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Will review the renormalization of a massless non-abelian gauge theory and the computer
algebra algorithms used

Definition of various renormalization schemes aside from the usual MS scheme will be
discussed which are derived from the structure of the vertex functions

As an application to problems with mass scales will briefly consider the infrared structure
of the gluon propagator affected by the Gribov construction

Relation of results to special functions will be introduced en route

Or, this is where the periods go
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QCD is the non-abelian gauge theory of the strong interactions
It requires a choice of gauge, which will be the linear covariant gauge here
The Lagrangian for massless quarks is

1 1 o
QCb — _ 7 G G — Z(8%4;3)2 — &% (04Dye)® + it Pyl

where G4, = 8, A% — 8, A% + gf*Pc AP AS and « is the linear covariant gauge
parameter

Graphically it involves 2, 3 and 4 point vertices

So underlying structure of anomalous dimensions will be similar to that of scalar ¢™
theory, n = 3 and 4

In this gauge QCD is renormalizable and the renormalization group functions have been
computed to four (and five) loops in MS
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To renormalize the theory introduce renormalized variables by rescaling all bare fields
and parameters (coupling constants, gauge parameters, masses) by renormalization
constants Z;

Conventions;
ACOL“ — \/ZAAa'u7 Cg — \/chaa?vbo — \/Zzﬂbago — Zgg7 Qo = ZCIlZA

Wave function and gauge parameter renormalization constants defined by ensuring
respective 2-point functions are finite

Coupling constant renormalization constant determined from vertex renormalization in a
way which is consistent with underlying gauge symmetry (Slavnov-Taylor identities)

The specific definition of a renormalization constant is not unique but depends on a
renormalization scheme such as MS

To quantify nature of divergences need to introduce a regularization which preserves
symmetries of the theory

Will use dimensional regularization in d = 4 — 2e dimensions; then g, = pZ, g where
w 1s the mass scale associated with this regularization
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General features of a scheme are

(a) the momentum configuration of the external legs of the Green’s function where
the renormalization constants are to be defined

(b) the prescription defining the Z’s
Schemes can be classified as mass dependent or mass independent; physical or unphysical

For example mass dependent schemes could be those where the subtraction point is at the
physical mass of the external particle

Or where the renormalization constants after renormalization depend on some mass scale

Mass independent schemes could have the squared external momenta equal to ©2 but the
Z’s do not depend on any mass scale

Structure of renormalization group functions in a mass independent scheme is simpler
and invariably computationally easier to determine
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Most widely used renormalization scheme is minimal subtraction (MS) which is a mass
independent scheme

Computationally easiest to determine, especially for massless theories

Consider € expansion of formal 2-point function at one loop

o = {1 + {% + B2 + 241 + C2e + 0(62)] 92] p”

where Az, Bo and C2 depend on all parameters except the coupling constant
Bs and Cz will involve In(p? /u?)

The formal definition of MS at one loop is to choose the counterterm z4 ¢ at the
subtraction point (p? = ©2) so that only the divergences are removed

Once the 2-point function is finite the regularization can be lifted (¢ — 0)

MS is MS but with a certain additional finite part also absorbed into z
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Need notation for 3-point vertex functions

Three external momenta, p, g and r, but only two are independent

Ir

D 7\

due to energy momentum conservation

p+qg+r=20

Leads to two massless scales

A non-exceptional momentum configuration is one where the energy momentum is
satisfied but none of p, g or r are zero
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Consider the formal structure of the one loop 3-point vertex for a generic field theory

=1+ |2 + B3 + Cse
+2g91 + 3241 + O(2)] g%] g

where A3z, Bs and C3 equally depend on all parameters except the coupling constant but
are also now functions of z, y and r2

The finite parts will involve logarithms and dilogarithms of functions of these variables at
one loop

For certain external momenta configurations the finite parts can be simpler functions
Procedure to renormalize is same as for 2-point functions

The wave function counterterm z ; is already determined from 2-point function in a
scheme

First specify a subtraction point, then specify the scheme or method to define the
renormalization point
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Only unspecified quantity is z4 1
At one loop in renormalizable field theories A3 should be independent of x, y and 2

The minimal subtraction scheme is defined in such a way that at the subtraction point
only the poles in e are absorbed into z4 1

Vertex functions allow for a large variety of scheme definitions

One set is the physical mass dependent schemes known as MOM or momentum
subtraction of Celmaster and Gonsalves

They are defined at the completely symmetric point
=9y =1

with r2 = — 2 where p is the scale introduced to ensure the coupling constant is
dimensionless in d-dimensions

Symmetry of subtraction point simplifies structure of the basic Feynman graphs
comprising the vertex functions

Configuration is non-exceptional and hence avoids potential infrared issues
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MOM schemes are defined in such a way that at the subtraction point there are no O(g?)
corrections

Hence z4 1 has a non-zero finite part in addition to the pole
This finite part will correspond to evaluations of the logarithms and dilogarithms

For QCD there are three distinct vertices and hence three separate MOM schemes defined
relative to the triple gluon, ghost-gluon and quark-gluon vertices

At higher loop the definition of the scheme is the same but renormalization constants are
constructed iteratively

One feature of the renormalization group functions is that they will depend on the
renormalization scheme after a few low loop orders

The leading term is always independent of the scheme

In mass independent schemes in theories with one coupling constant the 3-function is
scheme independent to two loops and independent of the gauge parameter to all orders

In mass dependent schemes the S-function is scheme dependent and depends on the
gauge parameter at two loops and beyond

Variables such as g are defined relative to a scheme
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Need to be able to extract renormalization constants at high loop order

Requires symbolic manipulation languages (such as FORM) and algorithms to evaluate
integrals and handle the large amounts of algebra

One method is to use values of subtracted diagrams; all subgraph divergences removed
from a graph to leave the ‘true’ divergence

Alternative method of Larin and Vermaseren is to determine n-point functions as
functions of the bare parameters

Then counterterms are introduced by rescalings such as

Po = \/Z¢¢ y YJo — NGZgg

Remaining overall divergence for that n-point function absorbed into the unknown
counterterm for that n-point function at that loop order
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Currently two main computer algebra approaches to renormalization

MINCER package from 1980’s by Chetyrkin et al evaluates massless 2-point functions to
three loops and O(e) in d = 4 — 2e dimensions

Used to renormalize 2- and 3-point functions of QCD in a variety of gauges and (mass
independent) schemes

There is a technical shortcut for 3-point functions which can be used if infrared safe

In 4-dimensions finite integrals such as the 3-point integral

1
Ip.q) = /k: k2(k —p)2(k + q)2

are infrared safe

Tempting to evaluate the finite part by setting ¢ = 0 to give

1
100 = | Gy

but this is (infrared) divergent I(p, 0) = %; this is an exceptional momentum
configuration
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However for QCD vertex functions such nullifications of one external moment for a
3-point function are viable and allowed as such infrared sick integrals do not arise

Structure of Feynman rules is such that quark propagator, ghost-gluon vertex and triple
gluon vertex have numerator momenta which protect the nullified denominator from
being infrared divergent

This and its generalization to higher n-point functions is known as infrared rearrangement
Wide application of MINCER to 3-point functions but not 4-point

Limitation is that MINCER not useful for MOM type renormalization or for beyond three
loops

Current practice is to use the Laporta algorithm

Uses integration by parts to establish relations between Feynman integrals lurking within
a Green’s functions

These are solved algebraically in terms of a small set of master integrals
Various packages such as REDUZE developed for this; builds databases or relations

These are evaluated by direct methods such as Schwinger parameters and thence related
to polylogarithms and higher functions

MINCER type masters are known to four loops [Baikov & Chetyrkin]
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Consider the three QCD 3-point vertices

(Aam)AL(@AS(r) = [P (pg)
W ) (@A () = T5HE(p,q)
()P @A) = F55%p,0)

with

p+g+r=0
Vertices carry Lorentz structure; so have to decompose into a basis of Lorentz tensors
built from the external momenta and any other relevant tensor such as the metric

For these 3-point functions colour group structure factors off; not always the case
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Method to determine amplitudes, 3V

(k) (p, @), is to decompose into tensor basis,
{P(k) (i }(p, q) }, by projection

cc CcC

S (p,q) = Z P(k)ga (k) y(7.9)
dqg _ qqg qqg9

Yo (p7 q) — Z P(k) E(k) ( )

Eggu%( ,q) = Z P?kg)guva P, q) Z?’?)g (P 9)

This produces scalar integrals to compute either by MINCER or by Laporta algorithm

For ghost-gluon vertex basis is {p., g } With projection matrix

MCoY 1 4y —2(1 —x —vy)
Ag — 21—z —vy) Az

with Ag(z,y) =z% — 2zy +y? — 22 — 2y + 1
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For a nullified external momentum q the basis is {p, } and the projection is p° /p?
More complicated for other vertices

Using above method for automatic renormalization and applying MINCER to extract MS
renormalization constants to give

cC o 43 3 7
Yo g(p,O) — [1—|—§C’Aa—|— [—604——C( Yo + EC(3)a2+Ea2 C%a”

+ O(a®)] po

where a = g2 /(1672)

No O(a) corrections in the Landau gauge consistent with the Slavnov-Taylor identity and
the non-renormalization theorem of Taylor for the ghost-gluon vertex

For p % 0 and g # 0 use Laporta which requires 3-point masters
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For application of REDUZE need to define basic integral families

AA A

and two permutations of final graph

Masters which emerge from REDUZE do not necessarily have the same topologies

To two loops all masters for 3-point functions are of the form of the first topology

Define
1

I B,7) = /k (k2)>((k — p)2)B((k + q)2)"
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In compact notation one loop master is

1(1,1,1) = - iz |:(I)1(337?J) + U1 (z,y)e + [@%(w,y) +X1(w,y)} ¢
U 2
+0(e)]
where, [Ussyukina & Davydychev],
®i(z,y) = % [2Li2(—pm) + 2Li2(—py) + In (%) In (%)
2
+mmwm@w+~§]
A(xay) — V AG’ ) p(xay) — -

l1—z—y+ Az,y)

Require O(e?) terms due to spurious poles resulting from factors of 1/(d — 4) appearing
after solution of integration by parts equations

U (x,y) involves Lis(z) and x1 (x, y) has a harmonic polylogarithm [Birthwright et al]

For instance arguments of Liz (z) are complex at symmetric point
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One two loop master is, [Ussyukina & Davydychev],

- = [CI)l(ZL',y)
+ [1(2,9) — 5 In(2)®1(z,y) — 5 In(y)P1(z,y)] €

+ [@@1(w,y)+><3(w,y)} 62} o+ O()

Explicit forms of x1(z, y) and x3(x, y) are known but only their difference appears in
the final vertex function for all external momenta configurations

This difference can be determined using symmetry of the integrals such as unigueness
(conformal integration)

1 1
x3(2,9) = x1(2,9)+P2(z,y)— 2 In(ey)¥1(z,y)+ [In*(2) + In*(y)] @1(z, )
Agrees with Gorbahn & Jéger for a restricted configuration

®o(z,y) involves Lig (2)
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For example, at the fully symmetric point

1 1 2
1,1) — 1,1) = —¢"" (=) — —
X3( 9 ) Xl( 3 ) 36¢ (3) 917

Other main master is

which has more involved e expansion
For example ¢(3) and Lis(z) appear at O(€?)

Symmetric point masters related to cyclotomic harmonic polylogarithms

/1dw Inx
0 1 —x+ z2

Now assemble all contributions; use QGRAF to generate graphs  Loops and vertices in QCD - p.20/37




Landau gauge ghost-gluon vertex

)D

_|_

CCQ,=0
o (P9
—1
9 15 3 11
— 28 (z,y)y? ALY — = (z, y)y — ~ B (7, y)zyA S — = — =
1 21@ VYA — i@ y)y — Sz y)ayAg — 5 — 1y
1 1 1 1 1
~ ln(w)yAc_;l ~ 3 ln(x):cAc_;l —3 In(z)y — 3 In(z)x + Eq)l(a:, y)x

1 1 1 3 1 1
+§ In(y) + 3 In(y)y + 3 In(y)x + 1—6<I>1(:v,y) +yrt g In(x)

1 .5 .3 ~ _
+7 In(z)Ag" + Z<I>1(:c,y)yAG1 + 3 In(y)yAz" — In(y)y*Ag

— ln(y)xyA(_;,l — <I>1(x, y)$y2A(_;1 + (Dl(wa y)yBAC_}’l
—|—21n(:c)xyA(_;1] Caa
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149

59
BETY ln(a:)a:yAal —

_ 163 _
ln(y)yAgl T 35 @4 (2, y)yAgl

12
149 _ 19 _ 3 _
— 35 2@ Y)Y’ AGT = D)1 (z,Y)y* A" — S In(@) 1 (2,y)y* Ag
A7 25 11 5, gy 11 -
~36 In(z) — 5, ®1(@,y) — S I W)y Ag — 5 In(@)21(z, y)zy"Ag
19 2 2, .
— 5 @)1z, 9)y — S In(@)®1(z,y)aylAg — o In"(y)zylg
11 1 2 A —1 1 —1
—1g 2W) — 5 In(@) @1 (2, y)2y"Ag — S In(y) 81 (2, y)zylg
11 7 11 1o, o
Y In(y)®@1(z,y)y — 18 In(z)Ag" — 62 1 In®(z)y“Ag
1 _ 5 1
——In(x) In(y)y*Ag" — — In(2)®1 (z,y)z — = In*(z)y
4 24 6
1 3 -1 1 -1 1 Y 1
r In(z) In(y)y°As" — 5 In(z)In(y)zAs" — EQQ (;, ;) x

1 r 1 1 1
(2,2 )z — Z®1(z,y)y? — — In?(z)zA !
7 2(y y) ; 1(@,9)y” — 5 In"(@)elg

= n%(2)ay?Ag" — — In(@) In(y)e — = In(2)®1(z,y)A
— 1N ()X — — 1IN\ ) 1N r— — In\x X
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1 1 1 x 1 1 z 1 1
_|__Q2 (y, _) y_|_ —Q2 (—, —) + —QQ (—, —) y+ —CI)l(ZL‘,y)IEy
y Yy Yy 6

1 1 11
+3102(2) + 7 In(@) In(y)y + 52 10(2)@1(2,9) + oy + = In(z) In(y)

3
7 1 7 4, 41 7 1
+E ln(a:)yAG + 18 ln(ac)mAG + ECI)l(x’ y)x + T2 In(x) ln(y)yAG
2 _ 3 _ 3 _
—|—§ In(z)®; (x, y)ySAGl + 1 In(x) ln(y)acyAG1 + 1 In(y)®1 (x, y)y3AG1

5 4.5 L, 31 4 _
+=(@)01(@,9)yAg" + S In@)®1 (2, 9)yAg" + o + 5 In*(@)zyAg
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83 15 149 _
+5, 01 @Yy + 0@ y)eyAg’ + - )y’ Ag

149 149 26 _
+¥ In(y )zcyA + ¥<I>1(a: y):cy2A + —<I>1(a: y)yzAGl

+In (y)yAal} CaTpNpa® + ...

Other amplitudes similar
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-1.011

-1.02
-1.018+

-1.020

-1.031

-1.0221

-1.024+

-1.026- -1.04-

|— — One loop —— Two loop | |— — One loop — Two loop |

Comparison of one and two loop functions in several directions for projection 1 in
Landau gauge with acs = 0.125 where Hy (z,y) = ECCg( q)

Two loop corrections not significant
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Can now examine vertices in MOM schemes by following earlier prescription
Based on symmetric point; x =y =1

Restriction of masters to this point produces the one loop basis {Q, 72,1’ (5)} for the
renormalization group functions and vertices

With s, () = L9 [Lin (

{ar @ (5)0(5) 52 (5) ().

™ 7\ In?(3)7 In(3)wr =3
o (3) = () " s )

e’LZ

ﬁ)] , the MOM basis at two loops is

In MS to three loops the basis will involve ¢(3)
Illustrate the relation by considering the coupling constant in MOMh and MS

After renormalization in each scheme can define the relation between parameters via

a

(Cy(a,a))?

CMOMh =

where Cy(a, ) = ZLVIOMh/Zg
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Explicit relation for Landau gauge is

a’

1
a = a—l—“15¢’(§)—107r2—|—615 Ca = 240Tp Ny | -

mod
) — 32139 (g)

W=

1 1
+ H450(¢’(§))2 — 6007721p’(§) — 4589287’ (
T T T T
—382579232(6) + 765158432(5) + 637632053(5) — 510105633(5)

48768711 4 30595272 + 77763 + 153576¢(3) + 6521760

In?(3)7 In(3)7 73 } 5 9 19
—26568 + 318816 + 28536 — | C'4 + 46080015 V.
V3 V3 V3] 4 e
;1 s s T
+ 2067849 () + 149200255 () — 208598452 () — 248832083 ()
+199065633(g) 13785672 — 995328¢(3) — 4015296
In?(3)7 In(3)m 73 }
+10368 — 124416 — 11136 — | CATFE N,
V3 V3 V3l T

a3

93312

+ [1492992¢(3) — 1710720] CpTr N¢ |
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Can transform between schemes using the other conversion functions defined from the

renormalization constants
7MOMh

Cy(a,a) = A

where ¢ € {A, c, 9}
Then renormalization group functions in different schemes are related by

: 9
AMOME (avomi- emomi) = |14(a) +B(a) 5~ InCg(a, @)

t ova(@,0) 2 In Cy(a, )|
Oa MS—MOMi

where mapping indicates that MS variables are mapped back to MOMi ones

Knowledge of conversion functions at L loops in one scheme and MS renormalization
group functions at (L + 1) loops means the (L + 1) loop renormalization group
functions can be deduced in the first scheme at (L + 1) loops without an explicit (L + 1)
loop computation in that scheme
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Current interest in the infrared behaviour of the QCD propagators and vertices in the low
energy region

In intermediate energy range lattice gauge theory analysis suggests there are power
corrections to that predicted from high energy

These are either dimension two or dimension four and from operator product expansion
would suggest existence of underlying dimension two or four operators

Important for understanding running coupling constant definition

Effects can be modeled by non-zero gluon mass or Gribov mass

Basic idea is to examine such corrections at the symmetric point vertices at one loop
Care required in naively expanding massive integrals to avoid spurious infrared infinities
Method developed by Smirnov, Tausk, Davydychev and Behrends for various limits

Define master vertex integral

1

2 m2,m2) = /
k (k2 +mi]e[(k —p)2 + m3]8[(k + q)2 + m3]"

I(aaﬂafy;mlam27m3

If m1 = 0 and/or mo = O then potential infrared poles but integral is finite
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Expand asymptotically using a method which corrects for the appearance of these
spurious singularities

Graphically
Ip ~ Z Ir/x © Tim; ¥i{ai -
A

where I" is the original graph and X are certain subgraphs in the asymptotic expansion
First term is always the naive expansion

Subgraphs A here for O(m?) corrections are given by all possible routings of the (two)
external momenta around the graph

In each of these subgraphs the identified subgraph X is expanded in the masses and the
momenta g; which are external to X itself

This process is denoted by 7., 1. {4,311 @nd this is substituted into the reduced graph
It/ and then the loop momenta integrated

Requires an additional integration by parts database to complete the integrals in the
expansion
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For example, if m; # 0

1(1,1,1;m3,m3,m3) = [I(1,1,1;0,0,0) —m3I(2,1,1;0,0,0)
—m2I(1,2,1;0,0,0)

—m31(1,1,2;0,0,0)]
1
+ [—1(1 0,0; m1,0,0)

p2q?

1 k2 + m% — 2kp
(172 / (k% +mi)

1 k2 4+ m3 + 2kq
- p%(q?)? / (k* +m3)
+ ...

for general external momentum configuration

Divergences in the naive expansion are cancelled from the extra terms in the graphical
expansion
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Gribov problem arises from the inability to globally fix a covariant gauge in a non-abelian
gauge theory

Different gauge configurations can satisfy the same gauge condition leading to an
overcounting in path integral construction

Locally gauge is fixed uniquely and no issues in ultraviolet analyses of QCD
Infrared structure is affected and (Gribov) copies have to be factored out of path integral
Gribov effected this by restricting the path integral to the first Gribov region

Leads to a new action with an additional non-local term in Landau gauge [Gribov;
Zwanziger]

d

f acp pbdp pa 1 c bu dNA’Y4
fEPfIPA A

2 H\ovD, 292

where ~y is the Gribov mass

Non-locality can be localized to produce a renormalizable local Lagrangian but with extra
ghost fields [Zwanziger]
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Consequence is that the gluon propagator is modified by the Gribov mass ~

ab 2
(A% () A4S (—p)) = — ° Z‘;‘(p ) P (0)

where
(p?)?
[(p?)? + Cavy?]

which vanishes at zero momentum and has no pole

Da(p®) =

~ is not an independent parameter and satisfies a gap equation
1 =C F - §1n<CA74)] a + O(a?)
R R 4

Two loop correction known

Only when ~ satisfies the gap equation is one in the gauge theory
Faddeev-Popov ghost propagator enhances at zero momentum

Examine expansion of vertex functions at symmetric point in powers of v2 /2
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For symmetric point use compact tensor basis

P&glg)iya (p’ q) —  NuvPo — Nuvqo — 277,uap1/ — Nouqu + NvoPu + 2"71/0-61,1,
Pyywo @) = [2pupvPo + PudvPo — Pudvdo
1
+2quVpU - 2Q,LLPVQU — 2Q,uqu(7] ﬁ
P (p0) = [Pupvas — + - L
(3)uvo \Pr 4 pPvdo — quPvPo + quPv9o — qudvPo 2

Extra fields in Zwanziger construction mean that there are 30 graphs at one loop
Use same techniques as before
Laporta algorithm used to reduce to masters which are then expanded as above

Amplitudes, E?q%g (p, q,v?), depend on ~
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For triple gluon vertex at one loop

S e = B (P40
18 7 T (1)1, [Cart]] Car
+ — — — —1In a
6 36 24 3 2 s s
37 03/2’)/2
S ®er) = T e+ 55
3/2 2
3w C "
S @aer) = TEee0+ 5 5

Power corrections for channel 1 are dimension four; others are dimension two
At asymmetric subtraction point all channels have dimension two corrections

For ghost-gluon and quark-gluon corrections in all channels at symmetric and
asymmetric points all first corrections are dimension two
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Have reviewed the renormalization of vertex functions in QCD in various renormalization
schemes

Discussed relation to current developments in evaluation of master integrals

Algorithms are in principle now in place to systematically analyse higher n-point
functions to next loop orders

Next obvious computations are two loop quartic vertices and three loop 3-point vertices
both at the symmetric point
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For three loop extensions probably will need the symmetric point evaluations of ‘masters’
such as probably

A A /T\

plus others

Also will need higher orders in e for one and two loop masters
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