
Renormalization and Mellin transforms

Dirk Kreimer∗ and Erik Panzer

Abstract We study renormalization in a kinetic scheme (realized by subtraction at

fixed external parameters as implemented in the BPHZ and MOM schemes) using

the Hopf algebraic framework, first summarizing and recovering known results in

this setting. Then we give a direct combinatorial description of renormalized am-

plitudes in terms of Mellin transform coefficients, featuring the universal property

of rooted trees HR. In particular, a special class of automorphisms of HR emerges

from the action of changing Mellin transforms on the Hochschild cohomology of

perturbation series.

Furthermore, we show how the Hopf algebra of polynomials carries a refined renor-

malization group property, implying its coarser form on the level of correlation func-

tions. Application to scalar quantum field theory reveals the scaling behaviour of

individual Feynman graphs.

1 Introduction

As was shown in [16, 24, 6], we may decompose Feynman integrals into functions

of a single scale parameter s only (further forking into logarithmic divergent parts

multiplied by suitable powers of s) and scale-independent functions of the other

kinematic variables, called angles. Furthermore, the Hopf algebra HR of rooted trees
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suffices to encode the full structure of subdivergences in quantum field theory by

[16, 8, 9].

We can therefore study such generic Feynman rules in a purely algebraic frame-

work as pioneered in [18, 9]. Renormalizing short-distance singularities by subtrac-

tion at a reference scale µ (which we refer to as kinetic scheme) leads to amplitudes

of a distinguished algebraic kind: Theorem 4 proves them to implement the uni-

versal property of HR, delivering an explicit combinatorial evaluation in terms of

Mellin transform coefficients.

Further investigating the role of Hochschild cohomology, in section 6 we define

a class of automorphisms of HR which transform the perturbation series in a way

equivalent to changing the Feynman rules. This clarifies how exact one-cocycles

describe variations.

In sections 4 and 5 we advertise to think about the renormalization group property

as a Hopf algebra morphism to polynomials, determining higher logarithms in (28).

We show how it implies the renormalization group on correlation functions and

extend the propagator-coupling-duality of [5] which yields the functional equation

(34).

After analysing the differences to the minimal subtraction scheme in section 7,

we show explicitly how our general results manifest themselves in scalar field the-

ory.

2 Connected Hopf algebras

The fundamental mathematical structure behind perturbative renormalization is the

Hopf algebra as discovered in [16]. We briefly summarize the results on Hopf al-

gebras we need and recommend [21, 22] for detailed introductions with a focus on

renormalization.

All vector spaces live over a field K of zero characteristic (in examples K= R),

Hom(·, ·) denotes K-linear maps and linM the linear span. Every algebra (A ,m,u)
shall be unital, associative and commutative, any bialgebras (H,m,u,∆ ,ε) in ad-

dition also counital and coassociative. They split into the scalars and the aug-

mentation ideal kerε as H = K· ⊕ kerε = imu⊕ kerε , inducing the projection

P := id−u ◦ ε : H ։ kerε . We use Sweedler’s notation ∆(x) =
∑

x x1 ⊗ x2 and

∆̃(x) =
∑

x x′⊗ x′′ to abbreviate the reduced coproduct ∆̃ := ∆ − ⊗ id− id⊗ .
We assume a connected grading H =

⊕
n≥0 Hn (H0 = K · ) and write |x| := n

for homogeneous 0 6= x ∈ Hn, defining the grading operator Y ∈ End(H) by Y x =
|x| · x. Exponentiation yields a one-parameter group K ∋ t 7→ θt of Hopf algebra

automorphisms

θt := exp(tY ) =
∑

n∈N0

(tY )n

n!
, ∀n ∈ N0 : Hn ∋ x 7→ θt(x) = et|x|x = entx. (1)
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An algebra (A ,mA ,uA ) induces the associative convolution product on Hom(H,A )
by

Hom(H,A ) ∋ φ ,ψ 7→ φ ⋆ψ := mA ◦ (φ ⊗ψ)◦∆ ∈ Hom(H,A ),

with unit given by e := uA ◦ ε . As outcome of the connectedness of H we stress

1. The characters GH
A

:= {φ ∈ Hom(H,A ) : φ ◦u = uA and φ ◦m = mA ◦ (φ ⊗φ)}
(morphisms of unital algebras) form a group under ⋆.

2. Hence id ∈ GH
H has a unique inverse S := id⋆−1, called antipode, turning H into

a Hopf algebra. For all φ ∈ GH
A

we have φ ⋆−1 = φ ◦S.

3. The bijection exp⋆ : g
H
A
→ GH

A
with inverse log⋆ : GH

A
→ g

H
A

between GH
A

and

the infinitesimal characters gH
A

:= {φ ∈ Hom(H,A ) : φ ◦m = φ ⊗ e+ e⊗φ} is

given by the pointwise finite series

exp⋆(φ) :=
∑

n∈N0

φ ⋆n

n!
and log⋆(φ) :=

∑

n∈N

(−1)n+1

n
(φ − e)⋆n. (2)

2.1 Hochschild cohomology

The Hochschild cochain complex [8, 1, 22] we associate to H contains the function-

als H ′ = Hom(H,K) as zero-cochains. One-cocycles L ∈ HZ1
ε(H) ⊂ End(H) are

linear maps such that ∆ ◦L = (id⊗L)◦∆ +L⊗ and the differential

δ : H ′→ HZ1
ε(H),α 7→ δα := (id⊗α)◦∆ −u◦α ∈ HB1

ε(H) := δ
(
H ′) (3)

determines the first cohomology group by HH1
ε(H) := HZ1

ε(H)/HB1
ε(H).

Lemma 1. Cocycles L ∈HZ1
ε(H) fulfil imL⊆ kerε and L( )∈ Prim(H) := ker ∆̃ is

primitive. The map HH1
ε(H)→ Prim(H), [L] 7→ L( ) is well-defined since δα( ) =

0 for all α ∈ H ′.

2.2 Rooted Trees

The Hopf algebra HR of rooted trees serves as the domain of Feynman rules. As an

algebra, HR = S(linT ) =K[T ] is free commutative2 generated by the rooted trees
T and spanned by their disjoint unions (products) called rooted forests F :

T =



 , , , , , , , , . . .



 , F = { }∪T ∪

{
, , , , , , , . . .

}
.

2 We consider unordered trees = and forests = , sometimes called non-planar.
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Every w ∈F is just the monomial w =
∏

t∈π0(w)
t of its multiset of tree components

π0(w), while  denotes the empty forest. The number |w| := |V (w)| of nodes V (w)
induces the grading HR,n = linFn where Fn := {w ∈F : |w|= n}.

Definition 1. The (linear) grafting operator B+ ∈ End(HR) attaches all trees of a

forest to a new root, so for example B+ ( ) = , B+ ( ) = and B+ ( ) = .

Clearly, B+ is homogenous of degree one with respect to the grading and restricts

to a bijection B+ : F → T . The coproduct ∆ is defined to make B+ a cocycle by

requiring

∆ ◦B+ = B+⊗ +(id⊗B+)◦∆ . (4)

Lemma 2. In cohomology, 0 6= [B+] ∈ HH1
ε(HR) is non-trivial by B+( ) = 6= 0.

It characterizes HR through the well-known (theorem 2 of [8]) universal property of

Theorem 1. To an algebra A and L ∈ End(A ) there exists a unique morphism
Lρ : HR →A of unital algebras such that

Lρ ◦B+ = L◦ Lρ, equivalently

HR

Lρ
//

B+

��

A

L

��
HR

Lρ

// A

commutes. (5)

In case of a bialgebra A and a cocycle L∈HZ1
ε(A ), Lρ is a morphism of bialgebras

and even of Hopf algebras when A is Hopf.

This morphism Lρ simply replaces B+, mHR
and  by L, mA and  A as in

Lρ
(
−3

)
= Lρ

{
B+

(
[B+( )]

2
)
−3B+( )

}
= L

(
[L( A )]2

)
−3L( A ).

Example 1. The cocycle
∫

0
∈ HZ1

ε(K[x]) of section 4 induces the character

ϕ :=
∫

0ρ ∈ G
HR

K[x]
fulfilling ϕ(w) =

x|w|

w!
for any forest w ∈F , using (6)

Definition 2. The tree factorial (·)! ∈G
HR

K is equivalently determined by requesting

[B+(w)]! = w! · |B+(w)| or w! =
3

∏

v∈V (w)

|wv| for all w ∈F . (7)

3 By wv we denote the subtree of w rooted at the node v ∈V (w).
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3 The generic model

As explained in the introduction we consider Feynman rules as characters φ ∈G
HR

A
,

mapping a rooted tree to a function of the parameter s (by proposition 1 it lies in

the algebra A =K[z−1,z]][s−z]). Since B+ mimics the insertion of a subdivergence

into a fixed graph γ (restricting to a single insertion place by a result from [24]),

applying φ yields a subintegral and therefore

Definition 3. The generic Feynman rules zφ are given through theorem 1 by

zφs ◦B+ =

∫
∞

0

f ( ζ
s
)ζ−z

s
zφζ dζ =

∫
∞

0

f (ζ )(sζ )−z
zφsζ dζ . (8)

The integration kernel f is specified by γ after Wick rotation to Euclidean space,

with the asymptotic behaviour f (ζ )∼ ζ−1 for ζ → ∞ generating the (logarithmic)

divergences of these integrals (we do not address infrared problems and exclude any

poles in f ). The regulator ζ−z ensures convergence when 0 < ℜ(z)< 1, with results

depending analytically on z. We can perform all the integrals using this Mellin trans-

form

F(z) :=

∫
∞

0

f (ζ )ζ−z dζ =
∞∑

n=−1

cnzn, by (9)

Proposition 1. For any forest w ∈F we have (called BPHZ model in [4])

zφs(w) = s−z|w| ∏

v∈V (w)

F (z |wv|) . (10)

Proof. As both sides of (10) are clearly multiplicative, it is enough to prove the
claim inductively for trees. Let it be valid for some forest w∈F , then for t = B+(w)
observe

zφs ◦B+(w) =

∫
∞

0
(sζ )−z f (ζ ) zφsζ (w) dζ =

∫
∞

0
(sζ )−z f (ζ )(sζ )−z|w| ∏

v∈V (w)

F (z |wv|) dζ

= s−z|B+(w)|



∏

v∈V (w)

F (z |wv|)


F (z |B+(w)|) = s−z|t| ∏

v∈V (t)

F (z |tv|) .

Example 2. Using (10), we can directly write down the Feynman rules like

zφs ( ) = s−zF(z), zφs

( )
= s−2zF(z)F(2z) and zφs

( )
= s−3z[F(z)]2F(3z).

Many examples (choices of F) are discussed in [4], the particular case of the one-

loop propagator graph γ of Yukawa theory is in [5] and for scalar Yukawa theory in

six dimensions one has F(z) = 1
z(1−z)(2−z)(3−z) as in [22]. Already noted in [17], the

highest order pole of zφs(w) is independent of s and just the tree factorial

zφs(w) ∈ s−z|w| ∏

v∈V (w)

{
c−1

z|wv| +K[[z]]
}
⊂
(7)

1

w!

(
c−1

z

)|w|
+ z1−|w|K[lns][[z]]. (11)
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3.1 Renormalization

Algebraically, renormalization of a character φ ∈ GH
A

equals a Birkhoff decomposi-

tion [9, 21, 22] into the renormalized character φR := φ+ ∈GH
A

and the counterterms

Z := φ− ∈ GH
A

defined by the conditions

φ = φ ⋆−1
− ⋆φ+ and φ± (kerε)⊆A±, (12)

with respect to a splitting A = A+⊕A− determined by the renormalization scheme

(the projection R : A ։ A−). Turning to minimal subtraction in 7 we now focus on

Definition 4. On the target algebra A of regularized Feynman rules depending on

a single external variable s, define the kinetic scheme by evaluation at s = µ:

End(A ) ∋ Rµ := evµ =
(
A ∋ f 7→ f |s=µ

)
. (13)

This scheme exploits that subtraction improves the decay at infinity: Let f (ζ )∼ 1
ζ

,

meaning f (ζ ) = 1
ζ
+ f̃ (ζ ) for some f̃ (ζ ) ∈ O

(
ζ−1−ε

)
with ε > 0. Then zφs( ) is

logarithmically divergent (would it not be for the regulator ζ−z), but subtraction

zφs( )− zφµ( ) =

∫
∞

0


 f ( ζ

s
)

s
−

f ( ζ
µ )

µ


ζ−z =

∫
∞

0


 f̃ ( ζ

s
)

s
−

f̃ ( ζ
µ )

µ


ζ−z (14)

yields a convergent integral even for z = 0. As Rµ is a character of A , the Birkhoff

recursion simplifies to Z = Rµ ◦ zφ ◦S = zφµ ◦S and zφR = zφ
⋆−1
µ ⋆ zφs.

Example 3. We find zφR,s ( ) = (s−z−µ−z)F(z) and S
( )

=− + results in

zφR,s

( )
=

(
s−2z−µ−2z

)
F(z)F(2z)−

(
s−z−µ−z

)
µ−zF2(z). (15)

The goal of renormalization is to assure the finiteness of the physical limit

0φR := lim
z→0

zφR, (16)

and indeed we find the finite 0φR,s ( ) =−c−1 ln s
µ . In the case of (15) check

0φR,s

( )
= lim

z→0

{
−
[
−z ln s

µ + z2

2

(
ln2 s+2lns ln µ−3ln2 µ

)]
·
[

c2
−1

z2 +2
c−1c0

z

]

+
[
−2z ln s

µ +2z2
(
ln2 s− ln2 µ

)]
·
[

c2
−1

2z2 +
3c0c−1

2z

]}
=

c2
−1

2
ln2 s

µ − c−1c0 ln s
µ ,

(17)

where all poles in z perfectly cancel. Note that 0φR,s maps a forest w to a polynomial

in K[ln s
µ ] of degree ≤|w| without constant term (except for 0φ ( ) = 1), due to the
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subtraction at s = µ . We now prove these properties in general, extending work in

[18].

3.2 Subdivergences

Inductively, the Birkhoff decomposition is constructed as φ+(x) = (id−Rµ)φ̄(x)
where the Bogoliubov character φ̄(x) (R̄-operation) serves to renormalize the sub-

divergences. It is defined by

φ̄(x) := φ(x)+
∑

x

φ−(x
′)φ(x′′) = φ(x)+ [φ− ⋆φ −φ−−φ ](x) = φ+(x)−φ−(x).

Theorem 2. For an endomorphism L ∈ End(A ) consider the Feynman rules φ :=
Lρ induced by (5). Given a renormalization scheme R ∈ End(A ) such that

L◦mA ◦ (φ−⊗ id) = mA ◦ (φ−⊗L), (18)

that is to say, L is linear over the counterterms, we have

φ̄ ◦B+ = L◦φ+. (19)

Proof. This is a straightforward consequence of the cocycle property of B+:

φ̄ ◦B+ = (φ− ⋆φ −φ−)◦B+ = mA ◦ (φ−⊗φ)◦ [(id⊗B+)◦∆ +B+⊗ ]−φ− ◦B+

= φ− ⋆ (φ ◦B+) = φ− ⋆ (L◦φ) =
(18)

L◦ (φ− ⋆φ) = L◦φ+.

As the counterterms Z of our model are independent of s, they can be moved out of

the integrals in (8) and (18) is fulfilled indeed. This is a general feature of quantum

field theories: The counterterms to not depend on any external variables4.

The significance of (19) lies in the expression of the renormalized φR,0(t) for

a tree t = B+(w) only in terms of the renormalized value zφR(w). This allows for

inductive proofs of properties of zφR and also 0φR, without having to consider the

unrenormalized Feynman rules or their counterterms at all.

3.3 Finiteness

Proposition 2. The physical limit 0φR,s exists and maps HR into polynomials K[ln s
µ ].

4 Even if the divergence of a Feynman graph does depend on external momenta as happens for

higher degrees of divergence, the Hopf algebra is defined such that the counterterms are evaluations

on certain external structures, given by distributions in [9]. So in any case, φ− maps to scalars.



58 Dirk Kreimer and Erik Panzer

Proof. We proceed inductively from 0φR,s( ) = 1 and, as 0φR is a character, only

need to consider trees t = B+(w) in the induction step. Hence for this w ∈F we

already know that 0φ
R,ζ (w) ∈O

(
lnN ζ

)
for some N ∈ N0 such that dominated con-

vergence yields

0φR,s(t) =
(19)

lim
z→0

(id−Rµ )

[
s 7→

∫
∞

0

f (ζ/s)

s
ζ−z

zφR,ζ (w) dζ

]

= lim
z→0

∫
∞

0

[
f (ζ/s)

s
− f (ζ/µ)

µ

]
ζ−z

zφR,ζ (w) dζ =

∫
∞

0

[
f (ζ/s)

s
− f (ζ/µ)

µ

]
0φR,ζ (w) dζ ,

recalling the term in square brackets to be from O
(
ζ−1−ε

)
as in (14). This proves

the cancellation of all z-poles in zφR,s(t) and we identify 0φR,s(t) with the ∝ z0 term,

which is a polynomial in lns and ln µ of degree |t| by inspection of (10): Each

such logarithm comes with a factor z (expanding s−z) which needs to cancel with

a pole
c−1

z|tv| from some F(z |tv|) in order to contribute to the ∝ z0 term. Finally the

substitution ζ 7→ ζ µ gives

0φR,s(t) =

∫
∞

0

[
f (ζ µ

s
)

s
µ

− f (ζ )

]

0φR,µζ (w) dζ , (20)

hence by induction 0φ
R,ζ µ only depends on ζ and 0φR,s is a function of s

µ only.

Using (20), the physical limit of the renormalized Feynman rules can be obtained

inductively by convergent integrations after performing the subtraction at s = µ on

the integrand, in particular without the need of any regulator. Therefore 0φR is inde-

pendent of the choice of regularization prescription, so employing a cutoff regulator

or dimensional regularization yields the same renormalized result in the physical

limit.

4 The Hopf algebra of polynomials

We summarize relevant properties of the polynomials, focusing on their Hochschild

cohomology (the relevance of
∫

0
was already mentioned in [8]). First observe

Lemma 3. Requiring ∆(x) = x⊗ + ⊗ x induces a unique Hopf algebra struc-

ture on the polynomials K[x]. It is graded by degree, connected, commutative and

cocommutative with ∆ (xn) =
∑n

i=0

(
n
i

)
xi ⊗ xn−i and the primitive elements are

Prim(K[x]) =K · x.

The integration operator
∫

0
: xn 7→ 1

n+1
xn+1 furnishes a cocycle

∫
0
∈ HZ1

ε(K[x]) as

∆

∫

0

(
xn

n!

)
= ∆

(
xn+1

(n+1)!

)
=

n+1∑

k=0

xk

k!
⊗ xn+1−k

(n+1− k)!

=
xn+1

(n+1)!
⊗ +

n∑

k=0

xk

k!
⊗
∫

0

(
xn−k

(n− k)!

)
=

[∫

0
⊗ +

(
id⊗

∫

0

)
◦∆

](
xn

n!

)
,
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and is not a coboundary since
∫

0
1 = x 6= 0. In fact it generates the cohomology by

Theorem 3. HH1
ε(K[x]) =K · [

∫
0
] is one-dimensional as the 1-cocycles of K[x] are

HZ1
ε(K[x]) =K ·

∫

0

⊕ δ
(
K[x]′

)
=K ·

∫

0

⊕ HB1
ε(K[x]). (21)

Proof. For an arbitrary cocycle L∈HZ1
ε(K[x]), lemma 1 ensures L(1) = xa−1 where

a−1 := ∂0L(1). Hence L̃ := L−a−1

∫
0
∈HZ1

ε fulfils L̃(1) = 0, so L0 := L̃◦
∫

0
∈HZ1

ε

by

∆ ◦L0 = (id⊗L̃)◦∆ ◦
∫

0

+(L̃⊗1)◦
∫

0

= (id⊗L0)◦∆ +L0⊗1+ L̃(1) ·
∫

0

.

Repeating the argument inductively yields an := ∂0Ln(1) = ∂0 ◦L◦
∫ n+1

0
(1)∈K and

Ln+1 := (Ln−an

∫
0
)◦

∫
0
∈ HZ1

ε , so for any n ∈ N0 we may read off from

L◦
∫ n

0
(1) = a−1

∫ n+1

0
(1)+ . . .+an−2

∫ 2

0
(1)+Ln−1(1) = a−1

∫

0

(∫ n

0
1

)
+

n−1∑

j=0

a j

∫ n− j

0
(1)

that indeed L = a−1

∫
0
+δα for the functional α := ∂0 ◦L◦

∫
0

with α( xn

n!
) = an.

Lemma 4. Up to subtraction P = δε = id−ev0 : K[x]։ kerε = xK[x] of the con-

stant part, direct computation exhibits δα for any α ∈ K[x]′ as the differential op-

erator

δα = P◦
∑

n∈N0

α
(

xn

n!

)
∂ n ∈ End(K[x]). (22)

Lemma 5. As characters φ ∈ G
K[x]
K of K[x] are fixed by λ := φ(x), they form the

group G
K[x]
K = {evλ : λ ∈K} of evaluations (the counit ε = ev0 equals the neutral

element)

K[x] ∋ p(x) 7→ evλ (p) := p(λ ) with the product eva ⋆ evb = eva+b. (23)

Proof. Note [eva ⋆ evb] (x
n) = [eva(1) · evb(x)+ eva(x) · evb(1)]

n = (b+a)n
.

Lemma 6. The isomorphism (K,+) ∋ a 7→ eva ∈ G
K[x]
K of groups is generated by

the functional ∂0 = ev0 ◦∂ ∈ g
K[x]
K , meaning log⋆ eva = a∂0 and eva = exp⋆(a∂0).

Proof. Expanding the exponential series reveals exp⋆(a∂0)(x
n) = an as a direct con-

sequence of ∂ ⋆k
0 = ε ◦∂ ⋆k = ε ◦∂ k:

∂ ⋆k
0

(
xn

n!

)
=

∑

i1+...+ik=n

(
∂0

xi1

i1!

)
· · ·

(
∂0

xik

ik!

)
=

∑

i1+...+ik=n

δ1,i1 · · ·δ1,ik = δk,n = ∂ k
∣∣∣
0

(
xn

n!

)
.
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4.1 Feynman rules induced by cocycles

Let 0φ : HR →K[x] denote the polynomials that evaluate to the renormalized Feyn-

man rules 0φR,s = evℓ ◦ 0φ at ℓ= ln s
µ . We state

Theorem 4. The renormalized Feynman rules 0φ = Lρ arise out of the universal

property of theorem 1, where the coefficients cn of (9) determine the cocycle

L :=−c−1

∫

0

+δη ∈ HZ1
ε(K[x]) with η (xn) := n!(−1)ncn for any n ∈ N0.

(24)

Proof. We may set µ = 1 and produce logarithms of subdivergences by differentia-

tion, exploiting analyticity of zF(z) and s−z−1
z

at z = 0 we obtain

lim
z→0

(id−R1)

[
s 7→

∫
∞

0
f (ζ )(sζ )−z

lnn (sζ ) dζ

]
=

(
− ∂

∂ z

)n

z=0

(id−R1)

∫
∞

0
f (ζ )(sζ )−z

dζ

=

(
− ∂

∂ z

)n

z=0

[
s−z−1

z
· zF(z)

]
= (−1)n

n∑

k=0

(
n

k

)
k!
(− lns)k+1

(k+1)!
(n− k)!cn−k−1

= evlns

[
−c−1

xn+1

n+1
+

n∑

i=1

(
n

i

)
xi(−1)n−i

cn−i(n− i)!

]
= evlns ◦L(xn) . (∗)

By linearity we can replace lnn(sζ ) in the integrand by any polynomial to prove

theorem 4 inductively: As 0φ and Lρ are algebra morphisms, it suffices to consider

a tree t =B+(w) for a forest w∈F already fulfilling 0φ (w)= Lρ(w) in the induction

step

0φR,s(t) =
(20)

lim
z→0

(id−R1)

[
s 7→

∫
∞

0

f (ζ )(sζ )−z
evlnsζ ◦ 0φ (w) dζ

]

=
(∗)

evℓ ◦L [0φ (w)] = evℓ ◦L◦ Lρ(w) =
1

evℓ ◦ Lρ ◦B+(w) = evℓ ◦ Lρ(t),

where the convergence of (20) allows to reintroduce ζ−z into the integrand.

Corollary 1. As L is a cocycle, by theorem 1 the physical limit 0φ : HR → K[x] of

the renormalized Feynman rules (8) is a morphism of Hopf algebras.

This key property naturally yields the renormalization group as we shall see in the

sequel. For now observe the simple and explicit combinatorial recursion 4, express-

ing 0φ in terms of the Mellin transform coefficients without any need for series

expansions in z, as shown in

Example 4. Using (24) we rederive 0φ ( ) = Lρ ◦B+( ) = L(1) =−c−1 x and also
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0φ
( )

= Lρ ◦B+ ( ) = L◦ Lρ ( ) =

[
−c−1

∫

0

+δη

](
−c−1x

)
= c2

−1

x2

2
− c−1c0 x,

0φ
( )

= Lρ ◦B+ ( ) = L◦ Lρ ( ) =

[
−c−1

∫

0

+δη

]{(
−c−1 x

)2
}

=−c3
−1

x3

3
+ c2

−1

[
η(1)x2 +2η(x)x

]
=−c3

−1

x3

3
+ c2

−1c0 x2−2c2
−1c1 x.

Defining F̃(z) := F(z)− c−1

z
=

∑
n∈N0

cnzn, (22) uncovers δη = P ◦ F̃(−∂x) and

under the convention ∂−1
x :=

∫
0

we may thus write L = P◦F(−∂x).

Corollary 2. As in η only −c−1

∫
0

increases the degree in x, the highest order

(called leading log) of 0φ is the tree factorial (note the analogy to (11)): For any

forest w ∈F ,

0φ (w) ∈ [−c−1

∫
0]ρ(w)+O

(
x|w|−1

)
=
(6)

(
−c−1x

)|w|

w!
+K[x]<|w|. (25)

4.2 Feynman rules as Hopf algebra morphisms

As 0φ : HR → K[x] is a morphism of Hopf algebras, the induced map G
K[x]
K → G

HR

K
given by eva 7→ 0φa := eva ◦ 0φ becomes a morphism of groups. In particular note

Corollary 3. Using (23) we obtain the renormalization group equation (as in [17])

0φa ⋆ 0φb = 0φa+b, for any a,b ∈K. (26)

Before we obtain the generator of this one-parameter group in corollary 4, note how

this result gives non-trivial relations between individual trees (graphs) like

0φa ⋆ 0φb

( )
= 0φa

( )
+ 0φa ( ) 0φb ( )+ 0φb

( )

=
(17)

c2
−1

a2 +b2

2
− c−1c0 (a+b)+ c2

−1ab =
(17)

0φa+b

( )
.

Proposition 3. Let H be any connected bialgebra and φ : H →K[x] a morphism of

bialgebras.5 Then log⋆ φ is given by the linear term in x through

log⋆ φ = x ·∂0 ◦φ . (27)

Proof. Letting φ : C → H and ψ : H → A denote morphisms of coalgebras and

algebras, exploiting (ψ ◦φ −uA ◦ εC)
⋆n = ψ ◦ (φ −uH ◦ εH)

⋆n = (ψ−uA ◦ εH)
⋆n ◦

φ in (2) proves (log⋆ ψ) ◦φ = log⋆(ψ ◦φ) = ψ ◦ log⋆ φ . Now set ψ = eva and use

lemma 6.

5 This already implies φ to be a morphism of Hopf algebras.
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Example 5. In the leading-log case (6) we read off ∂0◦ϕ = Z ∈ g
HR

K where Z (w) :=

δw, . Comparing ϕ = exp⋆(xZ ) with (6) shows |w|! = w! ·Z⋆|w|
(w), hence6

|w|
w!

=
1

(|w|−1)!

∑

w

Z (w1)Z
⋆|w|−1

(w2) =
∑

w: w1=

1

|w2|!
Z
⋆|w2|(w2) =

∑

w: w1=

1

w2!
.

Corollary 4. The character 0φ is fully determined by the anomalous dimension

H ′
R ⊃ g

HR

K ∋ γ :=−∂0 ◦ 0φ such that 0φ = exp⋆(−x ·γ) =
∑

n∈N0

γ⋆n

n!
(−x)n. (28)

An analogous phenomenon happens with the counterterms in the minimal subtrac-

tion scheme: The first order poles ∝ z−1 alone already determine the full countert-

erm via the scattering formula proved in [10]. However, (28) is much simpler as

illustrated in

Example 6. Reading off γ ( ) = c−1, γ
( )

= c−1c0 and γ
( )

= 2c2
−1c1 from the

example 4 above, corollary 4 determines the higher powers of x through

0φ
( )

=
(2)

[
e− xγ + x2 γ ⋆ γ

2

]( )
= 0− xγ

( )
+ x2 γ2 ( )

2
=−c−1c0 x+ c2

−1

x2

2
,

0φ
( )

= 0− xγ
( )

+ x2 γ⊗ γ

2

(
2 ⊗ + ⊗

)
− x3 γ⊗ γ⊗ γ

6
(2 ⊗ ⊗ )

=−γ3 ( )
x3

3
+ x2γ ( )γ

( )
−2c2

−1c1 x =−c3
−1

x3

3
+ c2

−1c0 x2−2c2
−1c1 x.

Note how the fragment ⊗ of ∆
( )

does not contribute to the quadratic terms
x2

2
γ ⋆ γ , as γ vanishes on products. We will exploit this in (33) of section 5.1 and

close with a method of calculating γ emerging from

Lemma 7. From γ ◦B+ =−∂0 ◦L◦ 0φ = ev0 ◦ [zF(z)]−∂x
◦exp⋆(−xγ) we obtain the

inductive formula γ ◦B+ =
∑

n∈N0
cn−1γ⋆n.

Example 7. We can recursively calculate γ ( ) = c−1ε( ) = c−1, similarly also

γ
( )

= c−1ε ( )+ c0γ ( ) = c−1c0,

γ

( )
= c−1ε

( )
+ c0γ

( )
+ c1γ ⋆ γ

( )
= c−1c2

0 + c1 [γ ( )]2 = c−1c2
0 + c2

−1c1,

γ
( )

= c−1ε ( )+ c0γ ( )+ c1γ ⋆ γ ( ) = 2c1 [γ ( )]2 = 2c2
−1c1 and so on.

6 This combinatorial relation among tree factorials, noted in [17], thus drops out of ∆ ϕ = (ϕ ⊗
ϕ)◦∆ .
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5 Dyson-Schwinger equations and correlation functions

We now study the implications for the correlation functions (31) as formal power

series in the coupling constant g. For simplicity we restrict to a single equation

and refer to [24] for systems. With detailed treatments in [1, 11], for our purposes

suffices

Definition 5. To a parameter κ ∈K and a family of cocycles B· : N→ HZ1
ε(HR) we

associate the combinatorial Dyson-Schwinger equation7

X(g) =  +
∑

n∈N
gnBn

(
X1+nκ(g)

)
. (29)

Lemma 8. As perturbation series X(g) =
∑

n∈N0
xngn ∈ HR[[g]], equation (29) has

a unique solution. It begins with x0 =  while xn+1 is determined recursively from

x0, . . . ,xn. These coefficients generate a Hopf subalgebra, explicitly we find8

∆X(g) =
∑

n∈N0

[X(g)]1+nκ ⊗gnxn ∈ (HR⊗HR)[[g]]. (30)

Example 8. In [5, 22], X(g) =  −gB+

(
1

X(g)

)
features κ =−2, summing all trees

X(g) ∈  − g− g2−
(

+

)
g3−

(
+ +2 +

)
g4

−


 + +2 + + +2 +2 +3 +


g5 +g6HR[[g]]

with a combinatorial factor9. Physically these correspond to (Yukawa) propagators

 − g− g2−
(

+

)
g3

−
(

+ +

+ +
)

g4 +O

(
g5
)
,

arising from insertions of the one-loop graph into itself.

Definition 6. The correlation function G(g) evaluates the renormalized Feynman

rules 0φ : HR → K[ℓ] on the perturbation series X(g), yielding the formal power

series

7 As x0 =  , for arbitrary p the series [X(g)]p :=
∑

n∈N0

(p
n

)
[X(g)− ]n ∈ HR[[g]] is well defined.

8 A proof of (30) may be found in [11] and [12, 13] study systems of Dyson-Schwinger equations.
9 counting the number of corresponding ordered trees
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G(g) := 0φ ◦X(g) =
∑

n∈N0

0φ (xn)g
n ∈ (K[ℓ]) [[g]]. (31)

We call γ̃(g) := γ ◦X(g) = −∂ℓ|0G(g) ∈K[[g]] the physical anomalous dimension.

Example 9. The Feynman rules ϕ from (6) result in the convergent series G(g) =√
1−2gℓ and γ̃(g) =

5

−Z ◦X(g) = g for the propagator of example 8. Perturba-

tively,

G(g) = 1− (gℓ)

!
− (gℓ)2

!
− (gℓ)3

!

− (gℓ)3

!
− . . .= 1−gℓ− 1

2
(gℓ)2− 1

2
(gℓ)3 +O

(
(gℓ)4

)
.

5.1 Propagator coupling duality

The Hopf subalgebra of the perturbation series allows to calculate convolutions in

Lemma 9. Let ψ ∈ g
HR

A
denote an infinitesimal character, Ψ ∈G

HR

A
a character and

λ ∈ Hom(HR,A ) a linear map. Then (in suggestive notation)

(Ψ ⋆λ )◦X(g) =[Ψ ◦X(g)] ·λ ◦X
(
g [Ψ ◦X(g)]κ

)
(32)

:=[Ψ ◦X(g)] ·
∑

n∈N0

λ (xn) ·
(
g [Ψ ◦X(g)]κ

)n ∈A [[g]]

(ψ ⋆λ )◦X(g) =[ψ ◦X(g)] · (id+κg∂g) [λ ◦X(g)] ∈A [[g]]. (33)

Proof. These are immediate consequences of lemma 8, for (33) consider

ψ
(
[X(g)]1+nκ

)
·gn =

∑

i∈N0

(
1+nκ

i

)
ψ
(
[X(g)− ]i

)
gn =ψ (X(g)− ) ·(1+nκ)gn.

Example 10. Continuing 8 we deduce Z⋆2 (X(g)) =−g(1−2g∂g)(−g) =−g2 and

Z⋆n+1 (X(g)) =
(33)

−gn+1(2n−1)(2n−3) · · ·(1) =−gn+1 (2n)!

2nn!
,

proving ϕ(xn+1) =−2−nCnℓ
n+1 with the Catalan numbers Cn already noted in [20].

From 9 we find their generating function 2g
∑

n∈N0
gnCn = 1−√1−4g.

Corollary 5. As 0φ is a morphism of Hopf algebras, for any a,b ∈K we can factor

Ga+b(g) = (0φa ⋆ 0φb)◦X(g) =
(32)

Ga(g) ·Gb [gGκ
a (g)] = Gb(g) ·Ga [gGκ

b (g)] . (34)

These functional equations of formal power series make sense for the non- perturba-

tive correlation functions as well. Relating the scale- with the coupling-dependence,

this integrated form of the renormalization group equation becomes infinitesimally
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Corollary 6. From− d
dx 0φ = γ ⋆0φ = 0φ ⋆γ or differentiating (34) by b at zero note

Gℓ(g) · γ̃ [gGκ
ℓ (g)] =

(32)

−∂ℓGℓ(g) =
(33)

γ̃(g) · (1+κg∂g)Gℓ(g). (35)

The first of these equations generalizes the propagator coupling duality in [5, 20].

For any fixed coupling g, it expresses the correlation function as the solution of the

o.d.e.

− d

dℓ
lnGℓ(g) = γ̃

[
geκ lnGℓ(g)

]
with lnG0(g) = 0, (36)

determining Gℓ(g) completely from γ̃(g) in a non-perturbative manner as in (39).

Example 11. The leading-log expansion takes only the highest power of ℓ in each

g-order. Equally, γ̃(g) = cgn for constants c ∈K, n ∈ N and (36) integrates to

Gleading-log(g) =
[
1+ cnκℓgn

]− 1
nκ
. (37)

As a special case we recover example 9 for n = c = 1 and κ =−2.

Example 12. In the linear case κ = 0, (34) states Ga+b(g) = Ga(g) ·Gb(g) in accor-

dance with the scaling solution Gℓ(g) = e−ℓγ̃(g) of (36), well-known from [19].

Example 13. For vertex insertions as in [2] we have κ = 1, so Ga+b(g) = Gb(g) ·
Ga

[
G̃b(g)

]
expresses the running of the coupling constant G̃ := g ·G: A change in

scale by b is (up to a multiplicative constant) equivalent to replacing the coupling g

by G̃b(g).

5.2 The physicist’s renormalization group

To cast (34) and (35) into the common forms of (7.3.15) and (7.3.21) in [7], we

introduce the β -function β (g) := −κgγ̃(g) and the running coupling g(µ) as the

solution of

µ
d

dµ
g(µ) = β

(
g(µ)

)
, hence µ

d

dµ
G
(

g(µ), ln s
µ

)
=
(35)

γ̃
(
g(µ)

)
G
(

g(µ), ln s
µ

)
.

(38)
Integration relates the correlation functions for different renormalization points µ in

G
(

g(µ2), ln
s

µ2

)
= G

(
g(µ1), ln

s
µ1

)
· exp

[∫ µ2

µ1

γ̃
(
g(µ)

) dµ
µ

]
=
(38)

G
(

g(µ1), ln
s

µ1

)
·
[

g(µ2)

g(µ1)

]− 1
κ

.

Setting µ1 = s we may thus write Gℓ(g) explicitly in terms of γ̃(g) as

Gℓ(g) =

[
g

g(s)

]− 1
κ

, with g(s) subject to ℓ= ln
s

µ
=

∫ g(s)

g

dg′

β (g′)
. (39)
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5.3 Relation to Mellin transforms

We finally exploit the analytic input from theorem 4 to the perturbation series in

Gℓ(g) =
(29)

1+
∑

n∈N
gn

0φ ◦Bn

(
X(g)1+nκ

)
=

4

1+
∑

n∈N
gn

[
−c

(n)
−1

∫

0
+P◦ F̃n(∂−ℓ)

]
Gℓ(g)

1+nκ ,

with Mellin transforms Fn(z) =
1
z
c
(n)
−1 + F̃n(z) corresponding to the insertions10 Bn.

Corollary 7. The power series Gℓ(g) ∈K[ℓ][[g]] is fully determined by

Gℓ(0) = 1 and ∂−ℓGℓ (g) =
(9)

∑

n∈N
gn [zFn(z)]z=−∂ℓ

(
Gℓ(g)

1+nκ
)
. (40)

Restricting to a single cocycle Fk(z) = F(z)δk,n, choosing F(z) =
c−1

z
reproduces

(37) from ∂−ℓGℓ(g) = gnc−1Gℓ(g)
1+nκ . More generally, for any rational F(z) =

p(z)
q(z) ∈ K(z) with q(0) = 0, (40) collapses to a finite order ode q(−∂ℓ)Gℓ(g) =

gn p(−∂ℓ)Gℓ(g)
1+nκ that makes perfect sense non-perturbatively (extending the al-

gebraic ∂ℓ ∈ End(K[ℓ]) to the analytic differential operator).

Example 14. For F(z) = 1
z(1−z) , the propagator (κ =−2 as in example 8) fulfils

g

Gℓ(g)
= ∂−ℓ (1−∂−ℓ)Gℓ(g) =

(35)

γ̃(g)(1−2g∂g) [1− γ̃(g)(1−2g∂g)]Gℓ(g).

At ℓ= 0 this evaluates to γ̃(g)− γ̃(g)(1−2g∂g)γ̃(g) = g, which is studied in [24, 5].

6 Automorphisms of HR

Applying the universal property to HR itself, adding coboundaries to B+ leads to

Definition 7. For any α ∈ H ′
R, theorem 1 defines the Hopf algebra morphism

α χ := B++δαρ : HR → HR such that α χ ◦B+ = [B++δα]◦α χ. (41)

Example 15. The action on the simplest trees yields

α χ ( ) = α χ ◦B+( ) = B+( )+(δα)( ) = B+( ) = ,

α χ
( )

= α χ ◦B+ ( ) = (B++δα)α χ ( ) = +δα ( ) = +α( ) ,

α χ

( )
= +2α( ) +

{
[α( )]2 +α ( )

}
and α χ

( )
= +2α ( ) +α( ) .

These morphisms capture the change of Lρ under a variation of L by a coboundary:

10 For this generality we need decorated rooted trees as commented on in section 6.1
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Theorem 5. Let H denote a bialgebra, L ∈HZ1
ε (H) a 1-cocycle and further α ∈H ′

a functional. Then for Lρ,L+δαρ : HR → H given through theorem 1 and α◦Lρ χ :

HR → HR from definition 7, we have

L+δαρ = Lρ ◦ [α ◦Lρ]χ, equivalently

HR

L+δαρ
//

α◦Lρ χ
��

H

HR

Lρ

>>
commutes. (42)

Proof. As both sides of (42) are algebra morphisms, it suffices to prove it induc-
tively for trees: Let it be true for a forest w ∈F , then it holds as well for the tree
B+(w) by

Lρ ◦ [α◦Lρ]χ ◦B+(w) =
(5)

Lρ ◦
[
B++δ

(
α ◦ Lρ

)]
◦ [α◦Lρ]χ(w)

=
{

L◦ Lρ +(δα)◦ Lρ
}
◦ [α◦Lρ]χ(w) = {L+δα}◦ Lρ ◦ [α◦Lρ]χ(w)

︸ ︷︷ ︸
L+δαρ(w)

=
(5)

L+δαρ ◦B+(w).

We used (δα)◦ Lρ = Lρ ◦δ
(
α ◦ Lρ

)
, following from Lρ being a morphism of bialgebras.

Hence the action of a coboundary δα on the universal morphisms induced by L

is given by α◦Lρ χ . This turns out to be an automorphism of HR as shown in

Theorem 6. The map ·χ : H ′
R → EndHopf(HR), taking values in the space of Hopf

algebra endomorphisms of HR, fulfils the following properties:

1. For any w ∈F and α ∈ H ′
R, α χ(w) differs from w only by lower order forests:

α χ(w) ∈ w+H
|w|−1
R = w+

|w|−1⊕

n=0

HR,n. (43)

2. ·χ maps H ′
R into the Hopf algebra automorphisms AutHopf(HR). Its image is

closed under composition, as for any α,β ∈ H ′
R we have α χ ◦ β χ = γ χ taking

γ = α +β ◦α χ
−1. (44)

3. The maps δ : H ′
R → HZ1

ε (HR) and ·χ : H ′
R → AutHopf(HR) are injective, thus the

subgroup im ·χ = {α χ : α ∈ H ′
R} ⊂ AutHopf(HR) induces a group structure on

H ′
R with neutral element 0 and group law ⊲ given by

α ⊲β := ·χ−1
(

α χ ◦ β χ
)
=
(44)

α +β ◦α χ−1 and α⊲−1 =−α ◦α χ. (45)

Proof. Statement (43) is an immediate consequence of δα(Hn
R)⊆Hn

R: Starting from
α χ ( ) = , suppose inductively (43) to hold for forests w,w′ ∈F . Then it obviously

also holds for w ·w′ as well and even so for B+(w) through
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α χ ◦B+(w) = [B++δα]◦α χ(w)⊆ [B++δα]
(

w+H
|w|−1
R

)
⊆ B+(w)+H

|w|
R .

This already implies bijectivity of α χ , but applying (42) to L = B++ δα and α̃ χ
for α̃ :=−α ◦α χ shows id = α χ ◦ α̃ χ directly. We deduce bijectivity of all α χ and

thus α χ ∈ AutHopf(HR) with the inverse α χ−1 = α̃ χ . Now (44) follows from

[α+β ◦α χ−1]χ = [B++δα]+δ(β ◦α χ−1)ρ =
(42)

[B++δα]ρ ◦
[

β ◦ α χ−1 ◦ (B++δα)ρ
]
χ = α χ ◦β χ.

Finally consider α,β ∈H ′
R with α χ = β χ , then 0 = (α χ−β χ)◦B+ = δ ◦ (α−β )◦

α χ reduces the injectivity of ·χ to that of δ . But if δα = 0, for all n ∈ N0

0 = δα
(

n+1
)
=

n∑

i=0

(
n+1

i

)
α
(

i
)

n+1−i implies α ( n) = 0.

Given an arbitrary forest w ∈F and n ∈ N, the expression

0 = δα ( nw) = wα ( n)︸ ︷︷ ︸
0

+
∑

w

n∑

i=0

(
n

i

)
iw′α

(
n−iw′′

)

+
n∑

i=1

(
n

i

)[
iwα

(
n−i

)
︸ ︷︷ ︸

0

+ iα
(
w n−i

)]

simplifies upon projection onto K to α
(
w n−1

)
=− 1

n

∑
w: w′= α ( nw′′). Iterating

this formula exhibits α(w) as a scalar multiple of α
( |w|)= 0 and proves α = 0.

6.1 Decorated rooted trees

Our observations generalize straight forwardly to the Hopf algebra HR(D) of rooted

trees with decorations drawn from a set D . In this case, the universal property as-

signs to each D-indexed family L· : D → End(A ) the unique algebra morphism

L·ρ : HR(D)→A such that L·ρ ◦Bd
+ = Ld ◦ L·ρ for any d ∈D .

For cocycles imL· ⊆ HZ1
ε (A ) this is a morphism of bialgebras and even of Hopf

algebras (should A be Hopf). For a family α·: D → H ′
R(D) of functionals, setting

L
α·
d

:= Bd
++ δαd yields an automorphism α·χ := L

α·· ρ of the Hopf algebra HR(D).
Theorems 5 and 6 generalize in the obvious way.

In view of the Feynman rules, decorations d denote different graphs into which

Bd
+ inserts a subdivergence. Hence we gain a family of Mellin transforms F· and

theorem 4 generalizes straightforwardly as 0φ ◦Bd
+ = P◦Fd(−∂ℓ)◦ 0φ .
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6.2 Subleading corrections under variations of Mellin transforms

As an application of (42) consider a change of the Mellin transform F to a different

F ′ that keeps c−1 fixed but alters the other coefficients cn. With α := η ′−η ,

0φ ′ = L′ρ = L+δαρ = Lρ ◦ [α ◦Lρ]χ = 0φ ◦ [α ◦0φ ]χ

translates the new renormalized Feynman rules 0φ ′ into the original 0φ .

Fixing c−1 = −1, this in particular relates 0φ to ϕ =
∫

0ρ using example 15 to-

gether with η ◦ ϕ(w) = (−1)|w| |w|!
w!

c|w| as

0φ ( ) = x = ϕ ( ) = ϕ ◦ η◦ϕ χ ( ) ,

0φ
( )

=
x2

2
+ c0x = ϕ

{
+η(1)

}
= ϕ ◦ η◦ϕ χ

( )
,

0φ

( )
=

x3

6
+ x2c0 + x(c2

0− c1) = ϕ

{
+2c0 +

[
c2

0− c1

] }
= ϕ ◦ η◦ϕ χ

( )

and

0φ
( )

=
x3

3
+ c0 · x2−2c1 · x = ϕ

{
+ c0 −2c1

}
= ϕ ◦ η◦ϕ χ

( )
.

Corollary 8. The new correlation function 0φ ◦X = ϕ ◦ X̃ equals the original ϕ ap-

plied to a modified perturbation series X̃(g), fulfilling a Dyson-Schwinger equation

differing by coboundaries. By (43) the leading logs coincide and explicitly

X̃(g) := η◦ϕ χ ◦X(g) =  +
∑

n∈N
gn (Bn +δηn)

(
X̃(g)1+nκ

)
.

7 Locality, finiteness and minimal subtraction

Consider the regularized but unrenormalized Feynman rules zφ . Now setting A :=
K[z−1,z]] and φ := zφ1 ∈ G

HR

A
, (10) fixes the scale dependence zφs = φ ◦θ− lnsz.

Proposition 4. For any character φ ∈ G
HR

A
, the following are equivalent:

1. φ ⋆−1 ⋆ (φ ◦Y ) = φ ◦ (S⋆Y ) maps into 1
z
K[[z]], so lim

z→0
φ ⋆−1 ⋆ (zφ ◦Y ) exists.

2. For every n ∈ N0, φ ⋆−1 ⋆ (φ ◦Y n) = φ ◦ (S⋆Y n) maps into z−nK[[z]].
3. For any ℓ ∈K, φ ⋆−1 ⋆ (φ ◦θℓz) = φ ◦ (S⋆θℓz) maps into K[[z]].

Proof. We refer to the accounts in [21, 5, 10], however only 1.⇒ 2. is non-trivial

and

φ ◦
(
S⋆Y n+1

)
= φ ◦ (S⋆Y n)◦Y +[φ ◦ (S⋆Y )]⋆ [φ ◦ (S⋆Y n)]
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yields an inductive proof. It exploits (S◦Y )⋆ id=−S⋆Y in the formula (α arbitrary)

S⋆ (α ◦Y )− (S⋆α)◦Y =−(S◦Y )⋆α =− [(S◦Y )⋆ id]⋆S⋆α = S⋆Y ⋆S⋆α.

Note that condition 3. is equivalent to the finiteness 2 of the physical limit 0φ as

zφR,s = zφ
⋆−1
µ ⋆ zφs = φ ◦

[
(S◦θ−z ln µ)⋆θ−z lns

]
= φ ◦ (S⋆θ−z ln s

µ
)◦θ−z ln µ .

Corollary 9. The anomalous dimension can be obtained from the 1
z
-pole coefficients

γ =−∂0 ◦ 0φ =−∂0 ◦ lim
z→0

φ ◦ (S⋆θ−zx) = Res [φ ◦ (S⋆Y )] . (46)

The minimal subtraction scheme RMS projects onto the pole parts such that A =
A−⊕A+ where A− := z−1K[z−1] and A+ := K[[z]]. Though it renders finiteness

trivial, its counterterms might depend on the scale s and violate locality. So from

[10] we need

Definition 8. A Feynman rule φ ∈G
HR

A
is called local iff in the minimal subtraction

scheme, the counterterm (φ ◦θℓz)− is independent of ℓ ∈K.

Proposition 5. Locality of φ ∈ G
HR

A
is equivalent to the conditions of proposition 4.

Proof. In case of 4, φ ◦ θℓz = (φ−)⋆−1 ⋆
{

φ+ ⋆ [φ ⋆−1 ⋆ (φ ◦θℓz)]
}

is a Birkhoff de-

composition by condition 3. such that (φ ◦θℓz)− = φ− from uniqueness. Conversely,

for local φ ,

0 = RMS ◦ (φ ◦θℓz)+ = RMS ◦
[
(φ ◦θℓz)− ⋆ (φ ◦θℓz)

]
= RMS ◦ [φ− ⋆ (φ ◦θℓz)]

implies K[[z]] = kerRMS ⊇ imφ− ⋆ (φ ◦θℓz) and convolution with φ ⋆−1
+ = φ ⋆−1 ⋆

φ ⋆−1
− :HR →K[[z]] yields condition 3. of 4.

So we showed algebraically that the problems of finiteness in the kinetic scheme and

locality in minimal subtraction are precisely the same. These schemes are related by

Lemma 10. If zφMS,s denotes the RMS-renormalized Feynman rule, then its scale de-

pendence is given by 0φ through zφMS
=

(
Rµ ◦ zφMS

)
⋆ zφR (as already exploited in

[4]).

Proof. Locality of the minimal subtraction counterterms φ− implies Rµ ◦φ− = φ−,

hence

(
Rµ ◦ zφMS

)
⋆ zφR =

[
Rµ ◦ (φ− ⋆ zφ)

]
⋆
(
Rµ ◦ zφ

)⋆−1
⋆ zφ =

(
Rµ ◦φ−

)
⋆ zφ = zφMS

.

The physical limit evlns ◦ 0φ
MS
= lim

z→0
zφMS,s yields polynomials 0φ

MS
and 10 becomes

Corollary 10. The characters 0φ
MS
, 0φ : HR →K[x] fulfil the relations

0φ
MS
= (ε ◦ 0φ

MS
)⋆ 0φ , equivalently ∆ ◦ 0φ

MS
= (0φ

MS
⊗ 0φ )◦∆ . (47)
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In particular, the constant parts ε ◦ 0φ
MS

= ev0 ◦ 0φ
MS
∈ G

HR

K determine 0φ
MS

com-

pletely as the scale dependence is governed by 0φ . Using 0φ = exp⋆(−xγ), the

β -functional 0φ
MS
= exp⋆ (xβ )⋆ (ε ◦ 0φ

MS
) from [10] relates to γ by conjugation:

β ⋆ (ε ◦ 0φ
MS
) =−(ε ◦ 0φ

MS
)⋆ γ.

Corollary 11. Applying (32) to (47) expresses the correlation function of the RMS-

scheme to the kinetic scheme by a redefinition of the coupling constant:

GMS,ℓ(g) = GMS,0(g) ·Gℓ

(
g · [GMS,0(g)]

κ
)
.

8 Feynman graphs and logarithmic divergences

In a typical renormalizable scalar quantum field theory, the vertex function is log-

arithmically divergent and may be renormalized by a simple subtraction as studied

above. Referring to [6] for quadratic divergences, we now restrict to logarithmically

divergent graphs with only logarithmic subdivergences, in D dimensions of space-

time.

Following the notation established in [3], the renormalized amplitude of a graph

Γ in the Hopf algebra H of Feynman graphs is given by the forest formula11

Φ+(Γ ) =

∫
ΩΓ

∑

F∈F (Γ )

(−1)|F |

ψ
D/2
F

ln

ϕ
ψ Γ /F

+
∑

Γ 6=γ∈F

ϕ̃
ψ γ/F

ϕ̃
ψ Γ /F

+
∑

Γ 6=γ∈F

ϕ̃
ψ γ/F

. (48)

The forests F (Γ ) account for subdivergences, the first and second Symanzik poly-

nomials ψΓ ,ϕΓ depend on the edge variables αe (Schwinger parameters) and we

integrate over RP|E(Γ )|−1

>0 in projective space with canonical volume form ΩΓ .

Apart from a scale s, ϕΓ depends on dimensionless angle variables Θ =
{

m2

s

}
∪

{ pi·p j

s

}
built from the mass m and external momenta pi. We abbreviate

ϕ
ψ Γ

:= ϕΓ
ψΓ

and denote evaluation at the renormalization point (s̃,Θ̃) of the kinetic scheme by a

tilde or ·|R := ·|(s,Θ)7→(s̃,Θ̃).

Definition 9. Holding the angles Θ fixed, the period functional P ∈ H ′ is given by

P(Γ ) := − ∂

∂ lns
Φ+(Γ )

∣∣∣∣
R

for any Γ ∈ H. (49)

Corollary 12. For any graph Γ ∈ H, the value P(Γ ) is a period in the sense of

[15] (provided that s̃ and all θ ∈ Θ̃ are rational) by the formula

11 We prefer to work in the parametric representation as introduced in [14, section 6-2-3].
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P(Γ ) =
(48)

∫
ΩΓ

∑

F∈F (Γ )

(−1)1+|F |

ψ
D/2
F

ϕ̃
ψ Γ /F

ϕ̃
ψ Γ /F

+
∑

Γ 6=γ∈F

ϕ̃
ψ γ/F

. (50)

For primitive (subdivergence free) graphs, [23] gives equivalent definitions of

this period in momentum and position space. The product rule, (49) and Φ+|R = ε
show

Corollary 13. The period is an infinitesimal character P ∈ g
H
K (it vanishes on any

graph that is not connected).

8.1 Renormalization group

Proposition 6. Holding the angles Θ fixed, differentiation by the scale results in12

− ∂

∂ lns
Φ+ = P ⋆Φ+. (51)

Proof. Adding 0 = P(Γ )−P(Γ ) and collecting the contributions of
ϕ̃
ψ γ/F

in (∗)
we find

− ∂

∂ lns
Φ+(Γ ) =

(48)

∫
ΩΓ





1

ψ
D/2

Γ

+
∑

{Γ }6=F∈F (Γ )

(−1)1+|F |

ψ
D/2
F

ϕ
ψ Γ /F

ϕ
ψ Γ /F

+
∑

Γ 6=δ∈F

ϕ̃
ψ δ/F





=
(50)

P(Γ )+

∫
ΩΓ

∑

{Γ }6=F∈F (Γ )

(−1)1+|F |

ψ
D/2
F

(
ϕ
ψ Γ /F

− ϕ̃
ψ Γ /F

) ∑
Γ 6=γ∈F

ϕ̃
ψ γ/F

[
ϕ
ψ Γ /F

+
∑

Γ 6=δ∈F

ϕ̃
ψ δ/F

]
·
[

ϕ̃
ψ Γ /F

+
∑

Γ 6=δ∈F

ϕ̃
ψ δ/F

]

=
(∗)

P(Γ )+

∫
ΩΓ

∑

γ≺Γ
|π0(γ)|=1

∑

γ∈F∈F (Γ )

(−1)1+|F |

ψ
D/2
F

(
ϕ
ψ Γ /F

− ϕ̃
ψ Γ /F

)
ϕ̃
ψ γ/F

[
ϕ
ψ Γ /F

+
∑

Γ 6=δ∈F

ϕ̃
ψ δ/F

]
·∑

δ∈F

ϕ̃
ψ δ/F

.

With γ ≺ Γ denoting a subdivergence γ 6= Γ , the forests F ∈F (Γ ) containing γ
correspond bijectively to the forests of γ and Γ /γ by

Fγ(Γ ) := {F ∈F (Γ ) : γ ∈ F} ∋ F 7→
(

F |γ , F/γ
)
∈F (γ)×F (Γ /γ), using

F |γ := {δ ∈ F : δ � γ} and F/γ :=
{

δ/γ : δ ∈ F and δ � γ
}
.

This is an immediate consequence of the definition of a forest, as for F ∈Fγ(Γ ),
each δ ∈ F is either disjoint to γ or strictly containing γ (in both cases it is mapped

12 This simple form circumvents the decomposition into one-scale graphs utilized in [6] and there-

fore holds in the original renormalization Hopf algebra H.
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to δ/γ ∈ F/γ) or itself a subdivergence of γ . Thus integrating
∫

∞

0
A−Ã

(A+tB)(Ã+tB)
dt =

B−1 ln A

Ã
in

= P(Γ )+

∫ ∑

γ≺Γ
|π0(γ)|=1

Ωγ ∧ΩΓ /γ

∑

Fγ∈F (γ)
F∈F (Γ /γ)

(−1)1+|Fγ |+|F |

ψ
D/2
Fγ

·ψD/2
F

×
∞∫

0

dtγ

tγ

(
ϕ
ψ Γ /F

− ϕ̃
ψ Γ /F

)
· tγ · ϕ̃

ψ γ/Fγ[
ϕ
ψ Γ /F

+
∑

Γ 6=δ∈F

ϕ̃
ψ δ/F

+ tγ ·
∑

δ∈Fγ

ϕ̃
ψ δ/Fγ

]
·
[∑

δ∈F

ϕ̃
ψ δ/F

+ tγ ·
∑

δ∈Fγ

ϕ̃
ψ δ/Fγ

]

= P(Γ )+

∫ ∑

γ≺Γ
|π0(γ)|=1

Ωγ ∧ΩΓ /γ

∑

Fγ∈F (γ)
F∈F (Γ /γ)

(−1)1+|Fγ |+|F |

ψ
D/2
Fγ

·ψD/2
F

·
ϕ̃
ψ γ/Fγ

∑
δ∈Fγ

ϕ̃
ψ δ/Fγ

· ln

ϕ
ψ (Γ /γ)/F

+
∑

δ∈F\{Γ /γ}

ϕ̃
ψ δ/F

∑
δ∈F

ϕ̃
ψ δ/F

reduces to the projective
∫

Ωγ in the edge variables of the subgraph γ , making use

of

|F |=
∣∣∣F |γ

∣∣∣+ |F/γ| , ϕ

ψ δ/F

=





ϕ
ψ (δ/γ)/(F/γ)

, if γ � δ ∈ F

ϕ
ψ δ/F |γ

, if γ � δ ∈ F
and ψF =ψ F |γ ·ψF/γ .

The apparent factorization into P(γ) and Φ+(Γ /γ) shows that we obtain conver-

gent integrals for each γ ≺ Γ individually and may therefore separate into

= P(Γ )+
∑

γ≺Γ
|π0(γ)|=1

∫
Ωγ

∑

Fγ∈F (γ)

(−1)1+|Fγ |

ψ
D/2
Fγ

·
ϕ̃
ψ γ/Fγ∑

δ∈Fγ

ϕ̃
ψ δ/Fγ

×
∫

ΩΓ /γ

∑

F∈F (Γ /γ)

(−1)|F |

ψ
D/2
F

· ln

ϕ
ψ (Γ /γ)/F

+
∑

δ∈F\{Γ /γ}

ϕ̃
ψ δ/F

∑
δ∈F

ϕ̃
ψ δ/F

= P ⋆Φ+(Γ ).

Note that the terms γ ⊗Γ /γ of ∆(Γ ) with |π0(γ)| > 1 do not contribute here by

corollary 13.

Together with corollary 13 and the connected graduation of H, this shows

Φ+ =
∑

n∈N0

(−ℓ)n

n!

[(
− ∂

∂ lns

)n

Φ+

]

s=s̃

=
(51)

∑

n∈N0

(−ℓ ·P)⋆n

n!
⋆ Φ+|s=s̃,

where we set ℓ := ln s
s̃

and the series is pointwise finite. Hence note

Corollary 14. The renormalized Feynman rules Φ+ = Φ+|Θ=Θ̃ ⋆ Φ+|s=s̃ factorize

([6] gives a different decomposition) into the angle-dependent part Φ+|s=s̃ and the

scale-dependence Φ+|Θ=Θ̃ given as the Hopf algebra morphism
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Φ+|Θ=Θ̃ = exp⋆ (−ℓP) : H →K[ℓ]. (52)

Example 16. For primitive Γ ∈ Prim(H), Φ+(Γ ) = −ℓ ·P(Γ ) + Φ+|s=s̃(Γ ) dis-

entangles the scale- and angle-dependence. Subdivergences evoke higher powers

of ℓ with angle-dependent factors. Dunce’s cap of φ 4-theory gives P ( ) =

P

( )
= 1 such that

Φ+


p1

p2

p3

p4

=

ℓ2

2
− ℓ− ℓΦ+|s=s̃

(
p1

p2 p3

p4
)
+ Φ+|s=s̃


p1

p2

p3

p4

 .

8.2 Dimensional regularization

The dimensional regularization of [7] assigns a Laurent series zΦ(Γ ) in z ∈ C to

each Feynman graph Γ ∈H, which for large ℜz is given by the convergent paramet-

ric integral

zΦ(Γ ) =




∏

e∈E(Γ )

∞∫

0

αe


 e

− ϕ
ψ Γ

ψ
D/2−z

Γ

. (53)

As
ϕ
ψ Γ

is linear in the scale s and homogeneous of degree one in the edge variables,

simultaneously rescaling of all αe yields (for logarithmically divergent graphs)

Corollary 15. The scale dependence zΦ = zΦ |s=s̃ ◦θ−zℓ of (53) is induced from the

grading Y of H given by the loop number.

Thus the finiteness of the physical limit Φ+|Θ=Θ̃ = limz→0 zΦ |R ◦ (S⋆θ−zℓ) results

by proposition 4 in the local character zΦ |R ∈GH
A

, evaluated at the renormalization

point (s̃,Θ̃).

Corollary 16. In dimensional regularization, the period (50) is the 1
z
-pole coeffi-

cient

P =
(46)

Res◦ zΦ |R ◦ (S⋆Y ). (54)

8.3 Dilatations

For λ > 0, consider the dilatation operator Λλ scaling masses m 7→ λ ·m and mo-

menta pi 7→ λ · pi. It fixes all angles Θ , multiplies the scale s with λ 2 and therefore

acts as

Φ+ ◦Λλ = exp⋆

(
−P ln

s

s̃

)
⋆ Φ+|s=s̃ ◦ (s 7→ s ·λ 2) = exp⋆ (−2P lnλ )⋆Φ+.
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In other words, the dilatations R>0 ∋ λ 7→ Λλ 7→ exp⋆ (−2P lnλ ) ⋆ · are repre-

sented on the group GH
A

of characters by a left convolution. As the unrenormalized

logarithmically divergent graphs are dimensionless and naively invariant under Λλ ,

P precisely measures how renormalization breaks this symmetry, giving rise to

anomalous dimensions.

9 Conclusion

We stress that the physical limit of the renormalized Feynman rules results in a mor-

phism 0φ : HR →K[x] of Hopf algebras in case of the kinetic scheme. This com-

patibility with the coproduct allows to obtain 0φ from the linear terms γ only. As

we just exemplified, these relations are statements about individual Feynman graphs

unraveling scale- and angle-dependence in a simple way. Again we recommend [6]

for further reading.

Secondly we revealed how Hochschild cohomology governs not only the pertur-

bation series through Dyson-Schwinger equations, but also determines the Feynman

rules. Addition of exact one-cocycles captures variations of Feynman rules and the

anomalous dimension γ can efficiently be calculated in terms of Mellin transform

coefficients.

Note how this feature is lost upon substitution of the kinetic scheme by minimal

subtraction: We do not obtain a Hopf algebra morphism anymore due to the constant

terms, which are also more difficult to obtain in terms of the Mellin transforms F .

Finally we want to emphasize the remarks in section 5 towards a non-perturbative

framework. Though this relation between F(z) and the anomalous dimension γ̃(g)
is still under investigation and so far only fully understood in special cases, these

already give interesting results [5, 24].
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