Combinatorial Dyson-Schwinger equations and systems I

Loïc Foissy

Les Houches May 2014

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

イロト イポト イヨト イヨト

Feynman definition Combinatorial structures on Feynman graphs Hopf algebra of Feynman graphs

To a given QFT is attached a family of graphs.

Feynman graphs

- A finite number of possible half-edges.
- A finite number of possible vertices.
- A finite number of possible external half-edges (external structure).
- The graph is connected and 1-PI.

To each external structure is associated a formal series in the Feynman graphs.

くロト (過) (目) (日)

Feynman definition Combinatorial structures on Feynman graphs Hopf algebra of Feynman graphs

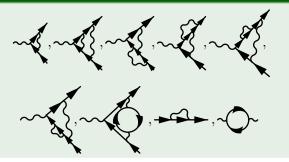
In QED

- Half-edges: \rightarrow (electron), \sim (photon).
- Vertices: ~.
- S External structures: ~ √ , ~ ∅~, ► ∅►.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Feynman definition Combinatorial structures on Feynman graphs Hopf algebra of Feynman graphs

Examples in QED



Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

<ロ> (日) (日) (日) (日) (日)

э

Feynman definition Combinatorial structures on Feynman graphs Hopf algebra of Feynman graphs

Subgraphs and contraction

- A subgraph of a Feynman graph Γ is a subset γ of the set of half-edges Γ such that γ and the vertices of Γ with all half edges in γ is itself a Feynman graph.
- If Γ is a Feynman graph and γ₁,..., γ_k are disjoint subgraphs of Γ, Γ/γ₁..., γ_k is the Feynman graph obtained by contraction of γ₁,..., γ_k.

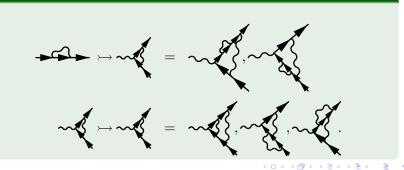
イロト イポト イヨト イヨト 三日

Feynman definition Combinatorial structures on Feynman graphs Hopf algebra of Feynman graphs

Insertion

Let Γ_1 and Γ_2 be two Feynman graphs. According to the external structure of Γ_1 , you can replace a vertex or an edge of Γ_2 by Γ_1 in order to obtain a new Feynman graph.

Examples in QED



Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

Feynman definition Combinatorial structures on Feynman graphs Hopf algebra of Feynman graphs

Construction

Let H_{FG} be a free commutative algebra generated by the set of Feynman graphs. It is given a coproduct: for all Feynman graph Γ ,

$$\Delta(\Gamma) = \sum_{\gamma_1 \dots \gamma_k \subseteq \Gamma} \gamma_1 \dots \gamma_k \otimes \Gamma/\gamma_1 \dots \gamma_k.$$

イロト イポト イヨト イヨト

The Hopf algebra H_{FG} is graded by the number of loops:

$$|\Gamma| = \sharp E(\Gamma) - \sharp V(\Gamma) + 1.$$

Because of the 1-PI condition, it is connected, that is to say $(H_{FG})_0 = K \mathbf{1}_{H_{FG}}$. What is its dual?

Cartier-Quillen-Milnor-Moore theorem

Let H be a cocommutative, graded, connected Hopf algebra over a field of characteristic zero. Then it is the enveloping algebra of its primitive elements.

ヘロン 人間 とくほ とくほ とう

1

Feynman definition Combinatorial structures on Feynman graphs Hopf algebra of Feynman graphs

This theorem can be applied to the graded dual of H_{FG} .

Primitive elements of H_{FG}^*

• Basis of primitive elements: for any Feynman graph Γ,

$$f_{\Gamma}(\gamma_1 \ldots \gamma_k) = \sharp Aut(\Gamma) \delta_{\gamma_1 \ldots \gamma_k, \Gamma}.$$

• The Lie bracket is given by:

$$[f_{\Gamma_1}, f_{\Gamma_2}] = \sum_{\Gamma = \Gamma_1 \rightarrowtail \Gamma_2} f_{\Gamma} - \sum_{\Gamma = \Gamma_2 \rightarrowtail \Gamma_1} f_{\Gamma}.$$

イロト イポト イヨト イヨト

Feynman definition Combinatorial structures on Feynman graphs Hopf algebra of Feynman graphs

We define:

$$f_{\Gamma_1} \circ f_{\Gamma_2} = \sum_{\Gamma = \Gamma_1
ightarrow \Gamma_2} f_{\Gamma}.$$

The product \circ is not associative, but satisfies:

$$f_1 \circ (f_2 \circ f_3) - (f_1 \circ f_2) \circ f_3 = f_2 \circ (f_1 \circ f_3) - (f_2 \circ f_1) \circ f_3$$

It is (left) prelie.

イロト 不得 とくほ とくほとう

ъ

Insertion operators Examples of Dyson-Schwinger equations

In the context of QFT, we shall consider some special infinite sums of Feynman graphs:

Example in QED

$$\mathbf{x}^{n} = \sum_{n \ge 1} x^{n} \left(\sum_{\gamma \in \mathbf{x}^{n} \in \mathbf{x}^{n}} \mathbf{s}_{\gamma} \gamma \right).$$
$$\mathbf{x}^{n} = -\sum_{n \ge 1} x^{n} \left(\sum_{\gamma \in \mathbf{x}^{n} \in \mathbf{x}^{n} \in \mathbf{x}^{n}} \mathbf{s}_{\gamma} \gamma \right).$$

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

イロト 不得 とくほ とくほ とう

Insertion operators Examples of Dyson-Schwinger equations

Example in QED

$$\bullet \oslash \bullet = -\sum_{n \ge 1} x^n \left(\sum_{\gamma \in \bullet \oslash \bullet} s_{\gamma \gamma} \right).$$

They live in the completion of H_{FG} .

ヘロト 人間 とくほとくほとう

3

How to describe these formal series?

- For any primitive Feynman graph *γ*, one defines the insertion operator *B_γ* over *H_{FG}*. This operator associates to a graph *G* the sum (with symmetry coefficients) of the insertions of *G* into *γ*.
- The propagators then satisfy a system of equations involving the insertion operators, called systems of Dyson-Schwinger equations.

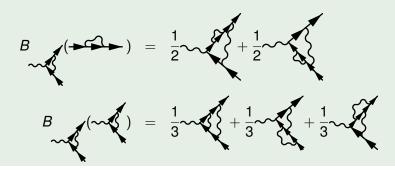
ヘロト ヘアト ヘビト ヘビト

æ

Insertion operators Examples of Dyson-Schwinger equations

Example

In QED :



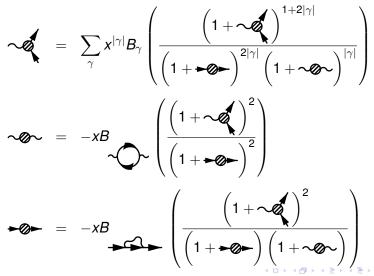
Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

ヘロト 人間 とくほとくほとう

ъ

Insertion operators Examples of Dyson-Schwinger equations

In QED:



Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

Insertion operators Examples of Dyson-Schwinger equations

Other example (Bergbauer, Kreimer)

$$X = \sum_{\gamma \text{ primitive}} B_{\gamma} \left((1+X)^{|\gamma|+1} \right).$$

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

イロン 不同 とくほ とくほ とう

ъ

Insertion operators Examples of Dyson-Schwinger equations

Question

For a given system of Dyson-Schwinger equations (S), is the subalgebra generated by the homogeneous components of (S) a Hopf subalgebra?

ヘロト 人間 ト ヘヨト ヘヨト

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is *H*_f a Hopf subalgebra?

Proposition

The operators B_{γ} satisfy: for all $x \in H_{FG}$,

$$\Delta \circ B_{\gamma}(x) = B_{\gamma}(x) \otimes 1 + (Id \otimes B_{\gamma}) \circ \Delta(x).$$

This relation allows to lift any system of Dyson-Schwinger equation to the Hopf algebra of decorated rooted trees.

ヘロト 人間 ト ヘヨト ヘヨト

æ

The Hopf algebra of rooted trees H_R (or Connes-Kreimer Hopf algebra) is the free commutative algebra generated by the set of rooted trees.

$$., \mathbf{r}, \mathbf{v}, \mathbf{\tilde{t}}, \mathbf{w}, \mathbf{\tilde{v}}, \mathbf{Y}, \mathbf{\tilde{t}}, \mathbf{v}, \mathbf{\tilde{v}}, \mathbf{\tilde{$$

The set of rooted forests is a linear basis of H_R :

$$1, \dots, 1, \dots, 1, \dots, 1, \nabla, \overline{1}, \dots, 1, \dots, 11, \nabla, \overline{1}, \nabla, \overline{1}, \overline{\nabla}, \overline{V}, \overline{V$$

イロト イポト イヨト イヨト

The coproduct is given by admissible cuts:

$$\Delta(t) = \sum_{c \text{ admissible cut}} P^{c}(t) \otimes R^{c}(t).$$

cutc	V	4	Ť	¥	÷.	↓	*	÷	total
Admissible ?	yes	yes	yes	yes	no	yes	yes	no	yes
<i>W^c</i> (<i>t</i>)	V	11	. v	I.		I	I	••••	V
$R^{c}(t)$	V	I	v	Ŧ	×	•	I	×	1
$P^{c}(t)$	1	I	•	•	×	1.	••	×	V

 $\Delta(\stackrel{!}{\vee}) = \stackrel{!}{\vee} \otimes 1 + 1 \otimes \stackrel{!}{\vee} + 1 \otimes 1 + . \otimes \vee + . \otimes \stackrel{!}{\vee} + 1 \otimes . + . \otimes \stackrel{!}{\vee} .$

・ロット (雪) () () () ()

The grafting operator of H_R is the map $B : H_R \longrightarrow H_R$, associating to a forest $t_1 \dots t_n$ the tree obtained by grafting t_1, \dots, t_n on a common root. For example:

$$B(1.) = V.$$

Proposition

For all $x \in H_R$:

$$\Delta \circ B(x) = B(x) \otimes 1 + (Id \otimes B) \circ \Delta(x).$$

So *B* is a 1-cocycle of H_R .

イロト イポト イヨト イヨト

э.

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is H_f a Hopf subalgebra?

Universal property

Let *A* be a commutative Hopf algebra and let $L : A \longrightarrow A$ be a 1-cocycle of *A*. Then there exists a unique Hopf algebra morphism $\phi : H_R \longrightarrow A$ with $\phi \circ B = L \circ \phi$.

This will be generalized to the case of several 1-cocycles with the help of decorated rooted trees.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- *H_R* is graded by the number of vertices and *B* is homogeneous of degree 1.
- Let $Y = B_{\gamma}(f(Y))$ be a Dyson-Schwinger equation in a suitable Hopf algebra of Feynman graphs H_{FG} , such that $|\gamma| = 1$.
- There exists a Hopf algebra morphism $\phi : H_R \longrightarrow H_{FG}$, such that $\phi \circ B = B_{\gamma} \circ \phi$. This morphism is homogeneous of degree 0.
- Let X be the solution of X = B(f(X)). Then $\phi(X) = Y$ and for all $n \ge 1$, $\phi(X(n)) = Y(n)$.
- Consequently, if the subalgebra generated by the X(n)'s is Hopf, so is the subalgebra generated by the Y(n)'s.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

E DQC

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is $\mathcal{H}_{\rm f}$ a Hopf subalgebra?

Definition

Let $f(h) \in \mathbb{C}[[h]]$.

• The combinatorial Dyson-Schwinger equations associated to *f*(*h*) is:

$$X=B(f(X)),$$

where X lives in the completion of H_R .

• This equation has a unique solution $X = \sum X(n)$, with:

$$\begin{cases} X(1) = p_{0}, \\ X(n+1) = \sum_{k=1}^{n} \sum_{a_1+\ldots+a_k=n} p_k B(X(a_1)\ldots X(a_k)), \end{cases}$$

where $f(h) = p_0 + p_1 h + p_2 h^2 + ...$

ヘロト ヘアト ヘビト ヘビト

3

 Feynman graphs
 Introduction

 Dyson-Schwinger equations
 Hopf algebra of rooted trees

 Reformulation with trees
 Combinatorial Dyson-Schwinger equations

 More realistic Dyson-Schwinger equations
 When is H_f a Hopf subalgebra?

$$\begin{array}{rcl} X(1) &=& p_0 \, \cdot \, , \\ X(2) &=& p_0 p_1 \, \imath \, , \\ X(3) &=& p_0 p_1^2 \, \dot \imath \, + p_0^2 p_2 \, \, \lor \, , \\ X(4) &=& p_0 p_1^3 \, \dot \imath \, + p_0^2 p_1 p_2 \, \, \dot \lor \, + 2 p_0^2 p_1 p_2 \, \, \dot \lor \, + p_0^3 p_3 \, \, \heartsuit \, . \end{array}$$

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is H_f a Hopf subalgebra?

Examples

• If
$$f(h) = 1 + h$$
:

$$X = . + 1 + \frac{1}{2} + \frac{1}{2} + ...$$
• If $f(h) = (1 - h)^{-1}$:

$$X = . + 1 + \forall + \frac{1}{2} + \forall + 2 \sqrt[3]{2} + \sqrt[3]{2} + \frac{1}{2} + \frac{1$$

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is *H_f* a Hopf subalgebra?

Let $f(h) \in \mathbb{C}[[h]]$. The homogeneous components of the unique solution of the combinatorial Dyson-Schwinger equation associated to f(h) generate a subalgebra of H_R denoted by H_f .

H_f is not always a Hopf subalgebra

For example, for $f(h) = 1 + h + h^2 + 2h^3 + \cdots$, then:

$$X = . + I + \vee + I + 2 \Psi + 2 \bigvee + Y + I + \cdots$$

So:

$$\begin{array}{lll} \Delta(X(4)) &=& X(4) \otimes 1 + 1 \otimes X(4) + (10X(1)^2 + 3X(2)) \otimes X(2) \\ && + (X(1)^3 + 2X(1)X(2) + X(3)) \otimes X(1) \\ && + X(1) \otimes (8 \ \vee \ + 5^{\frac{1}{2}}). \end{array}$$

ヘロト ヘアト ヘビト ヘビト

3

If f(0) = 0, the unique solution of X = B(f(X)) is 0. From now, up to a normalization we shall assume that f(0) = 1.

Theorem

Let $f(h) \in \mathbb{C}[[h]]$, with f(0) = 1. The following assertions are equivalent:

- H_f is a Hopf subalgebra of H_R .
- 2 There exists $(\alpha, \beta) \in \mathbb{C}^2$ such that $(1 \alpha\beta h)f'(h) = \alpha f(h)$.
- So There exists $(\alpha, \beta) \in \mathbb{C}^2$ such that f(h) = 1 if $\alpha = 0$ or

$$f(h) = e^{\alpha h}$$
 if $\beta = 0$ or $f(h) = (1 - \alpha \beta h)^{-\frac{1}{\beta}}$ if $\alpha \beta \neq 0$.

イロト イポト イヨト イヨト

1

1 \implies 2. We put $f(h) = 1 + p_1h + p_2h^2 + \cdots$. Then $X(1) = \cdot$. Let us write:

 $\Delta(X(n+1)) = X(n+1) \otimes 1 + 1 \otimes X(n+1) + X(1) \otimes Y(n) + \dots$

- Sy definition of the coproduct, Y(n) is obtained by cutting a leaf in all possible ways in X(n+1). So it is a linear span of trees of degree *n*.
- 2 As H_f is a Hopf subalgebra, Y(n) belongs to H_f .

Hence, there exists a scalar λ_n such that $Y(n) = \lambda_n X_n$.

イロト 不得 とくほと くほとう

э.

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is *H_f* a Hopf subalgebra?

lemma

Let us write:

$$X=\sum_t a_t t.$$

For any rooted tree t:

$$\lambda_{|t|}a_t=\sum_{t'}n(t,t')a_{t'},$$

where n(t, t') is the number of leaves of t' such that the cut of this leaf gives t.

イロト イポト イヨト イヨト

E DQC

We here assume that *f* is not constant. We can prove that $p_1 \neq 0$.

For *t* the ladder $(B)^n(1)$, we obtain:

$$p_1^{n-1}\lambda_n = 2(n-1)p_1^{n-2}p_2 + p_1^n.$$

Hence:

$$\lambda_n = 2 \frac{p_2}{p_1}(n-1) + p_1.$$

We put $\alpha = p_1$ and $\beta = 2\frac{p_2}{p_1^2} - 1$, then: $\lambda_n = \alpha(1 + (n - 1)(1 + \beta)).$

イロト 不得 とくほ とくほとう

э.

For *t* the corolla $B(.^{n-1})$, we obtain:

$$\lambda_n p_{n-1} = np_n + (n-1)p_{n-1}p_1.$$

Hence:

$$\alpha(1+(n-1)\beta)p_{n-1}=np_n.$$

Summing:

$$(1 - \alpha\beta h)f'(h) = \alpha f(h).$$

イロト 不得 とくほと くほとう

E DQC

 Feynman graphs
 Introduction

 Dyson-Schwinger equations
 Hopf algebra of rooted trees

 Reformulation with trees
 Combinatorial Dyson-Schwinger equations

 More realistic Dyson-Schwinger equations
 When is H_f a Hopf subalgebra?

$$X(1) = .,$$

$$X(2) = \alpha i,$$

$$X(3) = \alpha^{2} \left(\frac{(1+\beta)}{2} \vee + i \right),$$

$$X(4) = \alpha^{3} \left(\frac{(1+2\beta)(1+\beta)}{6} \vee + (1+\beta) \vee + \frac{(1+\beta)}{2} \vee + i \right),$$

$$X(5) = \alpha^{4} \left(\begin{array}{c} \frac{(1+3\beta)(1+2\beta)(1+\beta)}{24} \vee + (1+\beta) \vee + \frac{(1+2\beta)(1+\beta)}{2} \vee \\ + \frac{(1+\beta)^{2}}{2} \vee + (1+\beta) \vee + \frac{(1+2\beta)(1+\beta)}{6} \vee \\ + \frac{(1+\beta)}{2} \vee + (1+\beta) \vee + \frac{(1+\beta)}{2} + i \end{array} \right).$$

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I

Particular cases

• If $(\alpha, \beta) = (1, -1)$, f = 1 + h and $X(n) = (B)^n(1)$ for all n.

• If
$$(\alpha, \beta) = (1, 1), f = (1 - h)^{-1}$$
 and:

$$X(n) = \sum_{|t|=n} \# \{ \text{embeddings of } t \text{ in the plane} \} t.$$

• Si
$$(\alpha, \beta) = (1, 0), f = e^h$$
 and:

$$X(n) = \sum_{|t|=n} \frac{1}{\sharp \{\text{symmetries of } t\}} t.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(Left) prelie algebra

A prelie algebra \mathfrak{g} is a vector space with a linear product \circ such that for all $x, y, z \in \mathfrak{g}$:

$$x \circ (y \circ z) - (x \circ y) \circ z = y \circ (x \circ z) - (y \circ x) \circ z$$

Associated Lie bracket

If \circ is a prelie product on $\mathfrak{g},$ its antisymmetrization is a Lie bracket.

ヘロン 人間 とくほ とくほ とう

1

Primitive elements of the dual of H_R

For any rooted tree *t* let us define:

$$f_t: \left\{ \begin{array}{ccc} H_R & \longrightarrow & \mathbb{C} \\ F & \longrightarrow & s_t \delta_{F,t}. \end{array} \right.$$

The family (f_t) is a basis of the primitive elements of H_R^* . The Lie bracket is given by:

$$[f_{t_1}, f_{t_2}] = \sum_{t'=t_1 \rightarrowtail t_2} f_{t'} - \sum_{t'=t_2 \rightarrowtail t_1} f_{t'}.$$

$$[\centerdot, \ \forall \] = \ \Psi \ + \ \overset{l}{\vee} \ + \ \overset{l}{\vee} \ - \ \overset{l}{\Upsilon} \ = \ \Psi \ + \ 2 \overset{l}{\vee} \ - \ \overset{l}{\Upsilon}$$

くロト (過) (目) (日)

 Feynman graphs
 Introduction

 Dyson-Schwinger equations
 Hopf algebra of rooted trees

 Reformulation with trees
 Combinatorial Dyson-Schwinger equa

 More realistic Dyson-Schwinger equations
 When is H_f a Hopf subalgebra?

We define:

$$f_{t_1} \circ f_{t_2} = \sum_{t'=t_1 \mapsto t_2} f_{t'}.$$

This product is prelie.

Theorem (Chapoton-Livernet)

As a prelie algebra, $Prim(H_R^*)$ is freely generated by f_{\bullet} .

イロン 不同 とくほ とくほ とう

æ

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is *H_f* a Hopf subalgebra?

Faà di Bruno prelie algebra

 \mathfrak{g}_{FdB} has a basis $(e_i)_{i\geq 1}$, and the prelie product is defined by:

$$\boldsymbol{e}_i \circ \boldsymbol{e}_j = (j + \lambda) \boldsymbol{e}_{i+j}.$$

For all $i, j, k \ge 1$:

$$oldsymbol{e}_i \circ (oldsymbol{e}_j \circ oldsymbol{e}_k) - (oldsymbol{e}_i \circ oldsymbol{e}_j) \circ oldsymbol{e}_k = oldsymbol{k}(oldsymbol{k} + \lambda) oldsymbol{e}_{i+j+k}.$$

イロト 不得 とくほ とくほ とう

э.

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is *H_f* a Hopf subalgebra?

Theorem

• If
$$\beta \neq -1$$
 and $\alpha = 1$,

$$\Delta(X) = X \otimes 1 + \sum_{i=1}^{\infty} (1 + \lambda X)^{1 + \frac{i}{\lambda}} \otimes X(j)$$

with
$$\lambda = \frac{-1}{1+\beta}$$
.
• If $\beta = -1$ and $\alpha = 1$,
 $\Delta(X) = 1 \otimes X + X \otimes 1 + X \otimes X$.

ヘロト 人間 とくほとくほとう

ъ

Introduction Hopf algebra of rooted trees Combinatorial Dyson-Schwinger equations When is *H*_f a Hopf subalgebra?

Corollary

Il $\alpha \neq 0$, the prelie algebra of the primitive elements of the dual of the Hopf algebra generated by the X(i)'s has a basis $(e_i)_{i\geq 1}$.

- If $\beta \neq -1$, $e_i \circ e_j = (\lambda + j)e_{i+j}$ (Faà di Bruno case).
- If $\beta = -1$, $e_i \circ e_j = e_{i+j}$ (symmetric case).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

In QFT, generally Dyson-Schwinger equations involve several 1-cocycles, for example [Bergbauer-Kreimer]:

$$X = \sum_{n=1}^{\infty} B_n((1+X)^{n+1}),$$

where B_n is the insertion operator into a primitive Feynman graph with *n* loops.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

Let I be a set. Set of rooted trees decorated by I:

$${}^{b}\mathbb{V}^{c}_{a}{}^{d} = {}^{b}\mathbb{V}^{d}_{a}{}^{c} = \ldots = {}^{d}\mathbb{V}^{c}_{a}{}^{b}{}, {}^{b}\mathbb{V}^{d}_{a}{}^{d} = {}^{d}\mathbb{V}^{c}_{a}{}^{b}{}, {}^{C}\mathbb{V}^{d}_{a}{}^{d} = {}^{d}\mathbb{V}^{c}_{a}{}^{b}{}, {}^{d}\mathbb{V}^{d}_{a}{}^{c}{}, {}^{d}\mathbb{V}^{d}_{a}{}^{d}{}, {}^{d}\mathbb{V}^{d}_{a}{}, {}^{d}\mathbb{V}^{d}_{a}{},$$

The Connes-Kreimer construction is extended to obtain the Hopf algebra H_R^l .

$$\Delta(\overset{a^{\dagger}}{\overset{b}{V}_{d}}^{c}) = \overset{a^{\dagger}}{\overset{b}{V}_{d}}^{c} \otimes 1 + 1 \otimes \overset{a^{\dagger}}{\overset{b}{V}_{d}}^{c} + \mathfrak{l}^{a}_{b} \otimes \mathfrak{l}^{c}_{d} + \mathfrak{s}_{a} \otimes \overset{b}{V}_{d}^{c} + \mathfrak{s}_{c} \otimes \mathfrak{s}_{d} \otimes \mathfrak{s}_{d}$$

イロト イポト イヨト イヨト

э.

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

For all $d \in I$, there is a grafting operator $B_d : H_R^I \longrightarrow H_R^I$. For example, if $a, b, c, d \in I$:

$$B_a(\mathfrak{l}_{b \cdot d}^c) = \bigvee_{a \cdot d}^{c \cdot d}$$

Proposition

For all $a \in I$, $x \in H_B^l$:

$$\Delta \circ B_a(x) = B_a(x) \otimes 1 + (Id \otimes B_a) \circ \Delta(x).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

Universal property

Let *A* be a commutative Hopf algebra and for all $a \in I$, let $L_a : A \longrightarrow A$ such that for all $x \in A$:

$$\Delta \circ L_a(x) = L_a(x) \otimes 1 + (Id \otimes L_a) \circ \Delta(x).$$

Then there exists a unique Hopf algebra morphism $\phi: H'_R \longrightarrow A$ with $\phi \circ B_a = L_a \circ \phi$ for all $a \in A$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

Definitions

Let *I* be a graded set and let $f_i(h) \in \mathbb{C}[[h]]$ for all $i \in I$.

 The combinatorial Dyson-Schwinger equations associated to (f_i(h))_{i∈1} is:

$$X=\sum_{i\in I}B_i(f_i(X)),$$

where X lives in the completion of H_B^l .

- This equation has a unique solution $X = \sum X(n)$.
- The subalgebra of H_R^l generated by the X(n)'s is denoted by $H_{(f)}$.
- We shall say that the equation is Hopf if *H*_(*f*) is a Hopf subalgebra.

イロト イポト イヨト イヨト

1

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

Lemma

Let us assume that the equation associated to (*f*) is Hopf. If $f_i(0) = 0$, then $f_i = 0$.

We now assume that $f_i(0) = 1$ for all $i \in I$.

Lemma

Let us assume that the equation associated to (*f*) is Hopf. If $i, j \in I$ have the same degree, then $f_i = f_j$.

Grouping 1-cocycles by degrees, we now assume that $I \subseteq \mathbb{N}^*$.

イロト イポト イヨト イヨト 一臣

Let us choose $i \in I$. We restrict our solution to *i*, that is to say we delete any tree with a decoration which is not equal to *i*. The obtained element X' is solution of:

$$X'=B_i(f_i(X')),$$

and this equation is Hopf. By the study of equations with only one 1-cocycle:

Lemma

For all $i \in I$, there exists $\alpha_i, \beta_i \in \mathbb{C}$ such that :

$$f_i = \begin{cases} e^{\alpha_i h} \text{ if } \beta_i = 0, \\ (1 - \alpha_i \beta_i h)^{-1/\beta_i} \text{ if } \beta_i \neq 0. \end{cases}$$

イロト イポト イヨト イヨト

1

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

Theorem

One of the following assertions holds:

• there exists $\lambda, \mu \in \mathbb{C}$ such that, if we put:

$$egin{aligned} \mathcal{Q}(h) = \left\{ egin{aligned} (1-\mu h)^{-rac{\lambda}{\mu}} & ext{if } \mu
eq 0, \ e^{\lambda h} & ext{if } \mu = 0, \end{aligned}
ight. \end{aligned}$$

then:

$$(E): \mathbf{x} = \sum_{i \in I} B_j \left((1 - \mu \mathbf{x}) Q(\mathbf{x})^i \right).$$

2 There exists $m \ge 0$ and $\alpha \in \mathbb{C} - \{0\}$ such that:

$$(E): x = \sum_{\substack{i \in I \\ m \mid i}} B_i(1 + \alpha x) + \sum_{\substack{i \in I \\ m \nmid i}} B_i(1).$$

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

Theorem

For all $\lambda, \mu \in \mathbb{C}$, the algebra generated by the components of the solution of the Dyson-Schwinger equation of the first type is a Hopf subalgebra.

Corollary

If
$$\mu \neq -1$$
 and $\lambda = 1 + \mu$,

$$\Delta(X) = X \otimes 1 + \sum_{j=1}^{\infty} (1 + \lambda' X)^{1 + \frac{j}{\lambda'}} \otimes X(j),$$

with
$$\lambda' = \frac{-1}{1+\mu}$$
.

ヘロト ヘアト ヘビト ヘビト

ъ

Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles Associated prelie algebras

Description of the prelie algebra in the second case: to simplify, we assume that $1 \in I$.

Theorem

$$X = \sum_{\substack{i \in I \\ m \mid j}} B_i(1 + \alpha X) + \sum_{\substack{i \in I \\ m \not\mid i}} B_i(1),$$

with $\alpha \in \mathbb{C} - \{0\}$. The dual of $H_{(f)}$ is the enveloping algebra of a pre-Lie algebra \mathfrak{g} , such that:

- \mathfrak{g} has a basis $(f_i)_{i\geq 1}$.
- For all $i, j \ge 1$:

$$f_i \circ f_j = \begin{cases} 0 \text{ if } m \not| j, \\ f_{i+j} \text{ if } m \mid j. \end{cases}$$

The product \circ is associative.

ヘロン 人間 とくほ とくほ とう

1