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Introduction
In physics, specifically in quantum field theory, the study of Feynman diagrams is a very
important topic. Feynman diagrams are essentially just graphs with additional struc-
ture, like edge types and edges that are not connected to a vertex, so called exterior legs.
Certain theories have a symmetry called BRST symmetry that induces a differential on
the space of states, the BRST differential, such that the states that actually appear in
the real world are homology classes of this differential. On the space of these diagrams,
a differential can be introduced, the so called combinatorial BRST differential. This
differential corresponds to the BRST differential, but operates on discrete objects.
The main result of this thesis is a generalization of the chain complex of (certain) Feyn-
man diagrams with the combinatorial BRST differential and the computation of its
homology, which is the topic of chapter 1. There are also two other differentials that
are part of the combinatorial BRST differential. One of these differentials will always
have trivial homology, while the other carries non-trivial information about the graph.
This differential is studied in chapter 2. In particular, computing the homology of this
differential entails solving an NP-complete problem of graph theory, so computing this
homology is NP-hard.
I want to thank Matthias Görg, for spotting a mistake that gave me some new insight
while I was fixing it, Maximilian Weber, for criticizing my notation and helping me to
work through some details and Yves Radunz for helping me organize thousands of results
of my computations by sharing his LaTeX wisdom with me.
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1 Chain complexes of Feynman graphs and their generalization
1.1 Marked graphs and their chain complexes
All the graphs in this thesis are undirected and come equipped with a well-order ≤ on
the vertices, i.e. there exists a bijection ϕ : Γvert → {0, · · · , n} for some n such that
v ≤ v′ ⇔ ϕ(v) ≤ ϕ(v′), where Γvert is the set of vertices of Γ. This well-order is usually
called a labeling, and a relabeling of a graph is the same underlying graph with a possibly
different well-order on the vertices.

Definition 1.1.1. Let (M, 0) be a pointed set. A graph with marked subgraphs in M is
a pair (Γ,m), where Γ is a graph and m : sub(Γ)→M is a function, where sub(Γ) is the
set of subgraphs of Γ. If m(γ) = x, we say γ is (x-)marked, and if m(γ) = 0 we say γ is
unmarked. The skeleton of (Γ,m) is Γ. A graph with marked edges is a graph where the
only marked subgraphs are those that consist of two vertices connected by an edge. A
graph with marked vertices is a graph where the only marked subgraphs are graphs that
consist of a single vertex. A graph with marked cycles is a graph where the only marked
subgraphs are cycles. We will often just write X for a graph with marked subgraphs.

For us, the set of markingsM will always be the set {0, 1, 2}, and a graph with marked
subgraphs in {0, 1, 2} will just be a graph with marked subgraphs. To change markings
on a graph, we will be using the following notation:

Definition 1.1.2. Let (Γ,m) be a graph with marked subgraphs, x ∈ {0, 1, 2}, and
S ⊆ sub(Γ) a set of subgraphs of Γ. Then, let

(Γ,m)S,x := (Γ,mS,x),

where

mS,x(γ) =
{
x if γ ∈ S
m(γ) otherwise.

We will also use the notation XS,x in the obvious way. In the case of graphs with marked
vertices, which is most of this thesis, if γ is a subgraph of Γ, Xγ,x will mean Xγvert,x,
where all the vertices of γ become marked with x.

The following notations will be useful:

Definition 1.1.3. Let (S,<) be an ordered set and s ∈ S. Then S<s is the set of
elements of S that are smaller than s.

Definition 1.1.4. Let Γ be a graph, X = (Γ,m) be a marking. Then Γm6=0
type ⊆ sub(Γ)

are all those subgraphs of Γ that are marked in X and of type t ∈ {vert, edge, cycle},
and Γm=i

t consists of all subgraphs that have a marking i and type t.

We will now define the chain complex we are interested in. We will use many standard
definitions and results from homological algebra which can be found in any textbook on
the topic, such as [Wei94].
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Definition 1.1.5. Let Γ be a graph and define L to be the free abelian group generated
by all the graphs with marked vertices modulo the subgroup that is generated by all
graphs with the property that there exist two marked vertices that are adjacent. Let
LΓ be the subgroup of L generated by all markings that have Γ as their skeleton. If
i, j are natural numbers, let LΓ

i,j be the subgroup of LΓ generated by all graphs that
have i 1-marked vertices and j 2-marked vertices. Because in most cases the object of
interest will be the group with an arbitrary amount of 1-markings and a fixed amount
of 2-markings, we define

LΓ
j :=

⊕
i

LΓ
i,j .

By Γ ∈ L (or any subgroup of L), we mean the completely unmarked graph. If an
element X of L is a sum of graphs that all have i 1-markings, we write deg1X = i, and
if it is a sum of graphs that have j 2-markings, we write deg2X = j. The generators of
L, LΓ, etc. are called the canonical basis.

Definition 1.1.6. Let X ∈ LΓ be an element of the canonical basis. The differentials
on LΓ

• are defined as follows:

d : LΓ → LΓ, X 7→
∑

v∈Γm=0
vert

(−1)|Γ
m 6=0
vert,<v |Xv,2

δ : LΓ → LΓ, X 7→ (−1)|Γ
m 6=0
vert |

∑
v∈Γm=1

vert

(−1)|Γ
m=1
vert,>v |Xv,2

Note that in case Xv,2 is a marking where two neighbors are marked, Xv,2 = 0.

Proposition 1.1.7. d and δ are in fact differentials, i.e. d2 = 0, δ2 = 0, and dδ+δd = 0,
so D := d+ δ is also a differential.

Proof. This proof is essentially the same as corresponding proofs in [Kre13], pages 200
and 201. We will give the proof here again for convenience.
Let X be an element of the canonical basis of LΓ. Then:

d2(X) =
∑

v 6=w∈Γm=0
vert

(−1)|Γ
m 6=0
vert,<v |+|Γ

mv,2 6=0
vert,<w|X{v,w},2 = 0

δ2(X) = −
∑

v 6=w∈Γm=1
vert

(−1)|Γ
m=1
vert,>v |+|Γ

mv,2=1
vert,>w|X{v,w},2 = 0

because these sums split into two parts, v < w and v > w, which have a relative sign.

δd(X) =
∑

v∈Γm=0
vert

(−1)|Γ
m6=0
vert,<v |δ(Xv,2)

= −(−1)|Γ
m 6=0
vert |

∑
v∈Γm=0

vert ,w∈Γm=1
vert

(−1)|Γ
m 6=0
vert,<v |+|Γm=1

vert,>w|X{v,w},2 = −δd(X)
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We will now give an example. The notation for this and every other image is as
follows: Unmarked vertices are drawn as vertices with white center, 1-marked vertices
with grey center and 2-marked vertices with black center. In all graphs that are drawn,
the ordering is from left to right (if it is relevant), i.e. the leftmost vertex is the first in
the order.

Example 1.1.8. Let X := . Then

d(X) = − , and δ(X) = − .

Piecing this together gives:

D(X) = − − .

Definition 1.1.9. With these differentials LΓ can be turned into (3 different) chain
complexes. d, δ and D can be restricted to maps

d, δ,D : LΓ
i → LΓ

i+1.

The resulting chain complexes are called LΓ
d,•, LΓ

δ,• and LΓ
D,• respectively.

We could also define chain complexes L∂,• :=
⊕

Γ LΓ
∂,• for ∂ ∈ {d, δ,D}. From a physics

perspective, these are more natural objects to study, but because they decompose, all
the information is contained in the smaller chain complexes. In any category of R-
modules where R is a ring, taking homology commutes with taking direct sums of chain
complexes, so Hi(L∂,•) =

⊕
ΓHi(LΓ

∂,•). Thus, it suffices to compute Hi(LΓ
∂,•) for any

graph Γ.
There is one property of these chain complexes that we want to mention now. Let the
automorphism group of Γ act on the vector space LΓ in by permuting the markings and
leaving the labeling invariant, i.e.

σ((Γ,m)) := (Γ, σm)

with (σm)(v) := m(σ(v)). The spaces LΓ
i,j are invariant subspaces, so it is a natural ques-

tion to ask if this leaves the chain complexes invariant. Clearly, graph automorphisms
induce arrows that have the potential to be an isomorphism of chain complexes (because
they are isomorphisms), but as it turns out, these arrows do not form a morphism of
chain complexes.

Example 1.1.10. Let X := and (12) be the permutation that exchanges the first
and second vertex, i.e. (12)X = . Then D(X) = d(X) and it is easy to see that
swapping the first two vertices anticommutes with D, i.e. ((12) ◦D)X = −(D ◦ (12))X.
But swapping the first and third vertex clearly commutes with D.

These sign issues are everything that goes wrong though:

Proposition 1.1.11. Let ∂ ∈ {d, δ,D}. There is a natural action of Aut Γ on the
chain complex LΓ

∂,• ⊗ Z2, i.e. a morphism ρ : Aut Γ → AutLΓ
∂,• ⊗ Z2 such that if

α ∈ Aut Γ, X ∈ LΓ
∂,i ⊗ Z2, then d(ρ(α)(X)) = ρ(α)(d(X)), and α is an isomorphism of

chain complexes.
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Proof. This is obvious from the above.

This means that representation theory of Z2 could be used to study these complexes,
but this is out of scope of this thesis. We will later see that LΓ

∂,• ⊗Z2 is in many other
ways better behaved than LΓ

∂,•
There are several other general statements that could be proven for all these chain
complexes. But as will be shown in this chapter, the homologies of LΓ

D,• and LΓ
δ,• do

not depend on Γ and are 0 except in degree 0. This means that all these statements
become irrelevant for these chain complexes. Because some of these statements are easier
stated or proven in the special case of LΓ

d,• and because there are some dependencies in
these statements that made it difficult to separate these, all such results can be found
in chapter 2.

1.2 Connection to Feynman diagrams
The Feynman diagrams under consideration in this thesis consist of gluons and ghosts
only, which means that there are two types of edges (ghosts and gluons) and three types
of vertices:

• 3-valent vertices with only gluon edges

• 4-valent vertices with only gluon edges

• 3-valent vertices that have two ghost edges and a gluon edge.

Ghosts will be relevant later in this section. For now, we only care about gluons.
Because of the Feynman rules of the 3- and 4-gluon vertices, it is possible to replace a
4-gluon vertex by a sum of 3 3-gluon vertices. This is described in [Kre13] and repeated
here. Let Φ denote the Feynman rules of a diagram, then the Feynman rules of the
4-gluon vertex are as follows:

Φ
( )

= fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ fa1a3bfa2a4b(gµ1µ2gµ3µ4 − gµ1µ4gµ3µ2)
+ fa1a4bfa2a3b(gµ1µ2gµ4µ3 − gµ1µ3gµ4µ2),

where fabc is defined by the relation [Xa, Xb] = Xcfabc with Xi the generators of the
Lie algebra of SU(3), and g is a metric. Note that the second term is the same as the
first term, just with 2 and 3 exchanged, and the third term is the same as the second
term just with 3 and 4 exchanged. This means it is natural to define a new kind of edge,
an edge with a marking, with the following property:

Φ
( )

= fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)
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Using this, the following sum of Feynman diagrams lies in the kernel of the map Φ:

+ + -

As one is mainly interested in the Feynman rules, it is natural to take the quotient by
the kernel of Φ. In this quotient, every element can be uniquely represented as a linear
combination of diagrams where every vertex is 3-valent and every edge is a gluon edge
or a marked gluon edge.

Definition 1.2.1. Let G be the free abelian group generated by graphs with marked
edges with 1- or 3-valent vertices modulo the subgroup that is generated by all graphs
with the property that there exist two marked subgraphs that share a vertex or an edge
that connects to a 1-valent vertex is marked. If Γ is a graph, let GΓ be the subgroup
generated by all graphs that have Γ as their skeleton, and GΓ

i be the subgroup of GΓ

that is spanned by all graphs with i double markings.

These graphs correspond to Feynman graphs by replacing every edge by a gluon edge
and every marked edge by a marked gluon edge. There are also 4-gluon vertices, but
one can write a 4-gluon vertex as the sum of graphs having only 3-gluon vertices as
explained previously. Applying this to every 4-gluon vertex leads to a Feynman graph
with only 3-vertices with markings, so one can instead consider these graphs. Note, that
there cannot be two marked edges that are connected to the same vertex. Also note that
exterior legs do not contribute to anything, because they cannot be marked, so edges
that connect to 1-valent vertices also cannot be marked.
In physics, there are two ways of filtering different graphs: First, by exterior leg structure,
which corresponds to the kind of experiment that might be done (n particles go in, m
particles go out, etc.) and second by their loop order, i.e. their first Betti number
(in regular graph homology). This is motivated as follows: In quantum field theory,
Feynman diagrams appear as the result of a Taylor expansion of the so called partition
function, which might look like this:

Z =
∑

~nαnXn

The αn are just some coefficients, ~ = h
2π , where h is Planck’s constant, and Xn is a

sum of Feynman diagrams. As it turns out, Xn is the sum of all Feynman graphs in the
theory that have loop order n.
Because ~ is small, Feynman graphs of higher loop order contribute less to the amplitude
of some process happening. So, a very natural object of study is the sum of all graphs
consisting of with r exterior legs and loop order n. We call this object Xr

n.
As described previously, in the case of gluons (which is the only case that we consider in
this thesis) we can write this object as the sum of all graphs that have 3-valent vertices
and have gluon or marked gluon edges, where two marked gluon edges never sit right
next to each other. This sum can be described using the following operator:
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Definition 1.2.2. Let
χ+ : LΓ → LΓ, X 7→

∑
e∈Γedge

Xe,1.

Note that X1,e = 0 if X has a marked edge e′ such that e and e′ connect to the same
vertex.

By exponentiating this operator, and applying it to the unmarked graphs, one gets
the amplitude we are looking for:

Theorem 1.2.3. Let X̃r
n be the sum of all 3-valent Feynman graphs that have n as their

first Betti number (i.e. n independent cycles), r external edges. Then,

eχ+X̃r
n = Xr

n.

Proof. See [Kre13], Lemma 4.10.

The main result of this thesis is that this object is the only non-trivial element of the
homology of the chain complex that will now be defined.

Definition 1.2.4. Let Γ ∈ G be a graph, Γedge be the set of its edges, and < be a
well-ordering of Γedge. Then its combinatorial BRST complex is the chain complex

· · · GΓ
i GΓ

i+1 · · · ,S

with S = s+ σ where s and σ are defined on the canonical basis as follows:

s : LΓ → LΓ, X 7→
∑

e∈Γm=0
edge

(−1)|Γ
m 6=0
edge,<e|Xe,2

σ : LΓ → LΓ, X 7→ (−1)|Γ
m 6=0
edge |

∑
e∈Γm=1

edge

(−1)|Γ
m=1
edge,>e|Xe,2

To see that S is in fact a differential, see Proposition 1.1.7. This differential seems to
be related to the differential ∂E from [CV03], but it is not clear at this point what the
connection is.
There is one caveat that has to be addressed here. Feynman diagrams made of gluons are
invariant under symmetry, i.e. if α is an automorphism of Γ, the Feynman diagrams of Γ
and αΓ are considered equal. But the previously defined chain complex is not invariant
under this symmetry, because the order of the edges might change signs, see Example
1.1.10 and the following proposition on how this can be fixed.
There is also another kind of marking that behaves in a similar way. Instead of marking
edges, now loops will be marked. This corresponds to ghost loops in the theory, and for
this, a different set of groups is required:

Definition 1.2.5. Let C be the free abelian group generated by graphs with marked
cycles with 1- or 3-valent vertices modulo the subgroup that is generated by all graphs
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with the property that two marked cycles share a vertex, and CΓ
i similarly defined as

before. Also, let < be a well-ordering of Γcycle. Then the combinatorial ghost cycle
complex of Γ is the chain complex

· · · CΓ
i CΓ

i+1 · · · ,T

with T = t+ τ where t and τ are defined on the canonical basis as follows:

t : LΓ → LΓ, X 7→
∑

c∈Γm=0
cycle

(−1)|Γ
m 6=0
cycle,<c|Xc,2

τ : LΓ → LΓ, X 7→ (−1)|Γ
m 6=0
cycle|

∑
c∈Γm=1

cycle

(−1)|Γ
m=1
cycle,>c|Xc,2

Just by observation, s and t are very similar to the previously defined d, and the same
holds for σ and τ with the previously defined δ. We will now show that the previous
chain complex of marked graphs contains all the information that these chain complexes
do.

Definition 1.2.6. Let Γ be a graph. Then its line graph is the graph that has a vertex
for every edge in Γ and two vertices are adjacent if the corresponding edges share a
vertex.

Proposition 1.2.7. Let Γ be a graph and Γ′ be its line graph. Then for ∂ ∈ {d, δ,D},

GΓ
∂,• ' LΓ′

∂,•.

Proof. If e is an edge in Γ, let ve be the corresponding vertex in Γ′. The isomorphism
is given by the map that sends a marked graph (Γ,m) to the marked graph (Γ′,m′)
with m′(ve) = m(e). This map is clearly bijective, so the induced morphism of groups
ϕ : GΓ → LΓ′ is an isomorphism. By construction of the two differentials, ϕ clearly
commutes with them.

Proposition 1.2.8. Let Γ be a graph and Γ′ be the graph that has a vertex for every
cycle in Γ and an edge between two vertices if and only if the corresponding cycles have
a common vertex. Then for ∂ ∈ {d, δ,D},

CΓ
∂,• ' LΓ′

∂,•.

Proof. This proof is almost the same as the previous one, if c is a cycle in Γ, the
corresponding vertex in Γ′ is denoted vc. Now we define m′(vc) := m(c) and the rest
follows.
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1.3 The homology of LΓ
D,•

Because δ does in no way interact with the structure of markings (it only marks vertices
that have already been marked), one can reduce the chain complex LΓ

δ,• to a very simple
chain complex which has the property that it is isomorphic to the reduced simplicial
complex of a simplex. This chain complex has trivial homology and thus the homology
of LΓ

δ,• can be computed for all Γ. First, we need to define the smaller complex:

Definition 1.3.1. Let L̃Γ
δ,• be the subcomplex of LΓ

δ,• that is generated by all markings
where every vertex is marked. If Γ is the empty graph, define

L̃Γ
δ,k :=

{
Z if k = 0
0 otherwise.

Note that, if Γ is not discrete, i.e. if Γ has an edge, this complex is 0 everywhere.

Theorem 1.3.2. Let {Xk}k∈I be the canonical basis of LΓ
0 , and ΓXk be the subgraph of

Γ that contains only the vertices that are marked in Xk. Then,

LΓ
δ,• '

⊕
k∈I
L̃ΓXk
δ,• .

Proof. Because δ cannot change a 0-marking to some other marking, LΓ
δ,• can be decom-

posed into the subcomplexes that have markings only where certain vertices are marked.
These subcomplexes are by construction isomorphic to L̃Γk

δ,• for some k ∈ I, and every
k appears exactly once in this decomposition. Note that the unmarked graph Γ ∈ LΓ

δ,0
is contained in L̃∅δ,• by construction. Putting everything together yields the following
isomorphism of chain complexes

LΓ
δ,• '

⊕
k∈I
L̃Γk
δ,•.

Notice that the ΓXk in the previous theorem are discrete graphs because of the re-
quirements put on markings.

Theorem 1.3.3. Let Γn be the discrete graph with n > 0 vertices. Then

Hi(L̃Γn
δ,•) = 0.

Proof. We show that the chain complex L̃Γn
δ,• is isomorphic to the augmented simplicial

complex of the n − 1 simplex. Let ∆n−1 = [e1, · · · , en] be the n − 1 simplex embedded
in Rn, vk the k-th vertex of Γn, and consider the map ϕ that sends an element X of
the canonical basis of LΓ

i,j to [{ek : vk is not 1 − marked in X}], where [·] denotes the
convex hull. Note that for the fully marked graph, ϕ would evaluate to zero in the
ordinary simplicial chain complex of ∆n−1, but we want ϕ to be an isomorphism, so we
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consider the augmented chain complex of ∆n−1, which has the empty face of the simplex
as generator in degree −1 and ∂([ei]) = ∅ 6= 0. Now, let X be a fixed element of the
canonical basis of LΓn

δ,j , and ϕ(X) = [ea1 , · · · , eaj ]. Then,

∂(ϕ(X)) =
n∑
k=1

(−1)k[ea1 , · · · , êak , · · · , eaj ] = ϕ

(
(−1)n

n∑
k=1

(−1)n−k(X)vak ,2

)
= ϕ(δ(X)),

so ϕ induces a morphism of chain complexes which is a bijection on the generators, so
ϕ is an isomorphism. But ∆n−1 is contractible, so all its reduced homologies vanish, see
for example [Hat02], page 111.

Corollary 1.3.4. For every graph Γ, we have

Hi(LΓ
δ,•) =

{
Z for i = 0
0 otherwise.

Proof. We only have to show that

Hi(L̃Γ0
δ,•) =

{
Z for i = 0
0 otherwise,

but this is obvious from the definition.

Now, we have everything required to compute the homology of LΓ
D,•. It is possible to

do this directly, but the next theorem is more general and gives us the desired result
right away.

Theorem 1.3.5. Let Ci be N-graded modules over a fixed ring and di, δi : Ci → Ci+1
such that d2 = δ2 = 0 and dδ+δd = 0, i.e. such that d, δ and D := d+δ are differentials
that turn C• into chain complexes and deg di = 0, deg δi = −1. Assume that Hi(Cδ,•) = 0
for every i ≥ 0, and that H0(Cδ,•) is of pure degree 0. Then Hi(CD,•) ' Hi(Cδ,•) as
ungraded modules.

Proof. For any X ∈ Ci, let Xk be the part of pure degree k. We construct a map
(Hi(Cδ,•))0 → Hi(CD,•) as follows: Take any X0 ∈ ker δi of degree 0, then δ(X0) = 0.
Now, because d and δ anticommute, δd(X0) = 0, so there exists an X1 of degree 1
such that δ(X1) = d(X0) (because Hi+1(Cδ,•) = 0). This can be continued inductively
to construct an element X with D(X) = 0 which means we can construct a map ϕ̃i :
(ker δi)0 → kerDi such that ϕ̃i(X)0 = X, and composing with the natural projection
gives a map ϕi : (ker δi)0 → Hi(CD,•). This map is surjective, because given X ∈
Hi(CD,•), we can first subtract ϕi(X0) to get X0 = 0, so it suffices to show that it
is surjective on all elements with X0 = 0. Now, we show that for all X ∈ kerD,
X0 ∈ im δi−1 implies that X ∈ imDi−1, from which follows the surjectivity of this map
and also (im δi−1)0 ⊆ kerϕi.
Let X ∈ kerD, i.e. d(Xk) = −δ(Xk+1) and such that X0 = δ(Y1). We want to construct
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an element Y =
∑
Yk such that D(Y ) = X. Choose Y0 = 0, then X0 = δ(Y1) =

d(Y0) + δ(Y1). Now assume that Xn = d(Yn) + δ(Yn+1), then

δ(Xn+1) = −d(Xn) = −dd(Yn)− dδ(Yn+1) = δd(Yn+1),

so δ(Xn+1 − d(Yn+1)) = 0 and thus there exists a Yn+2 such that δ(Yn+2) = Xn+1 −
d(Yn+1), or Xn+1 = d(Yn+1) + δ(Yn+2). This inductively chosen Y satisfies D(Y ) = X.
Next, we claim that (im δi−1)0 = kerϕi. One inclusion was already shown. For the other
inclusion, let X0 ∈ kerϕi, then X0 = di−1(Y0) + δi−1(Y1). In the case that i = 0, we
have X0 = 0, and in all other cases, δ(X0) = 0 so X0 = δi−1(Z1) because Hi(Cδ,•) = 0.
This means that ϕi induces an isomorphism (Hi(CD,•))0 ' Hi(Cδ,•), and because all the
homologies are concentrated in degree 0, the claim follows.

Corollary 1.3.6. Let X be an element of the canonical basis and

χ(X) :=
∑

v∈Γm=0
vert

Xv,1.

Then, if Γ is any graph, H0(LΓ
D,•) = 〈eχΓS,1〉 and all the other homologies vanish.

Proof. It suffices to show that D(eχΓ) = 0. This was proven in [Kre13] on page 202 and
is repeated here for convenience. First, note that

eχΓ =
∑
n∈N

∑
v1<···<vn∈Γm=0

vert

X{v1,··· ,vn},1.

Then:

δ(eχΓ) =
∑
n∈N

∑
v1<···<vn∈Γm=0

vert

δ(X{v1,··· ,vn},1)

=
∑
n>0

∑
v1<···<vn∈Γm=0

vert

(−1)n
n∑
i=1

(−1)n−i(X{v1,··· ,vn},1)vi,2

=
∑
n>0

∑
v1<···<vn∈Γm=0

vert

n∑
i=1

(−1)i(X{v1,··· ,vn},1)vi,2

d(eχΓ) =
∑
n∈N

∑
v1<···<vn∈Γm=0

vert

d(X{v1,··· ,vn},1)

=
∑
n∈N

∑
v1<···<vn<vn+1∈Γm=0

vert

n+1∑
i=1

(−1)i−1(X{v1,··· ,vn,vn+1},1)vi,2

Shifting n by one reveals that these two expressions are equal up to a relative sign.

Note that the map χ from the previous corollary corresponds to the map χ+ from
Definition 1.2.2.
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2 The chain complex LΓ
d,•

It is not true, that Hi(LΓ
d,•) = 0 in general. In fact, this chain complex is rarely zero and

its homology is related to computationally hard problems in graph theory. For example,
let Γ be the tree with a root and two leaves. Then the marking with the root 2-marked
lies in the kernel of d, but not in the image. There is also a homology class with the
root 1-marked, and one with both leaves singly marked, so

H0(LΓ
d,•) ' 〈 , 〉, H1(LΓ

d,•) ' 〈 〉.

There are two ways of approaching the differential d, because of a symmetry in graph
theory relating independent sets with cliques.

2.1 General properties
This section is about properties of LΓ

d,• and its complementary partner L̄Γ
d̄,• that have a

good formulation in both cases. We first need some graph-theoretic definitions.

Definition 2.1.1. Let Γ be a graph. An independent set is a subset S of the set of
vertices of Γ such that for all x, y ∈ S, x and y are not connected by an edge. An
independent set is called maximal if there is no independent set S′ such that S ( S′.

Definition 2.1.2. If Γ is a graph, then let Γ̄ be the graph that has the same vertices
as Γ, but an edge between two vertices v and v′ if and only if there is no edge between
them in Γ. Γ̄ is called the complement graph of Γ.

Independent sets in a graph correspond to cliques in the complement.

Definition 2.1.3. Let Γ be a graph. Then a clique in Γ is a subset of the set of vertices
such that every pair of vertices in this subset has an edge between them. Similarly to
independent sets, a clique C is called maximal if there is no clique C ′ such that C ( C ′.

Definition 2.1.4. Let L̄Γ be the abelian group generated by markings that are contained
in one clique and L̄Γ

i as usual, and let

d̄ : L̄Γ → L̄Γ, X 7→
∑

v∈Γm=0
vert

(−1)|Γ
m 6=0
vert,<v |Xv,2,

where Xv,2 is interpreted to be 0 if it is not in L̄Γ.

Proposition 2.1.5. For any graph Γ,

L̄Γ̄
d̄,• ' L

Γ
d,•.

Proof. This is obvious from the definitions.
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This chain complex gives us the advantage of switching the point of view, which is
very helpful in some cases. Also, because in small graphs, humans have an easier time
picking up cliques instead of independent sets, it is usually somewhat easier to compute
the homology of L̄Γ

d̄,• by hand.

Definition 2.1.6. Let Γ,Γ′ be graphs, then a morphism ϕ : Γ → Γ′ is a map ϕvert :
Γvert → Γ′vert together with a map ϕedge : Γedge → Γ′edge (usually both written as ϕ)
such that if v, w ∈ Γvert are connected by an edge e, ϕ(v) and ϕ(w) are connected by
ϕ(e). A morphism of graphs is an embedding if it is injective on vertices and edges. An
embedding is called full if it induces bijections between the edges connecting v and w
and the edges connecting ϕ(v) and ϕ(w).

Proposition 2.1.7. Let ϕ : Γ′ → Γ be an embedding of graphs and |Γvert| = |Γ′vert|.
Then there exist morphisms of chain complexes

Lϕ,1d,• : LΓ′
d,• → LΓ

d,•

L̄ϕ,1
d̄,• : L̄Γ

d̄,• → L̄
Γ′
d̄,•

that turn L−d,• and L̄
−
d̄,• into covariant and contravariant functors respectively. Lϕ,1d,• and

L̄ϕ,1
d̄,• are epimorphisms.

Proof. On the canonical basis, we define

Lϕ,1d,• ((Γ
′,m)) :=

{
(Γ,m) if (Γ,m) ∈ LΓ

d,•
0 otherwise.

This is clearly a morphism of chain complexes and this construction is functorial. The
reason that |Γvert| = |Γ′vert| is required is that otherwise, there might be more allowed
markings in Γ than in Γ′ which would make d not commute with Lϕ,1d,• . L̄

ϕ,1
d̄,• is defined

similarly, but because dualizing graphs inverts the direction of ϕ (if they have the same
amount of vertices), i.e. there is an embedding ϕ̄ : Γ̄→ Γ̄′, this functor is contravariant.
That both maps are epimorphisms is clear from the construction.

Proposition 2.1.8. Let ϕ : Γ′ → Γ be a full embedding. Then there exist morphisms of
chain complexes

Lϕ,2d,• : LΓ
d,• → LΓ′

d,•

L̄ϕ,2
d̄,• : L̄Γ

d̄,• → L̄
Γ′
d̄,•

that turn L−d,• and L̄
−
d̄,• into contravariant functors. Lϕ,2d,• and L̄ϕ,2

d̄,• are epimorphisms.

Proof. Let Lϕ,2d,• : LΓ → LΓ′ be the map that sends every marking of Γ where every
vertex outside of Γ′ is unmarked to the corresponding marking of Γ′, and everything else
to 0. Clearly, Lϕ,2d,• (X) has the same number of markings as X, so Lϕ,2d,• induces maps
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LΓ
d,• → LΓ′

d,•. To distinguish the differentials, we call them dΓ and dΓ′ for the rest of this
proof. Then:

Lϕ,2d,• (dΓ(X)) =
∑

v∈Γvert

(−1)|Γ
m 6=0
vert,<v |Lϕ,2d,• (Xv,2)

=
∑

v∈Γ′vert

(−1)|Γ
′m′ 6=0
vert,<v |(Lϕ,2d,• (X))v,2 = dΓ′(Lϕ,2d,• (X)).

The signs agree because all the marked vertices lie in Γ′ already. Fullness of the embed-
ding is required for changing the summation, if the embedding was not full there could
be more summands on the right than on the left. That Lϕ,2d,• is an epimorphism also
follows from the fullness.
The exact same construction works also for L̄Γ

d̄,•.

Corollary 2.1.9. There is a contravariant functor L̄−
d̄,• from the category of graphs with

embeddings to the category of chain complexes of abelian groups.

Proof. Every embedding of a graph can be decomposed into a full embedding and an
embedding between two graphs that have the same number of vertices. This can be
used to combine the two contravariant functors from the previous propositions to a
single functor.

We will now prove that the homologies of LΓ
d,• are free, which will be used many times

in the rest of this thesis. We need the following lemma:

Lemma 2.1.10. Let Γn be the graph with n vertices and no edges. Then

Hi(LΓn
d,•) = 0.

Proof. We prove this by induction on n. For n = 1 the claim is trivially verified. Now,
let ϕ : Γn−1 → Γn be the (full) embedding of the first n − 1 vertices, and consider
the epimorphism Lϕ,2d,• : LΓn

d,• → L
Γn−1
d,• , which gives us a short exact sequence of chain

complexes
0→ kerLϕ,2d,• → L

Γn
d,• → L

Γn−1
d,• → 0

which induces a long exact sequence

· · · → Hi(kerLϕ,2d,• )→ Hi(LΓn
d,•)→ Hi(LΓn−1

d,• )→ Hi+1(kerLϕ,2d,• )→ · · ·

By induction hypothesis, Hi(LΓn−1
d,• ) = 0, so

Hi(LΓn
d,•) ' Hi(kerLϕ,2d,• ).

But kerLϕ,2d,• ' L
Γn−1
d,• [−1] (where [−1] means a shift by −1), because all markings that

have the n-th vertex marked lie in kerLϕ,2d,• , so the claim follows by induction.
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Theorem 2.1.11. Hi(LΓ
d,•) is free.

Proof. By [Lan02], I Theorem 8.4, every finitely generated torsion-free abelian group is
free, so because ker di is free, it suffices to show that ifX /∈ im di−1, we have kX /∈ im di−1
for all k ∈ Z. We use the embedding ϕ : Γn → Γ for some n. Then there is a short exact
sequence

0→ kerLϕd,• → L
Γn
d,•

Lϕ
d,•−−→ LΓ

d,• → 0

which induces a long exact sequence in homology:

· · · → Hi(kerLϕd,•)→ Hi(LΓn
d,•)→ Hi(LΓ

d,•)→ Hi+1(kerLϕd,•)→ · · ·

By the previous proposition, Hi(LΓn
d,•) = 0, so there are isomorphisms

Hi(LΓ
d,•) ' Hi+1(kerLϕd,•).

Now, LΓn
d,• ' kerLϕd,• ⊕ C• for some chain complex C• because the differential leaves the

property of being in the kernel of Lϕd,• invariant. So if X ∈ kerLϕd,i with kX = d(Y ), by
the previous proposition X = d(Z) in LΓn

d,•. But then Z also lives in kerLϕd,•.

Next, we turn to the general issue of different labelings. Even though the chain
complexes for different labelings might not be isomorphic, their homologies are:

Theorem 2.1.12. Let Γ and Γ′ be two isomorphic graphs where the isomorphism does
not necessarily preserve the ordering on the vertices. Then

Hi(LΓ
d,•) ' Hi(LΓ′

d,•).

Proof. We have LΓ
d,•⊗Z2 ' LΓ′

d,•⊗Z2, so their homologies are also the same. All of the
homology groups are free, and

rkHi(LΓ
d,•) = dimHi(LΓ

d,•)⊗Z2 = dimHi(LΓ′
d,•)⊗Z2 = rkHi(LΓ′

d,•).

Because of this theorem, we will not worry too much about any particular labelings.
In case a special choice of labeling is required, this choice will be made, and because of
the previous result this choice of labeling will not impact the generality of the result on
the level of the homologies.

Proposition 2.1.13. Let C• be a chain complex of vector spaces with finitely many
non-zero terms. Then ∑

i

(−1)i dim Ci =
∑
i

(−1)i dimHi(C•).

Proof. See [Lan02], XX Theorem 3.1.
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Using this, there is one result on the homologies of LΓ
d,• that one gets for free:

Theorem 2.1.14. Let Γ be any graph, then∑
i

(−1)i rkHi(LΓ
d,•) = 1.

Proof. By the previous proposition, we have:∑
i

(−1)i dimHi(LΓ
d,• ⊗Z2) =

∑
i

(−1)i dimLΓ
i ⊗Z2 =

∑
i

(−1)i dimHi(LΓ
D,• ⊗Z2) = 1,

because the homology of LΓ
D,• is Z in degree 0 and 0 otherwise. Because rkHi(LΓ

d,•) =
dimHi(LΓ

d,•), the claim follows.

There is a connection of the mathematically more natural chain complex that is gener-
ated by all the markings that have no 1-markings. This chain complex is computationally
a lot easier because the vector space of all possible markings is 2|Γ| dimensional, instead
of 3|Γ| dimensional, but to compensate for this, one has to find all independent sets of
the graph, which is also a hard problem (see [BM11]).

Theorem 2.1.15. Let LΓ
d,1,• be the subcomplex of LΓ

d,• that has no 1-markings and if
γ ⊆ Γ is a subgraph, let Γγ be the full subgraph of Γ that contains every vertex that is
not also in γ or adjacent to a vertex of γ. Then,

LΓ
d,• ⊗Z2 =

⊕
γ⊆Γ
LΓγ
d,1,• ⊗Z2,

where the sum ranges over all independent sets γ.

Proof. If X is a marking in LΓγ
d,1,•, we map it to the marking of Γ where every 2-marking

is the same as X, and every vertex of γ is marked. This means we have an injective map
LΓγ
d,1,• → LΓ

d,•, and the collection of these maps induces a map
⊕
γ⊆Γ L

Γγ
d,1,• → LΓ

d,•. This
map is injective because every component is injective and if there were two markings of
different Γγ and Γγ′ , then they do not agree on the single marked vertices. Also, this
map is clearly surjective, because every element of the canonical basis is in its image.
The differentials agree by definition.

We will now give interpretations to some homologies.

Proposition 2.1.16.
H0(L̄Γ

d̄,•) ' 〈ΓC,1〉C∈I ,

where I ranges over all maximal cliques of Γ.

Proof. Clearly, if C is a maximal clique, d̄(ΓC,1) = 0. Let 0 6= X ∈ LΓ
0 with d̄(X) = 0,

then we have to show that X corresponds to a sum of maximal cliques. Let Y be an
element of the canonical basis and consider the map ϕ given by

Y 7→ ϕ(Y ) =
∑

v∈Γm=2
vert

(−1)|Γ
m 6=0
vert,<v |Yv,0.
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Then:

ϕ(d(Y )) = ϕ

 ∑
v∈Γvert

(−1)|Γ
m 6=0
vert,<v |Yv,2

 =
∑

v∈Γvert

(−1)|Γ
m 6=0
vert,<v |ϕ(Yv,2)

ϕ(Yv,2) = 0 if v cannot be marked and (−1)|Γ
m 6=0
vert,<v |Y otherwise. Thus, if A is the linear

map that multiplies Y with the number of vertices of Y that can be marked,

0 = ϕ(d(Y )) = AY.

This can be extended linearly, so

0 = ϕ(d(X)) = AX,

but the kernel of A is generated by all the maximal cliques.

Because of this, computing the homology of LΓ
d,• is NP-hard.

Theorem 2.1.17. Let k a fixed positive integer. Then the problem of answering the
question "Does a graph Γ have a clique of size k?" is NP-complete.

Corollary 2.1.18. The problem of finding all maximal cliques of a graph is NP-hard.

This can be found in [BM11].
Let c be any clique, then we define an equivalence relation ∼c on the set of maximal
cliques of Γ by letting C ∼c C ′ if C∩C ′ ) c and completing this relation to an equivalence
relation.

Proposition 2.1.19. Let Γ be a graph and consider the chain complex L̄Γ
d̄,1⊗Z2. Then

V :=

 ∑
C′∼cC

∑
w∈C′−c

(Γc,1)w,2

∣∣∣∣∣ c is a non-maximal clique and
C ⊃ c is a maximal clique

 ⊆ ker d̄1

and
W :=

{
d̄0(Γc,1) : c is a non-maximal clique

}
⊆ im d̄0

are bases of the respective vector spaces.

Proof. To show that V ⊆ ker d̄1, consider

d1

 ∑
C′∼cC

∑
w∈C′−c

(Γc,1)w,2

 =
∑

C′∼cC

∑
w∈C′−c

∑
x∈Γ

(Γc,1){w,x},2 = 0

because every pair {w, x} appears twice in that sum.
Now, let 〈·, ·〉 be the scalar product on LΓ ⊗ Z2 such that the canonical basis is or-
thonormal and let 0 6= X ∈ 〈V 〉⊥. Fix a non-maximal clique c and a vertex v such that
〈X, (Γγ,1)v,2〉 6= 0. Let C be a maximal clique that contains c and v and let C ′ be any
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clique such that C ∩ C ′ ⊇ c ∪ {v}. Now let w ∈ C ′, then 0 = 〈d1(X), (Γc,1){v,w},2〉. For
this to be true, (Γc,1){v,w},2 has to appear twice in the sum and for this to be possible,
〈X, (Γc,1)w,2〉 6= 0. By the same argument, if C ′′ is a clique such that C ′ ∩C ′′ ⊇ c∪{w},
for arbitrary elements x in C ′′ − c, 〈X, (Γc,1)x,2〉 6= 0, so for arbitrary C ′ ∼c C, if
w ∈ C ′ − c we have 〈X, (Γc,1)w,2〉 6= 0. But this means that〈

X,
∑

C′∼cC

∑
w∈C′−c

(Γc,1)w,2

〉
= 1,

a contradiction. So, ker d1 = 〈V 〉.
That 〈W 〉 = im d̄0 is obvious by definition. That these generators are linearly indepen-
dent is clear from the fact that every such element has a specific clique that is 1-marked
in every summand.

Corollary 2.1.20. Let Nc the number of equivalence classes of ∼c. Then,

(i) rkH1(L̄Γ
d̄,•) =

∑
c cliqueNc − 1

(ii) rkH0(L̄Γ
d̄,•)− 1 ≤ rkH1(L̄Γ

d̄,•)

Proof. The first statement follows because of the dimension of V is
∑
c cliqueNc and the

dimension of W is
∑
c clique 1. For connected graphs, the second statement follows from

the fact that for every maximal clique there exists another maximal clique such that
they have non-trivial intersection c. But then Nc ≥ 2. Thus, there exist at least n − 1
cliques c with Nc ≥ 2, where n = rkH0(L̄Γ

d̄,•). Because we always have Nc ≥ 1, the
claim follows for connected graphs. For unconnected graphs, the statement follows now
with 2.4.4.

Proposition 2.1.21. Let n be the size of the biggest clique of Γ. Then

Hn(L̄Γ
d̄,• ⊗Z2) = 〈ΓC,2〉C∈I/V,

where I ranges over all maximal cliques of Γ (i.e. all cliques of size n) and

V =
〈 ∑

C)C′
ΓS,2 : C ′ is a clique with n− 1 elements


〉
.

Proof. Clearly, the kernel of dn is 〈ΓC,2〉C∈I . For any clique C ′ with |C ′| = n− 1,

d(ΓC′,2) =
∑
C)C′

ΓC,2.

Example 2.1.22. Let Γ be the 5-gon graph. It has 2 as the size of its biggest clique and
dimH2(LΓ

d,• ⊗Z2) = 1.

Of course all of these formulas for the homologies can be stated for LΓ
d,• by exchanging

the word clique for independent set.
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2.2 Computational aspects
The groups LΓ can be described in a way that is suitable for computations: If Γ has n
vertices and if AΓ is the adjacency matrix of Γ, AΓ induces a bilinear form b on Zn in
the usual way (where n is the number of vertices of Γ). Every v ∈ Zn can be regarded as
a function Γvert → Z, so if every coefficient of v is 0, 1 or 2, v induces a graph marking.
To decide whether a marking is allowed in LΓ, the only question that remains is if no
two adjacent vertices are both marked, i.e. if vi · vj = 0 for all pairs (i, j) that are
neighbors, i.e. where aij = 1. This is equivalent to asking if aijvivj = 0 for all pairs i, j,
and because all these terms are positive, this is equivalent to asking if∑

i,j

aijvivj = b(v, v) = 0.

One can then implement the differential on this basis and use programs such as Sage to
compute homologies.

2.3 Independent set graph complex
We will now prove results that follow more natural for the independent set graph com-
plex.

Lemma 2.3.1. Let Γ = Γ1∪Γ2, and let the numbering be such that all vertices in Γ1 are
smaller than every vertex in Γ2. Let X = (Γ1,m1) and Y = (Γ2,m2) be elements of the
canonical bases in the chain complexes of Γ1 and Γ2 respectively, of arbitrary degrees.
Let X ∪ Y := (Γ,m1 ∪m2) with

m1 ∪m2(γ) :=
{
m1(γ) if γ ∈ sub(Γ1)
m2(γ) if γ ∈ sub(Γ2).

Then:
d(X ∪ Y ) = d(X) ∪ Y + (−1)|(Γ1)m1 6=0

vert |X ∪ d(Y )

Proof.

d(X ∪ Y ) =
∑

v∈(Γ1∪Γ2)m=0
vert

(−1)|Γ
m 6=0
vert,<v |(X ∪ Y )v,2

=
∑

v∈(Γ1)m=0
vert

(−1)|Γ
m 6=0
vert,<v |(X ∪ Y )v,2 +

∑
v∈(Γ2)m=0

vert

(−1)|Γ
m 6=0
vert,<v |(X ∪ Y )v,2

=
∑

v∈(Γ1)m1=0
vert

(−1)|(Γ
1)m1 6=0

vert,<v |Xv,2 ∪ Y +
∑

v∈(Γ2)m2=0
vert

(−1)|(Γ
1)m1 6=0

vert,<v |+|(Γ2)m2 6=0
vert,<v |X ∪ Yv,2

= d(X) ∪ Y + (−1)|(Γ1)m1 6=0
vert |X ∪

∑
v∈(Γ2)m2=0

vert

(−1)|(Γ
2)m2 6=0

vert,<v |Yv,2

= d(X) ∪ Y + (−1)|(Γ1)m1 6=0
vert |X ∪ d(Y )
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Corollary 2.3.2. Let Γ = Γ1 ∪ Γ2, and LΓ1,Γ2

i,j := LΓ1
d,i ⊗ LΓ2

d,j. Then LΓ
d,• is isomorphic

to the associated total complex of the double complex having the LΓ1,Γ2

i,j as objects, and
as differentials the maps d⊗ id and s⊗ d, where

s(X) := (−1)|(Γ1)m1 6=0
vert |X

This means we can apply the Künneth formula:

Theorem 2.3.3. If R is a PID and A• and B• are chain complexes of free R-modules,
there is a short exact sequence

0→
⊕
i+j=k

Hi(A•)⊗R Hj(B•)→ Hk((A⊗R B)•)→
⊕
i+j=k

Tor1
R(Hi(A•), Hj−1(B•))→ 0

Proof. This can be found for example in [Hat02], pg. 274 Thm 3B.5.

In our case, R = Z. Next, we could show that TorZ(Hi(A•), Hj−1(B•)) = 0, which
would imply that the chain complexes are quasi-isomorphic. We will not use this fact,
and instead prove the special case of the Künneth formula that we will use:

Theorem 2.3.4. If R is a PID and A• and B• are chain complexes of free R-modules,
such that all the homologies of A• are free, there is an isomorphism⊕

i+j=k
Hi(A•)⊗R Hj(B•) ' Hk((A⊗R B)•)

Proof. This proof is essentially the one that was just quoted, but slightly simplified
for our special case. First, assume that the complex A has a trivial differential, so
Hk(A•) = Ak and H•(A•) = A• as chain complexes. Then, the decomposition

(A⊗R B)k =
⊕
i

Ai ⊗Bk−i

carries over to a direct sum decomposition of chain complexes:

(A⊗R B)• =
⊕
i

Ai ⊗R (B[−i])•,

where the notation [−i] denotes a degree shift, and the tensor product of a chain complex
with a module is component-wise. This means that homology can be taken for every
component of the direct sum independently:

Hk((A⊗R B)•) =
⊕
i

Hk(Ai ⊗R (B[−i])•)

Because Ai is free for every i, Ai '
⊕dimAi
j=1 R, and so

Hk(Ai ⊗R (B[−i])•) ' Hk(
dimAi⊕
j=1

R⊗R (B[−i])•) '
dimAi⊕
j=1

Hk((B[−i])•)
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'
dimAi⊕
j=1

R⊗R Hk−i(B•) ' Ai ⊗R Hk−i(B•)

Next, assume that A has an arbitrary differential, and consider the differential dA of A as
a morphism of chain complexes dA : A• → (A[−1])•. Let K• := ker dA and I• := im dA
be the kernel and image of this morphism respectively, considered as chain complexes,
and note that both of these are free again, because they are sub complexes of the free
complexes A• and (A[−1])•. We now have a short exact sequence

0→ K• → A• → I• → 0

which splits, because I• is free. Because of the splitting, if we tensor this complex with
B•, we get another short exact sequence of chain complexes, which contains the chain
complex we are interested in. Taking homology gives us a long exact sequence:

· · · → Hk((K ⊗B)•)→ Hk((A⊗B)•)→ Hk((I ⊗B)•)→ Hk+1((K ⊗B)•)→ · · ·

Because K and I have trivial differentials, we can apply the first part of the proof, which
results in the following exact sequence:

· · · →
⊕
i+j=k

Hi(K•)⊗R Hj(B•)→ Hk((A⊗B)•)

→
⊕
i+j=k

Hi(I•)⊗R Hj(B•)→
⊕

i+j=k+1
Hi(K•)⊗R Hj(B•)→ · · ·

Applying the usual decomposition of a long exact sequence into short exact sequences
yields sequences,

0→ im→ Hk((A⊗B)•)→ ker→ 0

where
im =

⊕
i+j=k

Ki ⊗R Hj(B•)/
⊕

i+j=k−1
Ii ⊗R Hj(B•).

Because Hi(A•) = Ki/Ii−1, we have im =
⊕

i+j=kHi(A•) ⊗R Hj(B•), so it suffices to
show that ker = 0, or equivalently, that the map

ϕ : Hk((A⊗B)•)→
⊕
i+j=k

Hi(I•)⊗R Hj(B•) = Hk((A⊗B)•)→ Hk((I ⊗B)•)

is the zero map. But this map also appears in another short exact sequence. By defini-
tion, there is a short exact sequence:

0→ Ii → Ki → Hi(A•)→ 0

Tensoring with Hj(B•) yields:

0→ Ii ⊗Hj(B•)→ Ki ⊗Hj(B•)→ Hi(A•)⊗Hj(B•)→ 0

There is a zero on the left because Hj(B•) is free. Summing over i and j gives a part of
the long exact sequence, and 0 is precisely where the image would appear.
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Corollary 2.3.5. If Γ = Γ1 ∪ Γ2, we have

Hk(LΓ
d,•) =

⊕
i+j=k

Hj(LΓ1
d,•)⊗Hj(LΓ2

d,•)

This means the homologies of non-connected graphs can be reduced to homologies of
connected graphs.

Example 2.3.6. H•(LΓ
d,•) ' H•(LΓ∪∗

d,• ), where ∗ is the graph with a single vertex

Proof. We clearly have
H0(L∗d,•) = 〈1〉, H1(L∗d,•) = 0

with all the higher homologies vanishing. Applying the Künneth formula gives the
result.

There is another way of reducing the problem of finding these graph homologies to
simpler graphs. This involves using the fact that replacing a single vertex by a complete
graph ought not change the corresponding chain complex much and should just duplicate
things.

Proposition 2.3.7. Let Γ have a complete subgraph γ such that every vertex of γ is
connected to the same set of vertices in Γ and such that whenever v < w < x ∈ Γvert with
v, x ∈ γ, w ∈ γ. Let Γ/γ be the quotient graph where v is the single vertex that resulted
from the contraction of γ. Then there is a short exact sequence of chain complexes:

0→ kerϕ→ LΓ
d,• ⊗Q

ϕ−→ LΓ/γ
d,• ⊗Q→ 0

Proof. Let vγ denote the vertex of Γ/γ that corresponds to γ and let X be an element
of the canonical basis. Define ϕ(X) to be the identity on markings outside of γ, and if
γ has a marking, ϕ(X) will have the same marking at vγ and be multiplied by 1

|γ| . This
is well-defined by the assumptions on γ and a morphism of chain complexes, because

ϕ(d(X)) =
∑

v∈Γm=0
vert ,v /∈γ

(−1)|Γ
m 6=0
vert,<v |ϕ(Xv,2) +

∑
v∈Γm=0

vert ,v∈γ
(−1)|Γ

m 6=0
vert,<v |ϕ(Xv,2)

=
∑

v∈Γm=0
vert ,v /∈γ

(−1)|Γ
m 6=0
vert,<v |ϕ(X)v,2 + 1

|γ|
∑

v∈Γm=0
vert ,v∈γ

(−1)|Γ
m 6=0
vert,<v |ϕ(X)vγ ,2

=
∑

v∈Γm=0
vert ,v /∈γ

(−1)|Γ
m 6=0
vert,<v |ϕ(X)v,2 + (−1)|Γ

m 6=0
vert,<vγ |ϕ(X)vγ ,2

= d(ϕ(X)).

That this map is an epimorphism is trivial.

Proposition 2.3.8. Let Γ, γ and ϕ as in the previous proposition and let Γγ be as in
Theorem 2.1.15. Then,

kerϕ• = (LΓγ
d,• ⊗Q)(

|γ|
2 )
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Proof. By using the canonical basis, it is clear that kerϕ is generated by markings of
the form X − X ′ where X and X ′ are marked at precisely the same places outside of
γ, and have the same kind of marking in γ at different vertices. There are exactly

(|γ|
2
)

ways to select 2 vertices of γ and because none of these generators interact in any way,
it is a direct sum of

(|γ|
2
)
chain complexes. Because there is always a vertex of γ marked,

no neighbor of γ can be marked, so all the information is contained in the subgraph Γγ .
Note here that if Γγ is the empty graph, LΓγ

d,0 = 1.

Note that this means there is a long exact sequence in the homologies (using that
homology commutes with direct sum and tensor product):

0→ H0(LΓγ
d,• ⊗Q)(

|γ|
2 ) → H0(LΓ

d,• ⊗Q)→ H0(LΓ/γ
d,• ⊗Q)→ H1(LΓγ

d,• ⊗Q)(
|γ|
2 ) → · · ·

Because dimQHi(LΓ
d,• ⊗ Q) = rkHi(LΓ

d,•) = dimZ2 Hi(LΓ
d,• ⊗ Z2), and because all of

them have the same basis, one might be able to reduce the computation of Hi(LΓ
d,•). As

the complexity of these computations grows exponentially in the number of vertices (at
the worst case, see the discussion before Theorem 2.1.15), this could be used to reduce
computation times for certain graphs considerably.

2.4 Clique graph complex
If a graph is a disjoint union if two graphs, we also have a decomposition of the chain
complex L̄Γ

d̄,•, which is slightly more subtle than in the previous case. First, we state a
criterion for the complement graph to be disconnected.

Lemma 2.4.1. Let Γ be a graph. Then Γ̄ is disconnected if and only if there exist
two induced subgraphs Γ1,Γ2 of Γ such that every vertex is contained in one of these
subgraphs and every vertex of Γ1 is connected to every vertex of Γ2 by an edge.

Proof. This is clear from the definitions.

Proposition 2.4.2. Let Γ = Γ1 ∪ Γ2 with all vertices in Γ1 smaller than every vertex
in Γ2. Then

L̄Γ
d̄,k
' L̄Γ1

d̄,k
⊕ L̄Γ2

d̄,k
for k ≥ 1 and

L̄Γ
d̄,0 ⊕Z ' L̄

Γ1
d̄,0 ⊕ L̄

Γ2
d̄,0.

Proof. This is obvious, because every marking lies entirely in one of the two Γi, except
the completely unmarked graph. But in degree (0, 0) (no markings at all), there is only
one marking for Γ and two for Γ1 and Γ2 respectively, so one has to add Z to get an
isomorphism.

Corollary 2.4.3. Let Γ = Γ1 ∪ Γ2 with all vertices in Γ1 smaller than every vertex in
Γ2 and k ≥ 2. Then:

dimHk(L̄Γ
d̄,•) = dimHk(L̄Γ1

d̄,•) + dimHk(L̄Γ2
d̄,•)
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As a consequence of the issues at k = 0, the homology is not always a direct sum of
the homologies (which would be impossible anyways, because the alternating sum of the
betti numbers always has to be 1).

Proposition 2.4.4. Let Γ = Γ1 ∪ Γ2 with all vertices in Γ1 smaller than every vertex
in Γ2. Then:

rkH0(L̄Γ
d̄,•) = rkH0(L̄Γ1

d̄,•) + rkH0(L̄Γ2
d̄,•)

rkH1(L̄Γ
d̄,•) = rkH1(L̄Γ1

d̄,•) + rkH1(L̄Γ2
d̄,•) + 1

Proof. The spaces L̄Γ
d̄,0 and L̄Γ1

d̄,0 ⊕ L̄
Γ2
d̄,0 differ by one generator only: the first one has a

single generator with no markings, the second space has two. None of these are in the
kernel of d̄, so

H0(L̄Γ
d̄,•) = H0(L̄Γ1

d̄,•)⊕H0(L̄Γ2
d̄,•).

The kernel of d̄1 is also the same in both cases, but because the images of the two
generators with no markings are linearly independent from the rest and add to the
image of generator with no markings of the other case, the dimensions of the two split
up homologies add to one less than the homology of Γ.

Corollary 2.4.5. Let v be a vertex of Γ that is adjacent to every other vertex, and Γ′
be the full subgraph of Γ that contains every vertex except v. Then:

rkH0(LΓ
d,•) = rkH0(LΓ′

d,•) + 1

rkH1(LΓ
d,•) = rkH1(LΓ′

d,•) + 1

rkHk(LΓ
d,•) = rkHk(LΓ′

d,•), for k > 1.

Proof. Apply the previous proposition to Γ̄ = Γ̄′ ∪ {v}.

Definition 2.4.6. A leaf vertex of a graph Γ is a vertex v that has only a single edge.

Proposition 2.4.7. Let Γ be a connected graph with |Γvert| ≥ 3 and v be a leaf vertex
of Γ. Let Γ′ be Γ− {v}. Then:

Hi(LΓ
d,•) '

{
Hi(LΓ′

d,•)⊕Z if i < 2
Hi(LΓ′

d,•) if i ≥ 2

Proof. It again suffices to show this only after tensoring with Z2. Let Γv be the graph
with v removed and v′ the vertex v is adjacent to. Then,

L̄Γ
d̄,0 = L̄Γv

d̄,0 ⊕ 〈Γv,1,Γ{v,v′},1〉,

L̄Γ
d̄,1 = L̄Γv

d̄,1 ⊕ 〈Γv,2, (Γv,1)v′,2, (Γv′,1)v,2〉,

L̄Γ
d̄,2 = L̄Γv

d̄,2 ⊕ 〈Γ{v,v′},2〉.
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All of the new elements except Γv,1 and Γv,2 are clearly in the kernel of d̄. Because v is
not connected to any other vertex in Γv, d(Γv,1) = (Γv,1)v′,2 and d(Γv,2) = Γ{v,v′},2, so

H0(L̄Γ
d̄,•) = H0(L̄Γv

d̄,•)⊕ 〈Γ{v,v′},1〉

H2(L̄Γ
d̄,•) = H2(L̄Γv

d̄,•).

But because the alternating sum of the ranks of the homologies has to be 1,

H1(L̄Γ
d̄,•) = H1(L̄Γv

d̄,•)⊕ 〈(Γv′,1)v,2〉.

Corollary 2.4.8. Let Γ be a tree with n vertices. Then

rkH0(L̄Γ
d̄,•) = n− 1, rkH1(L̄Γ

d̄,•) = n− 2

and all the other homologies vanish.

Proof. Note that there is only one tree with 2 vertices, and all trees with 2 or less vertices
satisfy this claim. Now the rest follows from the previous corollary.

2.5 Open problems
Conjecture 2.5.1. Let Γ be a connected graph and n := dimH0(LΓ

d,•). Then

dimH1(LΓ
d,•) ≤ 2n.

Example 2.5.2. The following graph has a sharp equality for the previous conjecture
with rkH0(LΓ

d,•) = 16 and rkH1(LΓ
d,•) = 32.

Γ :=

This graph also shows that this inequality does not hold for unconnected graphs: Placing
two of these graphs next to each other results in a graph Γ′ with rkH0(LΓ′

d,•) = 256 and
rkH1(LΓ′

d,•) = 1024.

This conjecture is motivated by analyzing the results of over 80000 computations and
the statement is true for all graphs with 8 vertices or less.
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Proposition 2.5.3. Let Γ be a graph and v, v′ two leaf vertices of Γ that are connected
to the same vertex w. Let Γ′ be Γ− {v′}. Then:

H0(LΓ
d,•) ' H0(LΓ′

d,•)

Proof. It suffices to give a bijection between the maximal independent sets corresponding
to the homology classes. Given a maximal independent set X of Γ, one gets a maximal
independent set of Γ′ by removing v′ if it is contained in X. This map is a bijection
because for maximal independent sets in Γ, either v and v′ are part of the independent
set, or w is part of the independent set.

Conjecture 2.5.4. Let Γ,Γ′, v and v′ be as in the previous proposition. Then:

Hk(LΓ
d,•) ' Hk(LΓ′

d,•)

for all k ≥ 0

There are several things that are left to study in relation to this chain complex. For
example, the complex that has no 1-markings could be studied and might give new
insights. Also, questions of what one can say about a graph if the homology of LΓ

d,• or
L̄Γ
d̄,• is given are unanswered.
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