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Chapter 1

Introduction

The experimental predictions made by quantum field theories are astonishing. To push this
success further, a generation of theoreticians has been working towards a deeper understand-
ing of the scattering amplitudes. There are still many mysteries surrounding the structure
of Feynman integrals. They persist a rich structure with connections to number theory and
algebraic geometry, to name just two, which are not fully understood.
The interaction between maths and physics has been fruitful throughout the past. Both
fields were able to provide new perspectives to the other. For example, studying Feynman
amplitudes as complex-valued functions resulting from integration is also useful in mathe-
matics. It serves as an example of a function that is defined through an integral. Improving
the knowledge about these functions will help to learn more about the structure of high
energy physics.
In recent work, it has been suggested that Feynman integrations are related to the Culler
Vogtmann Outer space [1]. These spaces consist of degenerated metrics associated with
graphs and were first defined in [2]. They are related to topological complexes and possess
a rich combinatorial and geometrical structure. A convenient quotient of Outer space, the
moduli space of graphs, can be related to Feynman amplitudes associated with a scattering
process [3]. Restricting the set of graphs that built up these spaces to physical relevant cases
is the task of ongoing research, and this thesis tries to contribute its part. One possibility is
to look at graphs with colored edges, whose colors are place holders for masses and particle
types. For example, the paper [4] evolves around this. This thesis focuses on vertices that
are allowed by physics (especially QCD or Yang-Mills theories), i.e., only graphs with three
or four valent vertices are admissible.
The chapters 4 and 5 contain the main results, which are the calculation of the f -vectors
of different versions of the moduli spaces. They are achieved by considering matchings on
three regular graphs, where a matched edge corresponds to a four valent vertex. Addition-
ally, some statements about the Euler characteristic could be made. Chapter 2 serves as an
introduction to the underlying mathematical concepts. It also contains some general results.
For example, it is shown that the moduli spaces stay connected after restricting the valency
of vertices to the physical case. The intermediate chapter 3 establishes a connection between
the moduli space of graphs and the parametric form of Feynman integrals. Furthermore, it
gives a brief, unusual perspective on the absence of 5-valent vertices in Yang-Mills theories.
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Chapter 2

Mathematical Framework

The mathematical concepts that are used in this thesis will be defined in this Chapter. It
starts with a small section about maybe the most general concept: Sets. Then increasingly
more structure will be introduced, with sections about simplicial complexes, posets, graphs
and the more advanced concept of metric graphs spaces.

2.1 Basic Definitions and Simplicial Complexes

2.1.1 Sets

Before simplicial complexes and posets are defined, some basic notation used throughout
the thesis is introduced.
For a finite set A denote its cardinality or size, i.e., its number of elements, by |A|.

Definition 2.1. Let n ∈ N. Define the set [n] by [n] :=
{
i ∈ N

∣∣ 0 < i ≤ n
}
. Denote the

powerset, i.e., the set of all subsets of [n], by 2[n].

Definition 2.2. Define the complement of a set X ⊆ [n] by X := [n]−X = {x ∈ [n] |x /∈ X}.

Note that
(
X
)

=
{
x ∈ [n] |x /∈ X

}
= {x ∈ [n] |x ∈ X} = X.

Property 2.3. X ⊆ Y ⇔ Y ⊆ X

Proof. From x ∈ X ⇒ x ∈ Y follows x /∈ Y ⇒ x /∈ X which translates to x ∈ Y ⇒ x ∈ X,
i.e., Y ⊆ X. The converse follows by replacing X with V and Y with W .

Next, the disjoint union of sets is defined.

Definition 2.4. The disjoint union of a family of sets Ai with i ∈ I ⊆ N is defined via⊔
i∈I

Ai :=
⋃
i∈I

{
(a, i)

∣∣ a ∈ Ai} .
Note that the intersection of the sets

{
(a, i)

∣∣ a ∈ Ai} ∩ {(a, j)
∣∣ a ∈ Aj} = Ø for i 6= j

even if Ai = Aj . Conversely if A ∩ B = Ø then their union equals A ∪ B = A t B and
|A ∪B| = |A tB| = |A|+ |B|.

2.1.2 Relative Simplicial Complexes

Definition 2.5. A (combinatorial) simplicial complex consists of a vertex set [n] and a set
of sets ∆ ⊂ 2[n] such that:

(i) ∀v ∈ [n] : {v} ∈ ∆
(ii) if τ ⊆ σ ∈ ∆ then τ ∈ ∆
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Basic Definitions and Simplicial Complexes

The dimension of a simplicial complex is dim ∆ := maxτ∈∆ |τ | − 1 .

Remark. The empty set is considered as an element of a simplicial complex.
For σ, τ ∈ ∆ it follows by the second condition in the definition above, that σ ∩ τ ∈ ∆.

Definition 2.6. A geometrical simplex σ ⊂ Rd is defined by

σ :=
{

(e1, e2, . . . , ed+1) ∈ [0, 1]d+1
∣∣∣ d+1∑
i=1

ei = 1
}

A geometrical simplicial complex K is a collection of geom. simplices, s.t. Ø ∈ K, if
σ, τ ∈ K then σ ∩ τ ∈ K and ∂σ ∈ K.

Any element of a complex ∆ is called a face. If a face σ ∈ ∆ is not included in any other
face of ∆, then σ is called a facet. Any complex can therefore also denoted by its set of
facets, write ∆ = 〈σ1, . . . , σk〉 := ∪ki 2σi , where σi denotes a facet of ∆.
Remark. Any combinatorial simplicial complex ∆ possesses a geometrical realization, that
is a geometrical complex K∆. It can be constructed by embedding all vertices into RN linear
independently and then identify each face σ ∈ ∆ with the geometrical simplex spanned by
the corresponding vertices.

Definition 2.7. Define Fk[∆] ⊆ ∆ to be the set of k dimensional faces of ∆ and fk :=
|Fk[∆]| as well as f−1 := 1. The f -vector of a simplicial complex is then given by f(∆) =
(f−1, f0, . . . , fn−1).

Definition 2.8. The Euler characteristic X of a (relative) simplicial complex ∆ is defined
via

X (∆) =
dim ∆∑
k=0

(−1)kfk(∆)

where fk is the f -vector of the complex.

Originally the characteristic X was defined by Euler as the alternating sum over the number
of vertices, edges, and faces of a triangulated surface. The definition above is a consequent
generalization for higher dimensions. It follows a short remark on the algebraic concepts
formalizing the idea of the Euler characteristic.
Remark. A further generalization relates X to the rank or dimension of the n-th homology
group Hn via X (X) =

∑
n(−1)n dimHn(X) for a topological space X. Here the dimension

of a group counts its independent generators as a vector space [5].
There is a lot more going on here, but it is not necessary for this thesis.
For the central object of this thesis, it is needed to introduce language to describe missing
faces in the complexes defined above. The following definition enables the description of
such spaces.

Definition 2.9. Let ∆ and Γ be combinatorial complexes s.t. Γ ⊂ ∆, a relative combinato-
rial complex (∆,Γ) is defined via set subtraction (∆,Γ) := ∆− Γ.

The f -vector of a relative complex (∆,Γ) is given by fi(∆,Γ) = fi(∆)− fi(Γ) for i ≤ dim Γ
and fi(∆,Γ) = fi(∆) for i > dim Γ. For Γ = Ø the definition of usual complexes is restored.
Note that although relative complexes are not uniquely defined by such a pair, their f -vector
is.
The geometric realization of a relative complex is obtained by deleting the complex KΓ from
K∆, so K(∆,Γ) := KΓ−K∆. As a consequence, the complex K(∆,Γ) has missing boundaries.
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2. Mathematical Framework

1

2 3

4

5

6

{1, 2, 3}

{3, 4} {5, 6}

{1} {2} {3} {4} {5} {6}

Figure 2.1: The relative combinatorial complex (∆,Γ) with Γ in red from Example 2.11 on the
left and its face poset P [∆,Γ] on the right.

Definition 2.10. A (rel.) simplicial complex (∆,Γ) is disconnected if ∃σ, τ ⊆ (∆,Γ), s.t.
σ t τ = (∆,Γ).

A relative simplicial complex (∆,Γ) has the structure of a partially ordered set or in short a
poset. A poset is a set equipped with a relation <, that relates two elements of the set, such
that < is reflexive (an element is related to itself), antisymmetric (two distinct elements
can only be related in one direction) and transitive (if a < b and b < c then a < c). For a
complex (∆,Γ) this relation is given by set inclusion. The corresponding poset is denoted by
P [(∆,Γ)] or two simplify the notation remove the brackets and denote it as P [∆,Γ]. Clearly
any complex can be equipped with that relation, such that the poset P [·] is not limited to
combinatorial complexes.

Now the previous definitions are applied to an example.

Example 2.11. Let (∆,Γ) be a rel. simplicial complex given by
∆ = {{1, 2, 3}, {1, 2}, {1, 3}, {3, 2}, {3, 4}, {5, 6}, {1}, {2}, {3}, {4}, {5}, {6},Ø}
and Γ = {{1, 2}, {1}, {2}, {4},Ø} (cf. Figure 2.1).
The f -vectors are given by

f(∆) = (1, 6, 5, 1) , f(Γ) = (1, 3, 1) and f(∆,Γ) = (0, 3, 4, 1) .

Calculating the Euler characteristic results in

X (∆) =− 1 + 6− 5 + 1 = 1,
X (Γ) =− 1 + 3− 1 = 1 and

X (∆,Γ) =− 0 + 3− 4 + 1 = 0.

Clearly (∆,Γ) is disconnected, since

(∆,Γ) = {{1, 2, 3}, {1, 3}, {3, 2}, {3, 4}, {3}, {4},Ø} t {{5, 6}, {5}, {6},Ø}
=: (∆1,Γ1) t (∆2,Γ2),

where each (∆i,Γi) is a rel. simplicial complex by its own.
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Elementary Group Theory

2.2 Elementary Group Theory

2.2.1 General Introduction

A group G is a set together with a bilinear map ? : G × G → G, the group operation,
under which the group G is closed. Additionally, there must be an element e ∈ G such that
e ? g = g ? e = g for all group elements g ∈ G. Lastly, a group is closed under inversion, i.e.,
∃g−1 ∈ G such that g ? g−1 = g−1 ? g = e for all g ∈ G. For the n-fold product write

g ? g ? · · · ? g︸ ︷︷ ︸
n-times

=:
{

gn in multiplicative notation

ng in additive notation
.

The external direct product of groups is a simple way to define a new group from already
existing ones. It is defined as follows.

Definition 2.12. The external direct product of a finite collection of groups G1, G2, . . . , Gn
is defined as

G1 ⊕G2 ⊕ · · · ⊕Gn :=
{

(g1, g2, . . . , gn)
∣∣ gi ∈ Gi}

with the group operation taken componentwise from its constituents. If G1 = G2 = · · · =
Gn = G write G1 ⊕G2 ⊕ · · · ⊕Gn = Gn.

To check that G1⊕G2⊕ · · ·⊕Gn is indeed a group observe that it just carries on the group
structure from each Gi. It might be worth noting that the unit e ∈ G1 ⊕ G2 ⊕ · · · ⊕ Gn
is given by e = (e1, e2, . . . , en), where of course every ei ∈ Gi is the unit of Gi. Moreover,
the size of the external direct product is given by the product of the sizes of each group Gi:
|G1 ⊕G2 ⊕ · · · ⊕Gn| = |G1||G2| · · · |Gn|.

Example 2.13. One particularly important and also fundamental group is the set of
integers modulo n, denoted by Zn. It is a group with respect to modular arithmetic and its
elements are the congruence classes. The set takes the form

Zn := {0, 1, . . . , n− 1}

and for a, b ∈ Zn the group operation is given by, in quite impure notation,

a+ b = (a+ b) mod n ,

where a, b are viewed as elements in Z (the set of all integers) on the right hand side.

2.2.2 The Symmetric Group Sn

Definition 2.14. The group of all bijective maps σ : [n]→ [n] on a finite set [n] (the group
operation is given by function composition) is called symmetric group Sn. Elements of Sn
are given explicitly as lists of the images of each element in [n] under σ:

σ =

 1 2 . . . n

σ(1) σ(2) . . . σ(n)

 .

Denote the unit by (1) ∈ Sn and the inverse of an element σ ∈ Sn by σ−1.

Definition 2.15. A transposition or a swap is a bijection σ ∈ Sn such that

σ =

 1 . . . i− 1 i j j + 1 . . . n

1 . . . i− 1 j i j + 1 . . . n
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2. Mathematical Framework

for i 6= j and i, j ∈ [n]. A transposition will be denoted as (i, j).

Any σ ∈ Sn can be written as a composition of transpositions, although this is not unique.
In the literature and in more general group-theoretic terms, a transposition is called a 2-
cycle. There is one more fact worth observing, every 2-cycle is its own inverse. Generally,
a k-cycle in the symmetric group is defined as follows. Let k ∈ N and k > 1. A k-cycle is
an element σ ∈ Sn for which σk(x) = x for all x ∈ X ⊂ [n] and σ(x) = x for x ∈ [n] \X.
Clearly |X| = k follows.

2.2.3 Group Actions

Definition 2.16. Let X be a set and G a group, then a group action ϕ is a map ϕ : X×G→
X : (x, g) 7→ ϕg(x) satisfying the following two conditions ∀g, h ∈ G and ∀x ∈ X :

(i) ϕe(x) = x

(ii) ϕgh(x) = ϕg(ϕh(x))

The group action ϕ defines an equivalence relation on the set X, via x ∼ y ⇔ ∃g ∈
G : ϕg(x) = y . The two conditions above are precisely making sure that the equivalence
relation is well defined:
Reflexiveness follows immediately from (i). To show symmetry and transitivity use the
closeness of G under inversion and the group operation.
The resulting equivalence classes are called orbits and defined as follows.

Definition 2.17. Let ϕ be a group action of a group G on a set X. The orbit of an element
x ∈ X is a set Orbϕx ⊆ X defined as

Orbϕx := {ϕg(x) | g ∈ G} .

X/ϕ or X/G denotes the partition of X into orbits of an action of G via ϕ.

Definition 2.18. Let ϕ be a group action of a group G on a set X. The stabilizer of an
element x ∈ X is a set Stabϕx ⊆ G defined as

Stabϕx := {g ∈ G | ϕg(x) = x} .

Stabϕx is a subgroup of G, which can be checked easily by the definition of group actions.

Theorem 2.19. The Orbit Stabilizer Theorem. Let ϕ be a group action of a group G on a
set X and x ∈ X. Then

|Orbϕx | =
|G|

|Stabϕx |
.

Proof. This result is well known. A proof can be found in any standard textbook, for
example in [6].

6



Graphs

2.3 Graphs

This section will define graphs and some basic operations on them. Including the definition
of the central graph in Chapter 4, and an analyzation of its symmetries.
In order to allow for graphs with multiple edges, a slight generalization of sets is needed: A
multiset is a set where repetitions of the same element are allowed.
A lot of the upcoming definitions and notations are taken from [7].

Definition 2.20. A graph G is a triple 〈HG, EG, VG〉, where HG is a finite set of half-edges,
EG a finite multiset of edges e = {h1, h2} and VG a finite set of vertices v = {h1, h2, h3, . . . }
with hi ∈ HG. Furthermore, the following conditions must hold

(i) Either ei ∩ ej = Ø or ei = ej ∀ei, ej ∈ EG

(ii) Either vi ∩ vj = Ø or vi = vj ∀vi, vj ∈ VG

(iii)
⋃

v∈VG
v = HG .

Note that the definition above allows for several edges between two vertices, these edges are
referred to as multi-edges. These graphs are often referred to as multigraphs in the math-
ematical literature, but throughout this thesis, this distinction will not be made. Further
notation and language useful to describe the graphs in this thesis will be introduced in the
following.
Not all half-edges h ∈ HG have to be part of an edge, therefore define the set Hext

G :=
HG \

⋃
e∈EG e. Elements of Hext

G are the external half-edges (sometimes also called exter-
nal legs) of the graph G. Similarly, define the a subset of vertices V extG that contains all
v ∈ VG for which holds ∃h ∈ v such that h ∈ Hext

G . The internal half-edges are defined as
Hint
G := HG \Hext

G .
Two distinct vertices v1, v2 ∈ VG share an edge if there is an edge e ∈ EG such that
e ∩ v1 6= Ø 6= e ∩ v2. The vertices are said to be connected via e.
The valency of a vertex v ∈ VG, denoted by |v|, is the number of half-edges in v. So it is
just the cardinality of the set v. Pictorially speaking the valency of a vertex is the number
of half-edges connected to it.
A graph G is called n-regular if all vertices in G have the same valency n, i.e. ∀v ∈ VG :
|v| = n.
A subgraph g of G is a graph and Eg ∪ Vg ⊂ EG ∪ VG. Their relation is denoted by g ⊂ G.
A graph G is connected if it does not have two subgraphs g1 and g2 such that g1 ∪ g2 = G

and g1 ∩ g2 = Ø.
The loopnumber or rank of a graph G, denoted by |G| is given by its first Betti number
h1(G) = dimH1(G) and counts the number of independent loops in a graph. It is also the
number of edges in the graph obtained from G by contracting a subset of edges and all
vertices to one point along a homotopy equivalence.
In quantum field theories, it is often useful to require additional conditions on the graphs
under considerations. These are combined in the following definition.

Definition 2.21. A graph G is called admissible if

(i) G is 1PI, i.e. G is still connected after the removal of one edge e ∈ EG

(ii) G is not a tadpole, i.e. @v ∈ VG such that one connected component of G − v has no
external legs.

(iii) ∀v ∈ VG : |v| ≥ 3

7



2. Mathematical Framework

Definition 2.22. Denote the set of all admissible graphs with n external legs and a maximal
valency of v by Gvn. The subset Gvl,n ⊂ Gvn is given by all rank l graphs in Gvn.

An important operation on graphs is the contraction of a subgraph. It is defined as follows.

Definition 2.23. Let G be an admissible graph and γ ⊂ G a connected subgraph. The
contracted graph G/γ is defined by

G/γ := 〈HG \Hint
γ , EG \ Eγ , (VG \ Vγ) ∪Hext

γ 〉.

For disconnected subgraphs, the contracted graph is defined componentwise.

So G/γ is the graph where the subgraph γ is replaced by a vertex v = Hext
γ . Pictorially

spoken the graph γ shrinks to a point in G as shown in the upcoming example.

Example 2.24. Let G be given as

G = γ .

Where the internal structure of the subgraph γ ⊂ G is depicted as a blob, but its external
legs are shown explicitly. Then the contracted graph takes the form

G/γ =
v
.

The vertex v contains the external legs of γ. Note that the edges connecting v to the
remaining blob are not altered by the contraction. In order to generate a admissible graph
G/γ the subgraph needs at least three external legs |Hext

γ | ≥ 3. Thereby it is ensured that
no two valent vertices are generated.

Remark. Later on, the contraction of graphs will be mainly used to shrink edges of 3-regular
graphs. Let G ∈ G3

n and e = {h1, h2} ∈ EG. To contract an edge consider the subgraph

ε = 〈e ∪Adje, e, {{h1, a1, a2}, {h2, a3, a4}}〉,

where Adje := {a1, a2, a3, a4} is the set of half-edges of the vertices connected by e that are
not part of e itself. The graph G with e contracted is then G/ε. In an abuse of notation
write also G/e for the contracted graph and also extend this notation to disjoint unions of
edges (later defined as a matching).

2.3.1 Symmetry and Isomorphisms of Graphs

In order to define the symmetries of the graphs under consideration, define isomorphic
graphs.

Definition 2.25. Let G and G′ be graphs. They are called isomorphic if there exists a
bijection i : HG → HG′ such that whenever two vertices share an edge in G, they get mapped
to vertices that also share an edge in G′.
Call such a map i an isomorphism between the graphs G and G′.

At this level, graph isomorphisms rename the half-edges that built the graph. This divides
the set of graphs into equivalence classes, which are called isomorphism classes. The subset
of maps that leaves an isomorphy class invariant is loosely called symmetry group1. In the
next section, the symmetry group of three regular one-loop graphs will be derived.

1If this set indeed forms a group is not important here. However, for the case considered in the next
section, the set forms a group.

8



Graphs

Σn =

1 2

3n

k

n+ 2k − 1n+ 2k

Figure 2.2: The n-sun Σn with n external legs. The half-edges of the vertex containing k are
labeled explicitly.

In the context of Feynman graphs, define the symmetry factor of a graph. Therefore note
that the symmetry group contains a special subgroup given by automorphisms.

Definition 2.26. Let G be a graph. An automorphism of G is an isomorphism i : HG → HG

that maps G onto itself. All automorphisms of G form a group Aut(G) and the symmetry
factor of G is defined by Sym(G) := |Aut(G)|.

In this thesis, the isomorphisms (and therefore the automorphisms) of Feynman graphs are
restricted to the internal half-edges. This means the external legs are fixed. The physical
explanation comes from the interpretation of external legs as incoming or outgoing particles
in a scattering amplitude. Note that the symmetry factor of a graph without fixed legs is
always related to a sum of symmetry factors where the external legs are fixed.
Furthermore, in this thesis, graphs that differ by rotation or reflection of the external legs
are considered to be the same graph. This is motivated by Yang-Mills theory, where the
particles are massless bosons that cannot be distinguished. Rotating is a symmetry since
there are no masses and reflections because the edges are not directed.
As a last remark note that the following considerations will not depend on the choice of a
graph inside an isomorphism class. Therefore it will not be distinguished between graphs
and their isomorphism class for the most part. Graphs are understood as their isomorphism
classes. However, the automorphisms of a graph will play a crucial role at several points.

The Symmetry Group of n-Suns

There is only one topology for a one-loop graph with n external legs, namely the circle with
attached legs, see Figure 2.2. This graph is now defined explicitly.

Definition 2.27. The n-sun Σn is the 3-regular, one loop graph with n external legs, given
by the sets below. For a picture see Figure 2.2.

HΣn := [3n]
VΣn := {{1, n+ 1, n+ 2}, . . . , {k, n+ 2k − 1, n+ 2k}, . . . , {n, 3n− 1, 3n}}
EΣn := {{n+ 2, n+ 3}, . . . , {n+ 2k, n+ 2k + 1}, . . . , {3n, n+ 1}}
Hext

Σn := [3n] \ {n+ 1, . . . , 3n} = [n]

Remark. The isomorphisms of the n-sun can be represented by a permutation on its external
legs. Furthermore, note that there are no non trivial automorphisms for n > 2: |Aut(Σn)| =
1.
To properly treat the symmetries, it is useful to define a group action that acts on the
n-suns. In order to do that some additional notation is needed. First, define a set that
contains all graphs that can be generated by an arbitrary permutation of the external legs

9



2. Mathematical Framework

of Σn. After that, an action on this set is defined, which renders all isomorphic graphs into
one orbit. The following definition also gives an explicit description of how the symmetric
group Sn acts on the external legs of a graph G ∈ G3

l,n.

Definition 2.28. Let γ ∈ G3
l,n. The action of σ ∈ Sn : Hext

γ → Hext
γ is given by σγ :=

〈Hγ , Eγ , σVγ〉. The elements of σVγ , denoted by σ.v, are defined by the following. Let
v ∈ V extγ and k ∈ v be the unique element in v such that k ∈ Hext

γ , then

σ.v = σ. {k, v1, v2} := {σ(k), v1, v2} .

For v /∈ V extγ define σ.v := v.

Definition 2.29. For l = 1 define the set Sn of all permuted n-suns by

Sn := {σΣn | σ ∈ Sn} / ∼ ,

where two n-suns are equivalent if they are isomorphic with fixed external legs.

Now a subgroup of Sn will be defined that represents the symmetries of a n-sun. It will
characterize the equivalence relation in the definition above via a group action. Start with
defining the cyclic group Cycn ⊂ Sn and the reflective group Rn ⊂ Sn. They represent the
symmetries under rotations and reflections of the graph Σn.

Definition 2.30. Let c+ ∈ Sn be defined as

c+ :=

 1 2 3 . . . n− 1 n

n 1 2 . . . n− 2 n− 1

 .

Note that cn+ = (1). Define Cycn ⊂ Sn by Cycn :=
{
ck+
∣∣ k ∈ [n]

}
.

One easily observes that Cycn indeed forms a subgroup of the symmetric group Sn and
furthermore that Cycn ∼= Zn. This can be made intuitive by the composition law of Cycn:
ck+ ◦ cl+ = cl+k+ , while all exponents are taken modulo n due to the cyclic nature of Cycn.

Definition 2.31. The reflective group Rn ⊂ Sn is defined by

Rn :=
{

(1), (1, n− 1)(2, n− 2) . . .
(⌊n− 1

2

⌋
,
⌈n+ 1

2

⌉)}
=: {(1), rn} .

Rn is indeed a subgroup of Sn since rn ◦ rn = (1), which holds because rn consists only of
commuting 2-cycles. Analogously to Cycn one gets Rn ∼= Z2.
An isomorphism of a n-sun can either be a rotation, reflection or both. Therefore, the
internal direct product of the two groups represents the symmetries:

RCycn :=
{
rc
∣∣ r ∈ Rn and c ∈ Cycn

}
.

It is worth noting that this is a semidirect product RCycn = Rn n Cycn. Thus, note that
Rn ∩ Cycn = (1) and

rnc+rn = cn−1
+

rnc
k
+rn = (rnc+rn)k = c

k(n−1)
+ = cn−k+ ∈ Cycn .

The first line follows by direct computation and in the second line the identities r2
n = (1)

and ckn+ = cn+ were used.
For future results the order of RnnCycn will be needed. Since the two groups only intersect
at (1), conclude that |Rn n Cycn | = 2n.

10
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Definition 2.32. Define a group action φ : RnnCycn× {σΣn | σ ∈ Sn} → {σΣn | σ ∈ Sn}
via φs(σΣn) := (s ◦ σ)Σn.

Then the set of all permuted n-suns Sn is given as a partition by φ

Sn := {σΣn | σ ∈ Sn}/φ.

Lemma 2.33. Let σ ∈ Sn then StabφσΣn is trivial.

Proof. Let s ∈ Rn n Cycn. φs(σΣn) = σΣn ⇔ s ◦ σ = σ then StabφσΣn = {(1)} by the
uniqueness of the identity in groups.

Corollary 2.34. Let σ ∈ Sn then |OrbφσΣn | = 2n and |Sn| = (n− 1)!/2.

Proof. |OrbφσΣn | = |RnnCycn | is obtained by the orbit stabilizer Theorem 2.19 and Lemma
2.33. Furthermore this is true for any σ ∈ Sn, so every partition in Sn has the same size
and therefore

|Sn| =
|Sn|

|Rn n Cycn |
= n!
n/2 = (n− 1)!

2 .

11



2. Mathematical Framework

2.4 Moduli Spaces of Graphs

This section begins with a definition of the moduli spaces of graphs MGl,n for graphs with l
loops and n external legs. It is then restricted to graphs of Yang-Mills theories. Furthermore,
the colored versions MCGl,n,C and MRGl,n are defined. The last part treats the particular
case of one-loop graphs, which is the central object of this thesis.
First, the points of which the spaces MGl,n are made of, namely metric graphs, need to be
defined.

Definition 2.35. A metric graph is a tuple (λ,G), where G is a graph and λ : EG → R≥0
a map called the metric, which assigns to every edge e ∈ EG a length λ(e) ≥ 0.
The volume vol(λ,G) of a metric graph is defined by vol(λ,G) :=

∑
e∈EG

λ(e).

Metric graphs that have a vanishing metric on a subset of their edges should be identified
with the graph where these edges are contracted. To implement this define the subset
Zλ ⊂ EG of edges with length zero of a metric graph (λ,G) by

Zλ :=
{
e ∈ EG

∣∣ λ(e) = 0
}
.

The metric of the contracted graph G/Zλ2 is given by the restriction of λ to the edges that
have non zero length λ|EG\Zλ . Denote a contracted metric graph by

(λ,G)/Zλ := (λ|EG\Zλ , G/Zλ).

Definition 2.36. The moduli spaces of graphs MGvl,n are defined by

MGvl,n :=
{

(λ,G)
∣∣ G ∈ Gvl,n, vol(λ,G) = 1

}
/ ∼

with the equivalence relation (λ,G)/Zλ ∼ (λ′, G′)/Zλ′ if there is a external leg preserving
isomorphism i : G/Zλ → G′/Zλ′ s.t. λ′ ◦ i = λ.

When there is no restriction to the valency of the graphs in MGvl,n, write MGl,n := MG∞l,n.
The restriction to metrics with volume one is useful since it eliminates scaling of the graphs
in MG. Graphs in a equivalence class of MGvl,n whose metric does not vanish anywhere are
isometric as metric spaces.
Notice that in the definition above two metric graphs with non zero metrics still might de-
scribe the same point in the moduli space. This origins in automorphisms of the graph under
consideration. An example of two equivalent graphs is shown below, where the isomorphism
that swaps the edges satisfies the condition from the Definition 2.36. The qualitative value
of the metric is shown as the length of the drawn lines.

e1

e2

∼

e1

e2

An identification of metric graphs that have a partially vanishing metric is given in the next
example. In the picture, the metric on solid edges is one half and it vanishes on the dashed
ones.

4

2 3
1

∼
2

1

3
4
∼

1

2 3
4

2Here Zλ denotes the tree subgraph of G whose edges have zero length by λ.
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Also notice how graphs with different permutation on the external legs might get identified,
when the metric vanishes on a subset of their edges.
To understand the topological structure of MGvl,n it is useful to neglect the equivalence
relation for graphs that have non zero metrics and implement it later. The equivalence of
graphs with partially vanishing metrics with contracted graphs guarantees that there are
face relations.
Due to the condition vol(λ,G) = 1, the length of the edges in a graph can not vary indepen-
dently. Considering only one metric graph (λ,G), the space spanned by the allowed metrics
might be written as the cell

δG =
{

(e1, e2 . . . eN )
∣∣ ei ∈ [0, 1],

N∑
i=1

ei = 1
}
,

where N = |EG| is the number of internal edges of G. It is important to notice, that δG is
equivalent to the geometrical simplex of dimension N − 1, see Definition 2.6. The boundary
of a simplex corresponds therefore to a graph where at least one edge e has length zero, i.e.,
λ(e) = 0. Due to the equivalence relation for contracted metric graphs, these boundaries
are therefore generated by the contracted graph.
Conclude that any simplex on the boundary of δG therefore is given by δG/F , where F is
a forest. A forest F ⊂ G is a disjoint union of tree subgraphs and all of its edges can be
assigned zero length simultaneously, since a forest has no loops and therefore |G| = |G/F |.
Conclude that it is not allowed to contract with graphs γ that have at least one loop |γ| > 0.
Remark. The graphs in Gvl,n can be partially ordered by G ≤ G′ ⇔ F ⊂ G′ : G′/F = G.
This poset is the same as P [MGvn,l].
In the moduli space of graphs, not all edges can be given a zero length simultaneously since
this might alter the rank of the graph or the degree of a new vertex in G/F is too high.
This restricts the allowed forests by their number of external legs, which is summarized by
the next property. In conclusion, the cell δG misses some faces and has thus the structure
of a relative simplex.

Definition 2.37. A relative simplex associated with the graph G is denoted by 〈G〉.

Property 2.38. Let G ∈ Gvl,n and F ⊂ G be a forest with maxT∈F |Hext
T | ≤ v and assume

that G/F is not a tadpole, then

(i) G/F ∈ Gvl,n or equivalently
(ii) δG/F is a face of 〈G〉.

The restriction that has to be made, such that G/F is not a tadpole is investigated in the
next section.
Adding more graphs to the picture results in more simplices that can share faces, so it gives
a relative simplicial complex structure. In Figure 2.3 a subspace of MG1,4 is shown. Here
any of the three internal edges of the graph can be shrunken to zero length. The results are
shown on the edges of the 2-dimensional simplex. The graphs on the 1-dimensional edges
always result in the same graph if one of their edges has zero length, namely the 1-loop
graph with four external legs and one vertex. Therefore the vertices of the shown simplicial
complex all describe the same point in MG. The neighboring face on the right consists of
the same graph with permuted external legs.
The 3-regular graphs of MG form the facets of the simplicial complex, since they contain
the maximal number of edges for a given loop number and external leg structure. Combi-
natorially all faces of MG can be constructed from the facets, by investigating the possible

13
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4

2

3
1

1

2 3
4

1
2

3
4 2

1

3
4

1

42 3

Figure 2.3: A simplex in MG1,4 and one of its neighbors

forests of the 3-regular graphs.
By implementing the equivalence relation of MG on the metric graphs, the space loses the
structure of a simplicial complex. In the example of Figure 2.3 all edges fold on themselves.
Looking only at the left cell, it becomes a 2-sphere under the equivalence relation. In this
thesis, the structure of one-loop Yang-Mills theories is investigated, and it will turn out that
the problems caused by the equivalence relation do not affect the studied cases for the most
part.

Sometimes it is useful to define a further map c : EG → [C], called the coloring of a graph G.
C ∈ N denotes the number of colors. This extension can be used to restrict the isometries
between the metric graphs. From a physical perspective, these colors act as placeholders for
additional information on the edges, such as mass or spin.

Definition 2.39. The colored moduli spaces of graphs MCGvl,n,C are defined by

MCGvl,n,C :=
{

(c, λ,G)
∣∣ G ∈ Gvl,n, vol(λ,G) = 1

}
/ ∼

with the same equivalence relation as in definition 2.36, where the isomorphisms need to
respect the coloring as well, i.e. c′ ◦ i = c.
Graphs whose coloring is injective are called rainbow-colored and their moduli spaces are
denoted by MRGvl,n.

Remark. The uncolored moduli spaces can be recovered by a group action of Sn, that changes
the colors such that MGvl,n = MRGvl,n/Sn.

Outer Space

These types of moduli spaces for graphs without external legs were first defined by Culler
and Vogtmann [2]. They used them to investigate the automorphisms of free groups. Points
of the Culler Vogtmann Outerspace CVl are given by metric graphs together with a marking.
A marking of the graph Γ is a homotopy equivalence from the rose graph Rl (the unique
graph with l loops and one vertex), where each edge is labeled by a generator of the free
group Fl together with a direction, to the graph. In practice to mark a graph, choose a
spanning tree, and label the remaining edges with elements of Fl that form a basis. Two
marked metric graphs (g,Γ) ∼ (g′,Γ′) are equivalent if there exists an isometry i : Γ → Γ′
between them, such that g′ ◦ i is homotopic to g.
The automorphisms of Fl then act naturally on marked graphs by changing the marking. It
turns out that the inner automorphisms act trivially. Let φ ∈ Out(Fl) then it acts on the
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right by

(g,Γ)φ = (g ◦ f,Γ)

where f : Rl → Rl is a representative of φ on the rose graph. The orbit space CVl/Out(Fl) =
MGl forgets the marking and is therefore identical to the moduli space of graphs.
Analog to the definitions above one can allow external legs on the graphs (also called base-
points). In that case, equivalent graphs are given by isometries that additionally preserve
these points. One can still define natural actions of certain groups on these spaces, such
that the orbit spaces are again equal to MGl,n [3, 8].

2.4.1 Moduli Spaces of Yang-Mills Theory MG4
l,n

In Yang-Mills theories, there are cubic and quartic interactions, this means on a graphi-
cal level, that the only two types of vertices have valency three or four. Therefore, the
corresponding moduli space is MG4

l,n.

Matchings on 3-regular Graphs

Given a 3-regular metric graph (λ,G) ∈ MG4
l,n, the forests F ⊂ G that form a set of edges

that can have zero length simultaneously take a particular form called matchings. The
following definition introduces matched graphs, and the identification of matched 3-regular
graphs with graphs in G4

n is specified.

Definition 2.40. A forest M ⊆ G of a graph G is called a matching if all its connected
components T ∈ M have exactly one edge, i.e. |ET | = 1 ∀T ∈ M . Matchings on 3-regular
graphs are also denoted as subsets of their edges.
A matching is called maximal if there is no edge e ∈ E(G) such that {e}∪M is a matching.
A maximal matching that is a vertex cover is called perfect.

Given any matching M of a 3-regular graph G ∈ G3
n, all edges in that matching can be

contracted simultaneously. A further restriction, whose motivation comes from physics, is
made to ensure that the graph G/M is tadpole free and is therefore in the set of admissible
graphs G4

n and generates a cell in MG4
l,n.

Definition 2.41. Let G ∈ G3
n and M a matching of G. M is called valid if @e ∈ M s.t.

G/e is a tadpole, cf. Definition 2.21. Graphically they take the form

G/e = .

Note that the deletion of the four valent vertex would lead to a connected component without
external legs.

Definition 2.42. The set of all valid matchings M on a graph G with |M | = m is denoted
by MmG.

It is intuitively clear that a matching M of a 3-regular graph corresponds to a graph in
G4
n, by collapsing the matched edges to 4-valent vertices. In the next definitions and the

upcoming Lemma, this correspondence is investigated. First, extend Gvn to a set that carries
information about possible matchings.
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∼ ∼

e e e

(e, γ) (e, (24)γ) (e, (23)γ)

Figure 2.4: Equivalent graphs in M1G3
n/STU

Definition 2.43. Define the set of all matched graphs in Gvn via

MGvn :=
⊔
m∈N

MmGvn

where MmGvn :=
{

(M,γ)
∣∣ γ ∈ Gvn,M ∈Mmγ

}
.

The symbol t denotes disjoint union, i.e. here MiGvn ∩MjGvn = Ø for i 6= j. It is evident
that the set G4

n splits into a disjoint union:

G4
n =

⊔
m∈N
G4,m
n

where m is the number of 4-valent vertices of the graphs in G4,m
n . The aim is to show some

relation of the kind “MG3
n
∼= G4

n”. Due to the structure of the two sets it is enough to show
that there is a bijection of the kind “ρm : MmG3

n → G4,m
n ”. Define ρm(M,γ) := γ/M , an

example of this mapping is:

ρ2 .

Note that if an edge of the multi-edge were part of the matching, the multi-edge would map
to a tadpole.
The map ρm : MmG3

n → G4,m
n is not a bijection yet, because any of the graphs illustrated

in Figure 2.4 gets mapped to the same graph in G4
n by ρ1. This is fixed by an equivalence

relation on MmG3
n, which sets the graphs of Figure 2.4 equivalent.

Definition 2.44. The set Adje is defined to be the set of half-edges given by the two vertices
connected by e with the half-edges of e removed.
Let (e, γ) ∈ M1G3

n and σ : Hγ → Hγ be a bijection s.t. σ|Hγ\Adje = (1) and σ|Adje ∈
R4 n Cyc4 =: STU. 3

Define a group action Φ : M1G3
n × STU → M1G3

n by Φσ(e, γ) := (e, σγ), where σγ :=
〈Hγ , Eγ , σVγ〉. The vertices σ.v ∈ σVγ are given by σ.v := {σ(v1), σ(v2), σ(v3)}. See also
Figure 2.4.

This group action easily extends to MmG3
n and therefore to the whole space of all matched

3-regular graphs. An important observation is that the size of the equivalence classes (or
orbits of Φσ) of graphs in MmG3

n can be different, since the action of STU might be a
symmetry of the graph or the permuted graph is no longer part of G3

n. One still can give an
upper bound. Let [(M,γ)] ∈MmG3

n/STUm then |[(M,γ)]| ≤ |R4 n Cyc4 |m = 3m.

3 The notation is inspired by the s, t, and u channels known in physics.
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Lemma 2.45. Let ρm : MmG3
n/ STUm → G4,m

n be defined as above, then ρm is a bijection.

Proof. It is enough to show that ρ1 : M1G3
n/ STU → G4,1

n is bijective because ρm can be
constructed from m copies of ρ1 (one for each matched edge) since they all commute with
each other.
ρ1 is surjective: Let Γ ∈ G4,1

n , take the 4 valent vertex and replace it by the following rule
e

then the resulting graph γ is 3-regular, e is clearly a matching and ρ1(e, γ) = Γ. ρ1 is
also injective. Let [(e, γ)], [(e′, γ′)] ∈M1G3

n/ STU and [(e, γ)] 6= [(e′, γ′)] and therefore their
representatives differ by more than a permutation of Figure 2.4. But then ρ1 ((e, γ)) 6=
ρ1 ((e′, γ′)).

Corollary 2.46.
⊔
m∈N MmGvn/ STUm =: MG3

n/∼ ∼= G4
n

Proof. By the decomposition of both sets as direct sums and Lemma 2.45

This result is quite central for this thesis, because later on the f -vector of the moduli space
of graphs MG4

1,n is constructed by counting the number of possible matchings on 3-regular
graphs. Furthermore, note that the number of graphs with m four valent vertices equals the
number of cells dimension n−m−1 in the moduli spaces of graphs, as long as the isometries
are neglected.

Compactification

As already mentioned, the cells of the moduli space MG contain open faces. It is useful to
study the compactification or bordification of MG (originally this was done for the Outer
space), which systematically replaces these faces with new ones to obtain a compact space.
For example, the work [9] describes this procedure. The presented construction is taken
from there. However, several details are skipped over in this section, since this is only meant
to be a brief introduction.
Regard the moduli space of Yang-Mills graphs MG4

l,n and consider the set of all matchings
MmG on a graph G. Let MmG denote its complement with respect to 2G, the set of
all subgraphs of G. (To construct the compactification for general moduli spaces this set is
altered accordingly). For every γ ∈MmG define a coordinate restriction map rγ : 〈G〉 → 〈γ〉
which restricts the given metric on G to γ and rescales it accordingly. Then construct the
product map as ∏

γ∈MmG

rγ : 〈G〉 →
∏

γ∈MmG

〈γ〉

and define the compactified cell 〈̂G〉 as the closure of im
∏
rγ . This image is the cartesian

product of the image of each map rγ .
The compactification of the moduli space M̂G is defined for each cell and identifying the
faces of the compactified cells via the face relations of the cells in MG.
Remark. In contrast to the usual construction for Outer space, the set MmG contains non
1PI subgraphs of G, in the form of tree or loop subgraphs.

Example 2.47. Consider the one loop graph Σ3 and neglect any isometries, then the
relative simplex is 〈Σ3〉 = (2[3], {{1}, {2}, {3}}), which is a 2-cell with removed vertices.
The set MmΣ3 is given by the three spanning trees of Σ3, denoted by Ti and the graph
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1

Figure 2.5: The compactified cell 〈Σ̂3〉 ⊂MG4
1,3

itself. The compactification described above maps this to the hexagon and is shown in
Figure 2.5. Where edges with non-zero length with respect to the metric on Σ3 are drawn
solid and those with non-zero length on Ti are drawn dotted. This representation is also
used in [9].

The graphs γi ∈ MmG can be arranged in flags, which is a collection of graphs such that
γn ⊂ γn−1 ⊂ · · · ⊂ γ0. Such a flag describes a missing face in 〈G〉.
There is an identical construction of the compactified cell by considering blow-ups along
subspaces of the projective implementation of a simplex. Their equivalence is shown in [3].
The theory of blow-ups, a concept arising in algebraic geometry, is used to regularize the
poles of the Feynman integrand derived below. The compactification of the moduli space is
therefore tied to the renormalization procedure. Section 3.2 contains a brief passage with
additional comments on that linkage.

Connectedness of MG4
l,n

The following considerations are made to prove the connectedness of the moduli spaceMG4
l,n

eventually. The proof relies on an induction over the loop number l, for which it useful to
look at sets that are generated from graphs of a lower loop number by inserting an edge.
They are defined by deleting edges of graphs with higher loops. Deleting an edge e from a
graph G would technically leave two 2-valent vertices in G \ e. To render the graph G \ e
admissible delete the 2-valent vertices and connect the open ends accordingly. This is done
implicitly in the following definition and henceforth.

Definition 2.48. Let g ∈ G3
l−1,0 then define the set of l-loop graphs generated from g via

{g}e := {α ∈ G3
l,0
∣∣ α \ e = g}.

Property 2.49. Let l > 1 then

G3
l,0 =

⋃
g∈G3

l−1,0

{g}e .

Proof. The inclusion G3
l,0 ⊇

⋃
g{g}e is satisfied by definition. To show G3

l,0 ⊆
⋃
g{g}e let

γ ∈ G3
l,0 and e ∈ Eγ , then γ \ e is clearly 3-regular and has no external legs. Furthermore,

γ is 1PI and therefore by definition |γ \ e| = l − 1.4
If γ \ e is not 1PI the graph γ must take the form

ε

e

γ =

4 Since γ is 1PI there is a spanning tree t of γ such that e /∈ t.
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for l > 2. However in that case γ \ ε is 1PI. (For l = 2 γ \ e is the 0-sun and thus 1PI).
Eventually conclude that ∀γ ∈ G3

l,0 ∃e ∈ Eγ such that γ \ e ∈ G3
l−1,0.

The next definition formalizes the process of shrinking an edge e in a graph γ and expanding
it. Note that the resulting graph γ′ might be different from the originating one, but the
graphs satisfy the equation γ/e = γ′/e′.

Definition 2.50. Recall the group action Φσ given in Definition 2.44. Define for (e, γ) ∈
M1G3

n a similar group action Φ̃ε,σ(e, γ) := Φσ(ε(e), γ), where ε : Eγ → Eγ ∈ S|Eγ |.
For the k-fold composition write Φ̃εk,σk ◦ · · · ◦ Φ̃ε1,σ1 =: Ωx, where
x = (εk, . . . , ε1, σk, . . . , σ1) ∈ Sk|Eγ | × STUk.

The map ε1 selects an edge to be matched. Therefore, the domain of Ωx can equivalently
be given by the unmatched graphs G3

n. Together with a projection (e, γ) π7−→ γ, that forgets
the marked edge, the following map arises π ◦Ωx : G3

n → G3
n. Essentially this gives a slightly

different perspective, where π ◦ Ωx is an operation on unmatched graphs and its image
graph is unmatched as well. In the following the maps π ◦Ωx and Ωx are not distinguished
notationally.
For each graph γ there is a subset Xγ ⊆ ∪kSk|Eγ |× STUk, such that any graph appearing in
the composition Ωxγ is admissible and the matching is valid for all x ∈ Xγ . If x ∈ Xγ it is
called valid.

Example 2.51. Consider an example to clarify the action of Ωx. Let γ ∈ G3
3,0 be given by

γ =
e

,

where one edge is labeled with e and the half-edges in Adje = {1, 2, 3, 4} are counter clockwise
starting from the left most half-edge in the picture above. Now let x = (e, (23)), then the
graph γ maps to

Ωxγ =
e

,

where

(Ωxγ)/e = γ/e = .

This mapping can be pictured by first shrinking the edge e of γ and then expanding it again.
Replacing the 4-valent vertex with an edge can be done in three ways. Here one is specified
by the permutation (23) in x.
Note that there are x, y ∈ Xγ such that Ωxγ = Ωyγ, therefore observe that the stabilizer of
Ω is clearly not trivial.

Property 2.52. Let γ ∈ G3
l,n. The relative simplex 〈γ〉 is connected.

Proof. Any element in the face poset P [〈γ〉] is connected to the vertex of 〈γ〉 since it is
achieved by γ/M where M is a matching on γ.

Lemma 2.53. MG4
l,0 is connected.

Proof. Note that with the help of Property 2.49 the moduli space can be written as

MG4
l,0 =

⋃
γ∈G3

l,0

〈γ〉 =
⋃

g∈G3
l−1,0

⋃
α∈{g}e

〈α〉 .
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Together with Property 2.52 it is then evident that MG4
l,0 is connected if

∀γ, δ ∈ G3
l,0 ∃x ∈ Xγ , s.t. Ωxγ = δ. (2.1)

This will be shown in two steps. First show that the condition (2.1) holds for α, β ∈ {g}e
for any g ∈ G3

l−1,0. The second step uses induction over the loop number l by assuming the
connectivity of MG4

l−1,0 to eventually proof that (2.1) indeed holds.
Let α ∈ {g}e and l > 2, since α is admissible it is defined by g and two edges e1, e2 ∈ Eg,
between whose the new edge e is formed. This allows the notation α = [g, e1, e2]. Now
consider matchings on α, where one of the adjacent vertices of e is matched to any vertex
v ∈ Vg:

(ε, α) = , (2.2)

where e is from now on depicted as a dotted line. Note that ε cannot be part of a multi-edge,
since then g would not be 1PI. The graph α is also 1PI and therefore ε can not be a bridge
of α. Conclude that the matching ε is valid.
Now investigate the action of Φ on (ε, α), the orbit is given by

OrbΦ
(ε,α) =

{
, ,

}
.

Therefore observe that the action of Φ on graphs (ε, α), where the matching is of the type
(2.2) can be written as

Φσ(ε, α) = Φσ[g, e1, e2] = [g, e1, fσ(e2)],

where fσ is a appropriate permutation on the edges of g. The matching on the graphs in
OrbΦ

(ε,α) is also valid, because if it were not, [g, e1, fσ(e2)] would take the form

or ,

but in both cases g would not be 1PI. Therefore all graphs in OrbΦ
(ε,α) corresponds to a face

of MG4
l,0.

Conclude that the map Ωx, where x ∈ Xα is chosen such that it only contains matchings of
the type (2.2), can be written as Ωxα = [g, σ(e1), τ(e2)], where σ and τ are permutations
on the edge set Eg. Furthermore, (Ωxα) \ e = g for any x. Therefore conclude, that the
condition (2.1) holds for graphs α, β ∈ {g}e.

Now assume that (2.1) holds for l − 1. Then any two sets {g}e and {h}e with g, h ∈ G3
l−1,0

posses a sequence of shrinking and expanding edges, represented by a mapping Ωy, such that
{g}e = {Ωyh}e. Now it is described how this map extends on elements of {h}e. Therefore
pick a graph α′ = [h, a, a] = ∈ {h}e. Note that any graph [h, e1, e2] can be mapped
to a graph of the form [h, a, a] by the above. Recall the definition of the mapping Ωyh in
terms of the action Φ̃

Ωyh =
(
Φ̃εk,σk ◦ · · · ◦ Φ̃ε1,σ1

)
h,

this is well defined as a map on α′ as long as εi 6= (σi−1 ◦ · · · ◦ σ1)a =: ρi−1a, so that
the edge a is never matched. Further note that Ωy is constant on the half-edges e ∪ Adje.
Denote the composition of the first j maps Φ̃εi,σi , that are well defined on α′ as Ωyj . So
it remains to construct the map Φ̃ρj−1a,σj on (Ωyj−1α′), that realizes the permutation σj in
through a valid edge shrinking and expanding. Therefore look at the following sequence,
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Moduli Spaces of Graphs

which illustrates the permutation (24) (the other ones are similar) on ρi−1a:
1

2

3

4
→ 1

2
3

4
→ 1

2
3

4
→ 1

4
3

2
→ 1

4
3

2
→ 1

4

3

2
,

where at each step, the highlighted edge is shrunken and expanded to get to the next graph.
Note that any matching containing a vertex of the edge e is valid as shown above. The
matching on the third graph is also valid, since it is still a matching after the removal of e
and y ∈ Xh by assumption. Conclude that the sequence above defines a map Ωỹj and by
replacing the map Φ̃ρja,σj with Ωỹj , one obtains a valid action on α′. Repeatedly applying
this replacement the map Ωy on h can be extended to α′ and is written as ΩY α′ with
Y ∈ Xα′ . Consequently for any α ∈ {h}e and β ∈ {g}e one finds a edge shrinking and
expanding as follows

(Ωx2 ◦ ΩY ◦ Ωx1)α = (Ωx2 ◦ ΩY )[h, a, a] = Ωx2 [g, Ya, Ya] = β,

where Ya denotes the edge to which e is attached, which is the image of a under ΩY . The
map Ωx1 : {h}e → {h}e is such that it only contains matchings given in (2.2), so does the
map Ωx2 .
For l = 1, 2 there is only one graph in G3

l,0, which completes the induction.

Remark. The proof above constructs a path along the spine of MG4
l,0 The spine is the

geometric realization of the face poset P [MG4
l,0].

Furthermore, notice that only 1-matchings were used. This means, that the moduli spaces
are already connected when only one four valent vertex is allowed.

Corollary 2.54. MG4
l,n is connected.

Proof. Let (e, g) ∈M1G3
l,n and h ∈ Hext

g ∩Adje. These can take two general forms:
h

or
h

,

where the edges going into the blob are internal edges of g. In the latter one, the two
external edges can be transposed by an edge shrinking and expanding. In the first one, the
external edge h can be attached to any of the three internal edges. As a conclusion for a
fixed graph g0 ∈ G3

l,0 all graphs arising by attaching n external legs to g0 are connected in
MG4

l,n.
Furthermore, the edge shrinking and expanding that relates g0 to any other graph h0 ∈ G3

l,0
can be extended to G3

l,n, since whenever a matched edge of g0 contains external half-edges,
the permutation can still be realized, by first shifting the external half-edges to an adjacent
edge.

In the next section, the properties of one loop moduli spaces of graphs are investigated.

2.4.2 One Loop Moduli Spaces MG1,n

Understanding the moduli spaces requires to investigate the isometries between the metric
graphs. Isometries are isomorphisms between two graphs that respect the metric. Here
isomorphic contracted metric graphs are explicitly excluded. In the case of one-loop graphs,
the following observation is crucial for the results of this thesis.

Property 2.55. Let g ∈ MG1,n, then ∃h ∈ MG1,n which is isometric to g iff g has a
multi-edge.
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2. Mathematical Framework

0

1

2

θ1θ2

n− 1

θn−1

Figure 2.6: MG1,n ∼= Tn−1/Z2

Proof. First, recall that tadpoles are excluded. Further note that there are no external leg
fixing isomorphisms between one-loop graphs unless the graph possesses a multi-edge.

For the moduli space with restricted vertex valencies, this can be further specified by the
number of external legs.

Property 2.56. Let g ∈MGv1,n, then ∃h ∈MGv1,n which is isometric to g iff n ≤ 2v − 4.

Proof. Fix v > 2. A one-loop graph with a multi-edge must have two vertices. This graph
can have at most n = 2v − 4 external legs. Adding a further one implies that a new vertex
is needed and thus the multi-edge is destroyed.

Now a slightly different perspective on the one-loop moduli space is presented. It is only
used in this section to illustrate some examples for small n.
A one-loop graph with n external legs in the moduli space of graphs can be thought of as a
circle divided in n segments. The length of each segment represents the length of an internal
edge and is parametrized by an angle θ. Since one angle can be set to zero, there are n− 1
independent angles describing a graph in MG1,n, this is shown in Figure 2.6. Let θ ∈ Tn−1

denote this tuple of angles, where Tn is the n dimensional torus. The two points θ and −θ
describe the same point in MG1,n. This induces a group action ρ : Tn−1 × Z2 → Tn−1 and
MG1,n can be described as the quotient space Tn−1/Z2.
This group action also takes care of the possible isometries between two one-loop graphs.
The corresponding isomorphisms switch the edges of a multi-edge, which is precisely the
action of ρ.
A list of the spacesMG1,n for small n is given below. There {pt} denotes the space consisting
of only one point, I an interval and S2 the 2-sphere.

MG1,1 ∼= T0/Z2 ∼= {pt}
MG1,2 ∼= T1/Z2 ∼= I

MG1,3 ∼= T2/Z2 ∼= S2

Derivation of T2/Z2 ∼= S2

Figure 2.7 shows how one can construct that T2/Z2 ∼= S2. The first picture shows the
torus as a square with identified opposite sites, indicated by the color of the arrows and
the vertical, dashed line. The action of Z2 establishes an additional equivalence relation,
indicated by the dashed line going through the point in the middle. A point x on such a
line is identified with a different point −x, the unique point on the line which has the same
distance from the middle. This causes a second equivalence on the boundary of the square:
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Moduli Spaces of Graphs

Figure 2.7: Construction of T2/Z2 ∼= S2

a folding, indicated by the inwards pointing arrows.
The action of Z2 can be realized by cutting the square in half, rotating one half by 180
degrees about the middle point and gluing the halves on top of each other. The second
picture shows the cut along a line through the middle. On this line, there are also two
equivalences, one to reverse the cut and the other is the action of Z2.
The third picture shows T2/Z2 after the two halves are glued together. The remaining
identifications come from the representation of the torus and the cut. The line marked in
blue still needs to be folded, since at this stage only one of the two equivalences is satisfied.
The same applies to the edges marked in red. Here the remaining identification is coming
from the representation of the torus. The cut (marked as a dashed line in the figure) also
still needs a folding, because this is just redoing the cut after the rotation.
Carrying out the equivalence on the line marked with red arrows leads to a cylinder, with
the each of the boundaries glued together, which is just the sphere, see also the last picture
in Figure 2.7.

Examples of MG4
1,n

Shrinking edges of a graph in MG1,n corresponds to setting two angles equal. Allowing only
vertex valencies of 3 or 4 corresponds to remove a subspace Γn ⊂ MG1,n from the whole
moduli space MG1,n. So in this notation MG4

1,n = MG1,n − Γn.
Γn contains the points θ where at least three angles coincide. For this discussion, the angle
of the external leg marked with 0 in Figure 2.6 is treated as the nth angle fixed at 0. It
follows immediately that dim Γn = n− 3. This result is later reproduced combinatorially.
The upcoming examples look at MG4

1,n for some values of n.

Example 2.57. n = 3.
Since Γ3 contains of all points in MG1,3 where at least 3 angles are fixed, the only point in
Γ3 is θ = 0, i.e. θ1 = θ2 = 0. Therefore MG4

1,3 = S2 − {pt} ∼= R2.

Example 2.58. n = 4.
Γ4 contains of one point θ = 0 and 4 intervals all connected to that point. Pictorally,

Γ4 = ∼=
h.e.
{pt}.

Example 2.59. n = 5.
Γ5 contains the point θ = 0, five intervals I connected to that point and

(5
3
)

= 10 copies
of S2 all of which contain two distinct intervals. The only points that are shared by two
spheres must lie on one of the intervals. As for n = 4 these intervals are contractible and
so it remains a wedge sum of spheres, glued together at the point θ = 0. This leads to the
conclusion

Γ5 ∼=
(
S2)∧10

.
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Chapter 3

Connection to Physics

This chapter carries out the connection between the physical viewpoint, coming from a
perturbative quantum field theory approach to the central object of this thesis, the moduli
space of gluon graphs. First, a summary of Yang-Mills theory and an argument why in
non-abelian gauge theories five valent vertices do not appear. A second section introduces
parametric Feynman integrals, and subsequently, the appearance of moduli spaces of graphs
in scattering amplitudes is made clear.

3.1 The Absence of 5-Valent Vertices in Yang-Mills
Theories

In this section, an argument is presented why there is no need for a 5-valent gauge boson
vertex in non-abelian gauge theories. It relies on the underlying Lie algebra structure and is
performed via a recap of the gauge invariance of YM theory and therefore the corresponding
Ward identities, which are also called Slavnov-Taylor identities. The considerations at hand
are based on argumentations presented in [10].

3.1.1 Recap of Non-Abelian Gauge Theories

A crucial concept of quantum field theories is gauge invariance. Proceeding from a La-
grangian L that permits a certain local symmetry, one demands that the quantized theory
still owns that symmetry. In the case of Yang-Mills theories, the classical Lagrangian LcYM
is invariant under the action of SU(n). The generators of the corresponding Lie algebra
su(n) are denoted by ta, where a = 1, 2, . . . , n2 − 1. They satisfy the commutation relation

[ta, tb] = ifabctc .

By implementing the normalization Tr(tatb) = δab/2 the structure constant fabc is totally
antisymmetric. The generators ta satisfy the so called Jacobi identity given by

0 =
[
[ta, tb], tc

]
+
[
[tc, ta], tb

]
+
[
[tb, tc], ta

]
= −

(
fdecfeab + fdebfeca + fdeafebc

)
td ,

(3.1)

where in the second line the expression in the brackets has to vanish, which imposes a
identity on the structure constants. In the following both identities are referred to as the
Jacobi identity.
Throughout this chapter color indices are given by roman letters and spacetime indices by
greek ones. Using the Einstein sum convention the Lagrangian takes the form

LcYM = −1
4F

a
µνF

aµν ,
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The Absence of 5-Valent Vertices in Yang-Mills Theories

where F aµν are the components of the field strength tensor, which is defined in terms of the
gluon field Aµ = taAaµ:

F aµν := ∂µA
a
ν − ∂νAaµ − ig[Aµ, Aν ]a .

The Lagrangian LcYM persists a global symmetry, it stays invariant under the action of
U ∈ SU(n) on the fields Aµ given by

Aµ → UAµU
−1

The corresponding Noether current is jνa = fabcF cµνAbµ and the equation of motion reads
∂µF

µν = jν . The Lagrangian is invariant under the following the field transformation:

Aµ → UAµU
−1 + (∂µU)U−1 .

Where U is now taken to be a SU(n) valued function of spacetime. This invariance is called
local gauge invariance and forbids a mass term for the field Aµ. Conclude that gluons are
massless. This symmetry might be viewed as an artifact of the theory. It is not a symmetry
of nature. Gauge fields that are related by a local gauge transformation are physically
equivalent, which means they do not describe different states in nature.
To consistently quantize Yang-Mills Theory, this symmetry needs to be taken into account
by breaking it at the classical level via gauge fixing. This reduces the degrees of freedom
of the gauge field to physical relevant ones. During quantization, one needs to ensure that
these constraints remain true, such that the unphysical degrees of freedom do not appear
in measurable results. This procedure is described in many QFT textbooks, for example,
in [11]. Famously, new non-observable particles, hence often called ghosts, which cancel the
unphysical degrees need to be introduced.
The gauge fixing is done by an additional constraint on the gauge fields Aµ. In the presented
approach the Lorentz condition

∂µAaµ = 0 (3.2)

is chosen.
A further ingredient of a quantum field theory is an unitary representation of the Lorentz
group of the fields under consideration. For massless vector particles (e.g. Aµ) this imposes
the transversality condition on the polarization vectors eµ(k, σ) [12]:

kµe
µ(k, σ) = 0 , (3.3)

where kµ describes the momentum and σ = ±1 the spin of the particle. Since Aµ is massless
note that the condition (3.3) is unaffected by the following transformation of the polarization
vector

eµ(k, σ)→ eµ(k, σ) + kµω(k, σ), (3.4)

where ω(k, σ) is a arbitrary function. Further observe that the gauge condition (3.2) is
equivalent to transversality. Therefore deduce that the polarization vectors still possess a
gauge symmetry that needs to be preserved in the quantum theory. In the sense that such
a transformation does not alter the measurable results, which means that ω(k, σ) does not
add a physical degree of freedom.

Perturbative quantum field theories best describe scattering events. The probability that an
incoming state evolves to a certain outgoing state of particles is described by the S-matrix.
It is a central quantity of the theory that is directly related to experimental results. In
perturbation theory, its elements are calculated using Feynman diagrams. The S-matrix of
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3. Connection to Physics

pure Yang-Mills theory is given by the LSZ Formula which schematically takes the form

Sab ∝

(
n∏
j

eρj (kj , σj)
)
Mρ1···ρn(k1, . . . , kn) , (3.5)

where kj are the external momenta. Furthermore the vectors eρj (kj , σj) are the polarization
of the external gluons. The matrix elementMρ1···ρn describes the interaction and is given
by the graphs under consideration and the Feynman rules of the theory. For this thesis the
precise structure of the S-matrix is not needed, since in the following a invariance already
arising from this general form is studied.
The gauge freedom of the polarization vector (3.4) should still be valid in the quantum
theory. Therefore the S-matrix needs to be invariant under this transformation. This would
be the case if

kiρiMρ1···ρi···ρn(k) = 0. (3.6)

In the following, it is motivated how this equation can be proven and how it is related to
the allowed interactions of a gauge theory. To analyze the structure of the matrix element
use Feynman diagrams and rules which are introduced next.

Feynman Rules of Yang-Mills Theory

The Feynman rules of Yang-Mills theory are given below, using the same conventions as
in [11], and they are presented as a map F . The rules are given in Feynman gauge. The
wiggly lines denote gluons, and the dotted ones are ghosts. Furthermore, all momenta
are taken to flow inwards. The external particles are always numbered clockwise, and the
structure constant fabc is read off clockwise as well (although this will only become important
later).

1 2
F7−−−→ ηµ1µ2δa1a2

k2 + iε

1

3

2

F7−−−→
−igfa1a2a3

(
ηµ1µ2(k2 − k1)µ3 + ηµ1µ3(k1 − k3)µ2

+ ηµ3µ2(k3 − k2)µ1
)

2

34

1

F7−−−→
g2(fea1a2fea3a4(ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ fea1a3fea4a2(ηµ1µ2ηµ3µ4 − ηµ1µ4ηµ2µ3)
+ fea1a4fea2a3(ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4)

)
1 2

F7−−−→ δa1a2

k2 + iε

1

3

2

F7−−−→ igfa1a2a3kµ1
2
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The Absence of 5-Valent Vertices in Yang-Mills Theories

It is useful to note that the color structure of the four valent vertex allows rewriting its
Feynman rule as

= + + (3.7)

where F
( )

= g2fea1a4fea2a3(ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4). The above equation does not
distinguish between graphs and their images under F . This abuse of notation is used as
long as it does not leads to confusion.

Definition 3.1. Let G be a connected Feynman graph with lg closed ghost loops, then define
the Feynman integral by

IG := (−1)lg
[ ∏
e∈EG

∫
dkeF(e)

] ∏
v∈VG

F(v)δ(kv).

Where δ(kv) ensures momentum conservation at the vertex v. If G = G1 t G2 define
IG := IG1IG2 .

Note that for the upcoming discussion the precise structure of the Feynman rules for non
tree graphs is not important. The definition above will be made accurate in the next section
where the Feynman integral is related to the structure of moduli spaces of graphs.
Finally define the matrix elementM for a process with n external gluons, also called n-point
functions in terms of Feynman diagrams by

Mρ1···ρn =
∑

|EextG |=n

IG, (3.8)

where the sum is over all possible graphs. The indices on the right hand side in equation
(3.8) are given implicitly, they label the external edges of G. If the sum of the definition
in (3.8) is restricted to a certain loop number l of the graphs G, the corresponding matrix
element is denoted byMl.

3.1.2 Invariance of the 4-Gluon Vertex

Multiplying the three valent vertex with the momenta kα1 leads to the bare three point Ward
identity by using momentum conservation as follows:

k1α(−igfabc)
(
ηαβ(k2 − k1)γ + ηαγ(k1 − k3)β + ηγβ(k3 − k2)α

)
=

= −igfabc
(
kβ1 k

γ
2 − k

γ
1k

β
3 + ηγβ(k1 · k3 − k1 · k2)

)
=

= igfabc
(
kβ2 k

γ
2 − k

β
3 k

γ
3 + ηγβ(k2

3 − k2
2)
)

Together with the diagrammatic rules

:= kµee and (3.9)

:= igfabcηβγk2
2 (3.10)

the three point Ward identity can be written diagrammatically as

= − − + . (3.11)
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3. Connection to Physics

The four vertex satisfies the following Ward identity

= − + , (3.12)

which is proven by direct computation. Starting with the first graph on the right hand side
of equation (3.12) one obtains

g2fdecfeab
[
ηγα(2k1 + k2)β + ηγβ(−2k2 − k1)α + ηβα(k2 − k1)γ

]
= g2fdecfeab

[
ηγα(k1 − k3)β + ηγβ(k3 − k2)α + ηβα(k2 − k1)γ

]
+ g2fdecfeab

[
ηγα(k1 + k2 + k3)β − ηγβ(k1 + k2 + k3)α

]
.

Where only the momentum conservation was used. Note that the last two diagrams on
the r.h.s. of equation (3.12) are cyclic permutations of the external gluon edges of the first
one. The minus sign of the second graph in (3.12) is caused by the antisymmetric structure
constant fabc, since the vertex defined in equation (3.10) is antisymmetric. Adding up the
three diagrams of equation (3.12) the second term in the square brackets leads to the desired
term and the first one vanishes due to the Jacobi identity (3.1):

g2 (fdecfeab + fdeafebc + fdebfeca
)

×
[
ηγα(k1 − k3)β + ηγβ(k3 − k2)α + ηβα(k2 − k1)γ

]
= 0 .

This expression is obtained by noting that the term in the square brackets is the same for
every diagram on the right hand side of equation (3.12).
The tree level Ward identities (3.11) and (3.12) have a nice consequence for the on-shell1
tree level matrix elementM0 of the four point interaction, namely

k1αMαβγδ
0 := δM0 = + + + (3.13)

= − + − + = 0. (3.14)

In a purely diagrammatic approach to QCD one might even define the 4-vertex via this
relation.
To maintain δM = 0 for higher loop orders one needs to introduce ghosts (already apearing
in the three point bare Ward identity (3.11)). By momentum conservation the ghost vertex
obeys the bare ghost Ward identity:

igfabck2 · k1 − igfabck2 · k3 = igfabc(k2
3 − k2

1)

Which can be translated into a diagrammatic equation as

− = − . (3.15)

Where the diagrams on the right hand side are defined similar to (3.10), but without the
metric.
To be able to proof that δM = 0 to all loop orders one final identity is needed. It relates
the four point interaction with a five legged diagram. It can be understood in the terms of

1 On-shell refers to the external momenta squaring to zero, k2
e = 0 for e ∈ EextG .
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The Absence of 5-Valent Vertices in Yang-Mills Theories

the four point Ward identity (3.12).

a

bc

d

f

− + − = 0 (3.16)

To prove (3.16) show that it holds for each term in (3.7) individually. Then each term of
(3.16) has the same Minkowski structure and the equation reduces to the following statement
involving the structure constants.

ffedfgabfgce − ffaefgebfgcd + ffecfgabfged − ffbefgaefgcd =
= fgab

(
ffedfgce + ffecfged

)
+ fgcd

(
ffeafgeb + ffebfgae

)
= fgab

(
−ffegfecd

)
+ fgcd

(
−ffegfeab

)
= −

(
fgabffegfecd + fgcdffegfeab

)
= 0

Were in the second line the antisymmetry of the structure constant and in the third line the
Jacobi identity were used.
The structure of the invariance equation of the 4-vertex (3.16) is similar to the Ward identity
of the 4-vertex. So one might interpret this equation as a 5 point Ward identity and the
fact that it vanishes as a indicator that a 5-vertex in Yang-Mills Theories would also vanish.
In different words, the theory does not need a 5-point interaction to be gauge invariant,
which can be proven by using the tree level Ward Identities derived in this chapter [10,13].
Reversing this argument, a potential five gluon vertex would need this color structure to be
gauge invariant, and since (3.16) vanishes purely due to the color algebra, its Feynman rule
would vanish. In that sense there is no need for higher gluon interaction terms to render
gluons transversal in the quantized theory.
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3.2 Outer Space and Feynman Integrals

3.2.1 Introduction

The renormalized Feynman integral IRG(p, µ)2, which regularises the Feynman integral IG
schematically, is a (analytic continued) complex-valued function of the external momenta,
the masses of the particles appearing in the diagram G (combined in the variable p) and
the renormalization point µ.
In the paper [1] IRG(p, µ) is investigated as a multi-valued function and its relation to Outer
space. A cell of Outer space is given by a metric graph together with a marking. Equivalent
markings then correspond to different equivalent representations of IRG as an iterated integral
by the Fubini Theorem and vice versa. An iterated integration is given by choosing a
spanning tree together with an ordering of its edges. All these orders are equivalent due to
the Fubini Theorem. Note that a choice of a spanning tree and a basis of the fundamental
group of G gives an inverse marking. In [1] it is further suggested that different markings
on the same graph correspond to different sheets of the multi-valued IRG(p, µ).

In the previous section, the S-matrix was introduced. In a scattering process with n external
particles at a given loop order l it is given by the amplitude A l,n(p,m) as a function of the
external momenta and masses.

A l,n(p,m) :=
∑

G∈G4
l,n

IG ,

where IG is the Feynman integral defined above and G4
l,n is the set of rank l graphs with n

external legs and bounded vertex valency at four. Amplitudes of Yang-Mills theories fall into
this type. The following consideration aims for a better understanding of these amplitudes
and the corresponding integrations. It will turn out, that the combined integration domain
of the amplitude is equivalent to the moduli space of graphs MG4

l,n [3].

3.2.2 Derivation of Parametric Feynman Integrals

In the previous section, Feynman rules and integrals were introduced. The next step is to
manipulate the Feynman integrals such that a connection to the moduli space can be made.
Here only scalar integrals were with no k dependency in the nominator are considered. This
restriction will be justified later. The derivation presented is taken from [14] with slight
deviations. Write the integral under consideration as

IG =
[ ∏
e∈EG

∫
MD

dDke
iπD/2

(
k2
e +m2

e

)−1
] ∏
v∈VG\v0

πD/2δD(kv) . (3.17)

where ke is the momentum assigned to edge e and the factor δD(kv) establishes momentum
conservation at each vertex, with

kv := p(v) +
∑
e∈EG

Ee,vke .

The momentum p(v) is the external momentum flowing into v, if v has no external edge
attached to it, set p(v) = 0. The matrix elements Ee,v are 1 if ke flows into v and −1 if the
momentum points in the other direction.
In the following considerations it is useful to omit one arbitrary vertex v0 ∈ VG from the

2 Rigorous definitions can be found in any QFT textbook and the actual renormalization prescription is
not important here.
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momentum conservation. This discards a factor δD(
∑
v∈VG p(v)), the conservation of the

external momenta, from the final result. It is well known that IG diverges and therefore
needs regularization. In this thesis is not focused on this procedure, so for the derivation of
the parametric form of IG it is simply assumed that the integral is well defined.
Preceding from (3.17) use the Schwinger trick

1
P

=
∫ ∞

0
e−αPdα for P > 0

and (2π)DδD(k) =
∫
eixkdDx to arrive at

IG =
[ ∏
e∈EG

∫ ∞
0

dαe

][ ∏
v∈VG\v0

∫
RD

dDxv
(4π)D/2

][ ∏
e∈EG

∫
MD

dDke
iπD/2

]

× exp

− ∑
e∈EG

αe
(
k2
e +m2

e

)
+ i

∑
v∈VG\v0

xv

(
p(v) +

∑
e∈EG

Ee,vke
) . (3.18)

Now introduce two matrices with its help the argument of the exponential function can be
rearranged.

Definition 3.2. The Laplace matrix LG and its dual L̂G are |VG| × |VG| matrices defined
as

LG := ETΛE and L̂G := ETΛ−1E

with Λ := diag
(
α1, . . . , α|EG|

)
.

For a matrix A and I, J being subsets of the rows or respectively columns, denote by A[I, J ]
the matrix with rows and columns I, J removed. If I = J write A[I]. Moreover collect all
internal momenta ke into the vector k ∈ RD|E| and all external momenta p(v) and positions
xv into the vectors x,p ∈ RD(|V |−1) whose elements are 4-vectors. Then the argument of
the exponential in (3.18) can be written as

−kT (Λ⊗ ηD)k + i
(
xT · p+ xT (ET [Ø, v0]⊗ ηD)k

)
−
∑
e∈EG

αem
2
e ,

where the tensor product with the Minkowski metric ηD arises since the scalar products are
calculated with that signature. Likewise the dot product xT ·p is understood as xT (1|V |−1⊗
ηD)p, where 1D is the D-dimensional unit matrix.
Complete the square, omit the notation of the tensor product, and the removal of the v0
column, then the expression takes the form

−
(
k − i

2Λ−1Ex
)T

Λ
(
k − i

2Λ−1Ex
)
−
(
x

2 − iL̂
−1p

)T
L̂
(
x

2 − iL̂
−1p

)
− pT L̂−1p−

∑
e∈EG

αem
2
e .

Now the integration over k and x may be performed. Use translation invariance and the
integral over k becomes[ ∏

e∈EG

∫
MD

dDke
iπD/2

]
exp

[
−kT (Λ⊗ ηD)k

]
=
[ ∏
e∈EG

∫
RD

dDke
πD/2

]
exp

[
−kT (Λ⊗ 1D)k

]
= 1
π|EG|D/2

(2π)|EG|D/2√
det 2 (Λ⊗ 1D)

= 1
(detΛ)D/2

.

For the first equal sign perform the usual Wick rotation to transform the integration domain
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from Minkowski signature to euclidean. The last step is the typical Gauss integration for
matrices. The integration over x is computed analogously and this leads to the parametric
representation of IG

IG =

 ∏
e∈EG

∫
R+

dαe

eΞG/ψG

ψ
D/2
G

, (3.19)

where ψG and ΞG are polynomials defined by

ψG := detΛ detL̂G[v0] and ΞG := ψG

(∑
e∈EG

αem
2
e + pT

(
L̂−1
G [v0]⊗ ηD

)
p

)
.

The polynomial ψG is the first Symanzik polynomial and ΞG = ψG
∑
αem

2
e +ϕG, where ϕG

denotes the second Symanzik polynomial. Properties of these polynomials are investigated
in the next section.

Tensor Integrals

Integrands with loop momenta in the nominator (also called tensor integrals) can be re-
duced to the studied case by different approaches. Any of them uses a slightly more general
integrand in (3.17), where one allows for an arbitrary negative exponent of the propagator
−ae. The generalized Schwinger trick introduces a factor αae−1

e /Γ(ae) for each edge in the
nominator of the final result [14].
The first one uses the fact, that the shift of the integration variables k → k − i/2Λ−1Ex
introduces parameters α in the nominator. (Note that in the derivation presented above, it
is not clear how to perform the integration over x after the shift.) These can be treated by
allowing higher powers of the propagator term in (3.17). Furthermore, the terms involving
loop momenta in the nominator are related to scalar integrals in a shifted dimension by
Lorentz invariance [15].
A different approach uses a differential operator. Therefore one introduces auxiliary mo-
menta ξe and replaces ke → ke+ξe in the generalized integrand. Note that a momentum kµe in
the numerator of this integrand can be produced by the differential operator ξ̂e,µ := − 1

2αe
∂
∂ξµe

ξ̂e,µ
1

((ke + ξe)2 +m2
e)ae

= ae
αe

kµe + ξµe
((ke + ξe)2 +m2

e)ae+1

Applying the Schwinger trick one sees that the factor ae/αe × αaee /Γ(ae + 1) on the right
hand side equals the factor αae−1

e /Γ(ae) on the left hand side. Therefore momenta appearing
in the numerator of a tensor integral can be replaced by the given operator. It remains to
study its action on the scalar integrand derived above. For more details see [14, 16]. An
application to Yang-Mills theory can be found in [17].

3.2.3 Graph Polynomials

With the help of the upcoming theorem the polynomials ψG and ϕG can be derived from the
topology of the graph G. Before the theorem can be stated some further notation is needed.
Denote by T I,Jk the set of spanning k-forests3 of a given graph where each tree contains
exactly one vertex of I and J . If F ∈ T I,Jk write F = (Ti1 , . . . , Tik), where I = {i1, . . . , ik}
and i ∈ Ti, then πF : I → J is the bijection such that j ∈ TπF (i) for j ∈ J and i ∈ I.

3 A spanning k-forest is a subgraph F ⊆ G with k connected components each of which is a tree graph
and VF = VG.
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Theorem 3.3. (All Minors Matrix-Tree Theorem). Let LG be the Laplacian of a graph G,
I, J ⊆ [|VG|], with |I| = |J | = k and let LG[I, J ] denote the minor obtained by deleting the
rows I and columns J . Then

detLG[I, J ] = ε(I, J)
∑

F∈T I,J
k

sgn(πF )
∏
e∈F

αe

with ε(I, J) := (−1)
∑

i∈I
i+
∑

j∈J
j .

Proof. A proof can be found, for example in [18,19].

Remark. Note that det L̂G[I, J ] = ε(I, J)
∑
F∈T I,J

k
sgn(πF )

∏
e∈F 1/αe since the transfor-

mation αe → 1/αe converts LG into its dual L̂G.
Then it follows immediately for the first Symanzik polynomial ψG that

ψG = detΛ detL̂G[v0] =
∏
e∈EG

αe
∑
T

∏
e∈T

1
αe

=
∑
T

∏
e/∈T

αe , (3.20)

where the sum is over all spanning trees T in G.
To calculate the second Symanzik polynomial ϕG express the elements of (L̂−1

G )v,w with
elements of its adjugate matrix and then apply the All Minors Matrix-Tree Theorem. Let
I = {v0, w} and J = {v0, v} and conclude

(L̂−1
G [v0])v,w = (−1)v+w det L̂G

[
I, J

]
det L̂−1

G [v0]

=
∑

F∈T I,J2

∏
e∈F

α−1
e det L̂−1

G [v0] .

Where ε ({v0, w}, {v0, v}) = (−1)v+w was used and furthermore note that necessarily w ∈ Tv
and therefore πF = (1) and sgn(πF ) = 1 ∀F ∈ T I,J2 . Denote the tree which contains v0 by
T0 and note that the sum over the set T I,J2 is equivalent to summing over T2, it follows

ϕG =
∑

v1,v2∈VG\v0

p(v1)p(v2)
∑

F∈T I,J2

∏
e/∈F

αe

=
∑

(T0,T )∈T2

p(T0)2
∏

e/∈(T0,T )

αe

with
∑
v1,v2 /∈T0

p(v1)p(v2) = p(T0)2. To achieve the equality observe that the summation
sets are isomorphic {

v, w ∈ VG \ v0

}
∼=
{
v, w /∈ T0

∣∣∣ (T0, T ) ∈ T2(G)
}
.

Finally, write the second polynomial appearing in the Feynamn integrand ΞG as

ΞG = ψG
∑
e∈EG

αem
2
e +

∑
(T0,T )∈T2

p(T0)2
∏

e/∈(T0,T )

αe . (3.21)

Observe that p(T0)2 is the squared sum of all momenta flowing into T0, therefore p(T0)2 =
p(T )2 by momentum conservation and hence the choice of v0 does not change the polynomial
ΞG.
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G = p1

p2

p3

α1

α2

α3

α4

α5 α6 G/2 = p1

p2

p3

α1

α3

α4

α5 α6

Figure 3.1: The graph G with three external momenta and the graph G/2 where edge 2 is shrunk

Example 3.4. Consider the graph G given in Figure 3.1 then its Symanzik polynomials
are given by

ψG = α1α2 + α1α4 + α1α5 + α1α6 + α2α3 + α2α5

+ α3α4 + α3α5 + α3α6 + α4α5 + α5α6

and for me = 0 ∀e ∈ EG

ΞG = ϕG = p2
2(α1α2α6 + α1α5α6 + α2α3α6 + α2α5α6)

+ p2
3(α1α4α6 + α3α4α6 + α3α5α6 + α4α5α6)

+ (p2 + p3)2(α1α2α3 + α1α2α4 + α1α3α4 + α1α3α5

+ α1α3α6 + α1α4α5 + α2α3α4 + α2α3α5 + α2α4α5) .

Note that for the graph G/2 where the edge labeled with α2 is collapsed one gets ψG/2 =
ψG|α2=0 and ϕG/2 = ϕG|α2=0 (which also holds for non zero masses).

The last observation in the example above can be generalized. The resulting straightforward
property is essential to make a connection to moduli spaces of graphs.

Property 3.5. Let ψG and ΞG be the graph polynomials defined above, then

(i) ψG/e = ψG
∣∣
αe=0 and ΞG/e = ΞG

∣∣
αe=0

(ii) ψG and ΞG are homogeneous functions of
deg(ψ) = |G| and deg(Ξ) = |G|+ 1

Proof. (i) Let F ⊂ G be a spanning forest and e ∈ F then F/e ⊂ G/e is still a spanning
forest. Conversely let F ′ be a spanning forest of G/e, then F ′ ∪ {e} is a spanning forest of
G. This induces a bijection of the set of spanning forests in G/e and those of G that contain
e. The monomials corresponding to forests without e are set to zero on the right hand side.
(ii) follows directly from the equations (3.20) and (3.21).

Denote the graph polynomials whose edge variables corresponding to a subgraph γ ⊂ G are
set to zero by ψG|γ and ΞG|γ .

Property 3.6. Let γ ⊆ G then ψG|γ = 0 iff |γ| > 0.

Proof. Let T ⊂ G be a tree subgraph, then ψG|γ = 0 ⇔ @T with γ ⊆ T ⇔ |γ| > 0.

In the next property it is assumed that p(T )2 > 0, which is clearly true for euclidean
momenta, and therefore it is referred to as the region of euclidean momenta.

Property 3.7. Let γ ⊆ G and assume p(T )2 > 0 ∀T ⊂ G then ΞG|γ = 0 if either |γ| > 0
or γ is a spanning tree which satisfies me = 0 ∀e ∈ EG\γ .

Proof. Let |γ| > 0 then ψG|γ = 0 by Property 3.6 and likewise follow ϕG|γ = 0, therefore
conclude ΞG|γ = 0. Let γ be a spanning tree of G, then ϕG|γ = 0, since @(T0, T ) ⊂ G with
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γ ⊂ (T0, T ). Furthermore the sum involving the masses reduces to
∑
e∈G\γ αem

2
e which is

only zero if me = 0 ∀e ∈ EG\γ .

The properties above relate the zero sets of these polynomials to topological properties of
the graph under consideration. The zero sets are important to characterize the divergent
parts of the integral IG and to eventually regularise the integration.

Massless Graphs

Consider massless graphs, which means that me = 0 ∀e ∈ EG. Studying this case is useful,
since gluon edges do not carry a mass.
The requirement that p(T )2 > 0 in Property 3.7 can now be omitted and the zeros of
ΞG = ϕG are described by spanning trees T ⊂ G.
For gluon graphs there is no higher vertex valancy then 4 allowed. As shown in the previous
chapter, a face in MG4

l,n corresponds to a matching M on the 3-regular graph G by G/M .
A matching on G can only be a spanning tree, when G has 2 vertices, which is only the case
for the graphs and , but matching these two vertices is forbidden since it leads
to tadpoles, cf. definition 2.41. Therefore ΞG 6= 0 on the domain 〈G〉. Conclude that the
poles of the integrand are given by the zero set of ΨG, which still holds if the integration
takes the form (3.22) derived in the next section.

3.2.4 Feynman Integrals and the Moduli Spaces of Graphs

With a convenient choice of coordinates one integration of the parametric form of IG in
equation (3.19) can be performed. Define a hyperplane H(α) :=

∑
eHeαe, with He ≥ 0

and not all He zero. Insert 1 =
∫∞

0 dλδ(λ−H(α)) into (3.19) and after substituting αe for
λαe the integral takes the form

IG =
∫ ∞

0
dλ

 ∏
e∈EG

∫
R+

dαeλ

 eλΞG/ψG

λ|G|D/2ψ
D/2
G

δ(1−H(α))
λ

=

 ∏
e∈EG

∫
R+

dαe

δ(1−H(α))
ψ
D/2
G

∫ ∞
0

dλλω−1eλΞG/ψG

= Γ(ω)

 ∏
e∈EG

∫
R+

dαe

δ(1−H(α))
ψ
D/2
G

(
ψG
ΞG

)ω
= Γ(ω)

∫
Ω 1
ψ
D/2
G

(
ψG
ΞG

)ω
=: Γ(ω)

∫
ΩfG(α) . (3.22)

In the first line the homogeneity of the Symanzik polynomials were used. For the next step
define the superficial degree of divergence of a graph ω(G) by

ω(G) := |EG| − |G|
D

2 ,

then the definition of the Γ function was applied. Finally define∫
Ω :=

 ∏
e∈EG

∫
R≥0

dαe

δ(1−H(α)) ,

to arrive at equation (3.22). The integration appearing there is independent of the choice
of H(α). To establish a connection to the moduli space of graphs it is peculiar useful to
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choose He = 1 ∀e ∈ EG. Then the δ-distribution constrains the integration domain to the
set

σG =
{
α ∈ [0, 1]|EG|

∣∣∣ ∑αe = 1
}
,

which is a simplex with dim σG = |EG| − 1, c.f the definitions at the beginning of Chapter
2.

Remark. The connection between the two integration domains can be made mathematically
more precise, by noting that H(α) induces an isomorphism. This is for example shown
in [14].

The superficial degree of divergence ω(G) characterizes the type of divergence of the graph
G. For ω = 0,−1,−2, . . . the Gamma function in the expression (3.22) diverges. These
graphs are called logarithmic, quadratic, ... divergent. Notice that the integration itself in
equation (3.22) might still be ill defined, due to divergent subgraphs of G.

Modifications on the Integration Domain

The integral IG is ill defined since there are faces of σG where the integrand fG is singular.
These faces can be described as a set of vanishing edge variables αe such that the denomi-
nator of fG is zero. Clearly this can only happen at faces of σG. These sets are described
by the properties 3.6 and 3.7. Excluding these faces will yield a relative simplex.
The aim is to construct a simplex that corresponds to the relative cell 〈G〉, therefore ad-
ditionally delete the faces which correspond to graphs G/γ with γ /∈ MG, i.e. γ is not a
valid matching on G4. This clearly includes the zero sets of the graph polynomials. By
this modification the relative simplex 〈G〉 is recovered. The removed faces of σG are null
sets with respect to the integration, therefore for regular fG deduce, while neglecting the
possible isometries, ∫

σG

fG =
∫
〈G〉

fG . (3.23)

Remark. As the notation might imply σG is indeed the closure of 〈G〉.

To incorporate the equivalence of isometric graphs in the moduli spaces investigate the
symmetries of the integrand fG(α). First notice that α can be seen as a map from G to
[0, 1]|EG|, which is a metric on G. Introducing this into the notation denote the integrand
by f(α,G).
For any automorphism i ∈ Aut(G) the integrand has the same value on exactly two points
in the open cell ˚〈G〉

f(α,G) = f(α◦i,G). (3.24)

The equivalence relation of the moduli spaces exactly relates this points. The integration
over the open cell is then related to the integral over the quotient ˚〈G〉/∼ by the symmetry
factor of G. Without a detailed proof observe that the integration can be written as∫

˚〈G〉
f(α,G) =

∑
i∈Aut(G)

∫
[ ˚〈G〉]i

f(α,G) ,

where each [ ˚〈G〉]i denotes a subspace of the open cell, such that all isometries are fixed.
Now use equation (3.24) and a coordinate transformation that relates [ ˚〈G〉]i with ˚〈G〉/∼ in

4 The graphs G/γ correspond to tadpoles or graphs with at least one vertex with a valency bigger then
four.
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each summand such that∫
˚〈G〉
f(α,G) =

∑
i∈Aut(G)

∫
˚〈G〉/∼

f(α,G) = Sym(G)
∫

˚〈G〉/∼
f(α,G) . (3.25)

The idea behind the equations above is best show in an simple example.

Example 3.8. Consider the graph G = and denote its edge variables by α and β.
Its Feynman integral can then be written as

IG =
∫
α<β

fG(α, β) +
∫
β<α

fG(α, β)

=
∫
α<β

fG(α, β) +
∫
α<β

fG(β, α)

= 2
∫
〈G〉/∼

fG(α, β) .

Where
∫
α<β

denotes the integration over the subspace of 〈G〉 for which α < β. In the
second line the coordinates swapped names in the second summand. To get the third line
use equation (3.24) and note that

∫
α<β

=
∫
〈G〉/∼. The resulting factor coincides with the

symmetry factor of G: |Aut( )| = 2.

For a expression for the cell with boundary 〈G〉 all graphs that arise by shrinking valid
matchings, which corresponds to setting a subset of the parameters to zero, need to be
taken into account aswell. The resulting symmetry factor is certainly more complicated
since on the boundary new isometries might arise. Assume that one can still write an
equation of the form of equation (3.25) with some symmetry factor S(G). Then deduce that

IG = S(G)
∫
〈G〉/∼

fG .

To manifest the connection to the moduli space of graphs it is necessary to check if de-
rived form of the Feynman integral is well defined on the faces of 〈G〉. Due to Property 3.5
such a face corresponds to a graph G/M , where M is a valid matching in G. Furthermore
the superficial degree of divergence ω(G) must also respect face relations. First note that
ω(G/M) = |EG| − |M | + |G|D/2. Additionally rewrite ω in terms of the Heavyside distri-
bution θ(x) as ω(G) =

∑
e∈EG θ(αe) − |G|D/2, then conclude ω(G/M) = ω(G)

∣∣
M
, where

θ(x) = 0 for x ≤ 0 and θ(x) = 1 else. Concluding

IG

∣∣∣
M

:=
∫
〈G〉

∏
e∈M

δ(αe)fG =
∫
〈G/M〉

fG/M = IG/M . (3.26)

Finally write the unrenormalized Feynman amplitude A l,n(p,m) as

A l,n(p,m) =
∑

G∈G4
l,n

S(G)
∫
〈G〉/∼

fG , (3.27)

which establishes the moduli space of graphs as the integration domain of Feynman integrals
involved in the calculation of the amplitude of a process. The dependence on the cinematic
parameters p and m is hidden in the integrand fG. If one considers colored graphs, with a
color map s.t. there are no isometries, the factor S(G) is always one, and the result given
in [3] is recovered.
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Comments on Renormalization

As already mentioned, the integral IG might be divergent, due to poles arising from zeros
of the graph polynomials in the integrand fG. These can typically be characterized by
topological properties of the graph under consideration, for example, seen in the properties
3.6 and 3.7. A more general treatment investigates the scaling behavior of the integrand fG,
for example, done in [14]. The upshot is that the integrations that need regularisation are
given by the superficial degree of divergence of its subgraphs. For the case of only ultraviolet
divergencies and euclidean momenta, this reduces to the following property, first formulated
by Weinberg in [12].

Property 3.9. The integral IG is convergent if and only if for all subgraphs γ ⊂ G it holds
that ω(γ) > 0.

One way of regularizing the Feynman integral is to alter the integrand fG. Denote the altered
integrand by fG,F (its exact form is not required here), where F is a forest of divergent
subgraphs of G. These are a collection of divergent subgraphs such that for any γ, γ′ ∈ F
either γ′ ⊂ γ, γ ⊂ γ′ or γ ∩ γ′ = Ø. To render the Feynman integral finite the divergences
arising from these subgraphs need to be subtracted and to take overlapping divergences into
account this subtraction is given by the forest formula, first given by Zimmermann [20]:

IRG =
∑
F⊂G

(−1)|F |
∫
〈G〉

fG,F . (3.28)

The sum runs over all forest in G and |F | denotes the number of elements in the forest.
A proof that IRG is indeed finite and the form of the integrand fG,F for the parametric
representation is given in [21].
For this work, only the effects on the structure of the integration domain are presented.
For general theories with arbitrary vertex valencies, it was examined in [3]. One of the
main results there is that the renormalized Feynman amplitude for a given process ARl,n(p)
can be formulated as an integration over the compactified moduli space. Remarkably the
combinatorial structure of compactification, i.e., the characterization of the new faces via
flags corresponds to the combinatorics of forests that are used in the forest formula.
A further connection between compactification and renormalization arises in the equivalence
between the compactification and blow-ups of certain subspaces of MG [3]. A blow-up is a
concept from algebraic geometry. It is a transformation used to resolute singularities of zero
sets of functions. In the case of Feynman integrals, this function is fG. A good introduction
is given in [22].

Now look a bit more closely to the compactified integration domain of the moduli space
of gluon graphs and give a formula for the renormalized amplitude ARl,n(p,m) analog to
equation (3.27). Previously the compactification of 〈G〉 was defined using subgraphs of
G that are not a matching, c.f. Section 2.4. The result of [3], which uses a different
compactification, should still be valid, since the faces that are additionally removed for
MG4

l,n correspond to forests of tree graphs, fG is regularly supported on these faces, and
hence they do not contribute to IG. Conclude that the renormalized amplitude for rainbow-
colored graphs5 is given by

ARl,n(p,m) :=
∑

G∈G4
l,n

IRG =
∑

G∈G4
l,n

∑
F⊂G

(−1)|F |
∫
〈Ĝ〉

fG,F . (3.29)

5For the more general case one presumably needs to include a symmetry factor as in (3.27).
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Notice that the combined integration domain of this physical amplitude is given by the
compactified moduli space of gluon graphs. The procedure of regularisation therefore does
not interfere to much with structure of the moduli space. As a conclusion the upcoming
chapters are about the non compact version of the moduli spaces.
Remark. The preceding considerations are only made to sketch the given ideas. Rigorous
definitions can be found in [3].
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Chapter 4

One Loop Moduli Space: MG4
1,n

In this chapter, the f -vectors of the one-loop moduli spaces MG4
1,n are derived. These

vectors are denoted by Fn. The f -vector of a simplex 〈σΣn〉 in the complex MG4
1,n =

〈σ1Σn, σ2Σn, . . . , σ|Sn|Σn〉 is notated as fn. Recall that a facet of the moduli space is
generated by the non-degenerate metric on a n-sun σΣn ∈ Sn, where Sn is the set of
permuted n-suns.
The first part of this chapter calculates fn. This result can then be used to derive the f -
vector for the whole space. As a consequence, a statement about the Euler characteristic of
MG4

1,n is made. In the third section, an alternative way to derive Fn using complete graphs
is presented. In the last section, the result is generalized to a colored version of MG4

1,n, and
the entire space of QCD graphs is examined.

Observe that, due to the topology of the n-suns σΣn ∈ Sn there is a bijection between
the external legs and the vertices. Furthermore, there is another bijection between the
vertices and the internal edges. This fact will be used throughout this chapter to simplify
the notation for matchings in a one-loop graph.
Assume in the following that there are no isometries between non-degenerate metric graphs.
Due to Property 2.56 this amounts into the requirement n > 4. Notice that the cases n = 3, 2
are already covered in Chapter 2.

4.1 The Simplices of MG4
1,n: 〈σΣn〉

As already mentioned, any graph in the set of permuted n-suns Sn generates a facet of
MG4

1,n. The relative simplex associated with a n-sun is denoted by 〈σΣn〉. Below the set
〈σΣn〉 ⊆ MG4

1,n will be defined in terms of finite sets, such that 〈σΣn〉 is a combinatorial
simplex. For now observe, that any graph σΣn ∈ Sn contains the same combinatorial struc-
ture since they all have the same topology and only differ by a permutation of the external
edges. Therefore without loss of generality choose σ = (1).
Shrinking an edge of Σn to zero length corresponds to matching the two vertices that are
connected to the edge. Since one can assign to every edge of Σn a unique number given by
Figure 4.1, a matching in Σn will be denoted by the edges it contains. In this notation, a
valid matching of Σn does not contain two cyclic consecutive numbers in [n]1.
Remember that such a matching has a correspondence to a graph with 4 valent vertices, see
Lemma 2.45. Since only one graph is considered the equivalence relation in the mentioned
lemma can be ignored. It will be implemented later when the full space MG4

1,n is investi-
gated. Furthermore, collapsing a matching in σΣn will never lead to a tadpole graph.

1 This means 1, n ∈ [n] are considered to be consecutive.
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The Simplices of MG4
1,n: 〈σΣn〉

({1, 4},Σn) =

1

2

3

4

5

n

n−1

1

2

34

nn−1

Figure 4.1: The graph Σn with a matching M = {1, 4} in red

Recall that a bar denotes the complement of a set, and define 〈Σn〉 as a combinatorial
relative simplex.

Definition 4.1. Define the combinatorial simplex associated with Σn by

〈Σn〉 :=
{
x̄
∣∣ x ⊆ [n], x has no cyclic consecutive elements

}
.

Here Ø is an element of [n].

This definition has a convenient interpretation. The set x without any consecutive numbers
is an unordered list of edges that might be shrunk simultaneously or equivalently x is a
valid matching of Σn. The matched graph, denoted by (x,Σn), corresponds to a graph in
G4
n which can be uniquely denoted by its edges x̄. In the example in Figure 4.1, the set

of edges is {2, 3, 5, 6, . . . , n}. Conclude that the discrete relative simplex 〈Σn〉 captures the
combinatorial structure of the simplices of the moduli spaces of graphs MG4

1,n.
To check that 〈Σn〉 is indeed a relative simplex, first note that [n] ∈ 〈Σn〉 since Ø = [n].
Immediately follow that dim〈Σn〉 = n−1. 〈Σn〉 is closed under taking subsets: Let y ∈ 〈Σn〉
and y 6= [n], then for any s ∈ [n] − y the set y ∪ {s} has no consecutive elements, hence
y ∪ {s} ∈ 〈Σn〉. It is clear that 〈Σn〉 has missing faces, corresponding to sets x ⊆ [n] with
cyclic consecutive elements. In the following, it is written as 〈Σn〉 = (2[n],Γ).
An example can be seen in Figure 4.2, where the Hasse diagram of the poset associated with
the relative simplex 〈Σ5〉 is shown. There, the elements of 〈Σ5〉 are represented by their
complements, so the given sets are matched edges in Σ5. The matched graph of Figure 4.1
for n = 5 corresponds to the second vertex from the left of the lowest row.

Ø

{1} {2} {3} {4} {5}

{1, 3} {1, 4} {2, 4} {2, 5} {3, 5}

Figure 4.2: The Hasse diagram of 〈Σ5〉 = (2[5],Γ)
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4.1.1 Some Elementary Properties of 〈Σn〉

In this section, some basic facts about the relative simplex 〈Σn〉 = (2[n],Γ) are worked out.

Property 4.2. At most bn/2c edges of Σn can be shrunk.

Proof. Let n be even. A perfect matching M on Σn allows collapsing a maximal number of
edges. Therefore n/2 edges must be part of that matching.
Now consider Σn+1 then M is still a matching and it is maximal since the only unmatched
vertex is the newly added one.

The last property is equivalent to the following. The longest chain in the poset of 〈Σn〉 has
length bn/2c or the lowest dimensional face in 〈Σn〉 is bn/2c-dimensional.
There need to be at least two elements in a set asspciated with a face of Γ. Otherwise, no
consecutive numbers can occur. Hence deduce dim Γ = n − 3, reproducing the result from
the previous Chapter 2.

Property 4.3. Γ is pure, i.e., all its facets have the same dimension.

Proof. Denote the sets of two cyclic consecutive numbers by āi ⊂ [n]. Then any x ∈ Γ is
a subset of at least one ai since x̄ contains at least two consecutive numbers. Conclude
Γ = 〈a1, a2, . . . , an〉.

Remark. The proof of Property 4.3 generalizes to relative simplices generated by arbitrary
3-regular graphs.

Property 4.4. Γ is connected for n > 3.

Proof. Let x, y ∈ Γ, then there are two chains x, σ1, . . . , ai and y, τ1, . . . , aj . For n > 3
consider the sequence ai = {i, i+ 1} ⊂ {i, i+ 1, i+ 2} ⊃ {i+ 1, i+ 2} = ai+1 (for n = 3 this
contains Ø). By repeating this pattern, one can construct a sequence between any two ai and
therefore between any two ai. Together with the chains above such a sequence represents a
path from x to y in the Hasse diagram of Γ.

4.1.2 The f-Vector of 〈Σn〉

In this section, the f -vector fn of 〈Σn〉 is calculated. As already mentioned, the f -vector
counts the number of faces of each dimension, so f (n)

k = |Fk[〈Σn〉]|. Where Fk[〈Σn〉] is the
set of the k dimensional faces of 〈Σn〉. Here it can be written as

Fk[〈Σn〉] =
{
x̄
∣∣ x ⊆ [n], x has no cyclic consecutive elements, |x| = n− k − 1

}
=: Fn,k.

To compute the cardinality of Fn,k it is useful to define an isomorphic set, whose elements
have a slightly more convenient property since they are not described via complements.

Fn,k :=
{
x
∣∣ x ⊆ [n], x has no cyclic consecutive elements, |x| = n− k − 1

}
Complementing a set is an invertible operation, hence the sets Fn,k and Fn,n−k−1 are -
isomorphic.
From these definitions, one readily finds that

|Fn,m| = |Fn,n−m−1| =: f (n)
n−m−1 . (4.1)

In the majority of the following considerations, n is fixed and the superscript of the f -vector
is then neglected.
Remark. The set Fn,m is isomorph to the set of all m-matchings on Σn, denoted by MmΣn,
since valid matchings of Σn cannot contain edges which are cyclic neighbors.
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The upcoming lemma about the cardinality of Fn,m relates thus to the f -vector of the
simplices of MG4

1,n.

Lemma 4.5. The cardinality of Fn,m for 0 ≤ m ≤ bn/2c is given by

|Fn,m| =
(
n−m
m

)
n

n−m

and for m > bn/2c by |Fn,m| = 0.

Proof. Let m > bn/2c the statement follows by Property 4.2.
To proof the statement for 0 ≤ m ≤ bn/2c, the method of stars and bars will be used. First
place n−m bars in a cycle, they represent the not chosen numbers. This leaves n−m gaps
between the bars to place m stars, which represent the chosen non-consecutive numbers.
Denote the set of all possible stars and bars diagrams by Dn,m. An example of such a set
of diagrams is given in Figure 4.3. Counting the diagrams in Dn,m and the possibilities to
label their objects distinctly gives |Fn,m|. The set Dn,m consists of two symmetries, which
eventually lead to overcounting when the diagrams are labeled. First observe, that rotating
every diagram in Dn,m leaves the set invariant. This can be fixed by choosing one bar,
where the labeling begins. Secondly, a reflection of the diagrams will not change the set
Dn,m either, therefore choose a direction in which the objects will be labeled.
There are

(
n−m
m

)
diagrams to label. Labeling the first bar with 1 yields one labeling. A

second one is gained by labeling the first bar with 2. With these two ways to number the
objects, every possibility is realized, since there are only 2 different objects to label.
These two labels may still result in the same labels on the stars, see Figure 4.4. This exactly
happens when the first gap (the gap clockwise to the first bar) is not filled with a star, then
the next bar is labeled 2, which will result in the second labeling for some other diagram in
Dn,m. If there is more than one gap after the first bar, this still results in a duplicate label,
alternating between the first and second labeling for every gap without a star.
Now calculate the number of diagrams where this happens. Since the first and empty gap
is fixed, this is just the number of diagrams with one gap less. Conclude that the number
of diagrams where the first gap is empty is given by(

n−m− 1
m

)
= n− 2m

n−m

(
n−m
m

)
.

Subtracting this from the total number of possible numerations gives

|Fn,m| = 2
(
n−m
m

)
− n− 2m

n−m

(
n−m
m

)
= n

n−m

(
n−m
m

)
.

?
?

?
?
?

?

? ?
? ?

? ?

?
?
?

?
?

? ?
??

? ?

?
?
?

?
?

?
?

Figure 4.3: The elements of the set D8,3
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?
5
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1

2
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8 ?
3

? 5
?
7

1

2

4

68

Figure 4.4: An example of two numerations of two distinct stars and bars diagrams of D8,3 which
result in the same numbers on the stars

Corollary 4.6. The f -vector fn = (f−1, f0, ..., fn−1) of 〈Σn〉 for n > 4 is given by

fk =
(

k + 1
n− k − 1

)
n

k + 1 .

Proof. By Equation (4.1). Furthermore, for n > 4 there are no possible isomorphisms
between any graphs in 〈Σn〉 since the lowest number of internal edges is n −

⌊
n
2
⌋
> 2 for

n > 4 (cf. Property 2.56).

Definition 4.7. Define the Chebyshev-Polynomials of the first kind to be

Tn(x) :=
bn/2c∑
k=0

c
(n)
k xn−2k

with c
(n)
k = (−1)k2n−2k−1 n

n− k

(
n− k
k

)
.

This is one of many representations of the Chebyshev-Polynomials. A more geometrically
representation is given by

Tn(x) := cos(n arccos(x)).

The equivalence of these representations is for example shown in [23].

Corollary 4.8. The Euler characteristic X of 〈Σn〉 for n > 4 is given by

X (〈Σn〉) = (−1)n+12 cos
(
n
π

3

)
=
{ −2 for n = 6, 9, 12, ...

1 else
.

Proof.

X (〈Σn〉) =
n∑

k=n−bn/2c

(−1)k−1fk−1 =
bn/2c∑
k=0

(−1)n−k−1fn−k−1

=
bn/2c∑
k=0

(−1)n−k−1|Sn,k| = (−1)n+1
bn/2c∑
k=0

(−1)k
(
n− k
k

)
n

n− k

= (−1)n+12Tn(1/2) = (−1)n+12 cos
(
n
π

3

)
The f-Vector and the (2,1)-Pascal Triangle

The f -vectors of Corollary 4.6 can be found in the (2,1)-Pascal triangle. Denote the elements
of fn by f (n)

k and arrange them in a grid by filling the (j+ 2)th row with f (n)
j for n ≥ j+ 1,

starting with f (j+1)
j in the first column. Furthermore set the first element in the first row to 2,
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2 f
(1)
−1 f

(2)
−1 · · ·

f
(1)
0 f

(2)
0 f

(3)
0 f

(4)
0 · · ·

f
(2)
1 f

(3)
1 f

(4)
1 f

(5)
1 · · ·

f
(3)
2 f

(4)
2 f

(5)
2 f

(6)
2 f

(7)
2 · · ·

f
(4)
3 f

(5)
3 f

(6)
3 f

(7)
3 f

(8)
3 · · ·

...
...

...
...

...
. . .

=

2 0 · · ·

1 2 0 · · ·

1 3 2 0 · · ·

1 4 5 2 0 · · ·

1 5 9 7 2 0
...

. . .

Figure 4.5: The f -vector of a single cell lies in the (2,1)-Pascal triangle

see also Figure 4.5. A Pascal triangle, arranged in such a grid, has the defining property that
the sum of two consecutive elements in a row equals the entry below the second summand.
That the arrangement of the f -vectors of 〈Σn〉 is indeed a Pascal triangle can be proven by
direct computation and is summarized in the following lemma.

Lemma 4.9. The arrangement of the numbers f (n)
k described above forms a

(2,1)-Pascal triangle.

Proof.

f
(n−1)
k−1 +f (n−2)

k−1 =

= 1
k

(
(n− 1)

(
k

n− 1− k

)
+ (n− 2)

(
k

n− 2− k

))
= 1
k(k + 1) ((n− 1)(2k − n+ 2) + (n− 2)(n− k − 1))

(
k + 1

n− k − 1

)
= n

k + 1

(
k + 1

n− k − 1

)
= f

(n)
k

The first element of each row is f (j+1)
j ≡ 1 by the definition of f (n)

k . Further f (n)
−1 = 0 for

n ≥ 1 by the condition m > bn/2c (c.f. Lemma 4.5) and Equation (4.1).

Corollary 4.10. The sum
∑bn/2c
k=−1 f

(n)
k equals the nth Lucas number Ln.

Proof. Follows by the defining property of the (2,1)-Pascal triangle.
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4.2 The Complete MG4
1,n

In this section, the complete moduli space MG4
1,n is investigated. The f -vector Fn is

derived by glueing the simplices 〈σΣn〉 together, which first done by a group action. In the
subsequent part an alternative derivation using complete graphs is presented.
It is useful to exploit the topology of the one-loop graph, and denote a matching by the
external legs of the vertices it contains.

4.2.1 The f-Vector of MG4
1,n

In the previous section, the f -vector fn of a simplex generated by a facet of MG4
1,n has

been derived. The upcoming theorem is about the f -vector of the whole moduli space Fn.
Therefore the previous result will be applied to all graphs in Sn, the set of all permuted
n-suns, see Definition 2.32. Sn is also the subset of G3

n that only contains one-loop graphs.
Now define a set of n-suns with m-matchings.

Definition 4.11. Let m,n ∈ N and m ≤ bn/2c. Define the set of m-matched n-suns MmSn
by

MmSn :=
{

(M,γ)
∣∣ γ ∈ Sn,M ∈Mmγ

}
.

Remark. Since all graphs in MmSn have the same topology, they all have the same number
of possible matchings. Consequently |MmSn| = |Sn| · |Fn,m|.
To calculate the f -vector of MG4

1,n it is essential to note that some elements of MmSn are
identical. Therefore apply the group action of the set MG3

n/ ∼ on MmSn, see also Definition
2.44. Here two elements in MmSn which differ by a transposition of two external half-edges
whose vertices are part of the same matching, need to be identified. Conclude that for
one-loop graphs, the action of STUm can be defined as follows.

Definition 4.12. Let (M,σΣn) ∈ MmSn and M = {{h1, h2}, . . . , {hm, hm+1}}. Define a
group action Ψ : Zm2 ×MmSn →MmSn by

Ψτ (M,σΣn) :=
(
M, ((h1, h2)t1 ◦ (h3, h4)t2 ◦ · · · ◦ (hm, hm+1)tm ◦ σ)Σn

)
with τ = (t1, . . . , tm) ∈ Zm2 , (hi, hi+1)0 := (1), and (hi, hi+1)1 := (hi, hi+1).

Remark. Remember that the n-suns are defined with a permutation σ (modulo symmetry)
on their external legs.
Pictorially speaking the group action swaps the external legs, which are connected to the
matched vertices:

Ψτ

h1

h2 :=

h2

h1 .

Lemma 4.13. Let n > 4 and (M,γ) ∈ MmSn then StabΨ
(M,γ) = {e}, where e denotes the

unit of Zm2 .

Proof. First show that StabΨ
({h1,h2},γ) = {0}, for all graphs ({h1, h2}, γ) ∈M1Sn. Therefore

Ψ has to map ({h1, h2}, γ) into a different equivalence class in Sn. Equivalently (h1, h2) /∈
RnnCycn. Assuming n > 4 it is evident that (h1, h2) /∈ Rn and (h1, h2) /∈ Cycn. Now show
that @c ∈ Cycn such that rn ◦ c = (h1, h2). This is equivalent to rn ◦ (h1, h2) /∈ Cycn, which
is true.
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Table 4.1: The Euler-characteristic Xn of MG4
1,n

n 5 6 7 8 9 10 11 12 13 14

Xn −3 0 45 −315 1260 0 −56700 623700 −3742200 0

For a general graph (M,γ) ∈ MmSn observe, that the matching M consists of pairwise
disjoint edges and hence:

Ψτ (M,γ) = (M,γ)⇔ ti = 0∀i ∈ [m]⇔ τ = e .

Theorem 4.14. Let n > 4 then the f -vector of MG4
1,n Fn = (F−1, F0, ..., Fn−1) is given by

Fk = (n− 1)!
2n−k fk ,

where fk are the elements of the f -vector of 〈Σn〉, cf. Corollary 4.6.

Proof. Fn−1−m = |MmSn/Zm2 |. Because of the Lemma 4.13 and the Orbit-Stabilizer The-
orem 2.19 one has |OrbΨ

(m,γ) | = 2m ∀(m, γ) ∈ MmSn. Therefore the cardinality of the
partition of MmSn by Ψ is given by

|MmSn/Zm2 | =
|Sn||Fn,m|
|OrbΨ

(m,γ) |
= (n− 1)!

2 fn−1−m
1

2m ⇔ Fk = (n− 1)!
2n−k fk .

Using the result for Fn the Euler-characteristic Xn is computed for some values of n, the
outcome is displayed in Table 4.1. The first observation is that X4k+2 = 0 ∀k ∈ N. A
proof idea is given in the following corollary. Furthermore, by increasing n the absolute
value of Xn increases and the sign alternates for the non-zero Euler-characteristics. These
observations were all be made by a quick numerical calculation, whose extended results are
displayed in the appendix in Table A.1.

Corollary 4.15. The Euler-characteristic of MG4
1,4k+2 is X4k+2 = 0 ∀k ∈ N.

Idea of proof. Let X 4k+2 := −X4k+22(2k+1)(2k + 1)/(4k + 2)!. Then

X 4k+2 =
2k+1∑
i=0

(−1)i 2
2k+1−i(2k + 1)

4k + 2− i

(
4k + 2− i

i

)

=
2k∑
i=0

(−1)i 2
2k−i(2k + 1)
2k + 1− i

(
4k + 1− i

i

)
− 1 =:

2k∑
i=0

T (2k + 1, i)− 1 .

The sequence T (n, i) coincides with the integer sequence A204021 in OEIS [24]. There it
is conjectured that p(An, x) =

∑n−1
i=0 T (n, i)xn−i − 1, where p(An, x) is the characteristic

polynomial in x of the matrix An, defined by (An)ij := min(2i−1, 2j−1) for i, j ≤ n. If true,
then X 4k+2 = p(A2k+1, 1) =: det(B2k+1). Now show that det(B2k+1) = 0 by verifying that
ker(B2k+1) 6= 0. Define a vector v2k+1 ∈ R2k+1 via v2k+1 := (1, 1,−1,−1, . . . ,±1,±1,∓1)
and demonstrate that

B2k+1v2k+1 =: b =



0 1 1 · · · 1

1 2 3 · · · 3

1 3 4 · · · 5
...

...
...

. . .
...

1 3 5 · · · 4k





1

1

−1
...

∓1


= 0 (4.2)
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by explicit calculation row by row. Therefore it is useful to split the matrix B2k+1 into an
upper diagonal matrix without the diagonal, denoted by B2k+1 and a lower diagonal matrix
denoted B2k+1, such that B2k+1 +B2k+1 = B2k+1.
Since each row of B2k+1 consists of a repeated number, the alternating sum generated by
multiplying with v2k+1 is zero for odd rows (then there are an even number of summands)
and one element remains (with a sign) for even l. Conclude that bl = 0 if l is odd and
bl = (−1)l/2(2l − 1) for even l.
For the lower triangle write bl as the sum

bl =
l−2∑
j=0

(−1)bj/2c(2j + 1) + (−1)b(l−1)/2c(2l − 2).

Observe that for odd l

bl+2 =
l−2∑
j=0

(−1)bj/2c(2j + 1) + (−1)b(l−1)/2c(2l − 1) + (−1)bl/2c(2l + 1)

+ (−1)b(l+1)/2c(2l + 2)

=
l−2∑
j=0

(−1)bj/2c(2j + 1) + (−1)b(l−1)/2c (2l − 1 + 2l − 1− 2l + 2) = bl .

The first line is just the definition with the two last summands written out explicitly. In
the second line, the identities bl/2c = b(l − 1)/2c and b(l + 1)/2c = b(l − 1)/2c+ 1 for odd
l ∈ N were used. One can easily verify that b1 = b3 = 0 and therefore bl = 0 for all odd l.
With similar arithmetic, one can show for even l that

bl = bl−1 − (−1)(l/2)(2l − 1) = −(−1)(l/2)(2l − 1) = −bl .

Conclude B2k+1v2k+1 = 0.

4.2.2 A Closer Look to MG4
1,4

Theorem 4.14 does not cover the case n = 4, because the stabilizer of the group action
Ψ is not the trivial group and there are isometries between some metric graphs in MG4

1,4.
To calculate F4 the groups StabΨ

(1,γ) and StabΨ
(2,γ), where (1, γ) and (2, γ) denote a 1- or

2-matching on the 4-sun γ respectively, are investigated. Here F4 is not the f -vector of
MG4

1,4, since it is no longer a relative simplex. However, F4 still counts the number of cells
in each dimension, as long as the isometries are neglected.
When the matching consists of one edge {h1, h2} the transposition (h1, h2) is not in the group
R4 nCyc4, which can be verified by listing all elements. Therefore conclude StabΨ

(1,γ) = {0}
and F (4)

2 = |S4||F4,2|/|OrbΨ
(1,γ) | = 3 · 4/2 = 6.

For matchings that consist of two edges i.e. |M | = 2 the situation changes. Let M =
{{h1, h2}, {h3, h4}} then the permutation (h1, h2)(h3, h4) can be written as (h1, h3)c3+ ∈
R4 n Cyc4. It follows that Ψ(1,1)(M,γ) = (M,γ), so (1, 1) is an element of the stabilizer of
Ψ. There is no other trivial action of Z2

2, since Ψ(0,1) or Ψ(1,0) act like before. In conclusion,
StabΨ

(2,γ) = {e, (1, 1)} ∀(M,γ) ∈M2S4 and therefore F (4)
1 = |S4||F4,1|/|OrbΨ

(2,γ) | = 3·2/2 =
3.
Now it is important to note, that between the metric graphs in MG4

1,4 with two internal
legs exists an isometry.
As a consequence, the 1-dimensional faces ofMG4

1,4 are folded onto themselves and the space
loses the structure of a relative simplicial complex. However, it is still possible to construct a

48



The Complete MG4
1,n

/∼

∼=

Figure 4.6: Barycentric subdivision of one 2-simplex in MG4
1,4

∆-complex. Theses are generalizations of complexes where the intersection of two simplices
is not necessarily a simplex and the simplices are glued together using boundary maps. The
barycentric subdivision of a 2-face of the moduli space complex is displayed in Figure 4.6.
There the missing edges are depicted in red. The folding of the remaining edge emerging
from the isometry is shown as an equivalence relation on the two edges marked with arrows.
Now one can count the faces of each dimension, each of which is a generator for the free
group Ck in the corresponding chain complex. Furthermore, the Euler characteristic of
MG4

1,4 is given by
∑
k(−1)k dimCk =

∑
k(−1)k dimHk = X [5].

Property 4.16. The Euler characteristic of MG4
1,4 is X4 = 6

Proof. Count the number of faces after the barycentric subdivision and the identification in
Figure 4.6 and conclude X4 = 12− 39 + 36− 3 = 6.

In Figure 4.7 the subspace poset of MG4
1,4 is shown. The subspace Γi is a space generated

by one of the three 4-suns, γj is generated by a 1-matched 4-sun and lastly gk is generated
by a 2-matched 4-sun. Notice that the number of these spaces given by the vector F4.

Γ1Γ2

Γ3

γ1

γ2

γ3γ4

γ5

γ6
g1

g2

g3

Figure 4.7: The subspace poset of MG4
1,4.
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4.3 The Complete Graph Kn

This section aims to explore a relation between matchings on the complete graph Kn and
the f -vectors of the moduli spaces MG4

1,n. A new derivation of the vector Fn is presented.
First of all, complete graphs and cycles in graphs are defined.

Definition 4.17. A complete graph Kn is the graph on n vertices where any two vertices
share precisely one edge.

Remark. In this definition, the complete graph does not have external legs, but they can
always be added by giving each vertex one external leg. This is equivalent to naming the
vertices and is done implicitly in the next considerations.

Definition 4.18. A cycle c in a graph G is a subgraph that has precisely one loop and whose
vertex set covers the vertex set of G.

Combinatorially a n-cycle can be denoted here by a vector c = (c1, c2, . . . , cn), with ci ∈ [n]
and ci 6= cj∀i 6= j. Cycles that differ by a rotation or a reflection are considered to be the
same since they will ultimately represent the one-loop Feynman graphs. Then the set of all
(equivalence classes of) cycles in Kn is denoted by Cn and |Cn| = (n− 1)!/2. Note that this
would be formalized completely analog to the previous considerations made to analyze the
symmetry of the permuted n-suns in Section 2.3. Therefore also deduce Cn ∼= Sn.

4.3.1 An Equivalent f-Vector of MG4
1,n

In this segment, an alternative way to compute Fn is presented. This method will use
complete graphs and cycles in these graphs. Therefore matchings on complete graphs and
their cycles, that preserve a given matching (defined below) are investigated. These cycles
correspond to the graphs σΣn.
Some properties that relate the set of all permuted graphs Sn and the complete graph Kn

are studied first. The upcoming property states that the union of all edges in Sn is the same
as the edge set EKn of the complete graph Kn. An example of this relation for n = 4 can
be seen in Figure 4.8.

Property 4.19.
⋃
γ∈Sn Eγ = EKn

Proof. Take any edge e ∈
⋃
γ∈Sn Eγ , then e ∈ EKn , since Vγ = VKn by definition for any

γ ∈ Sn. Therefore
⋃
γ∈Sn Eγ ⊆ EKn .

To proof
⋃
γ∈Sn Eγ ⊇ EKn show that for any edge e ∈ EKn which connects vertex v and w

exists a permutation σ ∈ Sn such that v and w are connected via one edge in σΣn. Assume
v and w are not connected in σ′Σn, but z and v are. Set σ = (w, z) ◦ σ′, which connects
v and w in σΣn. (Notice that if σ′Σn ∼ σΣn the vertices v and w share an edge in both
graphs.)

The second argument can be iterated such that one can deduce

Property 4.20. ∀M ∈MKn ∃σΣn ∈ Sn such that M ⊂ σΣn.

1

2 3

4 3

42

1 4

23

1
S4 =

, , 1

2 3

4
K4 =

Figure 4.8: The set S4 and the complete graph K4
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The Complete Graph Kn

Proof. Follows from VKn = VσΣn , |M | = 0 and the argument given in the proof of property
4.19.

Notice that for graphs Γ ∈ G3
l,n the number of vertices is fixed |VΓ| = 2l − 2 + n. The last

property can be generalized to arbitrary graphs.

Property 4.21. ∀M ∈MK2l−2+n ∃Γ ∈ G3
l,n such that M ⊂ Γ .

Proof. Label the vertices of K2l−2+n such that there are two types of vertices, of which 2l−2
are called internal and n external.
Consider a graph γ ∈ G3

l,0 with the following topology

γ = ,

where the dotted lines represent a repetition of the same structure until |γ| = l.
Let µ ∈ MK2l−2 be a maximal matching. Choose labels on the vertices of γ such that
µ ⊂ γ. For µ ∈MK2l−2+n add labeled external legs to γ, such that µ ⊂ γ stays true. It is
ensured that µ is a valid matching since γ does not have any multi-edges.

Now return to the case of one-loop graphs and define set that will be proven to be isomorphic
to the matchings in Kn.

Definition 4.22. LetMn,i be the union of all matchings on i edges over all graphs in Sn.

Mn,i :=
⋃
γ∈Sn

Miγ

The next property identifiesMn,i and MiKn to be the same. Exemplary this is shown for
n = 4 and i = 2 in Figure 4.9.

Property 4.23. MiKn =Mn,i .

Proof. The inclusion Mn,i ⊆ MiKn is trivial, since M ⊆ Kn ∀M ∈ Mn,i, because M is
just a disjoint union of edges and Kn has all possible edges by property 4.19 (also by the
definition of Kn). The inverse inclusion is given by Property 4.20.

As before, the previous property can be generalized by the same means as before.

The observations above can be combined to count matched graphs by studying matchings
on the complete graph (which captures the combinatorics of the matching process) and then
count the subgraphs of a given type in Kn such that a given matching is preserved.

Definition 4.24. A graph γ preserves a matching M ⊂ Kn if M is a matching on γ.

Therefore, to derive the f -vector Fn, in the case of one-loop graphs, there are two more
pieces of information needed, the number of matchings in MiKn and how many cycles in
Cn preserve a given matching. The following definition constructs a set, whose elements
precisely coincide with the set of matched n-suns, but is built of matching preserving cycles.

1

2 3

4 1

2 3

4 1

2 3

4
M4,2 = = M2K4

, ,

Figure 4.9: M4,2 = M2K4
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1,n

Definition 4.25. Define the set of matched cycles MmCn by

MmCn :=
{

(M, c)
∣∣M ∈Mmc, c ∈ Cn

}
.

Remark. From Cn ∼= Sn and property 4.23 follows MmCn ∼= MmSn and consequently Fk =
|Mn−k−1Cn/Ψ|.

Computing the size of MmCn is done next. Therefore write |MmCn| = |MmKn|qm,n, where
qm,n is the number of cycles in the complete graph that preserve a given m-matching. This
factorization can be done since qm,n is independent of the concrete m-matching. The two
quantities |MmKn| and qm,n are determined in the next lemmas.

Lemma 4.26. The number of m-matchings in the complete graph Kn is given by

|MmKn| =
1
m!

m−1∏
i=0

(
n− 2i

2

)
.

Proof. A 1-matching in a complete graph is chosen by picking 2 of n indistinguishable
vertices, hence there are

(
n
2
)

1-matchings in Kn. Repeat this process m times, since every
time the remaining vertices are still indistinguishable one gets

∏m−1
i=0

(
n−2i

2
)
. This establishes

an order on the matched vertices, which is undone by dividing by m!.

Lemma 4.27. Let qm,n denote the number of cycles, that preserve a given m-matching in
Kn. It is given by

qm,n = 2m (n−m− 1)!
2 .

Proof. The matching consists of m pairs of vertices, which fixes m elements of the cycle.
That means |Cn−m| possible cycles remain, but each matching is allowed to change the order
of its vertices and therefore qm,n = 2m|Cn−m|.

Theorem 4.28. Let n > 4 then the f -vector of MG4
1,n Fn = (F−1, F0, ..., Fn−1) is given by

Fk = k!
2(n− 1− k)!

n−k−2∏
i=0

(
n− 2i

2

)
.

Proof.

Fk = |Mn−k−1Cn/Zm2 | =
|Mn−k−1Kn|qn−k−1,n

2n−k−1

= 2k+1−n2n−k−1 k!
2

1
(n− k − 1)!

n−k−2∏
i=0

(
n− 2i

2

)

= k!
2(n− k − 1)!

n−k−2∏
i=0

(
n− 2i

2

)

Note that the group action Ψ is not explicitly defined for the set MmCn, but by the relation
MmCn ∼= MmSn it is clear how to do that. Conclude that the orbits on MmCn/Zm2 are all
of the same size as before (which has already been used in the proof above).
A quick calculation shows that the two representations of the f -vector of MG4

1,n indeed
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The Complete Graph Kn

coincide. First, rewrite the product in Fk of the Theorem 4.28:
n−k−2∏
i=0

(
n− 2i

2

)
= 21+k−n n!

(n− 2)!
(n− 2)!
(n− 4)! · · ·

(2k + 4− n)!
(2k + 2− n)!

= 21+k−n n!
(2k + 2− n)! .

Bringing this back together with the expression of the theorem it amounts to

Fk = k!
2(n− 1− k)!2

1+k−n n!
(2k + 2− n)! = n!

2n−k(k + 1)

(
k + 1

n− 1− k

)
,

which is the form of the f -vector in Theorem 4.14.
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4. One Loop Moduli Space: MG4
1,n

4.4 Generalizations

In this section, the previous result is slightly generalized by investigating colored and QCD
one-loop graphs.

4.4.1 Colored Graphs

For the general, colored moduli space MCGvl,n,C the size of the isomorphy classes can no
longer be given explicitly since it depends on the coloring of the graph. Recall that a coloring
of a graph G is a map c : EG → [C], with C ∈ N the number of colors, assigning to each
internal edge a color. A coloring from a physical viewpoint is just a place holder for different
particle types. A colored graph is denoted by the pair (c,G).
Set C = n for simplicity, but the general case can be retrieved most of the time. The study
of MCG4

1,n,n is analogous to the prior investigation. First, the set of all permuted colored
n-suns is defined. Secondly, matchings on these graphs are added.

Definition 4.29. Define the set CSn of all colored n-suns by

CSn :=
{

(c, σΣn)
∣∣ σ ∈ Sn, c : EΣn → [n]

}
/φ ,

where φ is the group action from Definition 2.32. Denote an element by [γc].

Remark. Technically one needs a further equivalence relation since two graphs γc, δc′ ∈ CSn
should be considered equal if an isomorphism i : γ → δ exists, such that c′ = i ◦ c. To keep
the notation simple let the equivalence classes [γc] ∈ CSn include the previously described
relation.
The main difference compared to the previous considerations is that the size |CSn| is no
longer known. That is because the size of the orbit |Orbφγ | is not the same for all permuted
colored graphs γc = (c, σΣn).
The set of possible matchings on a graph [γc] ∈ CSn is not changed and the previous result
of Corollary 4.6 can be taken over. A set of matched colored n-suns MmCSn is constructed
completely analogous to Definition 4.11. Moreover, it is still true that every graph has the
same number of matchings, thus |MmCSn| = |CSn||Fn,m|. Note that here the matched
graphs not only need to respect the equivalence relation of Definition 2.44, which takes
permutations of the half-edges attached to the matched edge into account. However, a
matched edge should no longer have a color, which means that graphs that differ only by
colors on matched edges should be considered equal. As before this can be done by a group
action.

Definition 4.30. Define a group action Ψc : Zm2 ×Zmn ×MmCSn →MmCSn for ρ = (τ, s) ∈
Zm2 × Zmn by

Ψc
ρ(M,γc) :=

(
M, (Ψτγ)Ψcsc

)
, where the colormap is given by

Ψc
sc
∣∣
Eγ\M

:= c
∣∣
Eγ\M

and Ψc
sc
∣∣
M

:= c
∣∣
M

+ s .

The graph Ψτγ is specified above in Defintion 4.12.

For the definition above, the colors are taken as elements in Zn, such that the action on the
coloring orbits through every possible color for every edge in the matching. By this action,
the color on these edges is effectively forgotten.
The result of the Lemma 4.13 stays true, since a change of color on a matching cannot
result in a reflection or rotation. Therefore StabΨc

(M,γc) = {e} ∀(M,γc) ∈ MmCSn and
|OrbΨc | = |Zm2 × Zmn | = 2mnm.
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Figure 4.10: The vertices of QCD

Theorem 4.31. The f -vector F cn = (F c−1, F
c
0 , ..., F

c
n−1) of MCG4

1,n,n is given by

F cn−m−1 = |CSn||Fn,m|
|OrbΨc |

= |CSn|
n

n−m

(
n−m
m

)
1

2mnm .

Proof. By the above.

Remark. Note that the number of colors in a graph can easily be promoted to an independent
variable and allowing only one color restores the previous result.

The only unknown is the size of CSn, but it is finite (for a finite number of colors) and can
in principle be calculated.

Consider the case, where the color map on the graph is required to be injective so that
no color can appear twice. Denote the moduli space of these rainbow-colored graphs by
MRG4

1,n. Then deduce that

|CSn| = n!|Sn|.

The orbit of the group action Ψc changes as well since not all colors are allowed on the
matched edges. Instead, all colors, that are missing on the unmatched edges are allowed.
Therefore here the orbit calculates as |OrbΨc | = |Zm2 × Sm| = 2mm!. Combining these
considerations leads to the following result for the f -vector of the moduli space of rainbow-
colored graphs

Corollary 4.32. The f -vector F rn = (F r−1, F
r
0 , ..., F

r
n−1) of MRG4

1,n is given by

F rn−m−1 = |CSn||Fn,m|
|OrbΨc |

= n

n−m

(
n−m
m

)
n!(n− 1)!
2m+1m! = n!

m!Fn−m−1 .

The Euler characteristics for several n of the space MRGn1,n are listed in the appendix in
the Table A.2.
Rainbow-colored graphs are especially convenient since there are no isometries between
them. In the one-loop case, the restriction on the color map could be loosened slightly by
only requiring it to be injective on edges that are part of the same multi-edge, such that the
colors of edges in a multi-edge are all different.

4.4.2 The One Loop Moduli Spaces of QCD: MGQCD
l,n

For moduli space of QCD, MGQCD
l,n , a new vertex type needs to be added, namely the

interaction between fermions and gluons. In the full theory, the coupling to ghosts needs
to be included as well, but here this does not add anything new and therefore ghosts are
neglected in this section. The vertices under consideration are shown in Figure 4.10.
The first observation is that MGQCD

l,n decomposes by the residue2 of the graphs. Although
the decomposition is true for any loop number, the following observations are again restricted

2 The residue of a graph is given by its external half-edges. It distinguishes different edge types.
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4. One Loop Moduli Space: MG4
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to one loop, write

MGQCD
1,n =

⊔
r∈Rn

MGQCD
1,{r} .

Where Rn denotes the finite set of residues. A residue {r} ∈ Rn captures the external leg
structure of a graph and can be written as {r} = {2f, g}, with 2f being the number of
external fermions and g of external gluons. Consequently, 2f + g = n.
In the following it is shown that MGQCD

1,{r} is not connected and the f -vector F QCD of its
connected components is derived. Therefore it is useful to look at the general form of the
one-loop graph in QCD.

The 3-regular graphs of QCD are built of the following two tree subgraphs:

gi := and fi := .

The index i is related to the total number of external gluons |Hext| by i = |Hext| − 2.
First, consider the residues r = {0, n}, then there are two types of one-loop graphs: The
loop could either be formed by fermions or by gluons. The first one is not very interesting
regarding the moduli spaces of metric graphs since fermion edges can not be collapsed. The
reason behind that is the absence of a four valent gluon fermion interaction. Consequently
the graphs

fn

form a facet 〈fn〉 ⊆MGQCD
1,{0,n} without boundary (one for each permutation of the external

legs). The other possibility is the one already treated in the previous section:

gn = Σn .

Note that MGQCD
1,{0,n} = MG4

1,n t 〈fn〉tn! is not connected.

Now lets consider the cases f 6= 0 and begin the classification of one-loop graphs by looking
at the combination of two tree gluon graphs. Observe that

gn gm = gp

with p = n+m.
Now the most general 1-loop graph of QCD ΣQCD

ρ can be constructed, where ρ is a multi-
index given by ρ := {i1, j1, i2, j2, . . . if , jf}. The graph ΣQCD

ρ is made of f pairs gi and fj
combined to a loop, where the graphs gi are always glued in such that the whole graphs
stays 1PI. It is shown in Figure 4.11.
Remark. The construction above ignores that fermion edges carry a direction. It would be
possible to include that in the multi-index ρ, but for the following derivation, the direction
does not matter.
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gi1

fj1

gi2

fj2

gi3fj3

ΣQCD
ρ :=

Figure 4.11: The general 1-loop graph of QCD: ΣQCD
ρ

For a residue r, the possible distributions of external gluon edges are given by the partition
of
∑f
k=1 ik + jk = g, given by ρ. Call the set of all partitions Pg,2f . However, as before, two

graphs ΣQCD
ρ and ΣQCD

ρ′ might be isomorphic. This occurs when the two partitions ρ and ρ′
are related by a permutation which is also an isomorphism of the graph. Denote the set of
all partitions modulo the symmetry by Rg,2f .
Now fix a graph ΣQCD

ρ and apply the same procedure as before. The first observation is that
only the subgraphs gi ⊆ ΣQCD

ρ generate faces of the moduli spaces because only gluon edges
can be collapsed. Consequently, only graphs that differ by a permutation of external legs of
each gi are connected in the moduli spaces:

Property 4.33. The cells 〈σΣQCD
ρ 〉 and 〈ΣQCD

ρ 〉 are connected iff σ = σ1 ◦ · · · ◦ σf and
σk : Hext

gik
→ Hext

gik
.

Denoting the space of all permuted graphs modulo symmetries as SQCD
ρ , it follows the de-

composition of MGQCD
1,{r} :

Property 4.34. Let f > 0, then

MGQCD
1,{g,2f} =

⊔
ρ∈Rg,2f

ρ={i1,j1, ... ,if ,jf}

(
MGQCD

1,ρ

)t(|SQCD
ρ |−i1! ··· if !)

.

Proof. If ρ, ρ′ ∈ Rg,2f and ρ 6= ρ′ clearly MGQCD
1,ρ

⋂
MGQCD

1,ρ′ = Ø. Furthermore, any
connected component ofMGQCD

1,ρ involves i1! · · · if ! facets by Property 4.33. There are |SQCD
ρ |

facets in total and therefore each summand above contains |SQCD
ρ | − i1! · · · if ! unconnected

components.

The f -vector F QCD
ρ of MGQCD

1,ρ is now derived. Therefore the size of MmΣQCD
ρ , the set of all

matchings on the graph, needs to be determined.

Lemma 4.35. Let gi be defined as above, m ∈ N and m ≤ d(i− 1)/2e then

|Mmgi| =
(
i−m
m

)
.

Proof. The number of m−matchings on gi is equivalent to picking m non consecutive num-
bers in [i − 1]. Place i − m − 1 bars and fill the gaps with m stars. There are

(
i−m
m

)
possibilities to place the stars. Number both from left to right, the numbers on the stars
give a matching.
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| ? | ? |

1 2 3 4 5

Figure 4.12: Example for the construction in the proof of Lemma 4.35 for i = 6 and m = 2.

An example for the construction of the proof above is given in Figure 4.12.
Remark. Note that for m > d(i− 1)/2e one finds |Mmgi| = 0.

Theorem 4.36. Let ρ = {i1, j1 . . . if , jf} ∈ Rg,2f .
The f -vector F QCD

ρ = (F QCD
−1 , F QCD

0 , ..., F QCD
n−1) of MGQCD

1,ρ is given by

F QCD
n−m−1 = i1! · · · if !

2m
∑

m1+···+mf=m
0≤mi≤m

f∏
k=1

(
ik −mk

mk

)
.

Proof. First, note that i1! · · · if ! is the number of facets of MGQCD
1,ρ by Property 4.33. The

group action Ψ permuting the external half-edges attached to matchings acts like before, in
particular |Orbψ | = 2m. Each composition of m into f integers gives rise to a m matching,
where each gik persists of a mk-matching. Thus

|MmΣQCD
ρ | =

∑
m1+···+mf=m

0≤mi≤m

f∏
k=1
|Mmkgik | ,

with FQCD
n−m−1 = i1!···if !

2m |MmΣQCD
ρ | the statement follows.
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Chapter 5

Two Loop Moduli Space MG4
2,n

This chapter mainly contains a section where the developed method in the previous chapter
is applied to the moduli spaces MG4

2,n of rank two graphs with n external legs. The main
result is a theorem about the number of two-loop gluon graphs with a given number of 4
valent vertices. This enables the calculation of the f -vector of the rainbow-colored moduli
space MRG4

2,n.

As before the starting point is the set of 3-regular graphs, with all possible permutations of
labels on the external legs. Before the set is defined, observe that there is a unique topology
for the admissible 2 loop graphs and it is defined below.

Definition 5.1. Let σ ∈ Sn and n = α+ β + γ, then define the two-loop graph σbα,β,γ by

σb(α,β,γ) :=

u

v

σgα σgβ σgγ , where .

σgα

σgβ

σgγ

:=

:=

:=

σ(1) σ(2) σ(α)

σ(α+1) σ(α+β)

σ(α+β+1) σ(n)

Remark. Throughout this chapter, the external legs of the subgraphs gαi are not displayed
explicitly in their pictures.
Since all permutations of the external legs, modulo symmetry, give different graphs σbα,β,γ ,
any σ ∈ Sn is considered for the set of all two-loop graphs. Additionally, all partitions of
n into three integers, representing the distribution of the external legs over the three tree
subgraphs gα, gβ and gγ , are contemplated. These subgraphs are essentially the same graphs
defined in the previous chapter as QCD tree subgraphs.

Definition 5.2. Define the set of all partitions of n in 3 integers P (n) ⊂ N3 via

P (n) :=
{

(α1, α2, α3)
∣∣ α1 + α2 + α3 = n, α1 ≥ α2 ≥ α3 ≥ 0

}
.

Now everything is set up to define the set of all permuted two-loop graphs Bn.

Definition 5.3. Write α = (α1, α2, α3) and denote the set of admissible, 3-regular two-loop
graphs by Bn ⊂ G3

n, then define

Bn :=
{
σbα

∣∣ σ ∈ Sn, α ∈ P (n)
}
/∼ .

Where σbα ∼ σ′bβ if they are isomorphic with fixed external legs.
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5.1 Counting Matched Two Loop Graphs

Similar to Definition 4.11, a set of matched two loop graphs is defined. For the upcoming
examination it will be useful to distinguish four different types of matchings, three of them
are defined by how many internal vertices are matched. The last case, denoted by the letter
τ , is needed to decide whether a matched graph corresponds to a tadpole graph or not. The
distinction between the different matchings is defined as follows.

Definition 5.4. Let σbα ∈ Bn then define admissible p-matchings Mp
m(σbα) with p ∈

{0, 1, 2, τ} by

M0
m(σbα) :=

{
M
∣∣M ∈Mm(σbα) , u, v /∈M

}
,

M1
m(σbα) :=

{
M
∣∣M ∈Mm(σbα) , u ∈M,v /∈M

}
,

M2
m(σbα) :=

{
M
∣∣M ∈Mm(σbα) , u, v ∈M, {u, v} /∈M

}
and

Mτ
m(σbα) :=

{ {
M
∣∣M ∈Mm(σbα) , {u, v} ∈M

}
if α2 6= 0

Ø else
.

Remark. The set of all admissible matchings of a graph σbα ∈ Bn, denoted by Mm(σbα), is
given by the disjoint union of the sets defined above.
To clarify the definition of Mτ

m(σbα) it is useful to look at an example.

Example 5.5. As before, denote a matched graph g by (M, g), where M ⊂ Eg is a
matching. Consider the matched graph

(
{u, v}, σb(1,1,0)

)
which corresponds to the graph g =

∈ B2, which is not a tadpole. However, matched graphs of the type
(
{u, v}, σb(α,0,0)

)
are tadpoles, for example for α = 2 it corresponds to the graph , which is clearly a
tadpole and is therefore not in the set B2. This means that the matching {u, v} is not
admissible in graphs like σb(α,0,0) and is therefore excluded in the definition of admissible
τ -type matchings above.

Now define sets of matched graphs corresponding to the types of matchings defined in
Definition 5.4.

Definition 5.6. The set of matched two-loop graphs MmBn is defined as

MmBn :=
⊔

p∈{0,1,2,τ}

Mp
mBn, with

Mp
mBn :=

{
(M,Γ)

∣∣ Γ ∈ Bn,M ∈Mp
m (Γ)

}
As in the one loop case, there is a property linking all matchings of two-loop graphs and
all matchings in a complete graph. Here the complete graph Kn+2 is investigated since the
two-loop graph has n+ 2 vertices. In the complete graph, n vertices are labeled from 1 to n
representing the external legs and the remaining two vertices u and v. The vertices of Kn+2
are indistinguishable, and hence, all possible labels are equivalent.

Property 5.7. Let p ∈ {0, 1, 2, τ}, then

Mp
mKn+2 =

⋃
γ∈Bn

Mp
mγ .

Proof. The proof is analogous to the proof of Property 4.23.

The next property links the sets of all p-type matchings on the complete graph Kn+2 to the
sets of all matchings on a complete graph with fewer vertices. This enables the calculation
of the size of Mp

mKn+2 by the Lemma 4.26.
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x
u

v

σgα σgβ σgγ

x

u

v

σgα σgβ σgγ

x
u

v

σgα σgβ σgγ

Figure 5.1: Graphs in Orbϕ

Property 5.8. The p-type matchings on the complete graph Kn+2 can be expressed as

M0
mKn+2 = MmKn,

M1
mKn+2 = (Mm−1Kn−1)tn ,

M2
mKn+2 = (Mm−2Kn−2)tn(n−1)/2 and

Mτ
mKn+2 = Mm−1Kn.

Proof. The case p = 0 simply excludes two vertices to be matched, so all m-matchings on
Kn remain.
For p = 1 letM ∈M1

mKn+2 andM = M0∪{u, x} for x 6= v, thenM0 is a (m−1)-matching
on Kn−1, since by definition v /∈ M0. For any of the n choices to pick x there is a new set
Mm−1Kn−1, where x takes a specific value. Use x to label the sets, which allows forming
the disjoint union of the n copies.
Similarly for p = 2, but here are n(n−1)/2 disjoint copies, since the vertices u and v cannot
be distinguished.
For τ -type matchings u and v are matched such that m− 1 matchings on the remaining n
vertices remain.

In the next step, the effect of the groupaction Φ from Definition 2.44, which ensures counting
the 3-regular m-matched graphs is equivalent to counting graphs with m 4-valent vertices,
is investigated. Note that if the matching does not include u or v, the equivalence relation
is effectively the same as for the one loop case, cf. Definition 4.12.

Definition 5.9. Let (M,Γ) ∈ Mp
mBn, M0 ⊂ M , s.t., u, v /∈ M0, and p ∈ {0, 1, 2}. Write

(M,Γ) = ((M0,Γ), (M \M0,Γ)), |M \M0| = p and define a groupaction
Φ : S|M0|

2 × STUp×Mp
mBn →Mp

mBn for (τ, r) ∈ S|M0|
2 × STUp by

Φ(τ,r)(M,Γ) := (Ψτ (M0,Γ), ϕr(M \M0,Γ)) ,

where Ψτ is from Definition 4.12 and ϕr : STUp×Mp
mBn →Mp

mBn is a groupaction given
in Figure 5.1.

This definition is equivalent to the groupaction defined in chapter two, since the the action
of STU on a matching in M0 reduces to an action of S2, because else wise non 1PI graphs
would be generated.

Remark. For p = 2 the definition of ϕr is not given explicitly, but straightforward.
The action of ϕr on τ -type matchings needs a more detailed treatment. In general, these
matched graphs take the form(

{u, v} ∪M0, b(α,β,0)
)

= gα gβ , (5.1)
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where the matching on the graphs gα and gβ as well as their external legs are not pictured.
The action of ϕr is now given by

ϕ(24)
(
{u, v} ∪M0, b(α,β,0)

)
= gα g′β , (5.2)

where g′β is gβ with reversed order of the external legs. The remaining group element of
R4 n Cyc4 leads to a non 1PI graph. The two 4-valent graphs to which (5.1) and (5.2)
correspond, are indeed the same, due to their symmetry.
Continue with the observation, that the group action Φ acts independently on the disjoint
subsets of MmBn given in Definition 5.6 by the different types of matching. A matching is
not altered by the action Φ and therefore it maps Mp

mBn onto itself, hence the equation

MmBn/Φ =
⊔

p∈{0,1,2,τ}

Mp
mBn/Φ (5.3)

is fulfilled.

Now the actual counting of graphs is done. Therefore define a set of all possible compositions
of m. This is necessary since for a matched graph (M, bα) ∈ MmBn the matching M0 can
be written as M0 = M1 tM2 tM3 with u, v /∈ M0, where Mi is a matching on gαi and
m = |M1|+ |M2|+ |M3|+p. To count all possible m-matchings on bα a sum over all possible
values for the sizes of Mi is needed. Note that matched graphs in Mτ

mBn have α3 = 0 and
therefore M3 = Ø, and p = 1.

Definition 5.10. Let α ∈ P (n) and define the set of all compositions of a m-matching via

Cα(m) :=
{

(m1,m2,m3)
∣∣∣ 3∑
i=1

mi = m, 0 ≤ mi ≤
⌈
αi − 1

2

⌉
, i = 1, 2, 3

}
.

In the definition above the restriction of mi is precisely the same as in Lemma 4.35.
The symmetry of some graphs in MmBn leads to overcounting, i.e.,the corresponding graph
gets counted multiple times. To take care of this overcounting, it is useful to introduce
symmetry factors. The first factor s(α) origins in permutations of the subgraphs gα1 , gα2

and gα3 .

Definition 5.11. Let α ∈ P (n) and define a symmetry factor s(α) via

s(α) :=
n∏
j=1

aj ! ,

where aj is the number of αi’s for which αi = j 6= 0.

The cases αi = 0 are excluded in this definition because these subgraphs will not cause
overcounting, since they do not possess external legs.
The second kind of symmetry factors takes care of the symmetry of exchanging the vertices
u and v. This is only a symmetry of graphs in M0

mBn and Mτ
mBn, since a matching on u

or v (which is not the matching of u to v) brakes reflectional symmetry. They are denoted
by r0(α,m) and rτ (α,m).

Definition 5.12. Let α ∈ P (n), m ∈ Cα(m), and define a symmetry factor r0(α,m) via

r0(α,m) :=
{

1 if αi −mi ≤ 1 ∀i = 1, 2, 3

2 else
.
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Notice that graphs (M,σbα) ∈ MmBn that correspond to the first case in the definition
above have either zero, one or two to another matched vertices on each subgraph gαi . In
these cases, the reversing the order of the external legs on each subgraph is trivial. (In the
case of two vertices due to the group action Φ).
The factor rτ prevents overcounting of the two graphs t and ϕrt (cf. Equation (5.1) and
(5.2)). This will include the factor of the definition above.

Definition 5.13. Let α ∈ P (n), m ∈ Cα(m), and define a symmetry factor rτ (α,m) via

rτ (α,m) := r0(α1,m1)r0(α2,m2) ,

where r0(αi,mi) is defined as

r0(αi,mi) :=
{

1 if αi −mi ≤ 1

2 else
.

The factor rτ is built from two factors r0, one for each subgraph gαi . They need to be
treated independently, since reversing the order of the external legs on any of them is a
symmetry of the graphs in Mτ

mBn. The separation into the cases whether the reversing is
trivial or not remains. This becomes important below when the graphs are counted.

Remember that a matchingM is called preserved in (M, bα) ∈MmBn ifM ⊂ Kn+2. Finally,
a theorem about the size of MmBn/Φ is formulated.

Theorem 5.14. Let n > 1 then the number of two-loop graphs with m 4-valent vertices and
n external legs is given by

|MmBn/Φ| =
∑

p∈{0,1,2,τ}

|Mp
mKn+2| qpm,n , (5.4)

where qpm,n is the number of graphs in MmBn/Φ that preserve a given m-matching of Kn+2
and is given by

q0
m,n =

∑
α∈P (n)

∑
m∈Cα(m)

A(α,m, n,m)
r0(α,m)s(α) ,

qpm,n =
∑

α∈P (n−p)

∑
m∈Cα(m−p)

A(α,m, n− p,m− p)
s(α) , for p = 1, 2;m ≥ p and

qτm,n =
∑

α∈P (n)
α2 6=0=α3

∑
m∈Cα(m−1)

A(α,m, n,m− 1)
rτ (α,m)s(α) for m ≥ 1 , where

A(α,m, n,m) :=
(
m

m1

)(
n− 2m
α1 − 2m1

)(
m−m1

m2

)(
n− 2m− α1 + 2m1

α2 − 2m2

) 3∏
i=1

(αi −mi)! .

The quantity A is constructed such that it counts the number of matched graphs (M,σbα)
for |M | = m and a given composition of the matching. To account for symmetries A gets
divided by the corresponding symmetry factors, which differ in between the different cases.
Before the theorem is proven, look at an example to illustrate how this counting works.
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Example 5.15. Consider the sets MmB3/Φ for m = 0, 1, 2. The first set M0B3/Φ = B3 is
given by

B3 =


1

2

3

,

3

1

2

,

2

3

1

,
1

2

3 ,
1

3

2 ,
2

3

1 , 1 2 3

 .

In the first partition of 3 = 3 + 0 + 0, corresponding to the first three graphs, the factor
A((3, 0, 0), 0, 3, 0) = 3! = 6, but since reflecting the pictured graphs along the horizontal axis
is a symmetry, there are only three graphs. This is achieved by the factor r0((3, 0, 0), 0) = 2.
Furthermore, note that s((3, 0, 0)) = 1.
The next three graphs resemble the partition 3 = 2+1+0, here we have A((2, 1, 0), 0, 3, 0) =(3

2
)
2! = 6. As for the previous graphs the reflectional symmetry needs to be taken into

account, so there are only 3 graphs. Lastly, for the partition 3 = 1 + 1 + 1 the factor
A((1, 1, 1)0, 3, 0) =

(3
1
)(2

1
)

= 6, but the subgraphs g1 can be permuted freely, so divide by
s((1, 1, 1)) = 3! and only one graph remains.
Now one edge of the graphs in B3 is matched. Consider the different cases as above. First,
look at the set where the vertices u and v are not matched:

M0
1B3/Φ =


1

2

3

,

3

1

2

,

2

3

1

,
1

2

3 ,
1

3

2 ,
2

3

1

 .

For the first partition, one gets the factor A((3, 0, 0), (1, 0, 0), 3, 1) = 2!, but as before it
counts the reflected graph twice. For the remaining partition the factorA((2, 1, 0), (1, 0, 0), 3, 1) =
1, since the matching needs to be on the subgraph g2. Note that no overcounting occurs.
Now, there are 3 possible matchings on the graph K3, so both partitions above correspond
to 3 graphs in the set M0

1B3.
Now consider the set M1

1B3, where u is matched:

M1
1B3/Φ =

 1

2

3 ,
3

1

2 ,
2

3

1 ,
2

1

3 ,
1

3

2 ,
3

2

1 ,

1

2

3 ,
3

1

2 ,
2

3

1

 .

Most importantly notice that the matching on the vertex u breaks the reflectional symmetry.
Therefore, e.g., the first and fourth graph in the set are not related by an isomorphism.
Further observe that since one external leg (via its vertex) is matched to u, only the two
remaining external legs need to be partitioned over the tree subgraphs g. There are two
possible partitions: (2, 0) and (1, 1). The partition (2, 0) corresponds to the first six and
(1, 1) to the remaining graphs.
The set of graphs, were u is matched to v is

Mτ
1B3/Φ =

 1

2

3 ,
1

3

2 ,
2

3

1

 .
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Finally the graphs with 2-matchings are given in the set

M2B3/Φ =

 1

2

3 ,
3

1

2 ,
2

3

1

1

2

3 ,
3

1

2 ,
2

3

1 ,

1

2

3 ,
1

3

2 ,
2

3

1

 ,

where again reflectional symmetry is broken in the first six graphs. The last three graphs
are in the set Mτ

2B3.

Proof. Let α ∈ P (n), m ∈ Cα(m) and M ∈MmKn+2. Due to Property 5.7 there exists a
matched graph (M,σbα) ∈ MmBn/Φ. Denote its three matched subgraphs by (Mi, σigαi)
for i = 1, 2, 3. The matching M is given by M = M \M0 tM0, where M0 =

⊔
i=1,2,3Mi

contains all matchings that do not include the vertices u or v. Furthermore, the maps σi
are a restriction of σ, namely σi = σ|[αi]\[αi−1] for i = 2, 3 and σ1 = σ|[α1]. The map σ is a
labeling of the external legs of the graph (M, bα).
Further note that it is enough that σ labels only one of the matched vertices (more precisely
the external edge connected to that vertex), because the matching fixes the other label. To
clarify, one might write σ ∈ Sn−m, although this is technically not right. More importantly,
note that different maps σ might result in labels that are considered equal by the group
action Φ or by the symmetry of the graph. This overcounting needs to be properly treated
in the derivation below.
Let A(α,m, n,m) be the number of possible labels σ on the matched graphs (Mi, σigαi),
where the symmetry of the graphs is ignored. There are(

m

m1

)(
n− 2m
α1 − 2m1

)
(α1 −m1)!

maps σ1, since m1 matchings and α1− 2m1 vertices need to be chosen and can be arranged
in any order. The number of possible maps σi for i > 1 is similar, but the already chosen
vertices and matchings need to be taken into account, to ensure that σ is bijective. Then
the given form of A(α,m, n,m) follows. Note that the order of two matched vertices is not
incorporated, since the action of Φ renders them equal.
The number A needs to be altered due to the already mentioned overcounting. It happens
because of the symmetries of the graphs, which can be divided into two cases. The first
arises when αi = αj for i 6= j, because the graphs (M,σbα) and (M,σ′bα) are isomorphic if
σ′i = σj ◦ dj,i and σ′j = σi ◦ di,j , where the map di,j : Ωi → Ωj is the unique order preserving
bijection between the two domains of σi and σj . The order on these domains is given by the
order of the vertices in the subgraphs gαi ⊂ bα. For two equal αi’s there are two maps in
Sn−m that result in the same label and if all αi’s are identical there are 3! such maps, with
the exception if α2 = α3 = 0, since then there are no maps σ2, σ3. The number of different
maps di,j is exactly the number of permutations of the subgraphs gi which are a symmetry
of the full graph. The factor s(α)−1 is defined such that it cancels the overcounting.
The second overcounting originates in the possible symmetry of exchanging the vertices u
and v in (M,σbα), note that this is only a symmetry of graphs in M0

mBn/Φ and Mτ
mBn/Φ.

In terms of the maps σi it can be formulated as follows. A map σ is counted twice if ∃σ′i 6= σi
such that σi = σ′i ◦ rαi−mi+1 ∀i = 1, 2, 3, where rαi−mi+1 is the map given in Definition
2.31, which reverses the order of the vertices on (Mi, gαi). Note that if αi −mi = 0 then
there is no map σi and if αi −mi = 1 it follows that rαi−mi+1 = (1). If one of these cases
holds true for all i = 1, 2, 3, then these graphs are not counted twice. It is evident that for
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αi −mi > 1 one can always find such two maps σi and σ′i 1. This overcounting is precisely
canceled by the factor r0(α,m)−1 for graphs in M0

mBn/Φ. The graphs in Mτ
mBn/Φ need a

related adjustment. Here the maps σ are also counted various times due to the group action
ϕ, cf. Equation (5.2). Multiple counting of the same label occurs here whenever for one of
the two maps σ1 and σ2 exists a different map σ′i such that it is a reflection of σi in the
sense of the above. The reflectional symmetry is included whenever for both maps σi exists
such a reflection σ′i. The factor rτ (α,m)−1 precisely captures these cases.
To calculate qpm,n for p = 0, 1, 2 sum the factor A together with the corresponding symmetry
factors over α ∈ P (n − p) and m ∈ Cα(m − p). Since α ∈ P (n − p) it is given that
α1 ≥ α2 ≥ α3, which ensures that permutations of the subgraphs gαi are only counted
multiple times if αi = αj for i 6= j, but these cases are treated by the symmetry factor s(α).
Subtracting the number of matchings in M \M0 in the summation sets and in the factor
A(α,m, n− p,m− p) ensures that any two labels that are equivalent by the group action ϕ
(cf. Figure 5.1) are only counted once. In that cases the map σ does not label the external
leg whose vertex is matched to u or v. Counting the different labels on that edges is done
by the number of p-type matchings in Kn+2, cf. Property 5.8.
To calculate qτm,n the sum runs over α ∈ P (n), but α2 6= 0, since else wise the graphs
are tadpoles and further α3 = 0, because {u, v} ∈ M . The second sum runs over the set
Cα(m − 1), since the matching of u to v is excluded. The summand then takes the form
A(α,m, n,m− 1)rτ (α,m)−1s(α)−1. Here the group action ϕ is already taken into account
by the symmetry factor rτ .
Conclude that qrm,n counts the number of graphs in the corresponding subset of MmBn/Φ
that preserve a given matching M ∈ MrKn+2, for r = 0, 1, 2, τ . It is clearly independent
of the given matching and therefore the product |MrKn+2|qrm,n is the number of graphs
in the appropriate subset. By Equation (5.3) summing over the subsets gives the size of
MmBn/Φ.

Remark. The Theorem 5.14 above can be generalized to k-banana graphs, that are graphs
where two vertices u and v are connected via k subgraphs of the form gαi . Therefore the
sums need to run over partitions of n and compositions of m into k integers instead of three
and the summand Ak(α,m, n,m) takes the form

Ak(α,m, n,m) =
k∏
i=1

(
m−

∑i−1
j=1mj

mi

)(
n− 2m+

∑i−1
j=1 2mj − αj

αi − 2mi

)
(αi −mi)! .

The case of τ -type matchings is generalized by the following condition on α: αn = 0 and
αi 6= 0 for i 6= n. The symmetry factors r0(α,m), rτ (α,m) and s(α) can be adjusted easily.

5.1.1 Rainbow-Colored Two Loop Moduli Spaces MRG4
2,n

Given Theorem 5.14 and therefore the number of two-loop graphs with n external legs and
m 4-valent vertices one can deduce the f -vector of the rainbow-colored two loop moduli
spaceMRG4

2,n. Here each edge of a graph has a different color and since the 3-regular graph
with n external legs has n + 3 edges, there are a total of n + 3 colors. The f -vector of the
corresponding moduli space is easily deduced from the previous theorem. Denote the moduli
space of rainbow graphs by MRG4

2,n and its f -vector by F r. Any graph t ∈ (m,Bn)/Φ has
exactly n+ 3−m colored edges since as before the matched edges do not carry a color. So

1If such a pair σi, σ′i exists, then there cannot be a third one σ′′i , since then σ
′′
i ◦rαi−mi+1 = σ′i◦rαi−mi+1

⇒ σ′′i = σ′i.
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there are (n + 3)!/m! different colorings of the edges of t. Therefore deduce the following
corollary.

Corollary 5.16. The f -vector F r =
(
F r−1, F

r
0 , . . . , F

r
n+2
)
of the moduli space of two-loop

rainbow-colored graphs MRG4
2,n is given by

F rn−m−3 = (n+ 3)!
m! |MmBn/Φ|,

where |MmBn/Φ| is given by Theorem 5.14.

The knowledge of the f -vector allows the calculation of the Euler characteristic Xn. The
results for the range n = 2, . . . , 30 is given in the appendix Table A.3. At first glance it
does not show any interesting patterns, the modulus of Xn grows with growing n and it
sign alternates almost everywhere, except for n = 12, 13 and n = 25, 26 where the Euler
characteristic is negative. Up to n = 90 these irregularities were not found again.

To loosen the requirement of the color maps, such that they are no longer injective, one
might alter the different cases in Theorem 5.14, to capture the number of possibilities to
color a graph in MmBn/Φ. However, if any isometry between the graphs should still be
avoided, it is not enough to require different colors on edges that are part of a multi-edge,
as for one loop, but also take a different kind of isometries into account. These do not rely
on the permutation of edges in a multi-edge, but on the exchange of the vertices u and v.
This is best seen in an example.

Example 5.17. Let t, t′ ∈ MG4
2,2 and represent their metrics mt and mt′ as the actual

length of the drawn edges. Next define

t :=
21

and t′ :=
21

.

Then t ∼ t′ as points in the moduli space, since the isomorphism i that maps t to t′ as
graphs, respects the metric, i.e. mt′ ◦ i = mt.

As a consequence, one might regard only colorings that make isometric graphs impossible.
Note that the isometric graphs arising from the reflection, as in the example above, can
also be excluded by requiring n > 6, since then no graphs have this reflectional symmetry.
(Recall that the external legs are fixed.)
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Summary

In this master thesis, the f -vectors of some relative simplicial complexes of the moduli spaces
of gluon graphs have been calculated. Points of these spaces are metric graphs with a max-
imal vertex valency of four. This restriction translates into missing faces of the complex.
Moduli spaces of graphs arise naturally in the representation of Feynman amplitudes in
parametric variables. A better understanding of those might contribute to comprehending
the complicated structure of Feynman integrals.
The f -vector of the one loop and the colored two loop moduli spaces for any number of
external legs was calculated by analyzing the possible matchings of the graphs under consid-
eration. Therefore the number of matchings on the complete graph with the same number
of vertices was determined. Subsequently, the number of admissible graphs for which such a
matching is also a matching was calculated. The knowledge of the f -vector further enables
the computation of the Euler characteristic. An idea for a proof that X [MG4

1,4k+2] = 0
for k ∈ N is given. For a single cell, it was shown that the f -vector can be read of the
(2, 1)-Pascaltriangle and the Euler characteristic is related to Chebyshev polynomials.
For two loops, a formula for the number of graphs with m four valent vertices is given. It
is related to the f -vector of the colored moduli space of two loop graphs. Furthermore, the
counting can be generalized to any k-banana graphs.
Additionally, it is shown that the moduli spaces stay connected after removing the faces
corresponding to graphs with vertices of higher valency then four.
Future work could investigate the algebraic properties of the complexes, for example, in [25].
A different possible approach for future work could follow the ideas in [8] to analyze the
homology the moduli spaces. This would also be a starting point to investigate higher loop
versions of these spaces. Lastly, it is desirable to establish a stronger connection to physical
quantities.
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Appendix

Tables

Table A.1: The Euler-characteristic Xn ofMG4
1,n

n Xn

5 −3

6 0

7 45

8 −315

9 1260

10 0

11 −56700

12 623700

13 −3742200

14 0

15 340540200

16 −5108103000

17 40864824000

18 0

19 −6252318072000

20 118794043368000

21 −118794043368 · 104

22 0

23 27441424018008 · 104

24 −631152752414184 · 104

25 7573833028970208 · 104

26 0

27 −24614957344153176 · 106

28 664603848292135752 · 106

29 −9304453876089900528 · 106

30 0

n Xn

31 404743743609910672968 · 107

32 −12547056051907230862008 · 107

33 200752896830515693792128 · 107

34 0

35 −112622375121919304217383808 · 107

36 394178312926717564760843328 · 108

37 −7095209632680916165695179904 · 108

38 0

39 4987932371774684064483711472512 · 108

40 −194529362499212678514864747427968 · 108

41 389058724998425357029729494855936 · 109

42 0

43 −334979562223644232402597095070960896 · 109

44 14404121175616701993311675088051318528 · 109

45 −316890665863567443852856851937129007616 · 109

46 0

47 32798183916879230438770684175492852288256 · 1010

48 −1541514644093323830622222156248164057548032 · 1010

49 36996351458239771934933331749955937381152768 · 1010

50 0

51 −453205305363437206202933313936960232919121408 · 1012

52 23113470573535297516349599010784971878875191808 · 1012

53 −600950234911917735425089574280409268850754987008 · 1012

54 0

55 859959786158954279393303180795265663725430386408448 · 1012

56 −4729778823874248536663167494373961150489867125246464 · 1013
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Table A.2: The Euler-characteristic Xn of XR4
1,n

n Xn

5 −1260

6 39600

7 −1625400

8 84142800

9 −5315284800

10 396417369600

11 −33590885328000

12 3051847925280000

13 −260181757547712000

14 9325375067264256000

15 5545328982371418240000

16 −2976916838268422649600000

17 1207665638758890568857600000

18 −474519441227486534111232000000

19 192132764878427657375893401600000

20 −82006471368324775559815053926400000

21 37241858595476819275746184894464000000

22 −18058878591653289937896688967147520000000

23 9356914279452324832806923314915700736000000

24 −5175890650923525122881767022500345520128000000

25 3051129302880225313976262520440806780928000000000

26 −1911955241034483597021666268623569502044160000000000

27 1269701975035137318221888715773250388309893120000000000

28 −890278466619476928259877742460943521520325672960000000000

29 656127112468700018146790079541675884182478852096000000000000

30 −505353829186469761072918877516782790868209668484628480000000000
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Table A.3: The Euler-characteristic Xn of XR4
2,n

n Xn

2 −180

3 4680

4 −194040

5 9172800

6 −596937600

7 46135656000

8 −4187422008000

9 431532541440000

10 −48324779350848000

11 5411407281344064000

12 −459264656566235520000

13 −40553651193525550080000

14 47809537645821454863360000

15 −24408232618492071456307200000

16 11101103301030466535088076800000

17 −5020069269055374844708349952000000

18 2336472950938571664229902667776000000

19 −1131855429122941901240825714239488000000

20 570741006825687083157605777589854208000000

21 −298549930516594641798473563140919541760000000

22 159468354061481933459331098216995701964800000000

23 −84448611247559656441163756369448116131430400000000

24 41370461827359102331500351972940853274021888000000000

25 −14312696010491163970631886009294379677693050880000000000

26 −5025525166263183302336574850557605162867558154240000000000

27 21221084689197125227462013269188070320605250519859200000000000

28 −37727568614184354024595234550298167635682404871292518400000000000

29 57610456575723603539320142833318610259857535802657289011200000000000

30 −84545830852469896398197433954599985589660552398581489388748800000000000
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