renormalized parameters dependent on this scale while bare Green’s
functions remain independent of it

−Zµ2 d

dµ2
Gr
B = 0. (2.146)

Permutation of the derivative with the Z-factor derives the Callan-Symanzik
equation [36, 37, 38](

µ2∂µ2 + βα∂α + δα∂α + γ
)
Gr = 0, (2.147)

where we introduced the anomalous (scaling) dimension

γr = −µ2d lnZr
dµ2

, (2.148)

as known from the introductory discussion of anomalies 2.1.6 and two fur-
ther renormalization group functions

β = −µ2d lnZα
dµ2

= 2γ1 − 2γ2 − γ3 and (2.149)

δ = −µ2d lnZ3

dµ2
= γ3. (2.150)

Note that these conventions determine the dynamical evolution laws of the
coupling parameter α and the gauge parameter ξ to read

µ2 dα

dµ2
= αβ(α, ξ) µ2 dξ

dµ2
= ξδ(α, ξ). (2.151)

In paragraph 2.4.4, we provide another derivation of the Callan-Symanzik
equation which is based on studying the subdivergences of combinatorial
Green’s functions in the Hopf algebra.

2.3.4 The BPHZ prescription in relation to Z-factors
The introduction of Z-factors yielded renormalization conditions for Green’s
functions which can be interpreted as renormalization of the residue of that
Green’s function and a renormalization of its parameters. The BPHZ pre-
scription, on the other hand, introduces non of these concepts but provides
a procedure to construct counterterms for each Feynman graph individu-
ally. To compare both approaches, we employ the BPHZ prescription to
each Feynman graph of the self-energy of the electron and compare this to
Z-factor renormalization conditions. In this way, it becomes clear how each
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Feynman graph contributes to a particular Z-factor and whether the con-
cept of parameter renormalization can be applied to the renormalization of
individual Feynman graphs. We restrict ourselves to the second loop order
of the renormalized self-energy. This is the lowest order which involves
effects from the renormalization of the gauge parameter.

One-loop counterterms and renormalized parameters

At first loop order, there are only two forests in Zimmermann’s forest for-
mula (2.128): the empty graph and the full graph. Further, at this order,
bare parameter can simply be replaced by their renormalized equivalents. A
comparison with the renormalization conditions (2.140-2.142) determines
the counterterms Ci for i = 1, 2, 3 at first order.

Λ0 = C1 = T

[ ]
(2.152)

Σ0 = C2 = −T
[ ]

(2.153)

Π0 = C3 = −T
[ ]

(2.154)

Recall that the operator T originates from the forest formula. It extracts the
divergent part of a Feynman graph and represents a particular renormal-
ization scheme. For the next order renormalization, it is crucial to work out
the influence of these counterterms on the renormalization of the coupling
parameter

α0 =
Z2

1

Z2
2Z3

α = α

(
1 + T

[
−2 − 2 −

]
+O(α2)

)
.

(2.155)

Notice that the bare coupling parameter which occurs in the Feynman
graphs is tacitly substituted by the renormalized coupling, this introduces
higher order terms which however do not contribute at second order. Be-
side the coupling constant, a Feynman graph might also include factors
of the gauge parameter ξ0. The product of both contributes the following
renormalization terms

ξ0α0 =
Z2

1

Z2
2Z3

Z3ξα = ξα

(
1 + T

[
−2 − 2

]
+O(α2)

)
.

(2.156)

It should be remarked that Ward’s identity Z1 = Z2 simplifies the renor-
malization of the gauge and coupling parameters — the product ξα = ξ0α0



50 CHAPTER 2. QUANTUM ELECTRODYNAMICS

is not renormalized. However, these simplifications might be misleading in
the comparison with subdivergences of the forest formula and are therefore
not taken into account at this point.

The different substitution rules for the parameters α and ξα make it nec-
essary to distinguish between longitudinal and transversal photons. There-
fore, the photon propagator is divided into the sum of its transversal and
longitudinal parts, which are denoted by the labels ⊥ and ‖, respectively.

P µν(k, ξ0) =
1

k2

(
gµν − kµkν

k2

)
+ ξ0

kµkν

k4

µ ν =
µ ν⊥

+
µ ν‖

(2.157)

In this notation, Feynman graphs are built from purely transversal and
purely longitudinal photon propagators — all possible combinations need
to be taken into account; for instance, the bare self-energy at first loop
order becomes a sum of two graphs

Σ0|1 = =
⊥

+
‖

. (2.158)

Two-loop renormalization of the self-energy of the electron

Now the results of the previous paragraph are extend to the second loop
order. From the renormalization condition (2.141) and the previous discus-
sion, five term are expected to contribution to the renormalized self-energy

Σ(α, ξ)|2 = Σ0|2 + Σ0|1(α, ξ) + C2|1(α, ξ)− C2|1Σ0|1 + C2|2. (2.159)

The first term contains all two-loop graphs from the bare self-energy, the
second and third term arise from the substitution of bare by renormal-
ized parameters in the first order bare self-energy and its counterterm, the
fourth term is determined by the one-loop bare self-energy and its coun-
terterm, the fifth term is the two-loop counterterm, which is determined by
comparison to the BPHZ ing.

The bare self-energy of the electron at two loops reads

Σ0|2 = + + . (2.160)

In these two-loop graphs, all parameters are tacitly substituted by renor-
malized parameters, this causes contributions at three and higher loops,
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but no contribution to the second loop order. However, the parameter sub-
stitution in the one-loop graphs contribute at second order

Σ0|1(α, ξ) = −T
[
2 + 2 +

]
⊥

− T
[
2 + 2

]
‖

. (2.161)

Here, the renormalization of the gauge parameter removes the pathologic
divergence in the longitudinal part of the self-energy that comes from the
renormalization of the transversal part of the photon self-energy. Note that
this is in accordance with the contraction of subdivergences in the forest
formula, as exemplified in (2.129). The same applies to the first order
counterterm

C2|1(α, ξ) = −T [Σ0|1(α, ξ)] . (2.162)

The fourth contribution is a product of the one-loop self-energy and its
counterterm, again tacitly rewritten in terms of renormalized parameters

−C2|1Σ0|1 = T
[ ]

. (2.163)

Finally, a comparison between the derived terms and forests from Zimmer-
mann’s formula determines the counterterm of the electron self-energy at
two loops

C2|2 = −T

[
+ +

]
− T

[
T
[ ] ]

.

(2.164)

Notice that a composed term of the first order graph contributes. This term
arises due to the fact that the counterterm is defined as the difference of
terms generated by the forest formula (2.128) and terms resulting from the
renormalization of parameters (as the coupling or gauge parameter). For
the sake of completeness, we also provide the renormalization constant at
two loops

Z2 = 1 + T
[ ]

+ T

[
+ +

]
+ T

[
T
[ ] ]

+O(α3
0). (2.165)
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It is worth remarking that we substituted the graphs by their dimensional
regularized result 4− 2ε dimensions and reproduced the well-known result
of Z2 [62].

The formula (2.161) demonstrates that the counterterms generated by
the BPHZ recursion can be partitioned in such a way that the concepts of
wave-function renormalization and parameter renormalization apply when
the sum of all Feynman graphs are considered. However, this does not
apply to individual Feynman graphs. To see this, consider the two-loop
contribution with a vaccum polarization subdivergence. The BPHZ forest
formula yields

φR

( )
= − T

[ ]
⊥

+ T

[
T

[ ]
⊥

−
]
. (2.166)

An interpretation in terms of renormalization of the coupling parameter re-
quires the subdivergence of the second term to be compatible with the lin-
ear combination of graphs specified by the renormalized coupling (2.155).
However, the vertex and self-energy subdivergences are missing. This lin-
ear combination is only accomplished when all graphs are taken into ac-
count.

Further, recall that the different renormalization constants for the cou-
pling and the gauge parameter appears as an asymmetry (2.161) in struc-
ture of subdivergences of longitudinal and transversal photon propagator.
This will be of further interest in the succeeding discussion of the Hopf-
algebraic approach to renormalization.

2.4 Hopf-algebraic renormalization of QED

This section introduces all requirements for the Hopf-algebraic renormal-
ization of Quantum Electrodynamics. This involves the definition of the
Hopf algebra of QED Feynman graphs, the construction of Green’s functions
by combinatorial Dyson-Schwinger equations (DSE), and the derivation of
a coproduct formula for the Green’s functions. Moreover, the derivation of
the renormalization group equation by means of the Dynkin operator S ?Y
is discussed. Special emphasis is put on the effect of the linear covariant
gauge fixing to the Hopf algebra of Quantum Electrodynamics.
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2.4.1 Hopf algebra structure
This paragraph introduces the Hopf algebra structure of massless Quan-
tum Electrodynamics in the linear covariant gauge. This construction was
first performed for Landau gauge [9, 26] and later extended to a general
covariant gauge setting [51].

In the previous section, it was observed that the transversal and the lon-
gitudinal part of the photon self-energy give rise to different divergences in
the renormalization process. Therefore, both Lorentz structures need to be
distinguished and we assign the labellings ⊥ and ‖ to the different compo-
nents of the photon propagator. The labelled propagators are understood
as different edge types in a Feynman graph.

Let H be the free commutative algebra over R generated by the set
of all divergent one-particle irreducible Feynman graphs together with the
product m : H ⊗ H → H. The unit 1 ∈ H is identified with the empty
graph and the homomorphism u : R → H with u(1) = 1 denotes the unit
map. A Feynman graph is build from propagators and vertices of the set

RQED =

{
, ,

⊥

,
‖

}
. (2.167)

Further, recall that a Feynman graph is superficially divergent if its external
leg structure matches an element of RQED. Note that according to equa-
tion (2.157), the photon propagator is rewritten in terms of the transversal
and the longitudinal propagator. A generic photon self-energy graph con-
tributes to both of these Lorentz structures, the projection onto one of these
Lorentz structures is denoted by assigning either the ⊥ or the ‖ label to the
external legs of the Feynman graph. In case of a vertex and an electron
self-energy graph, the tacit projection onto their divergent Lorentz struc-
tures (γµ and /q) is always understood.

In [9] Kreimer showed that a coproduct ∆ : H → H⊗H can be defined
by

∆Γ =
∑
γEΓ

γ ⊗ Γ/γ, Γ ∈ H. (2.168)

The summation restricts to all subgraphs γ ⊆ Γ which consist of a product
of disjoint subdivergences and includes also the empty and the full sub-
graph. Further, Γ/γ denotes the Feynman graph obtained by replacing all
components of γ by their external structures.

The counit ε : H → R is the homomorphism which satisfies ε(1) = 1
and vanishes on the complement of R1. These definitions yield a bialgebra
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(H,m,∆, u, ε), which possesses a grading induced by the loop number of
a Feynman graph. Hence, this bialgebra is indeed a Hopf algebra [63], its
antipode S : H → H is recursively defined by

S(Γ) = −Γ−
∑
γ/Γ
γ 6=1

S(γ)Γ/γ, Γ ∈ H. (2.169)

As pointed out in [64], this recursion is solved by a sum over all forests
which exclude the full graph Γ

S(Γ) = −Γ−
∑
f

(−1)|f |γfΓ/γf , γf =
∏
γ∈f

γ. (2.170)

This formula reveals a striking similarity to Zimmermann’s forest formula
(2.128). Indeed, Zimmermann’s forest formula is reproduced by the con-
volution of the Feynman rules φ and a twisted version of the antipode.

φR(Γ) = m ◦ (φ ◦ ST ⊗ φ) ◦∆(Γ) (2.171)

Here, ST is the antipode twisted with the renormalization scheme operator
T

ST (Γ) = −T ◦
(

Γ +
∑
γ/Γ
γ 6=1

ST (γ)Γ/γ

)
, Γ ∈ H. (2.172)

In this formulation, the finiteness of the renormalized expression φR is un-
derstood in terms of an algebraic Birkhoff decomposition [65, 66]. It is
worth emphasising that the proof of this theorem clarifies why the renor-
malization scheme operator T has to satisfy the Rota Baxter equation

T (γ1)T (γ2) = −T (γ1γ2) + T ◦ (T (γ1)γ2 + γ1T (γ2)) , (2.173)

a necessary condition of a well-defined renormalization scheme that was
previously anticipated by practitioners [42].

Equation (3.70) provides a prescription to renormalize an individual
Feynman graph. However, the renormalization conditions (2.140-2.142)
and the corresponding counterterms refer to one particle irreducible Green’s
functions. Therefore, the next topic in our discussion is the relation be-
tween the coproduct and one particle irreducible Green’s functions.



2.4. HOPF-ALGEBRAIC RENORMALIZATION OF QED 55

2.4.2 Green’s functions from combinatorial DSE
The coproduct extracts by definition subdivergences of individual Feynman
graphs, its application on one-particle irreducible Green’s function is best
understood in the language of combinatorial DSE.

In [67] and [68] Broadhurst and Kreimer demonstrated how one-particle
irreducible Green’s functions are constructed as solutions of combinatorial
DSE. In this language, a Green’s function is built by insertion of subdi-
vergences into skeleton graphs (Feynman graphs which are free of subdi-
vergences). More precisely, for a given skeleton graph γ they defined an
insertion operator Bγ

+, which takes a product of Feynman graphs as argu-
ment and maps it to the sum of all possible insertions of these Feynman
graphs into the skeleton γ multiplied by some combinatorial factor, defined
in [68].

To describe Quantum Electrodynamics in the linear covariant gauge,
the vertex Green’s function is denoted by X and the electron self-energy
by X . The photon self-energy is represented by the Green’s functions
X⊥ and X‖ which respectively describe the contributions to the transver-
sal and the longitudinal Lorentz structure. With this definition, X⊥ is only
inserted into the transversal photon propagators and X‖ only into the lon-
gitudinal photon propagators. The Quantum Electrodynamics system of
Dyson-Schwinger equations reads as follows.

Xr = 1±
∑

γ skeleton
res(γ)=r

Bγ
+

(
XrQ

n⊥(γ)+1
⊥ Q

n‖(γ)

‖

)
for r ∈

{
, ,⊥

}
(2.174)

X‖ = 1−
∑

γ skeleton
res(γ)=‖

Bγ
+

(
X‖Q

n⊥(γ)
⊥ Q

n‖(γ)+1

‖

)
(2.175)

Each of these sums go over all one particle irreducible skeleton graphs of
the external leg structure res(γ); the vertex function contains an infinite
number of skeleton graphs — some examples are provided in figure 2.1.
The number of transversal and longitudinal photon propagators of a Feyn-
man graph γ is denoted by n⊥(γ) and n‖(γ). In (2.174), all propagators
receive the negative sign, the positive sign only applies for the series vertex
graphs. The input of these insertion operators is written in terms of the
invariant charges

Q⊥ =
(X )2

(X )2X⊥
and Q‖ =

(X )2

(X )2X‖
. (2.176)
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Figure 2.1: Low order examples of skeleton graphs. As indicated by the
first two graphs, each labelling of photon propagators induces a skeleton
graph, these labels are understood in the subsequent graphs.

⊥ ‖

Notice that the argument of each insertion operator is defined such that
every vertex of the skeleton is dressed by a factor X , every electron prop-
agator by a factor 1/X , every transversal and every longitudinal photon
propagator by a factor 1/X⊥ and 1/X‖ , respectively. The inverse of a one par-
ticle irreducible propagator series corresponds to the series of connected
propagator graphs; a one particle irreducible Green’s function is build from
one particle irreducible vertex insertions, but requires insertions of con-
nected propagator graphs.

The advantage of the combinatorial Dyson-Schwinger equations ap-
proach is that a properly defined insertion operatorB+ yields a well-behaved
compatibility relation with the coproduct [68, 69],

∆ ◦B+ = B+ ⊗ 1 + (id⊗B+) ◦∆. (2.177)

This relation allows inductive proofs by induction on the number of subdi-
vergences of a Feynman graph and implies a coproduct formula for Green’s
functions.

2.4.3 The coproduct of QED Green’s functions
A closed formula for the coproduct on Green’s functions has first been pro-
vided by Yeats [70]. By usage of the compatibility relation (2.177) Yeats
derived a formula for the coproduct of one particle irreducible Green’s func-
tions in the case of a single invariant charge. However, it should be noted
that all her proofs canonically generalize to systems of DSE involving mul-
tiple invariant charges by promoting the exponent of the single invariant
charge to a multi-index; e.g. in case of the electron self-energy n ≡ (n⊥, n‖)
and

Qn ≡ Qn⊥
⊥ Q

n‖
‖ . (2.178)

In addition to that, direct proofs of a coproduct formula for one particle
irreducible Green’s functions has been provided in [71, 72]. All these re-
sults imply the following coproduct formula for an one particle irreducible
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Green’s function Xr.

∆Xr =
∑

0≤n‖≤n

XrQ
n−n‖
⊥ Q

n‖
‖ ⊗X

r
n;n‖

for r ∈
{

, ,⊥
}

(2.179)

∆X‖ =
∑

0≤n⊥≤n

X‖Qn⊥
⊥ Qn−n⊥

‖ ⊗X‖n;n⊥
(2.180)

In this formula, Xr
n;n⊥

denotes all Feynman graphs of the Green’s function
Xr which have n loops and n⊥ transversal photon propagators; and Xr

n;n‖

analogously with restriction to n‖ photon propagators. In this formulation,
the exponent shift of n⊥ in (2.174) and of n‖ in (2.175) was absorbed
into the loop number n. Also note that the sum of both exponents of the
invariant charges equals the loop number of a cograph, which appear on
the right side of the tensor product.

2.4.4 Callan-Symanzik equation
This paragraph provides an Hopf-algebraic discussion of the renormaliza-
tion group for the class of so-called one-scale Green’s function, that is to
say, a Green’s function of this class depends only on a single external mo-
mentum. This obviously applies to propagator functions. In the case of
the electron-photon vertex, one requires one external momentum to van-
ish. In the scope of this thesis, this condition does not provide any serious
restrictions as we always consider one-scale renormalization schemes for
computational convenience. However, it should be remarked that the tech-
niques introduced here are actually rather general and generalize to the
case of an arbitrary number of scales [64].

In the one-scale case, a renormalized Green’s function only depends on
a single kinematic variable L and allows for an expansion

Gr(L, α, ξ) = φR (Xr) = 1 +
∑
n≥1

γrn(α, ξ)Ln. (2.181)

The coefficients of this expansion are called anomalous dimensions; their
relation to the scaling anomalous dimension γ as introduced in 2.1.6 be-
comes evident at the end of this analysis.

It is well-known [73, 74, 75] that in the case of one-scale Feynman
graphs and a proper renormalization scheme (e.g. the M̃OM scheme), the
Birkhoff decomposition implies the renormalized Feynman rules φR to be a
morphism of bialgebras. As a conclusion the renormalized Feynman rules,
or more precisely the anomalous dimensions, can be constructed by means
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of a combinatorial operation on the Hopf algebra of Feynman graphs

γrn =
1

n!
σ?n(Xr) with σ = φR ◦ Y

−1 ◦ (S ? Y ). (2.182)

The product S ? Y is defined as the convolution m ◦ (S ⊗ Y ) ◦ ∆ and σ?n

denotes the convolution of n maps σ. For further results and properties
of σ and the Dynkin operator S ? Y , the reader is referred to [69, 76]
and references therein. Here, we only exploit that the linear map S ? Y is a
projection and vanishes on products of Feynman graphs, as these properties
simplify the evaluation of σ on products of combinatorial Green’s functions
in the succeeding derivations.

Note that a decomposition of the iterations of convolution product

(n+ 1)γn+1 = (σ ? σ?n/n!) (X ) (2.183)

is capable to relate coefficient of different Green’s functions by exploiting
the coproduct formula (2.179)

(n+ 1)γn+1 =
∑

0≤n‖≤n

[
σ
(
X

)
+ (n− n‖)σ (Q⊥) + n‖σ

(
Q‖
)] σ?n

n!

(
Xn;n‖

)
.

(2.184)

In another step, the coefficients n and n‖ can be replaced by means of
operators which respectively count the power of the coupling parameter
α and the power of the gauge parameter. In addition to that the shift in
the power of the kinematic variable on the left-hand side of the equation
is rewritten in terms of the derivative ∂L. After this, summation over n
reproduces an identity for the one-particle irreducible Green’s function[

−∂L + σ (Q⊥)α∂α + σ
(
Q‖ −Q⊥

)
ξ∂ξ + σ

(
X

)]
G = 0. (2.185)

This equation is readily recognized as the renormalization group equation
by defining the anomalous dimension γr and the renormalization group
functions β and δ as

γr = σ(Xr), (2.186)

β = σ(Q⊥) = 2σ(X )− 2σ(X )− σ(X⊥) = 2γ − 2γ − γ⊥, (2.187)

δ = σ(Q‖)− σ(Q⊥) = γ⊥ − γ‖. (2.188)

In these conventions, a renormalized Green’s function satisfies the renor-
malization group equation

(−∂L + βα∂α + δξ∂ξ + γ )G = 0. (2.189)
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It is worth emphasising that the appearance of the two renormalization
group functions β and δ is directly linked to the presence of the two invari-
ant charges in the coproduct formula of one particle irreducible Green’s
function (2.179) and (2.180). This observations complements the above
result. Due to the introduction of the covariant gauge parameter ξ, the
photon propagator acquires a longitudinal component and further terms
emerge in Green’s functions. This phenomena is explained by the Hopf
algebra. The coproduct of Green’s functions contains the novel invariant
charge Q‖. On the other hand, the gauge parameter requires renormaliza-
tion and its dynamics is described by means of the renormalization group
function δ. As analysed in the above derivation, the appearance of this
renormalization group function can be seen as a consequence of the novel
invariant charge in the coproduct formula.

2.5 The massless self-energy of the electron

This section deals with the electron propagator and its one-particle irre-
ducible part, the self-energy of the electron, in the massless limit. The
combination of diagrammatic techniques developed in the above sections
allow us to analyse the gauge dependence for both the bare and the renor-
malized propagator. At the end of this section, a non-perturbative argument
is developed which demonstrates that the anomalous dimension of the elec-
tron depends on the gauge parameter only at the first order of perturbation
theory.

2.5.1 Gauge dependence of the bare propagator

In the discussion of paragraph 2.2.3, fermions have always been considered
to be massive. However, it should be noted that the cancellation identities
(2.55), (2.56), and consequently the characterization of the gauge depen-
dence (2.87) remain valid when massless fermions are considered. In the
following, the characterization of the gauge dependence is applied to the
massless electron propagator.

First, recall that the photon propagator is decomposed into a gauge-
fixed term which is determined by the value ξ∗0 and a longitudinal term
that is proportional to the shifted gauge parameter ξ0 − ξ∗0 (2.69), where
the subscript zero represents the bare nature of these parameters. Now, the
electron propagator is expanded into coefficients cn;m of order n in the bare
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coupling and order m in the shifted bare gauge parameter

S0(q) =
i

/q
+
∑
1≤n

∑
0≤m≤n

cn;m (ξ0 − ξ∗0)mαn0 . (2.190)

The coefficients cn;m depend on the external momentum q and the special
value of the gauge parameter ξ∗0 . A Feynman graph that contributes to
this coefficient consists of m gauge dependent tensors (2.70) and (n −m)
gauge-fixed photon propagators (2.68).

Now, assume that all Feynman graphs of the electron propagator were
computed with the specific value ξ∗0 for the gauge parameter to some loop
order N — that corresponds to the coefficients linear in the shifted gauge
parameter cn;0 with n ≤ N . Then, the unknown coefficients can be recur-
sively computed by exploiting the characterization of the dependence on
the gauge parameter (2.87).

cn+1;m+1(q) =
ie2

0

m+ 1

∫
dDp

(2π)4

1

[−p2]2
cn;m (q + p) (2.191)

= − 1

m+ 1 cn;l
. (2.192)

Note that this reduction can be iterated and is valid at an arbitrary loop
order. Therefore, this diagrammatic formula can be thought of as a Dyson-
Schwinger equation where subgraphs are linearly inserted into a divergent
skeleton graph. The skeleton graph of this Dyson-Schwinger equation can
be written in terms of the dimensional regularized one-loop master integral
of two scalar propagators with weights x and y

G(x, y) = −i
∫

dDk

(2π)D
(−q2)x+y−D/2

[−k2]x [−(k + q)2]y
(2.193)

=
Γ(D/2− x)Γ(D/2− y)Γ(x+ y − D/2)

(4π)D/2Γ(x)Γ(y)Γ(D − x− y)
(2.194)

[77], where we have amputated the dependence on the external momen-
tum for notational convenience. By Weinberg’s power counting theorem
[53, 54], the momentum dependence of the n-loop bare electron prop-
agator cn;m(q) is given by /q/(q2)1+nε. Insertion of this momentum depen-
dence into the Dyson-Schwinger equation determines the contribution of
the skeleton graph to the electron propagator. In D = d− 2ε dimensions, it
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contributes the factor

F (d, ε, n) =
1

2
e2

0ξ0

(
−q2

)−ε
exp

[
ε

(
γE +

ζ(2)ε

2

)]
× [G(d/2− 1, 1 + nε)−G(d/2, 1 + nε)−G(d/2, nε)] . (2.195)

Here, e denotes the bare coupling parameter, q the external momentum, γE
the Euler–Mascheroni constant, and ζ(z) is the Riemann zeta function. The
exponential factor does not originate from the Dyson-Schwinger equation,
but is implemented for straightforward comparison with results obtained
with the MINCER package. In this paragraph, we are only concerned with
the four dimensional Quantum Field Theories (d = 4) and hence define
F (ε, n) := F (4, ε, n) and set c0;0 := i//q. Now, an iterative use of the formula
(2.192) determines all coefficients

cn;m =
1

m!
cn−m;0

∏
1≤j≤m

F (ε, n− j) for m ≥ 1, (2.196)

in terms of the coefficient cn;0 that are constant in the shifted gauge param-
eter and the one-loop skeleton function F . For instance, the ε-expansions
of all gauge dependent terms at 4 loops

c4;1(ε) = c3;0(ε)F (ε, 3), (2.197)

c4;2(ε) =
1

2!
c2;0(ε)F (ε, 3)F (ε, 2), (2.198)

c4;3(ε) =
1

3!
c1;0(ε)F (ε, 3)F (ε, 2)F (ε, 1), (2.199)

c4;4(ε) =
1

4!
c0;0F (ε, 3)F (ε, 2)F (ε, 1)F (ε, 0) (2.200)

are determined once the ε-expansion is known of the specific gauge param-
eter ξ∗0 at 3 loops. For analytic results of the electron propagator to three
loops the reader is referred to [78, 79, 80, 81].

Recall that these coefficients refer to the connected electron propagator
(2.190). However, for the sake of computational convenience, it is neces-
sary to relate these coefficients to the bare self-energy of the electron Σ0.
Define coefficients pn;m to decompose the self-energy

Σ0(q) = /q
∑
1≤n

∑
0≤m≤n

pn;m(ξ0 − ξ∗0)mαn0 . (2.201)

Then, the relation between the connected and the one-particle irreducible
propagator

S0(q) =
i

/q − Σ0(q)
(2.202)
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implies the conversion formulas for the coefficients

c̃n;m := −i/qcn;m =
∑
k≥1

∑
n1+···+nk=n
m1+···+mk=m

pn1;m1 · · · pnk;mk , (2.203)

pn;m =
∑
k≥1

(−1)k+1
∑

n1+···+nk=n
m1+···+mk=m

c̃n1;m1 · · · c̃nk;mk . (2.204)

In this way, we are able to compare the formula for the coefficient with
results from actual perturbative computations. We generate the Feynman
graphs of the electron self-energy Σ with QGRAF [15] and perform the com-
putations in FORM [16] and its parallel version TFORM [17] in combina-
tion with the MINCER package [19, 20]. For a more detailed discussion of
our computational setup the reader is referred to the introduction of this
thesis. From these perturbative results, we extract the coefficients pn;m as a
series in ε to three loops n ≤ 3 with an arbitrary power in the shifted gauge
parameter 0 ≤ m ≤ n.

After the conversion into the connected coefficient (2.203), the MIN-
CER expansions exactly match the formula (2.196) derived by means of the
linear Dyson-Schwinger equation. This reconstruction of the gauge depen-
dent terms has been checked for both the Feynman gauge (ξ∗0 = 1) and the
Landau gauge (ξ∗0 = 0).

2.5.2 Hopf-algebraic renormalization
As mentioned in the preceding paragraph, the epsilon expansion was de-
rived for all superficially divergent Feynman graphs up to third loop order.
In this paragraph, Hopf-algebraic technique are applied to renormalize the
self-energy of the electron. Recall that the renormalized Feynman rules are
expressed as a convolution

φR

(
X

)
= m ◦ (ST ⊗ φ) ◦∆

(
X

)
(2.205)

of the twisted antipode with the unrenormalized Feynman rules φ. Here,
the M̃OM renormalization scheme is employed; that is to say, vertex sub-
divergences are derived with zero momentum transfer at the photon leg
and the square of the remaining external momentum is evaluated at the
renormalization point µ2. This defines the mapping of the operator T .

The renormalized Feynman rules require us to derive the coproduct and
the twisted antipode of all Feynman graphs contributing to the combinato-
rial Green’s function X . Note that the recursion from the twisted an-
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tipode (2.172) is readily rewritten

ST = −T − T ◦m (ST ⊗ id) ∆̃, (2.206)

in terms of the reduced coproduct

∆̃ = ∆− 1⊗ id− id⊗1. (2.207)

This observation together in combination with the closed formulas for the
coproduct of a Green’s function (2.179) and (2.180) allow us to derive
the renormalized Green’s function as a recursion over coefficients of bare
Green’s functions, rather than to perform the recursion for each Feynman
graph separately. Finally, these coefficients are replaced by their corre-
sponding epsilon expansion and yield the renormalized self-energy of the
electron up to three loops

Σ(α, ξ)//p = ξL
( α

4π

)
+

(
−1

2
ξ2L2 − (

3

2
+ 2nf )L

)( α
4π

)2

+

(
1

6
ξ3L3 +

(
(
3

2
+ 2nf )ξ − 2nf −

8

3
n2
f

)
L2 + (

3

2
− 2nf +

8

3
n2
f )L

)( α
4π

)3

.

(2.208)

In this result, the parameter nf has been introduced. It denotes the number
of different fermion generations and hence provides a slight generalization
of the original setting where the electron is considered as the only fermion.
The advantage of this approach is that the quenched limit is easily accessi-
ble by evaluating nf = 0. Further, it is worth noting that the cancellation of
poles in the epsilon expansion provides a non-trivial check of the coprod-
uct formula. As another check, the renormalized vacuum polarization was
derived in the MS scheme and shown to agree with the result of [82]. A
reader interested in these quantities is referred to our detailed discussion
of non-abelian gauge theories in section 3.6.

Here, we continue to extract the renormalization group function from
the renormalized self-energy above. Recall that the renormalization group
equation reads

(−∂L + βα∂α + δξ∂ξ + γ )G = 0. (2.209)

Further, the renormalization group functions are expanded in the renor-
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malized coupling α and define the following coefficients

β(α, ξ) = −
∑
n≥1

βn

( α
4π

)n
, (2.210)

γ (α, ξ) = −
∑
n≥1

γn

( α
4π

)n
, (2.211)

δ(α, ξ) = −
∑
n≥1

δn

( α
4π

)n
. (2.212)

Now, the renormalized self-energy, or more precisely the renormalized Green’s
function G = /p− Σ, is inserted into the renormalization group equation
and expanded in the coupling α and the kinetic parameter L. This provides
systems of equations that determine the coefficients of the renormalization
group functions.

The first loop order of the self-energy Σ determines the anomalous di-
mension of the electron to satisfy

γ1 = ξ, (2.213)

which the familiar value known from the introductory discussion of anoma-
lies 2.1.6. The two-loop result of the self-energy relates the first coefficients
of the β and δ function and yields the second coefficient of the anomalous
dimension

β1 = −δ1 and γ2 = −3

2
− 2nf . (2.214)

At third loop order, the self-energy determines the third order of the anoma-
lous dimension, the first coefficient of the β function (and hence δ func-
tion), and relates the second order of the β and δ functions

β1 = −4

3
nf , β2 = −δ2, and (2.215)

γ3 =
3

2
− 2nf +

8

3
n2
f . (2.216)

It should be remarked that the derived relation between the β and the δ
function is in convenience with the Ward identities γ = γ and γ‖ =
0. Further, note that the derived coefficients of the anomalous dimension
support the aforementioned conjecture — only γ1 depends on the gauge
parameter ξ.



2.5. THE MASSLESS SELF-ENERGY OF THE ELECTRON 65

2.5.3 Higher order gauge parameters
This paragraphs reports on an attempt to find convenient choices for gauge
parameter such that the structure of subdivergences and hence the renor-
malization process simplifies. It is shown that suchlike techniques imply
mild restrictions on the gauge-dependent terms of the self-energy. The
discussion presented here does not exceed the results published in [51].
The reader who is mainly interested in a characterization of the gauge de-
pendence of the renormalized electron propagator might want to skip this
paragraph.

In [83], Johnson and Zumino asserted that all divergences in the self-
energy of the electron can be eliminated by a suitable choice of gauge,
resulting in a finite wave-function renormalization constant Z2 and, by
Ward’s identity, a finite vertex renormalization constant Z1. The crucial in-
gredient is the exact knowledge of the behaviour of the electron self-energy
under gauge transformations. This has been studied by Landau and Kha-
latnikov [8] and Zumino [43]. For quenched Quantum Electrodynamics
(QED without insertions of photon self-energy graphs), such a gauge has
been explicitly constructed by Baker, Johnson, and Willey in [78], where
finite solutions of the self-energy were derived by solving a system of trun-
cated Dyson-Schwinger equations. To achieve this, they had to allow for a
coupling dependent gauge parameter:

ξ0(α0) =
3

2

α0

4π
(2.217)

Their technique of introducing gauge parameters of higher orders in the
coupling parameter was also applied in quenched Quantum Electrodynam-
ics in the first evaluation of the three-loop beta function by Rosner [84] and
in Broadhurst’s calculation of the anomalous dimensions of the quenched
theory to four loops [85]. These results motivate us to examine the be-
haviour of these coupling dependent gauge parameters under renormaliza-
tion and which kind of divergences can be cancelled by a suitable choice
of gauge. We promote the bare gauge parameter to a series in the bare
coupling parameter.

ξ0(α0) =
∑
n≥0

ξ
(n)
0 αn0 (2.218)

A gauge fixing corresponds to a specific choice of the parameters ξ(n)
0 , which

are required to be free parameters. However, as we have seen in the pre-
vious paragraphs, after renormalization, the gauge parameter becomes a
power series in the coupling parameter and its coefficients are determined
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through the renormalization condition ξ0 = Z3 ξ. To avoid this kind of con-
tradiction, we also introduce renormalized higher order gauge parameters
ξ

(n)
0 = Zn+1

3 ξ(n) and replace the renormalized gauge parameter by a series
of renormalized gauge parameters.

ξ(α) =
∑
n≥0

ξ(n)αn (2.219)

This definition maintains the renormalization condition ξ0(α0) = Z3ξ(α),
which is necessary due to the fact that the self-energy of the photon is
transversal. The photon propagator is modified by a series of longitudinal
parts of higher order in the gauge parameter.

P µν(k, ξ0) =
1

k2

(
gµν − kµkν

k2

)
+ ξ

(0)
0

kµkν

k4
+ ξ

(1)
0 α0

kµkν

k4
+ · · · (2.220)

In this generalized linear covariant gauge, Feynman graphs are build from
vertices and edges of the infinite set

R ∈

{
, ,

⊥

,
‖0

,
‖1

, · · ·

}
, (2.221)

where the transversal part of the photon propagator is denoted by the ⊥
label and the longitudinal term which is proportional to ξj0 is denoted by
the label ‖j.

First, the quenched sector of Quantum Electrodynamics in this gauge is
discussed. The vertex and electron one particle irreducible Green’s func-
tions are solutions of the following system of DSE.

∆Xr = 1 +
∑

γ skeleton
res(γ)=r

Bγ
+(XrQ|γ|), r ∈

{
,

}
(2.222)

Where the invariant charge of the quenched theory is defined as

Q =
(X )2

(X )2
. (2.223)

Note that these DSE only differ from (2.174) of the full theory by the
property that no photon self-energy graphs are inserted into the skeletons.
Again, the application of (2.177) implies a closed formula for the coproduct
of the one particle irreducible Green’s function in the quenched sector.

X =
∑
n≥0

X Qn ⊗Xn (2.224)
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Here, Xn denotes all n-loop Feynman graphs of the quenched Green’s
function X . It should be remarked that the same formula follows from
the coproduct formula of the full theory by dividing out the Hopf-ideals
generated by X⊥n⊥,n‖ and X

‖
n⊥,n‖. As demonstrated in the previous para-

graph, this coproduct formula in combination with (2.182) restricts the L
expansion of the electron self-energy. The absence of transversal photon
subdivergences implies that the quenched invariant charge vanishes under
σ = φR ◦ Y

−1 ◦ (S ? Y ).

σ(Q) = 2γ − 2γ = 0 (2.225)

This corresponds to the fact that coupling parameter α and the gauge pa-
rameter ξ are not renormalized in the vertex and electron Green’s function
of the quenched theory and yields the following simplified renormalization
group equation.

(∂L − γ )(1− Σquenched) = 0, with γ = −∂LΣquenched(0) (2.226)

This ordinary differential equation determines the self-energy of the elec-
tron by means of its anomalous dimension, which is up to a sign the linear
log term of the self-energy. Hence, the unique solution reads

Σquenched = 1− exp
(
Lγ

)
. (2.227)

In this way, the question of a vanishing quenched self-energy of the elec-
tron is converted to a vanishing anomalous dimension. Indeed, there is a
choice of higher order gauge parameters such that the anomalous dimen-
sion vanishes. Recall that the one-loop self-energy graph is only sensitive
to the longitudinal part of the photon propagator (see (2.208)). Therefore,
the self-energy of the electron vanishes in the Landau gauge ξ(0) = 0 at first
loop order. Now, observe that the one-loop graph contributes at higher loop
orders by the coupling dependent parts of the photon propagator (2.220).
Moreover, this shift of the first order graph yields a linear log term which
is proportional to a unspecified gauge parameter. In other words, the lin-
ear log term of the electron self-energy at loop order n can be cancelled
by fixing the value of the gauge parameter ξ(n−1). In this gauge fixing, the
anomalous dimension vanishes.

Σquenched(α, ξ̃(α)) = 0 for some ξ̃(α) =
∑
j≥0

ξ̃(j)αj (2.228)

A vanishing renormalized self-energy implies a finite bare self-energy. In
other words, the constructed gauge fixing cancels all divergences and al-
lows a finite renormalization constant Z2, which is the original statement
of Baker, Johnson, and Willey.
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Finally, the unquenched case of Quantum Electrodynamics is discussed.
As demonstrated in the analysis of the quenched sector, the cancellation
of the linear log terms of the self-energy already determines the full set of
higher order gauge parameters ξ̃(α). This in combination with the three-
loop result (2.208) determines the gauge to second order.

ξ̃(α) = 0 +

(
3

2
+ 2nf

)
α +

(
−3

2
+ 2nf −

8

3
n2
f

)
α2 (2.229)

Note that the quenched limit nf = 0 coincides with the results of Baker,
Johnson, and Willey (2.217) at two loops and Broadhurst at three loops
[85]. However, in the full theory, the cancellation of the anomalous di-
mension of the electron does not imply a vanishing self-energy and at third
order a quadratic log term remains:

Σ(α, ξ̃(α)) =

(
−2nf −

8

3
n2
f

)
L2
( α

4π

)3

. (2.230)

A L dependent term arises from a divergent subgraph in Zimmermann’s for-
est formula. Therefore, this nonvanishing L term corresponds to a remain-
ing subdivergence in the self-energy of the electron. This subdivergence is
necessarily cancelled by a divergent counterterm. Hence, the higher order
gauge parameters of the generalized linear covariant gauge fixing are not
sufficient to remove all divergences from the self-energy of the electron, or
equivalently to provide a finite renormalization constant Z2.

It is interesting to note that the pure existence of this gauge technique
restricts the next-to-leading log term in the self-energy of the electron
within the original linear covariant gauge. More precisely, a next-to-leading
log term proportional to

ξ0n0
fL

n−1
( α

4π

)n
, n ≥ 3 (2.231)

is forbidden.
In other words, a Feynman graph which contributes to the next-to-

leading log term possesses

• (at least) a longitudinal photon propagator

• or (at least) a closed fermion loop.

This follows from the fact that such a term contradicts the existence of
higher order gauge parameters which induce the vanishing of the quenched
self-energy: Notice that a term of form (2.231) is a quenched contribution
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and recall that the leading-log term allows a direct evaluation via truncated
DSE and reads

(−1)n+1 ξ
nLn

n!

( α
4π

)n
, n ≥ 1. (2.232)

Now, replace the gauge parameter ξ by the coupling dependent series ξ(α),
whose coefficients are fixed by the requirement that the electron anomalous
dimension vanishes. As argued before, this guaranties a vanishing electron
self-energy. Due to an expansion of the gauge parameter series, a log term
of a particular order contributes also at higher loop orders. As a result,
the next-to-leading log term at n+ 1 loops receives a contribution from the
leading-log term at n loops (2.232). Further, all terms which depend on
the gauge parameter vanish because of the vanishing coefficient ξ(0) = 0 of
(2.229). The only remaining term is of the form (2.231). However, by con-
struction of the series ξ(α), all log terms (including the next-to-leading log
term) of the quenched sector vanish. Hence, the next-to-leading log term
of the electron self-energy vanishes in the Landau gauge (ξ has non-zero
exponent) or is not within the quenched sector (nf has non-zero exponent).

2.5.4 Gauge dependence of the renormalized propagator
This paragraph contains a non-perturbative enquiry of the gauge depen-
dence of the renormalized electron propagator. The characterization (2.87)
of the gauge dependence for the bare Green’s function is promoted to a
Dyson-Schwinger equation for the renormalized electron propagator by in-
troducing an appropriate counterterm that cancels the inherent infrared
divergence. This results in a characterization of the gauge dependence of
the renormalized electron propagator.

The starting point of our consideration is the integral equation (2.88),
in which the bare parameters and Green’s functions are replaced by their
renormalized equivalents. Further, we define the reduced Green’s function
S̃ = /qS to strip off the Lorentz factor for notational convenience. In these
conventions, the characterization of the gauge dependence reads

∂S̃

∂ξ

(
ln
q2

µ2
, ξ

)
= ie2

∫
dDp

(2π)D
S̃

(
ln

(q + p)2

µ2
, ξ

)
Tr
[
/q(/q + /p)

]
[p2]2 (q + p)2

. (2.233)

As usual, the Green’s function is assumed to be analytic in the kinematic
variable. Therefore, it might be expressed in terms of the substitution

S̃

(
ln

(q + p)2

µ2
, ξ

)
= S̃ (−∂ρ, ξ)

(
µ2

(q + p)2

)ρ ∣∣∣∣
ρ=0

. (2.234)
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The consecutive step is to insert the substitution and interchange the deriva-
tives with respect to ρ and the dimensionally regularized integration. This
produces an infrared divergent integral

∂S̃

∂ξ

(
ln
q2

µ2
, ξ

)
= ie2S̃ (−∂ρ) (µ2)ρ

∫
dDp

(2π)D

1
2

[(q + p)2 + q2 − p2]

[p2]2 [(q + p)2]1+ρ . (2.235)

Here, the limit ρ → 0 is understood after the dimensionally regularized
integration. Employing the power counting theorem to the above integrand
reveals the infrared divergence for vanishing p2. To resolve the infrared
divergence, the integrand is modified by subtracting the term

1
2

[
(µ+ p)2 + µ2 − p2 µ2

q2

]
[p2]2 [(µ+ p)2]1+ρ

(
µ2

q2

)ρ
. (2.236)

Two conditions are crucial for the construction of this counterterm. First,
note that the original integrand and the counterterm coincide at q2 = µ2. In
other words, quantum correction vanish if the external momentum equals
the renormalization point µ. This realizes a kinematic renormalization con-
dition which is known as the M̃OM scheme. Second, both expressions have
the same scaling factors in the limit p→ 0. This condition ensures that sub-
tration of the counterterm improves the superficial degree of divergence
and is the reason for the additional factors µ2/q2. It worth remarking that a
MS counterterm is readily constructed in a similar fashion.

Now, we employ dimensional regularization in D = 4 − 2ε dimensions
and perform a Wick rotation to simplify expressions

∂S̃

∂ξ

(
ln
−q2

µ2

)
=

α

4π
S̃ (−∂ρ)

(
−q2

µ2

)ρ [(−q2

4π

)−ε
−
(
µ2

4π

)−ε]

×
[

1

2
G(2, ρ) +

1

2
G(2, 1 + ρ)− 1

2
G(1, 1 + ρ)

]
︸ ︷︷ ︸

=−1/ε+O(ε0)

. (2.237)

The function G is defined in (2.193); it depends on the dimensional reg-
ulator ε. Notably, the specific combination of these functions has a pole
in the dimensional regulator ε and its residue is ρ-independent. Thanks to
the subtracted counterterm, the pole terms in ε cancel and we can safely
take the limit ε → 0. After that, the substitution (2.234) is reversed and
ρ is evaluated to zero. This finally yields the simple ordinary differential
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equation

∂S̃

∂ξ

(
ln
−q2

µ2
, ξ

)
= ln

(
−q2

µ2

)
α

4π
S̃

(
ln
−q2

µ2
, ξ

)
. (2.238)

This differential equation is easily solved by the ansatz

S̃(L, ξ) = exp
[
(ξ − ξ∗)L α

4π

]
S̃(L, ξ∗) (2.239)

where we introduced the kinematic variable L = ln (−q2/µ2) and assumed
the electron propagator to be known at the particular value ξ∗ in the gauge
parameter. This solution allows to reconstruct the electron propagator in
the general covariant gauge once it is known at a particular gauge such as
the Feynman ξ∗ = 1 or Landau gauge ξ∗ = 0.

In the following, we consider the standard decomposition of the photon
propagator into a transversal and a longitudinal part and hence set ξ∗ = 0.
Recall that the connected propagator function satisfies the renormalization
group function

(−∂L + βα∂α + δξ∂ξ − γ) S̃(L, ξ) = 0. (2.240)

Further, define the anomalous dimension in the Landau gauge as γ(α, 0),
then the Landau gauged propagator function obeys the renormalization
group equation

(−∂L + βα∂α − γ(α, 0)) S̃(L, 0) = 0. (2.241)

Inserting the solution (2.239) in the first renormalization group equation
and using the latter renormalization group equation to relate to the anoma-
lous dimension in the Landau gauge and exploit the fact that β = −δ im-
plies the identity

γ(α, ξ)− γ(α, 0) = −ξ α
4π
. (2.242)

Which proves the statement that the anomalous dimension depends on the
gauge parameter only at first loop order in the cases of the M̃OM and MS
renormalization schemes.

It is possible to provide a generalization of the above discussion for
higher dimensional Quantum Electrodynamics. In paragraph 2.2.3, it was
demonstrated that the formula which characterizes the gauge dependence
(2.102) persists in d = 6 and d = 8 dimensions. The integrand is modified
in such a way that the infrared divergence survives despite the increased
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dimension. The analysis from above similarly applies to this d-dimensional
setting. The residue of equation (2.237) is slightly modified[

1

2
G (d/2, ρ) +

1

2
G (d/2, 1 + ρ)− 1

2
G (d/2− 1, 1 + ρ)

]
= − 1

Γ (d/2)

1

ε
+ O

(
ε0
)
.

(2.243)

This results in the following solution for the electron propagator

S̃(ξ, L) = exp

[
ξL

Γ(d/2)

α

4π

]
S̃(0, L), (2.244)

and the anomalous dimension

γ(α, ξ)− γ(α, 0) = − ξ

Γ(d/2)

α

4π
, (2.245)

which is in convenience with the results reported in [48].



Chapter 3

Non-Abelian Gauge Theories

This chapter reports on the Hopf-algebraic renormalization of non-abelian
gauge theories. On one hand, it is instructive to ask how the structural re-
sults from the Hopf-algebraic renormalization of Quantum Electrodynamics
convey to non-abelian gauge theories. On the other hand, it is necessary to
compute the gauge-dependent terms of Green’s functions for a prospective
study of cancellation identities in non-abelian gauge theories.

3.1 Model and Feynman rules
Consider the Lagrangian of a general non-Abelian gauge theory with a lin-
ear covariant gauge fixing

L = LF + LYM + LGF + LGH. (3.1)

Four parts constitute this model and describe the fermionic fields, the gauge
fields, the gauge fixing, and the unobservable ghost fields.

The fermionic fields are represented by a Dirac spinor ψ. The Lagrangian
reads

LF = ψ /Dψ, where (Dµ)jk = δjk∂µ + gAaµT
a
jk (3.2)

denotes the covariant derivative and {T a : a = 1, . . . , NA} is a basis of in-
finitesimal generators of the gauge group G. The infinitesimal generators
are represented by finite-dimensional matrices whose entries are denoted
by the subscripts j, k = 1, . . . , Nc. This type of subscript is also assigned to
the fermionic fields ψk and is commonly referred to as the color quantum
number. Moreover, there are different species of fermionic fields, which are
denoted by the flavor quantum number; the flavor index assumes values in

73
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1, . . . , Nf . As is clearly seen in LF, the indices of these quantum numbers
are mostly suppressed in our notation. The same applies to the indices
referring to the spinor components of the fermionic fields.

The kinematics and self-interaction of the gauge fields are described by
the Yang-Mills Lagrangian

LYM = −1

4
F a
µνF

µνa, where F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (3.3)

denotes the field strength tensor with the Yang Mills coupling parameter g.
The gauge field is denoted by Aaµ and the antisymmetric tensor f is defined
by the Lie bracket of the infinitesimal generators[

T a, T b
]

=: ifabcT c. (3.4)

The combination of the fermionic and the Yang-Mills Lagrangian de-
scribes the physical content of a non-abelian gauge theory; it is invariant
under the class of non-abelian gauge transformations

ψ(x) 7→ U(ω(x))ψ(x)

Aµ(x) 7→ U(ω(x))−1 (Aµ(x)− ig∂µ)U(ω(x))

}
(3.5)

where the representation of the gauge group

U(ω(x)) = exp (−igωa(x)T a) (3.6)

is parametrized by a set of local coordinate functions ωa : R3,1 → R with
appropriate regularity.

However, the linearised field equations for the gauge field gives rise
to a singular differential operator. Hence the gauge boson propagator is
ill-defined and a perturbative approach is not possible. This problem can
be resolved by exploiting the underlying ambiguity, which arises from the
gauge invariance of the model, by adding additional terms to modify the
field equations of the gauge fields. It is customary to use the covariant
gauge fixing

LGF = − 1

2α

(
∂µAaµ

) (
∂νAaν

)
. (3.7)

As before, the summation over repeated Lorentz and adjoint indices is un-
derstood. The quadratic expression in the gauge field yields just a linear
contribution to the field equations, therefore this gauge fixing is also called
the linear covariant gauge. Following the notational conventions of [86],
the gauge parameter is denoted by α.
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The gauge fixing term LGF breaks the gauge invariance and modifies
the gauge boson propagator. In order to ensure that this modification does
not change the physical predictions of the model, another type of fields
must be introduced. These fields are commonly referred to as ghosts as
they are of non-physical nature in the sense that they only contribute as
virtual interactions between physical fields. Given a gauge fixing, ’t Hooft
and Veltman [87] provided a diagrammatic prescription to construct these
ghost fields. In addition to that, there is the classic prescription due to
Faddeev and Popov [88]. In case of the non-abelian gauge theory and
linear covariant gauge from above the prescription yields

LGH = − (∂µc̄)Dµc. (3.8)

This Lagrangian introduces the complex bosonic ghost field, where c and c̄
denote the ghost and anti-ghost fields which obey Fermi statistics.

In the framework of perturbation theory, every monomial of the classi-
cal Lagrangian is translated into a vertex or an edge; which serve as build-
ing blocks to construct graphs in the sense of graph theory. In general,
these graphs are mapped to integrals expressions which originate from a
perturbative analysis of the fields; this mapping is commonly referred to as
Feynman rules. Finally, textbook Quantum Field Theory provides a machin-
ery to quantize the classical Lagrangian, resulting in a perturbation series
which represents the sum over all graphs of similar external edges, called
legs in the physical literature.

At this point, we like to remark that the specific form of the Lagrangian
and hence the form of the Feynman rules depends on various conventions.
For instance, ambiguities arise in the Feynman rules from the following
operations: a rescaling of fields in the Lagrangian with different constants,
choosing different signs or constants in front of each individual Lagrangian,
or changing the definition of the covariant derivative. Beside of that, the
specific form of the Feynman rules also depends on labelling conventions,
such as directions of momenta attached to a vertex. To accommodate these
ambiguities, we introduce a constant for each vertex and edge type in the
definition of the Feynman rules. In a second step, we will derive restrictions
for these constants by examining the renormalization conditions of this
model. In this way, it is possible to identify the constants which are fixed by
the requirement that the Lagrangian L is renormalizable and the constants
which need to be fitted to experimental data.

In this course, we define the Feynman rules of the model (3.1) by us-
ing the same index conventions as above and introducing the constants
c1, c2, c3, c3g, c4g, c̃1, and c̃2. The momentum of an edge is denoted by p with
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the convention that the direction of the momentum always directs into the
vertex; the momentum of a directed edge always points in the same direc-
tion.

µ a

ji

= c1gγ
µT aij (3.9)

p
ji = c2δij

/p+m

p2 −m2
(3.10)

p ν
b

µ
a

= c3δab
1

p2

[
gµν − (1− ξ) p

µpν

p2

]
(3.11)

1

23

= c3ggfa1a2a3

 gµ2µ3 (p2 − p3)µ1

+gµ3µ1 (p3 − p1)µ2

+gµ1µ2 (p1 − p2)µ3

 (3.12)

1

2

3

4 = c4gg
2

 fa1a2bfa3a4b (gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+fa1a3bfa4a2b (gµ1µ4gµ2µ3 − gµ1µ2gµ3µ4)

+fa1a4bfa2a3b (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)

 (3.13)

µ c

ba
p = c̃1gf

abcpµ (3.14)

p
ba = c̃2δab

1

p2
(3.15)

In order to conclude the discussion of the Feynman rules, we like to antic-
ipate the outcome of a detailed analysis of Ward identities and discuss the
implied restrictions for the introduced constants. A detailed discussion of
the renormalization conditions can be found in paragraph 3.3.

Ward identities [89, 90, 91] imply that a Green’s function with a longi-
tudinally contracted gluon leg vanishes in the on-shell limit for every order
in perturbation theory. At the tree-level, this condition relates the three-
gluon vertex with the quark-gluon vertex

c3g = i
c1c2

c3

, (3.16)
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which is readily deduced from the quark-quark-gluon-gluon amplitude. In
a similar way, the four-gluon amplitude relates the four-gluon vertex to the
three-gluon vertex

c4g = c3c
2
3g = −c

2
1c

2
2

c3

. (3.17)

Further, longitudinal gluon terms circulating in loops are required to can-
cel terms originating from ghost loops. This cancellation determines the
ghost-gluon vertex up to an arbitrary constant cGH in the ghost-gluon ver-
tex provided that the ghost propagator is proportional to the inverse of
cGH. As a result, all these constants multiply to unity as a closed ghost loop
consists of the same number of ghost edges and vertices.

c̃1 = c3gcGH = i
c1c2

c3

cGH (3.18)

c̃2 =
c3

cGH
(3.19)

On the level of the Lagrangian, the new constant cGH can be interpreted as
a rescaling of the ghost fields or as an adjustment in the constant in front
of the ghost Lagrangian LGH

L = LF + LYM + LGF + cGHLGH. (3.20)

As indicated before, this constant completely cancels in every Feynman
graph and perturbative results are independent of this constant cGH. In
particular, the sign in front of the ghost Lagrangian has no physical signifi-
cance for perturbative methods. This explains the varying sign conventions
in the literature. Finally, beside the non-physical ghost constant cGH, the
remaining undetermined constants are c1, c2, and c3, which is similar to the
situation of an Abelian gauge theory such as Quantum Electrodynamics.

3.2 Color factors
This paragraph gives a short account on color factors and how they are
computed in perturbative calculations. Basically, we follow the course of
[92, 62, 18].

The gauge group G is a Lie group and hence possesses an associated Lie
algebra, which can be identified with the tangent space at the identity of
G. As the gauge group is assumed to be finite dimensional, the Lie algebra
possesses a basis of matrices T a with a ∈ {1, . . . , NA}. The Trace Tr(T aT b)
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defines a symmetric bilinear form which is non-singular provided that the
Lie algebra of G is semi-simple [92]. In this setting, there is a basis of
orthonormal infinitesimal generators T a in the Lie algebra such that

Tr
(
T aT b

)
= TF δ

ab (3.21)

for some constant TF and δ denotes the Kronecker symbol. The commutator
of the associated Lie algebra arises from the vector field commutator in the
tangent space and defines the structure constants fabc via[

T a, T b
]

=: ifabcT c. (3.22)

As a gauge group is of finite dimension, it is possible to represent the in-
finitesimal generators T a by matrices. Further, it is an easy exercise to show
that the product δabT aT b commutes with every infinitesimal generator. Pro-
vided that the matrix representation of the infinitesimal generators T a is
an irreducible representation, it is a consequence of Schur’s lemma in its
matrix form that the product must be proportional to the unit matrix

δab
(
T aT b

)
ij

=: CF δij (3.23)

with some constant CF . In the course of classical Lie algebra theory [93],
one shows that this object does not depend on the actual choice of the basis
elements T a and hence is called a Casimir invariant or a Casimir operator.
With a slight abuse of language, we will call the constant CF Casimir oper-
ator.

Defining the adjoint representation by

(T aA)bc := −ifabc, (3.24)

the same reasoning applies and gives rise to another Casimir operator,
which we denote by

facdf bcd =: CAδ
ab. (3.25)

The structure constants fabc represent a fully antisymmetric tensor and
analogously there is a fully symmetric tensor.

dabc :=
1

3!

∑
π∈S3

Tr
(
T π(a)T π(b)T π(b)

)
=

1

2
Tr
(
T a
{
T b, T c

})
, (3.26)

where S3 denotes the symmetric group on a set of cardinality three —
the summation runs over all permutation of the three indices. Elementary
properties of these definitions are the Jakobi identities
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1. fabrdcdr + facrddbr + fadrdbcr = 0

2. fabrfcdr + facrfdbr + fadrfbcr = 0.

Both identities are proven by replacing the antisymmetric tensors by the
commutator (3.22) and making use of the orthogonality (3.21) and the
definition of the symmetric tensor (3.26). Then, for instance, the first iden-
tity follows from a short calculation:

∑
σ∈A3

Tr
([
T a, T σ(b)

] {
T σ(c), T σ(d)

})
=
∑
σ∈A3

Tr
(
T aT σ(b)

{
T σ(c), T σ(d)

}
− T a

{
T σ(c), T σ(d)

}
T σ(b)

)
= 0 (3.27)

where we made use of the cyclicity of the trace, A3 ⊂ S3 denotes the set of
cyclic permutations, and the sum eventually vanishes as (b, c, d) is a cyclic
permutation of (c, d, b).

As is clearly seen from the Feynman rules (3.9-3.15), every edge and
every vertex of a Feynman graph contributes a Kronecker symbol, basis
element of the Lie algebra T a, or an antisymmetric tensor fabc as a factor,
which are commonly referred to as color factors.

In the following, we introduce some graphical notion of the group-
theoretic identities from above; this notion is very convenient to compute
the color factors of a Feynman graph. In this paragraph, the edges and ver-
tices of a Feynman graph are meant to represent solely the corresponding
color factor. For instance an fermionic propagator just denotes the Kro-
necker symbol over the color indices of this propagator and the closed
graphs

= Nc and = NA (3.28)

represent self-contracted Kronecker symbols ranging over the fermionic
color index j = 1, . . . , Nc and the adjoint index a = 1, . . . , NA, respec-
tively. Moreover, if there were different species of fermions involved, then
the fermionic loop would also contribute a factor Nf .

Translating the orthogonality relation (3.21) and the Casimir invariants
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(3.23) and (3.25) into this graphical notion yields

= TF , (3.29)

= CF , and (3.30)

= = CA . (3.31)

The last equation demonstrates that ghost edges (and vertices) can simply
replaced by gluons as they contribute the same color factors.

Another useful identity follows from the antisymmetry of the color fac-
tor of the three-gluon vertex

=
1

2
CA . (3.32)

More complicated graphs typically contain more three-gluon vertices; to
compute their color factors, the following reduction identities are useful

= − and (3.33)

= − , (3.34)

where we implicitly assumed an anticlockwise orientation of the three-
gluon vertices. For example, the Gluon crossing relation (3.34) can be
used to rewrite the one-loop vertex graph in terms of the preceding exam-
ples (3.30) and (3.32)

=

(
CF −

1

2
CA

)
. (3.35)

Another non-trivial example is the purely gluonic one-loop three gluon con-
tribution

=
1

2
CA , (3.36)
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where we used the identity (3.33) to replace one three-gluon vertex by a
fermionic loop, which is connect to the other three-gluon vertices such that
(3.34) can be applied to remove a second three-gluon vertex which allows
the identification of (3.32) subgraph yielding the correct color factor. In
general, the identification of known subgraphs simplifies the computation
of color factors — the preceding one-loop graph (3.36) allows us to derive
the two-loop gluon propagator contribution

=
CA
2

=
C2
A

2
. (3.37)

However, it is reasonable to remark that more care is required in re-
placements of four-gluon vertices. As seen for the Feynman rules of the
four gluon vertex (3.13), the individual color factors are intertwined with
different Lorentz tensors which influence the result of the momentum de-
pendent factor of a generic Feynman graph. Instead of thinking of a four-
gluon term as an individual vertex, we rather have to treat it as a sum
of three different expressions representing the individual terms from the
Feynman rules. We like to illustrate this in the graphical identity

→ + + . (3.38)

This issue must be taken into account in the color factor derivation of the
following two-loop purely gluonic graph.

→



= C2
A

= 1
2
C2
A

= 1
2
C2
A

(3.39)

Also at higher loop orders, color factors become more complicated and
further Casimir invariants are necessary. For a general discussion of these
higher Casimir invariants in the context of color factors the reader is re-
ferred to [18].
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In the physical context of Quantum Chromodynamics, the special case
G = SU(Nc) is of particular interest and we will need the special values of
the Casimir invariants in this particular gauge group to compare our results
of paragraph 3.6 to the literature.

It is well known that the Lie algebra associated to the Lie group SU(Nc)
(Nc × Nc unitary matrices with determinant 1) is spanned by set of the
traceless skew-Hermitian Nc × Nc matrices. However, we will stick to the
standard convention of the physics literature and rewrite the Lie algebra
exponential such that the infinitesimal generators of the Lie algebra are
given by the set of traceless Hermitian Nc ×Nc matrices

Tr (T a) = 0 and (T a)† = T a, (3.40)

which span a R-vector space of dimension NA = N2
c − 1.

Due to dimensional reasons, the set {I, T a : a ∈ NA} is a basis of the R-
vector space of the Nc ×Nc Hermitian matrices. As the anticommutator of
two Hermitian matrices is Hermitian, the anticommutator can be expanded
in this basis which results in

{
T a, T b

}
=

2TF
Nc

δabI +
2

TF
dabcT c, (3.41)

where the coefficients in front of the basis elements were derived by using
the trace to define projection operators in combination with (3.40) and
(3.21). As a simple conclusion

T aT b =
1

2

{
T a, T b

}
+

1

2

[
T a, T b

]
=
TF
Nc

δabI +
1

TF
dabcT c +

i

2
fabcT c. (3.42)

Another consequence of the vanishing trace of the infinitesimal generators
T a is that the symmetric tensor vanishes after an index contraction dabb = 0.

In [92], Cvitanović provided an algorithm for the computation of the
SU(Nc) Casimir invariants and color factors. The procedure basically relies
on the reduction of the number of infinitesimal generators by utilizing the
SU(Nc)-specific identity

(T a)ij (T a)kl = TF

(
δilδjk −

1

Nc

δijδkl

)
. (3.43)

For another concise proof of this formula the reader is referred to [94].
This identity allows us to derive the SU(NA)-specific values of the Casimir
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operators in terms of the dimensions Nc and NA:

CF = TF
N2
c − 1

Nc

(3.44)

CA = 2TFNc (3.45)

dacddbcd =
T 3
F

2

N2
c − 4

Nc

δab. (3.46)

These formulas are useful to compare our results of paragraph 3.6 to the
literature which explicitly presumes SU(Nc) as the gauge group of the non-
abelian gauge theory.

Finally, Quantum Chromodynamics refers to the gauge group SU(3).
Hence Nc = 3 and setting TF = 1/2 in convenience with the conventions of
[18] implies

CF =
4

3
and CA = 3. (3.47)

3.3 Renormalization conditions
In Quantum Field Theory, perturbation series contain Feynman graphs with
loops, which might be mapped to divergent integrals by the Feynman rules
(3.9-3.15). In order to obtain finite results, all fields and parameters of the
model (3.1) must be renormalized. In the sequel, we will discuss appropri-
ate conditions for such a renormalization process.

First, consider the pure Yang-Mill part LYM of the model. The La-
grangian consists of a sum of monomials. Monomials quadratic in the fields
contribute to the propagator (3.11); the other monomials are associated to
exactly one interaction vertex within the graphical notion of the Feynman
rules. In the course of perturbation theory, such an interaction vertex re-
ceives further quantum corrections from Feynman graphs of the same ex-
ternal legs. In order to deal with divergences of these Feynman graphs, the
Lagrangian LYM is replaced by its renormalized equivalent

LR;YM = LYM + LCT, (3.48)

where the last term is constructed in such a way that it contributes ap-
propriate counterterms, which cancel all the divergences of the Feynman
graphs originating from LYM.

In order to understand the structure of the renormalized Lagrangian
LR;YM, we have to discuss some details of the renormalization process.
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A first assumption underlying the renormalization procedure is that the
kinematics of the sum of all Feynman graphs at a given order and a partic-
ular external leg structure is compatible with the corresponding tree-level
expression. In other words, once all Feynman graphs at a particular order
are taken into account, the remaining divergences must be contained in
an expression proportional to the Lorentz structures which are provided by
the tree-level propagators and vertices from the Feynman rules (3.9-3.15).
Then, we assign a Z-factor to each of the tree-level propagators and vertices
and all divergences can be absorbed by rescaling the tree-level expressions
by these Z-factors. Since different Z-factors absorb divergences from dif-
ferent classes of Feynman graphs, there are a priori no relations between
these Z-factors. However, the Z-factor associated to a particular interaction
vertex also affects the renormalization of the coupling parameter which is
assigned to this vertex by the Feynman rules. As a result, each vertex and
hence each monomial of the renormalized Lagrangian a priori carries an
distinct renormalized coupling parameter; even if the unrenormalized cou-
pling parameters used to be the same. Following the conventions of [86]
for the Z-factors and coupling parameter, we set

LR;YM = −1

4
Z3 (∂µAν − ∂νAµ)2 − 1

2
Z1g1 (∂µAν − ∂νAµ) · (Aµ × Aν)

− 1

4
Z4g

2
4 (Aµ × Aν) · (Aµ × Aν) , (3.49)

where the distinct renormalized couplings are denoted by g1 for the three-
gluon vertex and g4 for the four-gluon vertex; further we have used the
following abbreviations for the summation over the adjoint indices

Aµ · Aν := AaµA
a
ν and (Aµ × Aν)a := fabcAbµA

c
ν . (3.50)

In a similar way, we set up the conventions for the gauge fixing, the
fermionic, and ghost parts of the non-abelian gauge theory.

LR;GF = Z5
1

2α
(∂µA

µ) · (∂νAν) (3.51)

LR;F = iZ2ψ̄/∂ψ + gFZF ψ̄ /A · Tψ (3.52)

LR;GH = −Z̃3∂µc̄ · ∂µc− Z̃1g̃1 (∂µc̄) · (Aµ × c) (3.53)

Eventually, the renormalized version of the non-abelian model (3.1) is de-
fined as

LR = LR;F + LR;YM + LR;GF + LR;GH. (3.54)
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As another assumption, the renormalized Lagrangian LR is required to be
equal to the original Lagrangian L (ψB, AB, gB, αB) with all fields and pa-
rameters replaced by bare equivalents. This basically translates the pro-
ceeding assumption about the kinematics of divergences from Feynman
graphs to the Lagrangian level such that the renormalization process can be
interpreted as a rescaling of the fields in the Lagrangian. A comparison of
the quadratic monomials in the bare and the renormalized formulation of
the renormalized Lagrangian implies the following rescalings of the fields

AµB = Z
1/2
3 Aµ, ψB = Z

1/2
2 ψ, ηB = Z̃

1/2
3 η. (3.55)

These relations define renormalization conditions for the two-point Green’s
function of the perturbation series

G(g, α) = ZGB(gB, αB), (3.56)

where the GB denotes the one-particle irreducible bare Green’s function,
which depends on the bare parameters, G is the one-particle irreducible
renormalized Green’s function given in terms of the renormalized param-
eters, and Z denotes the Z-factor from the rescaling of the corresponding
fields (3.55). Extending this convention to one-particle irreducible n-point
Green’s functions where the associated Z-factor is determined from the as-
sociated monomial of the renormalized Lagrangian LR implies the renor-
malization conditions of the coupling parameters:

gB = Z1Z
−3/2
3 g1, gB = Z

1/2
4 Z−1

3 g4, (3.57)

gB = ZFZ
−1
1 Z

−1/2
3 gF , gB = Z̃1Z̃

−1
3 Z

−1/2
3 g̃1. (3.58)

The renormalized couplings might differ as the various counterterms are
determined by different classes of Feynman graphs which are unrelated
so far. On the other hand, the bare formulation of the model only has
a single coupling parameter, so it is natural to require that this property
is maintained during the renormalization process. Hence, we require the
equality of the renormalized couplings

g1 = g4 = gF = g̃1. (3.59)

At this point, it is worth to emphasize that the non-abelian model could be
renormalized without this requirement at the cost of renormalizing each
coupling individually. As a result of these differing couplings, (residual)
gauge invariance is broken by quantum corrections. Some authors rather
prefer to reverse the logic of this line of thoughts and assert that renormal-
izability is a conclusion of gauge invariance [95, 96, 97].



86 CHAPTER 3. NON-ABELIAN GAUGE THEORIES

The equality of the renormalized couplings in combination with the
renormalization conditions for the couplings impose the following restric-
tions on the Z-factors:

Z1

Z3

=
ZF
Z2

=
Z̃1

Z̃3

and
Z4

Z3

=

(
Z1

Z3

)2

. (3.60)

These are the renowned Slavnov-Taylor identities, they originated from a
series of papers by ’t Hooft [98], ’t Hooft and Veltman [99], and Taylor [89],
where it was shown that the non-abelian Green’s functions obey some kind
of Ward identity, which restricts the structure of divergences in such a way
that the Slavnov-Taylor identities can be realized.The work of Slavnov [95]
is acknowledged for a concise derivation of the Slavnov-Taylor identities
from the invariance of the path integral under infinitesimal gauge trans-
formations and moreover for the first transition from non-abelian Ward
identities to the notion of Z-factors — an alternative approach which rec-
ognizes the necessity of defining a renormalization scheme was given in
[100]. In [86], Celmaster and Gonsalves clarified the significance of the
definition of a renormalization scheme for the correctness of the Slavnov-
Taylor identities. Given some kind of regularization, the divergences of
Feynman graphs are mapped to poles in the regulator and the Z-factors
must be defined such that all poles are absorbed. Non-abelian Ward identi-
ties provide relations between bare Green’s functions which translate into
relations for the pole terms in the regulator. However, the Z-factors are
not entirely determined by the poles. There is a freedom to include ar-
bitrary finite regulator terms in the definition of the Z-factors. It is the
purpose of a renormalization scheme to fix this freedom. In conclusion, if
the non-abelian model is meant to be renormalized with a single renormal-
ized coupling, then the Slavnov-Taylor identities must be understood as a
renormalization condition which restricts the freedom in defining a renor-
malization scheme. In other words, once one has defined renormalization
conditions for the Z-factors of all propagators and and exactly one vertex
function, then the Slavnov-Taylor identities determine the renormalization
conditions for all remaining divergent Green’s functions and hence a com-
plete renormalization scheme.

3.4 Renormalization group
The preceding paragraph introduced Z-factors which absorb divergences
and allow to compute renormalized Green’s functions. A discussion of the
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scaling behavior of these Z-factors reveals that a renormalized Green’s func-
tion is adequately described by its anomalous dimension and its beta func-
tion via renormalization group techniques.

Recall that the explicit definition of a counterterm presumes some kind
of method to regularize divergent integrals. For explicit computations, we
are solely using dimensional regularization in this thesis. The following
paragraph basically presumes this kind of regularization, although the tech-
niques of this paragraph are actually not restricted to this particular method
of regularization. The Z-factors are defined in such a way that they cancel
the poles of the divergent Feynman graphs. However, the external legs of
a generic Feynman graph provide additional kinematic data (such as po-
sition or momentum variables) which are dimensional physical quantities
and the assigned regularized Feynman integral yields a result which de-
pends on these dimensional parameters. As a result, a counterterm and
the corresponding Z-factors must mimic the dimensional parameters of the
corresponding propagator or vertex graphs. On the other hand, Z-factors
are supposed to be independent of the kinematic data from the external
momenta. Therefore, it is necessary to introduce at least one dimensional
parameter and replace the kinematic variables of the various vertices and
propagators by this or these new parameters. Further, we like to define
the Z-factors in convenience with the Slavnov-Taylor identities (3.60) and
these are most easily respected by restricting to a single dimensional pa-
rameter which is denoted µ and commonly referred to as renormaliza-
tion scale or renormalization point. In the context of dimensional regu-
larization, some authors rather prefer to argue that one needs to define a
dimensional-independent coupling parameter and hence introduces a di-
mensional parameter µ, which eventually leads to similar conclusions.

Clearly, bare Green’s functions are meant to be independent of the
renormalization point µ, but Z-factors and hence renormalized Green’s
functions depend on the renormalization point µ. This circumstance is
the basic premise underlying any kind of renormalization group analysis.
As a preparation, we rewrite the coupling in terms of the loop-counting
parameter a := g2/4π, which obeys the renormalization condition

a0 = Zaa, with Za =
Z2

1

Z3
3

=
Z2
F

Z2
2Z3

=
Z̃2

1

Z̃2
3Z3

=
Z4

Z2
3

. (3.61)

Also recall the renormalization conditions for the gauge parameter

α0 = Zαα, wtih Zα =
Z3

Z5

, (3.62)
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where Z5 = 1 due to a Ward identity for the gluon propagator in straight
analogy to the abelian case. Now, enquire the change of a renormalized
Green’s function under a rescaling the renormalization point µ and use the
fact that the bare Green’s function GB is renormalization point indepen-
dent. This yields the famous Callan-Symanzik equation(

−µ2∂µ2 + β a∂a + δ α∂α + γ
)
G = 0, (3.63)

where we have introduced the following set of functions

β =
µ2

a

da

dµ2
, γ = −µ2d lnZ

dµ2
, and δ =

µ2

α

dα

dµ2
. (3.64)

While the beta and delta function are universal quantities which describe
the scaling of the coupling and gauge parameter and hence a common
property of all Green’s function, the γ function is called anomalous dimen-
sion and explicitly depends on the actual Green’s function G. To denote
this dependence, we assign an index r ∈ {1, 2, 3, 4, F} to the anomalous
dimension

γr = −µ2d lnZr
dµ2

. (3.65)

and add a tilde above the γ to refer to the Green’s functions which in-
volve ghosts in convenience with our conventions for the Z-factors in the
preceding paragraph. In a way similar to the Callan-Symanzik equation,
one exploits the invariance of the bare coupling and gauge parameter and
derives the so-called renormalization group equations

µ2 da

dµ2
= −aµ2d lnZa

dµ2
and µ2 dα

dµ2
= −αµ2d lnZα

dµ2
. (3.66)

These equations relate the universal functions to the Z-factors of the cou-
pling and gauge parameter renormalization, which we also related to the
anomalous dimensions. As a result, the beta and delta functions can be
rewritten in terms of the anomalous dimensions.

β = −µ
2

a

d lnZa
dµ2

= −µ
2

a

d

dµ2
[2 lnZF − 2 lnZ2 − lnZ3] = 2γF − 2γ2 − γ3,

(3.67)

δ = −µ
2

α

dα

dµ2
= −µ2d lnZ3

dµ2
= γ3 (3.68)
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Note that the beta and delta function are renormalization scheme depen-
dent as the Z-factors are. Further, the beta function can be expressed in
several equivalent ways

β = 2γ1 − 3γ3 = 2γF − 2γ2 − γ3 = 2γ̃1 − 2γ̃3 − γ3 = γ4 − 2γ3 (3.69)

by implicitly using the Slavnov-Taylor identities (3.61) in the renormaliza-
tion conditions for the coupling parameter a. Once a relation between the
universal functions and the anomalous dimensions has been established,
the explicit computation of the Z-factors is not necessary anymore if one
has a method to compute the renormalized Green’s function G. From their
coefficients, the anomalous dimensions and hence the beta function is de-
termined order by order from the Callan-Symanzik equation (3.63) as has
been demonstrated for the self-energy of the electron in paragraph 2.5.2.
The next paragraph provides a method to directly compute the renormal-
ized Green’s functions without causing additional computational expenses.

3.5 Hopf-algebraic renormalization of QCD
The Hopf-algebraic approach to renormalization [9, 67, 26, 51, 71, 101]
allows us to renormalize individual Feynman graphs in a similar fashion as
the BPHZ procedure [59, 60, 61]. In addition to that, there is a combinato-
rial description for the coproduct of Green’s functions [68, 69, 101] which
provides a closed formula for the computation of renormalized Green’s
functions. This paragraph gives an overview of the basic formulas which
are essential for the Hopf-algebraic renormalization of Quantum Chromo-
dynamics.

Recall that the set of Feynman graphs of Quantum Chromodynamics
generates a free commutative algebra which possesses a Hopf algebra struc-
ture [68, 71]. On this Hopf algebra, the Feynman rules (3.9-3.15) define
the map φ into the target space of regularized integrals. Then the renor-
malized Feynman rules, which map a (divergent) Feynman graph Γ onto
its renormalized value, can be defined as

φR(Γ) = m ◦
(
SφT ⊗ φ

)
◦∆(Γ), (3.70)

where m and ∆ respectively denote the product and the coproduct of the
underlying Hopf algebra. The mapping SφT constructs appropriate countert-
erms for a given renormalization scheme T and the basic ingredients for its
definition shall be discussed now.
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A renormalization scheme T is a linear operator which acts on the tar-
get space of the Feynman rules with the following constrains. Recall that
the Feynman rules φ map a Feynman graph Γ to a regularized expression,
which factors into a Laurent series in the regulator and a factor which con-
tains the kinematic data of the integral. A renormalization scheme T must
maintain the poles of the Laurent series (e.g. minimal subtraction corre-
sponds to the projection onto the pole terms in the regulator) and eval-
uates the kinematic data at the renormalization scale µ. The evaluation
of the kinematic data at the renormalization scale is necessary to describe
kinematic renormalization schemes. On the other hand it is a convenient
way to introduce the renormalization scale and provides an alternative to
the popular assertion that in the course of dimensional regularization the
dimensionality of the coupling parameter enforces the introduction of a
new dimensional scale. Finally, the requirement, that the renormalized
Feynman rules φR shall yield finite expressions, adds a crucial restriction on
the renormalization scheme T . It has to satisfy the Rota-Baxter identity

T (Γ1)T (Γ2) = −T (Γ1 Γ2) + T (T (Γ1)Γ2 + Γ1T (Γ2)) . (3.71)

Given a renormalization scheme operator T , counterterms are constructed
with the map

SφT (Γ) = −(T ◦ φ) (Γ)−
∑
1/γ/Γ

SφT (γ) (T ◦ φ) (Γ/γ) , (3.72)

where Γ/γ denotes the graph which is obtained by shrinking every com-
ponent of γ in Γ to a point and the sum includes all products of disjoint
one-particle irreducible divergent subgraphs γ of the graph Γ except for
the empty subgraph 1 and the full subgraph Γ itself. On the right-hand side
of the equation the arguments of SφT are Feynman graphs with less sub-
divergences then the left-hand side; further the sum vanishes for graphs Γ
which are free of subdivergences, therefore the equation can be understood
as an iterative definition of the map SφT .

From the combinatorial point of view, the Hopf-algebraic formula for
the renormalized Feynman rules (3.70) and (3.72) is of a similar complex-
ity as Zimmermann’s forest formula in the BPHZ prescription: the renor-
malization of a single Feynman graph requires to sum over all its products
of disjoint subdivergences and to construct counterterms for each subdiver-
gence in an iterative manner. However, the advantage of the Hopf-algebraic
description becomes eminent in the discussion of Green’s functions. Instead
of solving the iteration of subdivergences for each Feynman graph individ-
ually, it is possible to provide a prescription which allows the renormal-
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ization of entire Green’s functions without enquiring the subdivergences of
individual Feynman graphs.

A combinatorial Green’s function is a formal series in the coupling pa-
rameter a with coefficient in the Hopf algebra of Feynman graphs

Xr = 1±
∑

res(Γ)=r

a|Γ|
Γ

sym(Γ)
. (3.73)

Here, the index r denotes a particular external leg type

r ∈

{
, , , , , ,

}
(3.74)

and the sum is over all one-particle irreducible Feynman graphs of the ex-
ternal leg structure r. The symmetry factor of a Feynman graph Γ is de-
noted by sym(Γ) and |Γ| is the number of loops of the graph Γ. Further, the
plus sign is used for all combinatorial Green’s functions with an external
leg structure of vertex type and the minus sign applies to all propagator
types.

The coproduct of a combinatorial Green’s function for Quantum Chro-
modynamics in the linear covariant gauge is

∆Xr =
∑

0≤n,m

XrQm(X )n ⊗Xr
m;n, (3.75)

where the cograph elementsXr
m;n consist of all graphs ofXr which obey the

constrains encoded in the indices n and m: the index n counts the power
of the gauge parameter α and m = (m1,m4,mF , m̃1,m3,m2, m̃3) is a multi-
index whose entries are defined by means of a grading of H with respect
to the vertex types and edge types as introduced in [73] and [101, 102].
For example, the entry m1 equals the number of three-gluon vertices of the
cograph minus its number of connected components with three external
gluon legs. The factors on the left-hand side of the coproduct are referred
to as subdivergences and the invariant charge Q raised by the multi-index
m is defined as

Qm =

(
X

)m1 (
X

)m4
(
X

)mF (
X

)m̃1

(
X

)m3
(
X

)m2
(
X

)m̃3
. (3.76)

The structure of subdivergences in the coproduct formula can be quali-
tatively understood from the concept of graph insertions. In a Feynman
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graph, each vertex and each propagator constitutes an insertion place for
Feynman graphs with a matching external leg structure. Further the ac-
tual set of Feynman graphs which can be inserted into an insertion place
of type r is exactly given by the respective Green’s function Xr. In the
QCD coproduct formula (3.75), the subdivergences on the left-hand side of
the tensor product exactly represent all the (products of) Feynman graphs
which can be inserted into the corresponding cographs. Notice that the
different treatment of vertices and propagators in (3.76) is due to the
fact that an one-particle irreducible Green’s function is constructed from
one-particle irreducible vertex Green’s functions and connected propagator
Green’s functions.

A combinatorial proof of this intuitive statement is based on the fact
that a combinatorial Green’s function of external leg structure r can be
constructed from a set of skeleton graphs (Feynman graphs of the external
leg structure r which have no subdivergences) and considering insertions
of subdivergences in all possible ways. Kreimer and Yeats [68, 69, 25] pro-
vided such a construction by defining insertion operators Bγ

+ where certain
sums of these operators commute with the coproduct in a controlled way
and fulfil the Hochschild-1-cocycle property

∆ ◦B+ = 1⊗B+ + (B+ ⊗ 1) ◦∆. (3.77)

This eventually allows for an inductive proof of the coproduct formula
(3.75).

It should be remarked that the QCD coproduct formula (3.75) slightly
differs from the formula proposed in [51]; the concept of the parallel in-
variant charge is replaced by the second renormalization factor X . This
is due to the fact that in Quantum Chromodynamics the power of the gauge
parameter is not bounded by the power of the coupling parameter. For ex-
ample, the following two-loop graph yields a term of third order in the
coupling constant.

(3.78)

However, the proposed interpretation remains the same: every renormal-
ized parameter induces a factor in the left tensor component of the coprod-
uct. Further, the factors are composed of combinatorial Green’s functions
whose ratio exactly matches the ratio of the renormalization constants in
the parameter renormalization, i.e. (3.61) and (3.62). With this interpre-
tation, the coproduct formula basically demonstrates that the structure of
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subdivergences of the Green’s functions is compatible with the concept of
wave function and parameter renormalization as described by the intro-
duction of Z-factors in paragraph 3.3.

Once one adapts to the interpretation that the invariant charge de-
scribes the renormalization of the coupling parameter, the question nat-
urally arises how the renormalization conditions of the coupling parame-
ter interfere with the invariant charge Q. The renormalization conditions
are encoded in the definition of the renormalization scheme T . Notice
that in the formula for the renormalized Feynman rules (3.70) and (3.72),
the renormalization scheme T acts on the left-hand side of the coproduct.
Hence, renormalization conditions as the Slavnov-Taylor identities can be
implemented via equivalence relations on left-hand tensor component of
the coproduct which effectively turns the underlying coalgebra into a co-
module. The compatibility of the Slavnov-Taylor identities and the equiv-
alence relations on the Hopf algebra of QCD Feynman graphs has been
extensively discussed in [71]. Further, we refer to paragraph 3.3 where it
was argued that a renormalization scheme T is entirely determined by pro-
viding renormalization conditions for all propagator Green’s functions and
a single vertex Green’s function. Therefore the invariant charge in the co-
product formula Qm can be effectively rewritten in terms of the propagator
Green’s functions and a single vertex Green’s function. This notion will be
very convenient for the renormalization of the non-abelian gauge theory in
a class momentum subtraction schemes in the next paragraph.

3.6 M̃OMq and M̃OMh renormalization group func-
tions
This paragraph concludes our discussion of the Hopf-algebraic renormal-
ization of Quantum Chromodynamics and summarizes the renormalization
group functions which we have derived in momentum subtraction schemes
at an asymmetric point.

Whereas minimal subtraction type schemes are designed to minimize
the number of terms in the Z-factors, momentum subtraction schemes im-
pose physical boundary conditions on Green’s functions at some kind of
kinematic configurations. For this reason, momentum subtraction schemes
are referred to as physical renormalization schemes. For the Green’s func-
tions of propagator type, this kind of boundary conditions usually reads
that all loop corrections of this Green’s function vanish if its external mo-
mentum is evaluated at the kinematic renormalization point µ. The term
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momentum subtraction scheme applies to all renormalization schemes which
provide suchlike boundary conditions for some kind of momentum config-
uration of the external legs. The original motivation to study these kind of
renormalization schemes was for the hope that the perturbative expansion
around a coupling parameter which is renormalized in a physical scheme
might improve the convergence behavior of the perturbation series [86].
From a modern perspective, the physical boundary conditions of a momen-
tum subtraction scheme can be realized in lattice simulations and hence
allows comparison to non-perturbative studies for instance see [103, 104]
and references therein.

In order to specify a complete renormalization scheme, it is necessary
to provide another boundary condition for one of the vertex Green’s func-
tions. Here, we will restrict ourselves to the case of vertices with three
external legs and choose one external leg whose momentum is evaluated
at zero. As a result, the vertex Green’s function depends only on a single
momentum scale and can be renormalized in the same way as the propa-
gator Green’s function which also reduces the computational complexity of
the vertex Green’s functions. This kinematic configuration is referred to as
a renormalization condition at an asymmetric point and was introduced by
Braaten and Leveille in [105].

In the scope of this thesis, two different asymmetric momentum subtrac-
tion schemes are analysed. Firstly, the M̃OMq scheme is defined by using
momentum subtraction at the renormalization point µ for all propagator
Green’s functions and in addition to that also for the quark-gluon vertex
where the momentum of the external gluon is nullified. These renormal-
ization conditions specify the renormalization of the coupling parameter
(3.61) and, by usage of the Slavnov-Taylor identities, define the Z-factors
for the other vertex type Green’s functions. Secondly, the coupling parame-
ter renormalization is determined by the ghost-gluon vertex instead of the
quark-gluon vertex and again the momentum of the external gluon is set to
zero. This renormalization scheme is referred to as the M̃OMh scheme.

On the level of the Hopf algebra, these conditions are implemented
by dividing out equivalence classes defined by an ideal which is basically
defined by the Slavnov-Taylor identities. This consideration effectively re-
places the invariant charge Q depending on the M̃OM scheme by

Qq =

(
X

)2

(
X

)2

X
and Qh =

(
X

)2

(
X

)2

X
. (3.79)

In the coproduct formula (3.75), the multi-index degenerates to a single
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index which counts the number of loops of the cographs such that

∆Xr =
∑

0≤n,m

XrQm
· (X )n ⊗Xr

m;n, (3.80)

where Q· is replaced by Qq for the M̃OMq or by Qh for the M̃OMh scheme.
With this kind of notion, the renormalization scheme T corresponds to a
simple evaluation of the external momentum of the regularized results at
the renormalization point µ and the Laurent series in the regulator remains
unchanged.

The combination of this closed formula for the coproduct and the formu-
las for the renormalized Feynman rules (3.70) and the counterterm (3.72)
imply closed formulas for the renormalized Green’s function at any order
in perturbation series. Here, we like to demonstrate this computation at
first and second loop order in the Landau gauge α = 0. In this gauge, the
coproduct formula simplifies to

∆Xr =
∑
0≤m

XrQm
· ⊗Xr

m. (3.81)

Note that this determines the coproduct of the invariance charge

∆Q = Q⊗Q. (3.82)

In the following, the n-loop coefficient of the Green’s function Xr is ab-
breviated by xn := [an]Xr and qn := [an]Q·. Further, it is convenient to
introduce a reduced version of the coproduct

∆̃x := ∆x− 1⊗ x− x⊗ 1. (3.83)

An expansion of the formulas (3.81) and (3.82) yields the following ex-
pressions for the coproduct of the Green’s function and invariant charge at
first and second loop order

∆̃x1 = 0, ∆̃q1 = 0, and ∆̃x2 = (x1 + q1)⊗ x1. (3.84)

From these expressions, the counterterms can be iteratively constructed
with the map SφT and its recursion (3.72).

SφT (x1) = −T [x1] (3.85)

SφT (q1) = −T [q1] (3.86)

SφT (x2) = −T [x2]− T
[
SφT (x1 + q1)x1

]
= −T [x2] + T [T [x1 + q1]x1] (3.87)
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Finally, renormalized Green’s functions can be computed from the follow-
ing closed formulas.

φR(x1) = x1 + SφT (x1) = x1 − T [x1] (3.88)

φR(x2) = x2 + SφT (x1 + q1)x1 + SφT (x2)

= x2 − T [x1 + q1]x1 − T [x2] + T [T [x1 + q1]x1] (3.89)

The invariant charge is replaced by a sum of Green’s functions depending
on the renormalization scheme.

q1 =

2x1 − 2x1 − x1 for M̃OMq

2x1 − 2x1 − x1 for M̃OMh
(3.90)

It is worth to emphasize that this approach does not rely on the notion of Z-
factors. We rather use FORM im combination with the MINCER and COLOR

packages [18] to compute the epsilon expansions of the considered Green’s
functions in d = 4 − 2ε dimensions. These results replace the respective
coefficients in the closed formulas (3.88) and (3.89) where the external
momentum of the Green’s function p is evaluated by the renormalization
scheme T at the renormalization point µ. This procedure cancels all pole
terms in the regulator such that the limit ε → 0 is well-defined and yields
a polynomial in the kinematic parameter L := ln(−p2/µ2) and its degree
is bounded by the loop number. Obviously, the variation with respect to
the renormalization point µ can be rewritten in terms of the kinematic
parameter

µ2 ∂

∂µ2
= − ∂

∂L
(3.91)

and by the Callan-Symanzik equation (3.63), the terms linear L in com-
bination with the renormalization group functions determine the terms of
higher order in L. On the other hand, the Callan-Symanzik equation is use-
ful to read off the anomalous dimension of a certain Green’s function at a
particular order from the renormalized Green’s function of that order and
the other renormalization group functions at lower orders. As discussed in
paragraph 3.3, the beta function is given in terms of the anomalous dimen-
sions in the respective renormalization schemes.

βM̃OMq = 2γF − 2γ2 − γ3 and βM̃OMh = 2γ̃1 − 2γ̃2 − γ3 (3.92)

Chetyrkin and Rétey reported on the Quantum Chromodynamics three-loop
renormalization group functions in the momentum subtraction schemes at
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the asymmetric point in [106]. However, their implicit derivation basi-
cally rewrites the momentum subtraction renormalization group functions
in terms of the minimal subtraction functions. As a result, their M̃OM renor-
malization group functions are expressed in terms of the minimal subtrac-
tion coupling and gauge parameter, while our prescription expresses every-
thing in terms of the respective momentum subtraction parameters. Hence
a direct comparison to their results is not possible. Nonetheless, there is a
series of non-trivial checks for our results. First of all, we convinced our-
selves that our computational setup reproduces the renormalization group
functions in the minimal subtraction scheme as recorded by Larin and Ver-
maseren in [80]. Another check is that all pole terms in the renormalized
Green’s function actually cancel and the loop corrections for the longitudi-
nal part of the gluon self-energy vanish. Further, we notice that our non-
abelian results reproduce the renormalization group of Quantum Electro-
dynamics in the limit TF = 1, CF = 1, and CA = 0. Here, it should be
remarked that the recorded non-abelian functions depend on all Lie group
invariants and in particular on TF which is evaluated at 1/2 by the COLOR

package. As recorded in equation (3.44) and (3.45), the Casimir invariants
CF and CA implicitly contain the TF dependence for the color factor iden-
tities (3.30) and (3.31). However, closed quark loops generate additional
TF terms which require to identify Nf/2 with TFNf in the renormalization
group functions below.
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Chapter 4

Conclusion

In the scope of this thesis, two major advances have been accomplished.
Firstly, we enhanced Hopf-algebraic methods for the renormalization of
gauge theories. Secondly, we provided a purely perturbative approach to
scrutinize the gauge dependence of Quantum Electrodynamics with a co-
variant gauge fixing.

Hopf-algebraic renormalization of gauge theories

For the Hopf-algebraic renormalization of gauge theories, we pointed out
that the linear covariant gauge fixing introduces a longitudinal part in the
photon propagator. This non-physical component excludes the usual vac-
uum polarization. Consequently, transversal and longitudinal components
are distinguished in the renormalization process and the gauge parameter
is renormalized.

The Hopf algebra of Feynman was adjusted for this effect by treating
the longitudinal component of the photon propagator as a new type of
residue. Combinatorial Dyson-Schwinger equations provide a combina-
torial approach to Green’s functions and determine the structure of their
subdivergences in form of a closed formula for the coproduct.

In Quantum Electrodynamics, we found that three factors constitute
the subdivergences (the left-hand component of the tensor product) of the
coproduct formula. The first factor shares the external leg structure of the
considered Green’s function and was linked to its anomalous dimension.
This factor is hence interpreted to renormalize the residue of the Green’s
function. Both the second and the third factor turned out to be invariant
charges whose powers respectively count the grade of the cographs with
respect to coupling parameter α and its product with the gauge parameter
αξ. Further, the renormalization group functions of these parameters were
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derived from their invariant charges. This implies that an invariant charge
describes the parameter renormalization.

In Quantum Chromodynamics, this picture persists to a certain degree.
Again, two factors describe the renormalization of the residue and the
gauge parameter. However, there are multiple vertices which possibly con-
tribute a factor of the coupling parameter. Therefore, the invariant charge
associated to the coupling parameter is determined by a multi-grading with
respect to the types of vertices and edges rather than countering the power
of the coupling parameter. However, the implementation of Slavnov-Taylor
identities corresponds to factor out quotients of Hopf ideals and we demon-
strated that the quotient space allows for a simple invariant charge whose
power counts the grade of the cographs with respect to the coupling pa-
rameter, in analogy to the abelian case.

These results suggest that every renormalized parameter gives rise to an
invariant charge in the coproduct of Green’s functions. Further, these in-
variant charges describe the renormalization group functions of the associ-
ated parameters and have been shown to match the Z-factors that describe
the renormalization of the associated parameter.

This observation allows for an ease anticipation of coproduct formulas
and the structure of subdivergences in other renormalizable Quantum Field
Theories. On the other hand, these considerations can be useful to identify
appropriate ideals and conditions for the renormalization of parameters in
non-renormalizable theories. A first step into this direction might be an
inquiry of the question whether the observed multi-grading structure in
Quantum Chromodynamics allows to renormalize the theory in an exotic
scheme that breaks the Slavnov-Taylor identities.

Gauge dependence of Quantum Electrodynamics

Our inquiry of the gauge dependence of Quantum Electrodynamics is based
on cancellation identities which directly followed from an analysis of the
Feynman rules of Quantum Electrodynamics. These identities apply to
Feynman graphs with longitudinally contracted photons and have been ex-
ploited in two different scenarios.

In the first scenario, the longitudinal photon is an external leg of a
Green’s function. Its defining set of Feynman graphs has been partitioned
into equivalence classes such that a cancellation applies to each class. We
demonstrated that the resulting cancellations among these graphs imply
the well-known Ward identities.

In the second scenario, the gauge-dependent part of the photon prop-
agator was identified as two connected longitudinal photons. In a simi-
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lar fashion to the first scenario, we have been able to construct a partion
whose subsets of Feynman graphs allow for the application of appropriate
cancellation identities. This partion is much finer than the sum over all
Feynman graphs. The resulting Dyson-Schwinger type equation character-
izes the gauge dependence of the bare Green’s function; that is it enables
us to construct all terms depending on the gauge parameter once the bare
Green’s functions is known in a specific linear covariant gauge (such as the
Feynman or the Landau gauge).

Further, this Dyson-Schwinger equation also reveals another crucial prop-
erty: after all cancellation have been performed, the gauge-dependent
terms only couple to external electron propagators. This ensures the gauge-
invariance of on-shell quantities and S-matrix elements. Further, it tran-
spired that our approach can be understood as a natural derivation of the
Landau-Khalatnikov formula in momentum space. Another advantage of
our method is founded on its perturbative character. It refines the result of
Landau and Khalatnikov to subclasses of Feynman graphs and provides for-
mulas of the gauge parameter dependent terms which have been confirmed
by perturbative computations to the third order in the coupling parameter.

In the massless limit, the Dyson-Schwinger equation for the bare elec-
tron propagator was promoted to a non-perturbative description of the
renormalized electron propagator. This proved the famous conjecture

γ(ξ, α)− γ(0, α) = ξ
α

4π

that the anomalous dimension of the electron depends on the gauge pa-
rameter only at the first loop order. A consecutive topic is to extend our
analysis to the one-particle irreducible electron-photon vertex. Further, it
is reasonable to expect that our approach has the potential to shed light on
the construction of gauge invariant truncation for Dyson-Schwinger equa-
tions.

An ongoing project is the enquiry of cancellation identities for Quantum
Chromodynamics, for Quantum Electrodynamics in the ’t Hooft-Veltman
gauge [87], and for massive gauge bosons.

Our results in Quantum Electrodynamics suggest the expectation that a
gauge theory, whose observables are gauge invariant in the on-shell limit,
shows similar cancellations such that the longitudinal gauge bosons only
couple to the external legs of a Green’s function. Therefore, there should
be a similar characterization of the gauge dependence for the Green’s func-
tions of Quantum Chromodynamics. However, the renormalization group
functions which we have derived clearly show a more complicated depen-
dence on the gauge parameter. A possible explanation of this behaviour
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might be the increased number of interactions. As a result, one expects the
gauge dependence in Quantum Chromodynamics to be characterized by
systems of Dyson-Schwinger equations rather than a single equation. Sim-
ilar issues emerge in the case of the ’t Hooft-Veltman gauge which is a non-
linear gauge and enriches Quantum Electrodynamics with three-photon in-
teractions, four-photon interactions, and a non-trivial ghost sector.



Appendix A

Conventions

This first appendix summarizes some definitions and conventions that have
been suppressed in the main discussion for the sake of conciseness.

For the notion of spacetime, we follow the customary convention of the
high-energy physics literature. We denote the Minkowski space as R3,1; it
is defined as the four-dimensional real vector space R4 endowed with the
Minkowski metric

gµν = diag (1,−1,−1,−1) . (A.1)

A point of Minkowski space is called four-vector. We refer to its compo-
nents by assigning a superscripted Lorentz index, which is denoted by a
Greek letter and ranges in 0, 1, 2, 3, 4. The 0-component refers to the time
direction. Let a and b be two four-vectors, their product is defined by means
of the Minkowski inner product

a · b = gµνa
µbν . (A.2)

QED Lagrangian

Consider the Lagrange density of Quantum Electrodynamics

L = −1

4
FµνF

µν + ψ
(
i /D −m

)
ψ. (A.3)

Its field content consists of the charged Dirac field ψ and the electromag-
netic potential Aµ. The first field is a bispinor and represents a fermion of
mass m and electromagnetic charge e. The latter field is included in the
field strength tensor

Fµν = ∂µAν − ∂νAµ (A.4)
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and the covariant derivative

Dµ = ∂µ + ieAµ. (A.5)

The square of the field strength tensor is an invariant under Lorentz trans-
formations and is readily expressed in terms of the electric field E and
magnetic field B

FµνF
µν = 2

(
B2 − E2

)
. (A.6)

As we consider a Lorentz transformation to be proper (has a unit determi-
nant), there is a second invariant. It relates to the dual field tensor

F̃ µν = εµνρσ
1

2
Fρσ (A.7)

which incorporates the antisymmetric tensor. Here, we followed the con-
vention of [107]: εµνρσ equals +1 (or −1) whenever (µνρσ) is an even (or
odd) permutation of (1234). Now, the second Lorentz invariant is readily
derived in terms of the electric and magnetic fields

FµνF̃
µν = 4 (E ·B) . (A.8)

In the paragraph/section ... , we encounter a term quartic in the field
strength tensor and it is exciting to notice that it includes both invariants

FµνF
νρFρσF

σµ = 2
(
E2 −B2

)2
+ 4 (E ·B)2 . (A.9)

Another omnipresent abbreviation is the slash notation

/p = pµγ
µ, (A.10)

where the symbols γµ represent the Dirac γ-matrices which are traceless
and fulfil the anticommutator relation of a Clifford algebra

{γµ, γν} = 2gµνI4. (A.11)

The four-dimensional unit matrix is denoted by I4. Furthermore, the four-
dimensional representation of the Dirac matrices allows for the definition
of another gamma matrix

γ5 = iγ0γ1γ2γ3, (A.12)

which is also traceless, satisfies γ5γ5 = −I4, and respects the Clifford alge-
bra relations {

γ5, γµ
}

= 0. (A.13)
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The matrix γ5 is crucial for the notion of chiral symmetry. However, it
is worth emphasizing that it does not appear within our calculations of
renormalized Green’s functions. Therefore, we can employ dimensional
regularization and extend the metric tensor and the Dirac matrices to D
dimensions; they are assumed to satisfy

1. gµνg
µν = D, (A.14)

2. {γµ, γν} = 2gµνI4, (A.15)

3. Tr [γµ1 . . . γµ2n+1 ] = 0 for any odd number of γ’s. (A.16)
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Appendix B

Conformal symmetry and
Noether currents

This paragraph summarizes the enhancement of the notion of conformal
transformations to the field content of Spin-1/2 Electrodynamics and dis-
cusses the conserved Noether currents related to that symmetry.

As we are in particular interested in the behaviour under infinitesimal
conformal transformations, we require the structure of a Lie group. An
conformal transformation is described by the exponential

exp

(
−aµPµ −

1

2
ωµνMµν − αD − bµKµ

)
(B.1)

of 15 infinitesimal generators (Mµν is antisymmetric) which respectively
generate spacetime translations, proper orthochronous Lorentz transforma-
tions, dilations, and special conformal transformations. These infinitesimal
generators are defined to act on a field Φ ∈ {Aµ, ψ} in the following way.

PµΦ(x) = ∂µΦ(x) (B.2)

MµνΦ(x) =
(
xµ∂ν − xν∂µ + SΦ

µν

)
Φ(x) (B.3)

DΦ(x) = (dΦ + xµ∂µ) Φ(x) (B.4)

KµΦ(x) =
(
x2∂µ − 2xµx

ν∂ν − 2xµdΦ − 2xνS
Φ
µν

)
Φ(x) (B.5)

Here, SΦ is the spin matrix that is generated by a Lorentz transformation
of the field Φ and dΦ denotes the scaling dimension of the field Φ; in the
concrete case of Quantum Electrodynamics with a gauge field Aµ and Dirac
fermion ψ, they read(

SAµν
)
ρ

σ
= (Mµν)ρ

σ = gµρδ
σ
ν − gνρδσµ , Sψµν = Σµν =

1

4
[γµ, γν ] , (B.6)

dA = 1, and dψ = 3/2. (B.7)
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It is instructive to check that with these definitions the generators obey the
usual conformal algebra.

[Mµν ,Mρσ] = gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ

[Pµ, Pν ] = 0 [Mµν , Pρ] = gνρPµ − gµρPν
[Pµ, D] = Pµ [Mµν , D] = 0

[Kµ, Kν ] = 0 [D,Kµ] = Kµ

[Pµ, Kν ] = 2Mµν − 2gµνD [Mµν , Kρ] = gνρKµ − gµρKν

(B.8)

Where the first and second line constitute the Poincaré subalgebra. Further,
it is reasonable to remark that the spin matrices Mµν and Σµν satisfy the
first commutator relation.

Given the fact the Lagrangian of Spin-1/2 Electrodynamics is invariant
under translations and Lorentz transformations and its massless limit fur-
ther respects dilations and special conformal transformations, one likes to
ascertain the Noether currents assigned to these symmetries.

In order to obtain a symmetric energy momentum tensor, it is crucial to
symmetrize the derivatives with respect to the Dirac field ψ and ψ. There-
fore, the symmetrized Lagrangian

L =
1

2
ψ
(
i/∂ −m

)
ψ +

1

2
ψ
(
− i
←
/∂ −m

)
ψ − eψ /Aψ − 1

4
FµνF

µν (B.9)

will be used in this paragraph. The left-pointing derivative is defined to act

on the fields to its left-hand side, that is ψ
←
/∂ :=

(
∂µψ

)
γµ. Recall that the

equations of motion read (
i/∂ − e /A−m

)
ψ = 0

ψ

(
i
←
/∂ + e /A+m

)
= 0

∂µF
µν = jν

 (B.10)

where jν := eψγνψ denotes the conserved fermionic current and further
recall the Bianchi identity

∂µFνρ + ∂νFρµ + ∂ρFµν = 0. (B.11)

For the rest of the discussion, the Lagrangian is split up into an electromag-
netic part and the fermionic part as fellows

LEM = −1

4
FµνF

µν and LF = L −LEM, (B.12)



113

This allows for a separate study of the symmetries of the electromagnetic
and fermionic sectors of the theory and of course, it is possible to separately
construct the corresponding Noether currents for each sector. However, the
reader should keep in mind that fields obey the coupled equations of mo-
tions (B.10) of the full Lagrangian. Therefore, the separated Lagrangians
do not describe closed physical systems and only the sum of both Noether
currents can be expected to be conserved.

Now, the invariance under spacetime translations yields the following
Noether currents

T µνEM =
1

4
gµνFαβF

αβ − F µα∂νAα, (B.13)

T µνF =
i

2
ψγµ

(
∂νψ

)
− i

2

(
∂νψ

)
γµψ. (B.14)

Exploiting the equations of motion in combination with the Bianchi identity
determines the divergence of these tensors to be

∂µT
µν
EM = −jα∂µAα and ∂µT

µν
F = eψγµψ∂

νAµ = jα∂
νAα, (B.15)

such that the sum of both tensors which actually describes a closed physical
system

T µνtotal = T µνEM + T µνF yields ∂µT
µν
total = 0 (B.16)

a vanishing divergence. This Noether current is termed the canonical energy-
momentum tensor, but obviously, the form of this tensor is by no means
unique as terms with vanishing divergence might be added. Belinfante
[108] provided a prescription to construct a symmetric energy-momentum
tensor provided that the Lagrangian under consideration is invariant under
Lorentz transformations. Further, Callan, Coleman, and Jackiw [109, 110]
demonstrated that a class of dilation-invariant Lagrangians allows for a
symmetric and traceless energy-momentum tensor.

Fortunately, in the case of the Lagrangian (B.9), it is sufficient to con-
sider the Belinfante improvement to obtain a symmetric energy-momentum
tensor that also becomes traceless in the massless limit.

The Belinfante improvement mainly relies on a tensor Bαµν which is
anti-symmetric with respect to permutations of the indices α and µ. Then,
the anti-symmetry guarantees

∂α∂µB
αµν = 0, (B.17)

such that the divergence of the tensor ∂αBαµν can be safely added to the
canonical energy-momentum tensor; still yielding a conserved current. An
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appropriate choice of these tensors might be deduced from the behaviour
of the canonical energy-momentum tensor under gauge transformations
[107] or from the conservation laws implied by Lorentz invariance [108,
34]. In our case, the improvement is obtained from the following tensors.

Bαµν
EM = F µαAν (B.18)

Bαµν
F = − i

16
ψ [{γα,Σµν}+ {γµ,Σνα} − {γν ,Σαµ}]ψ (B.19)

Adding their divergence to the canonical energy-momentum tensor yields
the following tensors

Θµν
EM = T µνEM + ∂αBαµν

EM =
1

4
gµνFαβF

αβ − F µαF ν
α − jµAν (B.20)

Θµν
F = T µνF + ∂αBαµν

F (B.21)

=
i

4

 ψγµ
(
∂ν + ieAν

)
ψ + ψγµ

(
−
←
∂ν + ieAν

)
ψ

−ψγν
(
∂µ + ieAµ

)
ψ − ψγν

(
−
←
∂µ + ieAµ

)
ψ

+ jµAν (B.22)

which become symmetric only in the limit of vanishing current jµ = 0, that
is under the assumption of decoupled equations of motion. However, intro-
ducing the total energy-momentum tensors as the sum of both improved
tensors Θµν

total = Θµν
EM + Θµν

F obviously yields and vanishing divergence

∂µΘµν
total = 0, (B.23)

and moreover, all non-symmetric terms cancel such that the total energy-
momentum tensor becomes symmetric

Θµν
total = Θνµ

total. (B.24)

By making use of the equations of motion (B.10), the trace of the total
energy-momentum tensor turns out to vanish provided that the fermion
has a vanishing mass

gµνΘ
µν
total = mψψ. (B.25)

The symmetric total energy-momentum tensor allows for the definition of
another conserved current

Mµνρ = xνΘµρ
total − x

ρΘνµ
total with ∂µMµνρ = 0 (B.26)
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which can also be derived as a consequence of Noether’s theorem and the
invariance under Lorentz transformations of the Lagrangian (B.9). Further,
if one assumes massless electrons m = 0, then the total energy-momentum
tensor becomes traceless which enables us to define two additional con-
served currents

Dµ = xνΘ
µν
total such that ∂µDµ = 0 (B.27)

Cµν = 2xµxρΘ
ρν
total − x

ρxρΘ
µν
total and ∂µCµν = 0 (B.28)

and indeed an easy but tedious computation shows that these currents
are generated by Noether’s theorem and the invariance of the Lagrangian
under infinitesimal dilations (B.4) and special conformal transformations
(B.5), respectively.

It is interesting to study the effect of the gauge fixing on the symmetries
and conserved quantities of the Lagrangian (B.9) in the limit of a vanishing
electron mass m = 0. The linear covariant gauge fixing term

LGF =
1

2ξ
(∂µA

µ)2 (B.29)

respects the invariance under spacetime translations as well as the Lorentz
invariance and the dilation invariance. However, it turns out to break the
invariance under special conformal transformations as generated by the in-
finitesimal generator (B.5). Therefore, the trace of the energy-momentum
tensor is expected to be non-vanishing and the above construction of the
dilation current does not apply.

Now, following the above discussion for the gauge-fixed Lagrangian
yields a symmetric energy-momentum tensor

Θ̃µν
total = Θµν

EM + Θµν
GF + Θµν

F , (B.30)

where the contribution due to the added gauge fixing is

Θµν
GF =

1

ξ

{
gµν
[

1

2
(∂ · A)2 + Aα∂α (∂ · A)

]
− Aµ∂ν (∂ · A)− Aν∂µ (∂ · A)

}
.

(B.31)

In straight analogy to the above discussion, this energy-momentum tensor
is a conserved current

∂µΘ̃µν
total = 0 and Θ̃µν

total = Θ̃νµ
total (B.32)

its symmetry allows for the definition of another conserved current

M̃µνρ = xνΘ̃µρ
total − x

ρΘ̃νµ
total with ∂µM̃µνρ = 0. (B.33)



116 APPENDIX B. CONFORMAL SYMMETRY AND NOETHER CURRENTS

However, the breakdown of the conformal invariance in the gauge-fixed
Lagrangian is mirrored by the non-vanishing trace which reads

gµνΘ̃
µν
total =

2

ξ
∂α [Aα (∂ · A)] . (B.34)

Following Callan, Coleman, and Jackiw [109], we define the virial current
of the gauge-fixed Lagrangian

V µ =
2

ξ
Aµ (∂ · A) . (B.35)

Finally the conserved current of the dilation invariance is given by

D̃µ = xνΘ̃
µν
total − V

µ and satisfies ∂µD̃µ. (B.36)

To conclude, the gauge fixing term cause a non-vanishing virial current that
indicates the non-vanishing trace in the energy-momentum tensor and the
related breakdown of conformal invariance. The virial current linearly con-
tributes to the dilation current, whereas the conformal currents Iµν cease
of be conserved.
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