Multiple polylogarithms and Feynman integrals

Christian Bogner (HU Berlin)

joint work with Francis Brown
arXiv:1302.6215 with M. Liiders, arXiv:1302.7004 and 1405.5640 with L. Adams and S. Weinzierl,

Many thanks to Erik Panzer!

Les Houches, June 2014

European
Research
Council




Outline:

@ The computational problem: Integration over Feynman parameters

@ Multiple polylogarithms in several variables and the program MPL

@ Applications: Feynman integrals, hypergeometric functions

@ Outlook: Beyond multiple polylogarithms



The computational problem: Integration over Feynman parameters
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Integration over Feynman parameters



Scalar Feynman integrals

For a generic Feynman graph G with N edges and loop-number L (first Betti number)
we consider the scalar Feynman integral

/(/\)—/|L| 4% 1 ! N, L vi€Z DeC
= U
- D/2 Ui s BV ) )
P / j=1 (—qu-i-mf) !

A : external parameters, i.e. kinematical invariants and masses m;; q; : momenta

Using the “Feynman trick” we can re-write this as

(v —LD/2) yv—(L+1)D/2
I(A) = / / / (HdX,X ) (1—21X,> W7

where v = ZJN:1 vj, e=(4—D)/2.
U and F are the first and the second Symanzik polynomial.
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Symanzik polynomials for a graph G with Feynman parameters xi, ..., xy:

u = E H Xi
spanning trees T of G edges ¢T
2 N
2
F = - > 11 X; > g | +UY_ xim?
spanning 2-forests (Ty, T2) \edges &(T1, T2) edges ¢(T1, T2) i=1
Example:
X4 X3
X1 X2

U = x3xa + xax4 + x1x2 + x1x3 + x5(x1 + x2 + x3 + X4)
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Assume singularities are taken care of, i.e. ...

@ ... the Feynman integral is finite.
@ ... by renormalization under the integral (Brown, Kreimer 2011)

@ ... by some approach to separate UV and IR singularities, e.g. Panzer (2014).
Computational problem:
Compute a finite integral over Feynman parameters with an integrand of the type:

(I'T @) (multiple) polylogarithms of {P;}
[1Pi

where the P; and Q; are polynomials in the Feynman parameters. Usually: Symanzik
polynomials

Concept: Try to integrate out all Feynman parameters:

@ choose a Feynman parameter x; in which all P; are linear,

@ integrate over x; by use of an appropriate class of functions, given by iterated
integrals

Recent success of this concept in work by E. Panzer, C. Duhr et al, L. Dixon et al, F.
Wissbrock et al ...
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Multiple polylogarithms in several variables

Iterated integrals

" "

t t
/ fw(t(w))dt(w).../ fz(t”)dt”/ A (t)dt
0 S———— 0 N— S0 N——

w2 wi

I(t)

[fw(t)dt|...|f2(t)dt| 1 (t)dt] (short-hand notation)

We use the term iterated integral for linear combinations of such integrals.
The differential one-forms f;(t)dt belong to a chosen set Q.
Examples:

_ Jdt _dt
o QPolylogs =Y+t 1—¢

dt dx dx
@ classical polylogarithms: Li, (t) = {—|...|—\ }
t t 1—t
N———
w times
@ multiple polylogarithms in one variable:

dt dt, dt  dt dt, dt
Li t)y=[..|—||—|— | —|]—|—
inyna... () = Lo | S S22 | S S22
na times nq times
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Examples:

dt _dt dt
9 QupL = {T’ it 1_+t}
Harmonic Polylogarithms (Remiddi, Vermaseren 1999),
(implementation Maitre '05, '07)

) Two-dimensional Harmonic Polylogarithms (Gehrmann, Remiddi '01):
x variable and one additional fixed parameter

/ .
@ Qecyclotomic = {%7 (;k?f) |k € Ny, 0 <1 < (k), px(t) : cyclotomic polyn.}

Cyclotomic Harmonic Polylogarithms (Ablinger, Bliimlein, Schneider '11),
(implementation Ablinger)

; i) dt,

Hyp _ ) dtn _dt (HBS'S"—l t’) "

° Q, - th ) tp—1° " Tl<icnti—1 ,1<a<n
Poincare, Kummer 1840, Lappo-Danilevsky 1911 also see Goncharov '01, applications and
implementation by Panzer '13, '14

: Hyperlogarithms
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Let Q, be the set of differential 1-forms d—ff

with f € {tl, vy toy [a<icp ti — 1}7 forl<a<b<n:

Q=% 4 (zizs t))

where 1 <a<b<n
t tn [la<icnti—

Examples:

Q= {%, tft_ll} (— multiple polylogs in one variable)

ty 0 ta ) t1—17 tp—1’  tyta—1

Qy = {dﬁ dty  dty dty  tidtattadt }
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From Q, we construct homotopy invariant iterated integrals.
Viewed as integrals along paths ~, this means

/ Wk oW1 = / wg...w1 for homotopic paths v1,72.
" V2

Problem: Not every sequence of w; € Q, will provide a homotopy invariant integral.

Theorem (Chen '77) = The integral is homotopy invariant if the sequence
(tensor-product) [wi]...|wm] satisfies

m m—1
S [t lwialdwilwiralwm] 4+ S [wa]elwiotlw; Awisalwm] = 0.
i=1 i=1

There is an explicit symbol map ) for constructing such homotopy invariant iterated
integrals, see CB, Brown '12 (closely related to the “symbol” in Duhr, Gangl, Rhodes
'11, Goncharov et al '10).

= Construction provides the multiple polylogarithms in several variables 5(Q2,).
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Some details on the implementation:
Q, = QFiber y QBase where all f; € QFPer depend on the last variable t, and all
b; € QnBase =Q,_1 do not.
The bijective lifting map A : QEYP — QFiber is defined by
(HaSiSn—l fi)dfn _ d(HaSiSn fi)
[l<icnti-1 7 Tlcicati—1°
For each pair f;, f; € Q5P we have an explicit relation (due to Arnol'd)

A

finf= chbk A oy with ¢, € Q, by € er?ase7 o € inber'
k

W.r.t these relations we define p;[f1]...|fm] = >, ckbk ® [fi]...|fic1| A" Lax|fiza|...| fm]
where the pair f;, fi11 is replaced by the r.h.s. of their Arnol'd relation.

Let [a1]...|]am] be a hyperlogarithm with all a; € Q5¥P. The symbol map is recursively
computed by p:

Wlan]..am] = Aoz Upfaz]..fam] = 3 UGd @ ¢)pifan].|am.

1<i<m

The procedure of taking primitives involves similar steps.
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Properties of B(2,) (Brown '05):

@ They are well-defined functions of n variables, corresponding to end-points of

paths.

@ On these functions, functional relations are algebraic identities.

@ They can be decomposed to an explicit basis.

@ B(Qn) is closed under taking primitives.

@ Let Z be the Q-vector space of multiple zeta values. The limits at 0 and 1 of
functions in B(2,) are Z-linear combinations of elements in B(2,—1).

Consequence: We can integrate over these functions from 0 to 1.
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Integration strategy for a Feynman parameter Xj !

In Feynman parameters: [;° dxm... [o° dxjw with all P; linear in x;;
In cubical coordinates: [;* dxl...fol dtn>>; B, B € B(Qn),
f; having denominators in {tl, vy toy [Tacicp ti — 1}7
integrate here over t, (i.e. over the x; dependence)

In Feynman parameters: [ dxm... [~ dxji1

(I Q) 1({P{})
1P

We can continue if there is a next Feynman parameter x;; in which all polynomials

of the new set {P!} are linear. When is this the case?
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Which are the new polynomials P!?

Example:

Start with the set of polynomials {P1, P2} : Py = A1x; + B1, P2 = Axxj + Bz,

oo 1 A [o'e] 1 )
lo PP OX = lo (Alx,+51)(A2x,-+Bz)dXJ

oo A1 . _ oo Az )
fo (A1Bz*B1A2)(A1Xj+Bl)dXJ fo (A132*31A2)(A2Xj+32)dxf

_ InA;—InAx—In By +In Ba
- A1B2—B1Az

New set: {Al, Bi, Az, Bz, A1Bs — BlAz}

Multiple polylogarithms in several variables



Linear reducibility
Linear reduction algorithm (Brown '08)

@ |If the polynomials S = {P4, ..., Pm} are linear in a Feynman parameter x, ,
consider: op
Pi = Aixry + Bj, Ai = —, hi = Bilx,
n
"] S(,l) = irreducible factors of {A,’}lg,'gm {Bi}1§i§m {B,‘Aj — AiBj}l§i<j§n
@ iterate for a sequence (Xry, Xra; s X, )= S(ry)s S(ry,ra)s +» rayoony )

@ take intersections like: Sp, | ] = S(ry, ) N S(ra, ra)se-

Xrys Xray -oo5 Xy

= S(n)> S, rals - Sy s )

@ S ={P1, ..., Pn} is linearly reducible if for all 1 < k < n every polynomial in
Sir, ..., ] 18 linear in xp, ., .,

@ If S={Ug, F¢} is linearly reducible we call the Feynman graph G linearly
reducible.
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Some linearly reducible (massless) Feynman graphs :

@ all vacuum graphs with vertex width 3 = corresponding propagator-type graphs

(Brown '09)

@ all two-loop graphs with four on-shell legs (and many with three- and four

loops) (CB, Lueders, '13)
@ all minors of linearly reducible graphs (Brown '09, CB, Lueders, '13)
@ all propagator-type graphs with < 4 loops (Panzer '13)
@ all graphs with three off-shell legs and < 3 loops (Panzer '14)

@ all graphs with vertex width 3 with three off-shell legs (Panzer PhD thesis)

@ all ladder-shaped graphs with four off-shell legs (Panzer PhD thesis)
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Applications
1) Parametric Feynman integrals:

As an example consider the one-loop hexagon integral in D = 6 dimensions with
on-shell conditions pf = m?, p,.2 =0,i=2, ..., 6 to the external momenta:

6
2
I:/X, de,-é(l—xe)ﬁ,

;>0

j—1
— 2 _
F = E x,-xj(—s,-j)7 where s;; = E Pk-
i j=0.i<j k=i
Applications of the program




Del-Duca, Duhr and Smirnov (2011) computed the integral, after a simplification to

3
1 [Ty dxi
T 2,52 52 (u2 + x1 + x2)(uzx1 + ui1xz + x2)(uaxix2 + x2 + x1x3 + x3)
14555536 /x>0 (U2 + x1 + x2)(u3xy 1x3 + x2)(Ugx1x2 + X2 + X1X3 + X3
using cross-ratios
2 2 2 2 2 2 2 2
_ 526535 _ 1356 _ Si5524 _ 512536
=32 =53 5,B=55,0= 53"
525536 536514 514525 513526

We introduce new variables u, v, x, y by

1+v _ _(A—u)(=y—x) _ 14v—x
— 14v—u’ uz = (1+y)(—14+u—v)’ Ug = 1+v

With this choice, the limit of each u; at a tangential base-point corresponding to the

ordering (x2, x3, x1, U, v, X, y) is 1.

= We can integrate out x2, X3, Xi.

Our result agrees with the program by Panzer (2014).
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2) Expansion of generalized hypergeometric functions

@ Gaussian hypergeometric function:
2F1(a, i € 2) = X s PpPln 27

ml!

for [z| < 1or|z| =1 and Re(c — a — b) > 0; with Pochhammer-symbol (x), = ——~

@ Generalized hypergeometric functions:

pFa(ai, ..., ap; b1, ..., bg; 2) = Zmzo %%

forq>porq*p—land(\z\<lor\z\7landRe(Zp 1b —Zf;la,')>0

@ Appell functions:In
oF1(a, b; ¢; x) - 2F1(a’, b5 /5 y) = Em>0 En>0 @m(@)n(B)m (B )n xMy"

@m()n  mi

replace terms like (a)m (a/)n by (a)m+n to obtain

b b m.n
Fi(a b, b5 ¢ x, y) = X ppso Zaso QLIOLICIE A NS

(©m+n min!

Fa(a; b, b'; ¢, ¢’; x, y):ZmZOZ"ZOMX Ix| + |yl <1,

©m(cn min!

’ b b/
F3(a, a'; b, b5 ¢i X, ¥) = X >0 Zn>o0 M(m%» Ix[, Iyl <1,

m+n

b 1
Faa b €, 5 % ¥) = Sz oz tnlmin 2l 3 113 <1,

@ Horn functions, Lauricella functions, Kampé de Feriét functions,
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Hypergeometric-functions-approach:

@ Step 1: Express the Feynman integral by hypergeometric functions, e.g. using

the Mellin-Barnes approach.

= The hypergeometric functions depend on the regularization parameter e.
E.g. in pFq(a1, ..., ap, b1, ..., bg; z) the a; and b; are of the form
Aj + e

@ massless case: all \; are integers
@ massive case: some J\; are half-integers

@ Step 2: Use differential properties to reduce hyp. fct. by lowering a; and b; by
integers (e.g using HYPERDIRE by Bytev, Kalmykov, Kniehl, Moch).

@ Step 3: Expansion of the hypergeometric functions at € = 0.
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Solutions to the expansion problem:

@ Moch, Uwer, Weinzierl '02: Use of nested sums as

i1
X. %
. . _ 1 k
Z(n; M1, ooy Mg; X1,y ooy Xk) = E T
n>ig>...>i >0 1 k
with Z(co; my, ..., my; x1, ..., Xk) = Lim,, ..., mqy (Xk, -vy X1)

for the expansion of four types of sums called A, B, C, D. (programs: xsummer
(Moch, Uwer '05), nestedsums (Weinzierl '02))

Examples: The generalized hypergeometric functions ,F, 1 are covered by type

. i T(itag+bye) Tlitagtbge) ;- )
A, (lfw r(i+c:+d:€) r(i+c:+d:e)z(’ +o—1,my, ..., my,xa, ..., X)), aj,¢,0€Z c€EN
The Appell function F» requires the combination of all four algorithms A, B, C,

D.

@ Huber, Maitre '05: Combination of nested sums with an integral-approach for
2F1. (programs: HypExp, HypExp2)
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Expansion by use of integral representations:

2Fi(a, by ¢; z) = % Sl — ) b1 — tz) "2t

for Re(c) > Re(b) > 0 and |arg(l — z)|7

Example:

2F1(1, 14 €63+4¢ 2) = Fgﬁ g e e 7

12D gy o 1 32000 gy 2 (1 A3 Intn? (1) g

0 tz— tz—1

n n In
e [ LR tintge 4 ()

= 1%(22 +2(1=2z)In(1-2))+ Eziz (z4+3(1 = z)In(1 — z) + 2(1 — z)Lix(2))

2% (1 —2) (In(1 — z) + 3Lix(2) — 2Lis(2))

+€3ZL2 1-— Z) (L12(z) + 3L13(Z) + 2L14(Z)) + 0(64) (integr. with MPL, checked with HypExp)

Applications of the program



Integral representations of generalized hypergeometric functions:

pFq(ay, ...; b, ...; z)=

(b, 1 — —a,—
% Jo te A — )P 1 Fy (a1, by, .. zt)dt
for Re(bg) > Re(ap) > 0and (p < gorp=g+1and |arg(l — z)| < 7)

Appell functions:

c w1y c—a—1
Fi(a; b, b'; c; x, y) = r(a)rr((c)_a) fol (1,L,E(1)b(1)—uy)b, du, Re(c) > Re(a) > 0,

Fa(a; b, b'; ¢, 5 x, y)

r(or( c—b’—1(17v)c’—b’—1

1 r1 _ /_1(1—u
= M ety Jo Jo vtV TR dudv,
F3(a, a'; b, b'; 5 x, y)
N 1 b1y b 1 (lmu )
r(b)r(b’)r(c’b*b')u,vzof, uf+v§1u Y e Y
ror)

Fa(a; b; c, ¢'s x(1 - y), y(1 —x)) = T@)T(B)T (c—a)l (c’—b)

11 o _ (1_u)c7371(1_v)5,7b71
<o Jo ut VT T e (

uvxy
(1—w)(1-wy)

-

du dv

>c+c’—a—b—1

Applications of the program



Example for , ;1 Fp:

3F2(2, 146 146 3+€ 246 2)= r(3r+(i)+52+€ I a‘lxyxz))m dx dy

__fo fo 2Xy ldXdy+6f0 1 x(2In(1—xyz) Xizln(ll x)—2lny— 5d dy

—€ fo Jo 2=t (IP(1 = xyz) + In%(1 = x) +In*(y) + 4 + 5In(y) + 2In(1 — x) In(y)

+5In(1 — x) — 2In(1 — xyz) In(1 — x) — 2In(1 — xyz) In(y) — 5In(1 — xyz)) dx dy
+0O(€3)
= z% (z4+(1=2)In(1—-2))+ eziz (524 7(1 — z) In(1 — z) + 2Lix(z) — 4zLi>(z))

+62%5 (42 4+ 9(1 — 2) In(1 — 2) + (7 — 122)Liz(z) — (2 — 62)Liz(2)) + O(e)

(integrated with MPL, checked with HypExp)
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Example for Appell F:

. . F(c) ! a—1 c—a—1 —b —ba
Fl(ar b17b21 C, X, y) = m o t (1-1’) (1—tX) 1(1—ty) dt
1
= % ; 271 — t3)°7 (L — titats) TE1 (1 — tatz) B

is in the appropriate form after introducing the variables t; = x/y, to =y, t3 = t.
As an example we compute

(1—2z)°
(1 — z12023)(1 — z223)

1
Fi(a; b1, bo; ¢ x, y) = r2+o /0

d
F(1+e) “

_ 1 (In(1 = y) = In(1 — x))
x—y

+ﬁ (In(l —y)—In(1—x)+ % In(1 —y)% — % In(1 — x)?

Liz(x) + Liz(y)) + O (€%)
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Outlook: Beyond multiple polylogarithms
A forbidden minor: K4 with four on-shell legs (CB, Liiders '13)

@ J. Henn, A. Smirnov, V. Smirnov 2013, using the differential equations
approach: Evaluation of the K4 up to functions of weight six in the e-expansion
in terms of harmonic polylogarithms,

@ E. Panzer 2014: a change of variables linearizing the polynomials at the critical
step = integration over Feynman parameters = evaluation in terms of
hyperlogarithms to any order

Outlook: Beyond multiple polylogarithms



The massive two-loop sunrise integral (finite in D = 2 dimensions)

my

m3
_ f x1 dxa2 Adx3+x2 dxz Adxy +x3dxg Adxa
—Jo F

S (p?, m1, my, m3)

with o = {[x1 : x2 : x3] € P?|x; > 0, i = 1, 2, 3}

and the Second Symanzik polynomial:
F = —x1xoxap? + (x1x2 + x2x3 + x1x3)(x1m? + xom3 + x3m3)

linearly irreducible, defining an elliptic curve

Outlook: Beyond multiple polylogarithms



@ Casemy =my=m3:

@ Broadhurst, Fleischer, Tarasov (1993): second order differential equation
@ Groote, Pivovarov (2000), Laporta, Remiddi (2004): elliptic integrals

@ Bloch, Vanhove (2013): elliptic dilogarithm

@ Case of arbitrary masses:

@ Berends, Buza, Bshm, Scharf (1994): Lauricella functions

@ Miiller-Stach, Weinzierl, Zayadeh (2012): second order differential

equation

@ Adams, CB, Weinzierl (2013): elliptic integrals

@ Adams, CB, Weinzierl (2014): elliptic dilogarithm

Outlook: Beyond multiple polylogarithms



Adams, CB, Weinzierl (2014):
With functions

oo
ELinm(x; yi q) = Y
J=1 k=1

') ijk

jk
j" kimqj )

1/1 . 1. ) . _
Exo(x; i q) = n (Ele(X) - Ele(X 1) + ELiz; o(x; y; q) — ELiz,0(x "% y; q))

the result for arbitrary masses takes the form

S (p?, m1, mp, m3) q) ZEle o(wi(q); —1; —q)

while for equal masses

w(q)

S (pz, m) = 3-—"""ELis o(r3; —1; —q), with 3 = e ‘77”.

Here 1)(q) solves the homogeneous differential equation (complete elliptic integral),
and w; are functions of g, my, ma, m3 determined by transformations on intersection
points of the elliptic curve with o.

More details: see talk by Luise Adams

Outlook: Beyond multiple polylogarithms



Conclusions:

@ Multiple polylogarithms in several variables are homotopy invariant iterated
integrals with particularly good properties. They are useful for the computation

of Feynman integrals by integrating over Feynman parameters.

@ The expansion of (generalized) hypergeometric functions is a further application
of the integration program for multiple polylogarithms. The approach of
expansion via integral represantions may extend the existing approaches.

@ The two-loop sunrise integral is an example for a case beyond multiple
polylogarithms. For arbitrary particle masses, the integral can be expressed by
integrals over elliptic integrals or - more interestin

Outlook: Beyond multiple polylogarithms



Basic definitions:

Riemann zeta function: {(s) = >, %,
Multiple zeta values: {(s1, ..., Sk)zn1>n2>”.>nk>1 ﬁ for sp, ..., s >0; 51 > 2
21 a3 o)

Expansion of the logarithm: —In(1+2z) =372, (=2)"

n

Multiple polylogarithms:
1

n ok
. _ zy7 ...z, ) .
Li(sy, ..., 50(21, -+ 2k) = Zn1>nz>...>nk>1 S gk 0 Si 21|z <1

=Ty

Euler's Gamma-function: ['(x) = [;* t*~ e~ 'dt for Re(x) > 0

Outlook: Beyond multiple polylogarithms
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Multiple polylogarithms in several variables

Let
k be a field (either R or C),

*]
@ M a smooth manifold over k,

@ ~: [0, 1] - M a smooth path on M,
*]

*]

w1, ..., wp smooth differential 1-forms on M,

v*(w;) = fi(t)dt the pull-back of w; to [0, 1]

Def.: The iterated integral of wy, ..., wp along 7 is

/wn...wlz/ fn(fn)dtn...fl(tl)dtl.
¥ 0<ty<...<tp<1

We use the term iterated integral for k-linear combinations of such integrals.

Outlook: Beyond multiple polylogarithms



From this ©, we want to construct iterated integrals which are homotopy invariant, i.e.

/ wn...w1 = / wp...w1 for homotopic paths vy1,72.
7 V2

Consider tensor products w1 ® ... ® wm = [wi]...|wm] over Q.

Define an operator D by

m m—1
D ([wil..|wm]) = > [wil.|wi—1ldwilwit]...wm] + D [wi . |wi—1lwi A wiya]...|wm]-
i=1 i=1

Def.: A Q—linear combination of tensor products

m
E=" > cu,ilwillwil, 6y, . €Q

=0 iy, ..., 0|

is called integrable word if

D(¢) = 0.

Outlook: Beyond multiple polylogarithms



Consider the integration map

m m
> > il el = >0 c,-l,m,,-,/w,-l...w,-,
=0 i1, ..., 0 =0 iy, ..., v

Theorem (Chen '77): Under certain conditions on  this map is an isomorphism from

integrable words to homotopy invariant iterated integrals.

Our class of homotopy invariant functions:

@ Construct the integrable words of 1-forms in Q.

(for an explicit construction see CB, Brown '12
and cf. Duhr, Gangl, Rhodes '11, Goncharov et al '10)

@ By the integration map obtain the set of multiple polylogarithms in several
variables B(25,).

multiple polylogarithms



Integration procedure for a Feynman parameter Xj !

@ Given: Integrand w with Q, P polynomials in Feynman parameters,

all P linear in x; and | ({P}) iterated integrals with differential forms d—,f

@ Let {P} = {A(xj)} U {B} where all A(x;) depend on x; and all B do not. By a
reverse shuffle we factor I ({P}) = I’ ({B}) - 1" ({A(x))}) -
@ Factor out “trailing zeroes™: I" ({A(xj)}) = Ink(x;) - 1" ({A(x)}) such that
no I ({A(x;)}) begins with %
J
@ For n polynomials in {A(x;)} introduce n cubical coordinates t1, ..., t; as
rational functions in the x; such that:
@ each form is replaced by w € Q,,Hy P and forms independent of Xj
@ each point where all 0 < t; < 1 corresponds to a point where all x; > 0.

@ Integration fol dty...: a) Primitives by concatenation and “symbol map” =
iterated integrals in B(2). b) Limits at t, =0 and t, = 1.

@ Back to Feynman parameters, introducing integration constants due to different
vanishing conditions of the x— and t—integrals.
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A well known functional equation is the five-term-relation:

1- 1- 1 1
—Lis (1_y> —Liz (1_§>+Liz () =Liz (x)=Liz (y) = 5 In*(1=x)+ In*(1-y)
X y

Writing each function as iterated integral on the total space (using 1), the relation
becomes obvious:

. 1—y dx dx dy  xdy + ydx dx dy dx dx dx
L (% ) = |2+ -2 - - S e
1-2 X 1-x 11—y 1-—xy l1—-x1—y X 1—x1—x
. 1—x d d dx  xdy + ydx dx d d d d
Li [ 2= :{_u y __dx | xdy+y ] [ | Y}_{_u_y‘_w
-5 y -y 1—-x 1-—xy l1-x1—y y 11—y 11—y

, dx dy xdy + ydx] . dx dx , dy d
Lis (xy) = [—+—y\%] Lo (x) = [—\ } Lia (y) = {—y\—y}
X y 1—xy x 1—x y 1—y
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Example 1: Vacuum graphs with v = 2L and D =4 :
IG:/ de,x I—Zx, —2
x>0 U

Example 2: Sunrise graph with v =L+1and D =2:

N
IG(AG):/Xgo (de,-x,”l ) <1—Zx,> m

J
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From this €, we want to construct iterated integrals which are homotopy invariant.

Def.: Smooth paths 71, 72 on M are homotopic if their end-points coincide
(i.e. v1(0) = 72(0), v1(1) = v2(1)) and 71 can be continuously transformed into ~».

Def.: An iterated integral is called homotopy invariant if it satisfies

/ Wp...W1 = / Wn...w1
71 72

for homotopic paths ~1, 7.

By such integrals we obtain function of variables given only by the end-points of paths.
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For e an edge of G consider the deletion (G\e) and contraction (G//e) of e
The deletion and contraction of different edges is commutative.

=If C, D are disjoint sets of edges of G then G\D//C is a unique graph.
Any such graph is called minor of G.

Def.: A set G of graphs is called minor-closed if for each G € G all minors belong to

G as well.

Example: The set of all planar graphs is minor-closed.
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B is a minor of A
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Theorem (Robertson and Seymour): Any minor-closed set of graphs can be defined by
a finite set of graphs which are not in the set (so-called forbidden minors).

Example:

The set of planar graphs is the set of all graphs which have neither K5 nor K3 3 as a
minor. (Wagner's theorem)
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Theorem (Brown '09, CB and Liiders '13)

The set of linearly reducible Feynman graphs is minor-closed.

= Search for the forbidden minors!

Case study by M. Liiders:

@ Let A be the set of massless Feynman graphs with four on-shell legs. (On-shell
condition: Pi2 =0,i=1,..,4)

@ At two loops all graphs are linearly reducible.

@ First forbidden minors at three loops.
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