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To a given QFT is attached a family of graphs.

Feynman graphs
1 A finite number of possible half-edges.
2 A finite number of possible vertices.
3 A finite number of possible external half-edges (external

structure).
4 The graph is connected and 1-PI.

To each external structure is associated a formal series in the
Feynman graphs.
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In QED

1 Half-edges: (electron), (photon).

2 Vertices: .

3 External structures: , , .
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Examples in QED

, , , , ,

, , ,
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Subgraphs and contraction
1 A subgraph of a Feynman graph Γ is a subset γ of the set

of half-edges Γ such that γ and the vertices of Γ with all
half edges in γ is itself a Feynman graph.

2 If Γ is a Feynman graph and γ1, . . . , γk are disjoint
subgraphs of Γ, Γ/γ1 . . . γk is the Feynman graph obtained
by contraction of γ1, . . . , γk .
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Insertion
Let Γ1 and Γ2 be two Feynman graphs. According to the
external structure of Γ1, you can replace a vertex or an edge of
Γ2 by Γ1 in order to obtain a new Feynman graph.

Examples in QED

� = ,

� = , , .
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Construction
Let HFG be a free commutative algebra generated by the set of
Feynman graphs. It is given a coproduct: for all Feynman graph
Γ,

∆(Γ) =
∑

γ1...γk⊆Γ

γ1 . . . γk ⊗ Γ/γ1 . . . γk .

∆( ) = ⊗1+1⊗ + ⊗ .
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The Hopf algebra HFG is graded by the number of loops:

|Γ| = ]E(Γ)− ]V (Γ) + 1.

Because of the 1-PI condition, it is connected, that is to say
(HFG)0 = K 1HFG . What is its dual?

Cartier-Quillen-Milnor-Moore theorem
Let H be a cocommutative, graded, connected Hopf algebra
over a field of characteristic zero. Then it is the enveloping
algebra of its primitive elements.
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This theorem can be applied to the graded dual of HFG.

Primitive elements of H∗FG

Basis of primitive elements: for any Feynman graph Γ,

fΓ(γ1 . . . γk ) = ]Aut(Γ)δγ1...γk ,Γ.

The Lie bracket is given by:

[fΓ1 , fΓ2 ] =
∑

Γ=Γ1�Γ2

fΓ −
∑

Γ=Γ2�Γ1

fΓ.
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We define:
fΓ1 ◦ fΓ2 =

∑
Γ=Γ1�Γ2

fΓ.

The product ◦ is not associative, but satisfies:

f1 ◦ (f2 ◦ f3)− (f1 ◦ f2) ◦ f3 = f2 ◦ (f1 ◦ f3)− (f2 ◦ f1) ◦ f3.

It is (left) prelie.
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In the context of QFT, we shall consider some special infinite
sums of Feynman graphs:

Example in QED

=
∑
n≥1

xn


∑

γ∈ (n)

sγγ

 .

= −
∑
n≥1

xn


∑

γ∈ (n)

sγγ

 .
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Example in QED

= −
∑
n≥1

xn


∑

γ∈ (n)

sγγ

 .

They live in the completion of HFG.
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How to describe these formal series?
For any primitive Feynman graph γ, one defines the
insertion operator Bγ over HFG. This operator associates to
a graph G the sum (with symmetry coefficients) of the
insertions of G into γ.
The propagators then satisfy a system of equations
involving the insertion operators, called systems of
Dyson-Schwinger equations.
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Example
In QED :

B ( ) =
1
2

+
1
2

B ( ) =
1
3

+
1
3

+
1
3
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In QED:

=
∑
γ

x |γ|Bγ


(

1 +

)1+2|γ|

(
1 +

)2|γ|(
1 +

)|γ|


= −xB


(

1 +

)2

(
1 +

)2



= −xB


(

1 +

)2

(
1 +

)(
1 +

)


Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I



Feynman graphs
Dyson-Schwinger equations

Reformulation with trees
More realistic Dyson-Schwinger equations

Insertion operators
Examples of Dyson-Schwinger equations

Other example (Bergbauer, Kreimer)

X =
∑

γ primitive
Bγ
(

(1 + X )|γ|+1
)
.
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Question
For a given system of Dyson-Schwinger equations (S), is the
subalgebra generated by the homogeneous components of (S)
a Hopf subalgebra?
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Proposition
The operators Bγ satisfy: for all x ∈ HFG,

∆ ◦ Bγ(x) = Bγ(x)⊗ 1 + (Id ⊗ Bγ) ◦∆(x).

This relation allows to lift any system of Dyson-Schwinger
equation to the Hopf algebra of decorated rooted trees.
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The Hopf algebra of rooted trees HR (or Connes-Kreimer Hopf
algebra) is the free commutative algebra generated by the set
of rooted trees.

q , qq , q∨qq , qqq , q∨qq q , q∨qqq , q∨qq q , qqqq , q∨qq�Hq q
, q∨qq qq , q∨qq qq , q∨qq∨q q, q∨qqq

q
,

q∨qq qq , q∨qq qq , qqq∨
q q
, qqqqq , . . .

The set of rooted forests is a linear basis of HR:

1, q , q q , qq , q q q , qq q , q∨qq , qqq , q q q , qq q q , qq qq , q∨qq q , qqq q , q∨qq q , q∨qqq , q∨qq q , qqqq . . .
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The coproduct is given by admissible cuts:

∆(t) =
∑

c admissible cut
Pc(t)⊗ Rc(t).

cutc q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq total
Admissible ? yes yes yes yes no yes yes no yes

W c(t) q∨qqq qq qq q q∨qq qqq q q q qq qq q q qq q q q q q q q∨qqq
Rc(t) q∨qqq qq q∨qq qqq × q qq × 1

Pc(t) 1 qq q q × qq q q q × q∨qqq
∆( q∨qqq ) = q∨qqq ⊗1+1⊗ q∨qqq + qq ⊗ qq + q⊗ q∨qq + q⊗ qqq + qq q⊗ q + q q⊗ qq .
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The grafting operator of HR is the map B : HR −→ HR,
associating to a forest t1 . . . tn the tree obtained by grafting
t1, . . . , tn on a common root. For example:

B( qq q) = q∨qqq .
Proposition
For all x ∈ HR:

∆ ◦ B(x) = B(x)⊗ 1 + (Id ⊗ B) ◦∆(x).

So B is a 1-cocycle of HR.
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Universal property
Let A be a commutative Hopf algebra and let L : A −→ A be a
1-cocycle of A. Then there exists a unique Hopf algebra
morphism φ : HR −→ A with φ ◦ B = L ◦ φ.

This will be generalized to the case of several 1-cocycles with
the help of decorated rooted trees.
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HR is graded by the number of vertices and B is
homogeneous of degree 1.
Let Y = Bγ(f (Y )) be a Dyson-Schwinger equation in a
suitable Hopf algebra of Feynman graphs HFG, such that
|γ| = 1.
There exists a Hopf algebra morphism φ : HR −→ HFG,
such that φ ◦ B = Bγ ◦ φ. This morphism is homogeneous
of degree 0.
Let X be the solution of X = B(f (X )). Then φ(X ) = Y and
for all n ≥ 1, φ(X (n)) = Y (n).
Consequently, if the subalgebra generated by the X (n)’s is
Hopf, so is the subalgebra generated by the Y (n)’s.
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Definition
Let f (h) ∈ C[[h]].

The combinatorial Dyson-Schwinger equations associated
to f (h) is:

X = B(f (X )),

where X lives in the completion of HR.
This equation has a unique solution X =

∑
X (n), with:

X (1) = p0 q ,
X (n + 1) =

n∑
k=1

∑
a1+...+ak =n

pkB(X (a1) . . .X (ak )),

where f (h) = p0 + p1h + p2h2 + . . .
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X (1) = p0 q ,
X (2) = p0p1 qq ,
X (3) = p0p2

1 qqq + p2
0p2 q∨qq ,

X (4) = p0p3
1 qqqq + p2

0p1p2
q∨qq q + 2p2

0p1p2 q∨qqq + p3
0p3 q∨qq q .
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Examples

If f (h) = 1 + h:

X = q + qq + qqq + qqqq + qqqqq + · · ·

If f (h) = (1− h)−1:

X = q + qq + q∨qq + qqq + q∨qq q + 2 q∨qqq +
q∨qq q + qqqq

+ q∨qq�Hq q
+ 3 q∨qq qq + q∨qq qq + 2 q∨qq∨qq + 2 q∨qqq

q
+

q∨qq qq + 2 q∨qq qq + qqq∨
q q

+ qqqqq + · · ·
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Let f (h) ∈ C[[h]]. The homogeneous components of the unique
solution of the combinatorial Dyson-Schwinger equation
associated to f (h) generate a subalgebra of HR denoted by Hf .

Hf is not always a Hopf subalgebra

For example, for f (h) = 1 + h + h2 + 2h3 + · · · , then:

X = q + qq + q∨qq + qqq + 2 q∨qq q + 2 q∨qqq +
q∨qq q + qqqq + · · ·

So:

∆(X (4)) = X (4)⊗ 1 + 1⊗ X (4) + (10X (1)2 + 3X (2))⊗ X (2)

+(X (1)3 + 2X (1)X (2) + X (3))⊗ X (1)

+X (1)⊗ (8 q∨qq + 5 qqq).
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If f (0) = 0, the unique solution of X = B(f (X )) is 0. From now,
up to a normalization we shall assume that f (0) = 1.

Theorem
Let f (h) ∈ C[[h]], with f (0) = 1. The following assertions are
equivalent:

1 Hf is a Hopf subalgebra of HR.
2 There exists (α, β) ∈ C2 such that (1− αβh)f ′(h) = αf (h).
3 There exists (α, β) ∈ C2 such that f (h) = 1 if α = 0 or

f (h) = eαh if β = 0 or f (h) = (1− αβh)−
1
β if αβ 6= 0.
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1 =⇒ 2. We put f (h) = 1 + p1h + p2h2 + · · · . Then X (1) = q .
Let us write:

∆(X (n + 1)) = X (n + 1)⊗ 1 + 1⊗X (n + 1) + X (1)⊗Y (n) + . . . .

1 By definition of the coproduct, Y (n) is obtained by cutting a
leaf in all possible ways in X (n + 1). So it is a linear span
of trees of degree n.

2 As Hf is a Hopf subalgebra, Y (n) belongs to Hf .
Hence, there exists a scalar λn such that Y (n) = λnXn.
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lemma
Let us write:

X =
∑

t

at t .

For any rooted tree t :

λ|t |at =
∑

t ′
n(t , t ′)at ′ ,

where n(t , t ′) is the number of leaves of t ′ such that the cut of
this leaf gives t .
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We here assume that f is not constant. We can prove that
p1 6= 0.

For t the ladder (B)n(1), we obtain:

pn−1
1 λn = 2(n − 1)pn−2

1 p2 + pn
1 .

Hence:
λn = 2

p2

p1
(n − 1) + p1.

We put α = p1 and β = 2
p2

p2
1
− 1, then:

λn = α(1 + (n − 1)(1 + β)).
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For t the corolla B( qn−1), we obtain:

λnpn−1 = npn + (n − 1)pn−1p1.

Hence:
α(1 + (n − 1)β)pn−1 = npn.

Summing:
(1− αβh)f ′(h) = αf (h).
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X (1) = q ,
X (2) = α qq ,
X (3) = α2

(
(1 + β)

2
q∨qq + qqq) ,

X (4) = α3

(
(1 + 2β)(1 + β)

6
q∨qq q + (1 + β) q∨qqq +

(1 + β)

2
q∨qq q + qqqq ) ,

X (5) = α4



(1+3β)(1+2β)(1+β)
24 q∨qq�Hq q

+ (1+2β)(1+β)
2 q∨qq qq

+ (1+β)2

2 q∨qq∨qq + (1 + β) q∨qqq
q

+ (1+2β)(1+β)
6

q∨qq qq

+ (1+β)
2 q∨qq qq + (1 + β)

q∨qq qq + (1+β)
2 qqq∨

q q
+ qqqqq


.
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Particular cases
If (α, β) = (1,−1), f = 1 + h and X (n) = (B)n(1) for all n.
If (α, β) = (1,1), f = (1− h)−1 and:

X (n) =
∑
|t |=n

]{embeddings of t in the plane}t .

Si (α, β) = (1,0), f = eh and:

X (n) =
∑
|t |=n

1
]{symmetries of t}

t .
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(Left) prelie algebra
A prelie algebra g is a vector space with a linear product ◦ such
that for all x , y , z ∈ g:

x ◦ (y ◦ z)− (x ◦ y) ◦ z = y ◦ (x ◦ z)− (y ◦ x) ◦ z.

Associated Lie bracket
If ◦ is a prelie product on g, its antisymmetrization is a Lie
bracket.
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Primitive elements of the dual of HR

For any rooted tree t let us define:

ft :

{
HR −→ C

F −→ stδF ,t .

The family (ft ) is a basis of the primitive elements of H∗R. The
Lie bracket is given by:

[ft1 , ft2 ] =
∑

t ′=t1�t2

ft ′ −
∑

t ′=t2�t1

ft ′ .

[ q , q∨qq ] = q∨qq q + q∨qqq + q∨qq q − q∨qq q = q∨qq q + 2 q∨qqq − q∨qq q .
Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I



Feynman graphs
Dyson-Schwinger equations

Reformulation with trees
More realistic Dyson-Schwinger equations

Introduction
Hopf algebra of rooted trees
Combinatorial Dyson-Schwinger equations
When is Hf a Hopf subalgebra?

We define:
ft1 ◦ ft2 =

∑
t ′=t1�t2

ft ′ .

This product is prelie.

Theorem (Chapoton-Livernet)

As a prelie algebra, Prim(H∗R) is freely generated by f q .
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Faà di Bruno prelie algebra

gFdB has a basis (ei)i≥1, and the prelie product is defined by:

ei ◦ ej = (j + λ)ei+j .

For all i , j , k ≥ 1:

ei ◦ (ej ◦ ek )− (ei ◦ ej) ◦ ek = k(k + λ)ei+j+k .
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Theorem
If β 6= −1 and α = 1,

∆(X ) = X ⊗ 1 +
∞∑

j=1

(1 + λX )1+ j
λ ⊗ X (j),

with λ =
−1

1 + β
.

If β = −1 and α = 1,

∆(X ) = 1⊗ X + X ⊗ 1 + X ⊗ X .
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Corollary
Il α 6= 0, the prelie algebra of the primitive elements of the dual
of the Hopf algebra generated by the X (i)’s has a basis (ei)i≥1.

If β 6= −1, ei ◦ ej = (λ+ j)ei+j (Faà di Bruno case).
If β = −1, ei ◦ ej = ei+j (symmetric case).
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In QFT, generally Dyson-Schwinger equations involve several
1-cocycles, for example [Bergbauer-Kreimer]:

X =
∞∑

n=1

Bn((1 + X )n+1),

where Bn is the insertion operator into a primitive Feynman
graph with n loops.
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Let I be a set. Set of rooted trees decorated by I:

qa ,a ∈ I; qqab , (a,b) ∈ I2; q∨qq a
cb

= q∨qq a
bc
, qqqabc , (a,b, c) ∈ I3;

q∨qq qad
c

b
= q∨qq qac

d
b

= . . . = q∨qq qab
c

d
, q∨qqq a

db
c

= q∨qq qabd
c

,
q∨qq qabdc

=
q∨qq qabcd

, qqqqabcd , (a,b, c,d) ∈ I4.

The Connes-Kreimer construction is extended to obtain the
Hopf algebra H I

R.

∆( q∨qqq d
cb

a

) = q∨qqq d
cb

a

⊗ 1 + 1⊗ q∨qqq d
cb

a

+ qqba ⊗ qqdc + qa ⊗ q∨qq d
cb

+ q c ⊗ qqqdba + qqba q c ⊗ qd + qa q c ⊗ qqdb .
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For all d ∈ I, there is a grafting operator Bd : H I
R −→ H I

R. For
example, if a,b, c,d ∈ I:

Ba( qqbc qd ) = q∨qqq a
db

c

.

Proposition

For all a ∈ I, x ∈ H I
R:

∆ ◦ Ba(x) = Ba(x)⊗ 1 + (Id ⊗ Ba) ◦∆(x).
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Universal property
Let A be a commutative Hopf algebra and for all a ∈ I, let
La : A −→ A such that for all x ∈ A:

∆ ◦ La(x) = La(x)⊗ 1 + (Id ⊗ La) ◦∆(x).

Then there exists a unique Hopf algebra morphism
φ : H I

R −→ A with φ ◦ Ba = La ◦ φ for all a ∈ A.
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Definitions
Let I be a graded set and let fi(h) ∈ C[[h]] for all i ∈ I.

The combinatorial Dyson-Schwinger equations associated
to (fi(h))i∈I is:

X =
∑
i∈I

Bi(fi(X )),

where X lives in the completion of H I
R.

This equation has a unique solution X =
∑

X (n).
The subalgebra of H I

R generated by the X (n)’s is denoted
by H(f ).
We shall say that the equation is Hopf if H(f ) is a Hopf
subalgebra.
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Lemma
Let us assume that the equation associated to (f ) is Hopf. If
fi(0) = 0, then fi = 0.

We now assume that fi(0) = 1 for all i ∈ I.

Lemma
Let us assume that the equation associated to (f ) is Hopf. If
i , j ∈ I have the same degree, then fi = fj .

Grouping 1-cocycles by degrees, we now assume that I ⊆ N∗.
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Let us choose i ∈ I. We restrict our solution to i , that is to say
we delete any tree with a decoration which is not equal to i .
The obtained element X ′ is solution of:

X ′ = Bi(fi(X ′)),

and this equation is Hopf. By the study of equations with only
one 1-cocycle:

Lemma
For all i ∈ I, there exists αi , βi ∈ C such that :

fi =

{
eαi h if βi = 0,

(1− αiβih)−1/βi if βi 6= 0.
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Theorem
One of the following assertions holds:

1 there exists λ, µ ∈ C such that, if we put:

Q(h) =

{
(1− µh)−

λ
µ if µ 6= 0,

eλh if µ = 0,

then:
(E) : x =

∑
i∈I

Bj

(
(1− µx)Q(x)i

)
.

2 There exists m ≥ 0 and α ∈ C− {0} such that:

(E) : x =
∑
i∈I
m|i

Bi(1 + αx) +
∑
i∈I

m/| i

Bi(1).
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Theorem
For all λ, µ ∈ C, the algebra generated by the components of
the solution of the Dyson-Schwinger equation of the first type is
a Hopf subalgebra.

Corollary
If µ 6= −1 and λ = 1 + µ,

∆(X ) = X ⊗ 1 +
∞∑

j=1

(1 + λ′X )1+ j
λ′ ⊗ X (j),

with λ′ =
−1

1 + µ
.
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Description of the prelie algebra in the second case: to simplify,
we assume that 1 ∈ I.

Theorem

X =
∑
i∈I
m|j

Bi(1 + αX ) +
∑
i∈I

m/| i

Bi(1),

with α ∈ C− {0}. The dual of H(f ) is the enveloping algebra of
a pre-Lie algebra g, such that:

g has a basis (fi)i≥1.
For all i , j ≥ 1:

fi ◦ fj =

{
0 if m/| j ,
fi+j if m | j .

The product ◦ is associative.
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