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FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES

OF CURVES OF GENUS ZERO

CHRISTIAN BOGNER AND FRANCIS BROWN

Abstract. This paper describes algorithms for the exact symbolic computation of period integrals

on moduli spaces M0,n of curves of genus 0 with n ordered marked points, and applications to the

computation of Feynman integrals.

1. Introduction

Let n ≥ 0 and let M0,n+3 denote the moduli space of Riemann spheres with n ordered marked

points. The main examples of periods of M0,n+3 consist of integrals [5, 16, 15]

(1.1)

∫

0≤t1≤...≤tn≤1

∏n
i=1 t

ai
i (1− ti)

bi
∏

1≤i<j≤n(ti − tj)cij
dt1 . . . dtn

for suitable choices of integers ai, bi, cij ∈ Z such that the integral converges. These integrals have

a variety of applications ranging from superstring theory [37, 38] to irrationality proofs [21, 26]. In

[5] it was shown that such integrals are linear combinations of multiple zeta values

(1.2) ζ(n1, . . . , nr) =
∑

1≤k1<...<kr

1

kn1

1 . . . knr
r

where ni ∈ N, nr ≥ 2

with rational coefficients. One of the goals of this paper is to provide effective algorithms, based on

[5], for computing such integrals (1.1) symbolically. The idea is to integrate out one variable at a

time by working in a suitable algebra of iterated integrals (or rather, their symbols) which is closed

under the two operations of taking primitives and taking limits along boundary divisors.

The second main application is for the calculation of a large class of Feynman amplitudes, based

on the universal property of the spaces M0,n. The general idea goes as follows. Suppose that X → S

is a flat family of stable curves of genus zero. Then the universal property of moduli spaces yields

an n ≥ 3 and a commutative diagram:

(1.3)

X −→ M0,n+1

↓ ↓

S −→ M0,n

The idea is that, for a specific class of (multi-valued) forms on X, we can integrate in the fibers of X

over S by passing to the right-hand side of the diagram and computing the integral on the moduli

space M0,n+1. In this way, it only suffices to describe algorithms to integrate on the universal curve

M0,n+1 over M0,n. In practice, this involves computing a change of variables to pass from X to a

set of convenient coordinates on the moduli space M0,n+1, applying the algorithm of [5] to integrate

out one of these coordinates, and finally changing variables back to S.

This process can be repeated for certain varieties which can be fibered in curves of genus 0 and

yields an effective algorithm for computing a large class of integrals. Necessary conditions for such
1
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fibrations to exist (‘linear reducibility’) were described in [17] and apply to many families of Feynman

integrals, as we discuss in more detail presently.

1.1. Feynman integrals. Any Feynman integral in even-dimensional space-time can always be

expressed as an integral in Schwinger parameters αj :

(1.4) I =

∫

0≤αj≤∞

P (αj)

Q(αj)
dα1 . . . dαN

where P and Q are polynomials with (typically) rational coefficients and which perhaps depend on

other parameters such as masses or momenta. Cohomologial considerations tell us that the types of

numbers occurring as such integrals only depend on the denominator Q, and not on the numerator

P . A basic idea of [18] is to compute the integral (1.4) by integrating out the Schwinger parameters

αi one at a time in some well-chosen order. After i integrations, we require that the partial integral

(1.5) I(α1, . . . , αN−i) =

∫

0≤αj≤∞

P

Q
dαN−i+1 . . . dαN

be expressed as a certain kind of generalised polylogarithm function, or iterated integral. Under

certain conditions on the singularities of the integrand, the next variable can be integrated out. A

‘linear reduction’ algorithm [17, 18] yields an upper bound for the set of singularities of (1.5) and can

tell us in advance whether (1.4) can be computed by this method. It takes the form of a sequence

of sets of polynomials (or rather, their associated hypersurfaces):

S1 , S2 , . . .

where S1 = {Q}, and Si+1 is derived from Si by taking certain resultants of polynomials in Si with

respect to αN−i+1. When Q is linearly reducible, we obtain a sequence of spaces for i ≥ 1:

Xi = (P1\{0,∞})N−i+1 \ V (Si)

= {(α1, . . . , αN−i+1) : αk 6= 0,∞ and P (α1, . . . , αN−i+1) 6= 0 for P ∈ Si}

and maps πi : Xi → Xi+1 which correspond to projecting out the variable αN−i+1. The linear

reducibility assumption guarantees that Xi fibers over Xi+1 in curves of genus 0. Thus setting

(X,S) = (Xi,Xi+1) in the discussion above, we can explicitly find changes of variables in the αi to

write (1.5) as an iterated integral on a moduli space M0,n and do the next integration.

It is perhaps surprising that such a method should ever work for any non-trivial Feynman integrals.

The fundamental reason it does, however, is that the polynomial Q can be expressed in terms of

determinants of matrices whose entries are linear in the αi parameters. In the case when Q is the

first Symanzik polynomial, and to a lesser extent when Q also depends on masses and external

momenta, it satisfies many ‘resultant identities’, which only break down at a certain loop order.

1.2. A method of hyperlogarithms versus a method of moduli spaces. There are two pos-

sible approaches to implementing the above algorithm: one which is now referred to as the ‘method

of hyperlogarithms’ [18], which stays firmly on the left-hand side of the diagram (1.3); the other,

which is the algorithm described here [5], which makes more systematic use of the geometry of the

moduli spaces M0,n and works on the right-hand side of the diagram (1.3).
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The first involves working directly in Schwinger parameters, and expressing all partial integrals as

hyperlogarithms (iterated integrals of one variable) whose arguments are certain rational functions

in Schwinger parameters. It has been fully implemented by Panzer [39, 40, 41] and various parts

of the algorithm have found applications in different contexts, as described below. A conceptual

disadvantage of this method is that the underlying geometry of every Feynman diagram is different.

The second method, espoused here, is to compute all integrals on the moduli spaces M0,n (which,

by no accident, are the universal domain of definition for hyperlogarithms). Thus the underlying

geometry is always the same and is well-understood; all the information about the particular integral

(1.4) is contained in the changes of variables (1.3). Another key difference is the systematic use of

generalised symbols of functions in several complex variables, as opposed to functions of a single

variable (hyperlogarithms).

That these two points of view are equivalent is theorem 4 below, but leads, in practice, to a rather

different algorithmic approach. We nonetheless provide algorithms (the symbol and unshuffle maps)

to pass between both points of view.

1.3. Applicability. The above method can be applied to a range of Feynman integrals provided that

the initial integral (1.4) is convergent. The case of massless, single-scale, primitively overall-divergent

Feynman diagrams in a scalar field theory was detailed in [17]. Since then, the method was applied

to the computation of integrals of hexagonal Feynman graphs, arising in N = 4 supersymmetric

Yang-Mills theory [27, 28, 29], integrals with operator insertions contributing to massive QCD matrix

elements [34, 35, 36], one- and two-loop triangular Feynman graphs with off-shell legs [30], phase-

space contributions [23, 24] to the cross-section for threshold production of the Higgs boson from

gluon-fusion at N3LO QCD [25], coefficients in the expansion of certain hypergeometric functions,

contributing to superstring amplitudes [37, 38], massless multi-loop propagator-type integrals [39],

and a variety of three- and four-point Feynman integrals depending on several kinematical scales

[40]. These applications arise from very different contexts and the method is combined with various

other computational techniques. Focussing on Feynman integrals, we can summarize by stating that

the method can be extended to the following situations:

• To Feynman graphs with several masses or kinematic scales.

• To gauge theories, or more generally, integrals with arbitrary numerator structures.

• To graphs with ultra-violet subdivergences. In particular, it is compatible with BPHZ renor-

malisation in a momentum scheme [16].

• Finally, it can also be combined with dimensional regularisation to treat UV and IR diver-

gences by the method of [40].

The method is suited for automatization on a computer. For the special case of harmonic poly-

logarithms, the programs [31, 32] support direct integration using these functions. For the general

approach, using hyperlogarithms, a first implementation of the method was presented in ref. [41].

A program for the numerical evaluation of these functions is given in ref. [33].

There appear to be other classes of integrals which are not strictly Feynman diagrams, but for

which the method of iterated fibration in curves of genus zero (1.3) still applies. A basic example are

periods of arbitrary hyperplane complements [5], and as a consequence, various families of integrals

occurring in deformation quantization, for example.
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1.4. Plan of the paper. In section 2 we review some of the mathematics of iterated integrals on

moduli spaces M0,n, based on [5]. The geometric ideas behind the main algorithms are outlined

here. In §3, these algorithms are spelled out in complete detail together with some illustrative ex-

amples. In §4, it is explained how to pass between Feynman integral representations and moduli

space representations. In §5 we discuss some applications, before presenting the conclusions.

The methods of §3 should in principle generalise to genus 1, using multiple elliptic polylogarithms

defined in [19], but there remains a considerable amount of theoretical groundwork to be done. A

different direction for generalisation is to introduce roots of unity, by replacing P1\{0, 1,∞} with

P1\{0, µN ,∞} where µN is the group of N th roots of unity. This should be rather similar to the

framework discussed here.

Acknowledgements: The second named author is a beneficiary of ERC grant 257638. The first

named author thanks Erik Panzer for very useful discussions. We thank Humboldt University for

hospitality and support. Our Feynman graphs were drawn using [53].

2. Iterated integrals on the moduli spaces M0,n

2.1. Coordinates. Let n ≥ 3 and let C∞ = C ∪ {∞} denote the Riemann sphere. The complex

moduli space M0,n(C) is the space of n distinct ordered points on C∞ modulo automorphisms

M0,n(C) = {(z1, . . . , zn) ∈ Cn
∞ distinct}/PGL2(C) .

There are two sets of coordinates, called simplicial and cubical, which are useful for the sequel. By

applying an element of PGL2(C), we can assume that z1 = 0, zn−1 = 1 and zn = ∞ and define

t1 = z2 , t2 = z3 , . . . , tn−3 = zn−2 .

The (t1, . . . , tn−3) are called simplicial coordinates and define an isomorphism

M0,n(C) ∼= {(t1, . . . , tn−3) ∈ Cn−3 such that the ti are distinct and ti 6= 0, 1} .

Cubical coordinates, on the other hand, are defined by

(2.1) x1 =
t1
t2

, x2 =
t2
t3

, . . . , xn−4 =
tn−4

tn−3
, xn−3 = tn−3

Cubical coordinates define an isomorphism

M0,n(C) ∼= {(x1, . . . , xn−3) ∈ Cn−3 such that xixi+1 . . . xj 6= {0, 1} for all 1 ≤ i < j ≤ n− 3} .

Note that the divisors above only involve products of cubical coordinates with consecutive indices.

The main advantage of cubical coordinates is that the divisors corresponding to

xi = 0 for i = 1, . . . , n− 3

are strict normal crossing in a neighbourhood of the origin (0, . . . , 0). The reason for the nomencla-

ture is that the standard cell (a connected component of the set of real points M0,n(R)) is either a

simplex:

Xn
∼= {(t1, . . . , tn−3) ∈ Rn−3 : 0 ≤ t1 . . . ≤ tn−3 ≤ 1}
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or a cube:

Xn
∼= {(x1, . . . , xn−3) ∈ Rn−3 : 0 ≤ xi ≤ 1} ,

depending on the choice of coordinate system.

2.2. Differential forms. Let Ωk(M0,n) denote the space of global regular differential k-forms on

M0,n which are defined over Q. Consider the following elements of Ω1(M0,n):

ωij =
dti − dtj
ti − tj

for 0 ≤ i, j ≤ n− 2

where we set t0 = 0 and tn−2 = 1. Clearly ωij = ωji and ωii = 0. Define

A1(M0,n) = 〈ωij : for i < j , (i, j) 6= (0, n − 2)〉Q

The ωij are linearly independent. Thus A1(M0,4) has the basis dt1
t1
, dt1
t1−1 . The ωij satisfy the

following quadratic relation:

(2.2) ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij = 0

for all indices i, j, k. Define A•(M0,n) to be the differential graded algebra which is the quotient

of the exterior algebra generated by A1(M0,n) by the quadratic relations (2.2). A theorem due to

Arnold states that

A•(M0,n) −→ H•
dR(M0,n;Q)

is an isomorphism of algebras. Thus A•(M0,n) is an explicit model for the de Rham cohomology of

M0,n. In cubical coordinates, it is convenient to take a different basis for A1(M0,n) formed by

dxi
xi

and
d(xi . . . xj)

xixi+1 . . . xj − 1
for 1 ≤ i < j ≤ n− 3 .

We will consider iterated integrals in these one-forms.

2.3. Iterated integrals and symbols. Recall the definition of iterated integrals from [7]. Let M

be a smooth complex manifold and let ω1, . . . , ωn denote smooth 1-forms. Let γ : [0, 1] → M be a

smooth path. The iterated integral of these forms along γ is defined by
∫

γ
ω1 . . . ωn =

∫

0≤t1≤t2≤...≤tn≤1
γ∗(ωn)(t1) . . . γ

∗(ω1)(tn) .

There are different conventions for iterated integrals: here we integrate starting from the right. The

argument of the left-hand integral is C-multilinear in the forms ωi and can be viewed as a functional

on the tensor product Ω1(M)⊗n. Elements of this space are customarily written using the bar

notation [ω1| . . . |ωn] to denote a tensor product ω1 ⊗ . . .⊗ ωn.

Chen’s theorem states that iterated integration defines an isomorphism from the zeroth cohomol-

ogy of the reduced bar construction on the C∞ de Rham complex of M to the space of iterated

integrals on M which only depend on the homotopy class of γ relative to its endpoints. The reduced

bar construction on M0,n can be written down explicitly using the model A defined above, in terms

of a certain algebra of symbols. For n ≥ 3, defined a graded Q vector space

V (M0,n) ⊂
⊕

m≥0

A1(M0,n)
⊗m
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defined by linear combinations of bar elements
∑

I=(i1,...,im)

cI [ωi1 | . . . |ωim ]

which satisfy the integrability condition

(2.3)
∑

I

cI [ωi1 | . . . |ωij−1
|ωij ∧ ωij+1

|ωij+2
| . . . |ωim ] = 0 for all 1 ≤ j ≤ m− 1 .

Then V (M0,n) is an algebra for the shuffle product x and is equipped with the deconcatenation

coproduct ∆, which is defined by:

∆[ωi1 | . . . |ωim ] =
m∑

k=0

[ωi1 | . . . |ωik ]⊗ [ωik+1
| . . . |ωim ]

Thus V (M0,n) is a graded Hopf algebra over Q. Iterated integration defines a homomorphism

V (M0,n) −→ {Multivalued functions on M0,n(C)}(2.4)
∑

I=(i1,...,im)

cI [ωi1 | . . . |ωim] 7→
∑

I

cI

∫

γz

ωi1 . . . ωim

where γz is a homotopy equivalence class of paths from a fixed (tangential) base-point to z ∈

M0,n(C). By a version of Chen’s theorem, this map gives an isomorphism between homotopy

invariant iterated integrals (viewed as multi-valued functions of their endpoint) on M0,n and symbols.

Equivalently, this means that the map (2.4) is a homomorphism of differential algebras (for a certain

differential to be defined in (2.5)) and the constants of integration are fixed as follows. One can show

that, in cubical coordinates (x1, . . . , xn−3), every iterated integral (2.4) admits a finite expansion of

the form ∑

I=(i1,...,in−3)

fI(x1, . . . , xn−3) log(x1)
i1 . . . log(xn−3)

in−3

where fI(x1, . . . , xn−3) is a formal power series in the xi which converges in the neighbourhood of

the origin. The normalisation condition is that the regularised value at zero vanishes:

f0,...,0(0, . . . , 0) = 0 .

This gives a bijection between symbols and certain multivalued functions (whose branch is fixed,

for example, on the standard cell Xn), and in this way we can work entirely with symbols. Various

operations on functions can be expressed algebraically in terms of V (M0,n). For example, the

monodromy of functions around loops can be expressed in terms of the coproduct ∆.

2.4. The bar-de Rham complex. Differentiation of iterated integrals with respect to their end-

point corresponds to the following left-trunctation operator

d : V (M0,n) −→ Ω1(M0,n)⊗ V (M0,n)(2.5)
∑

I

cI [ωi1 | . . . |ωim ] 7→
∑

I

cIωi1 ⊗ [ωi2 | . . . |ωim ]

where I = (i1, . . . , im). The bar-de Rham complex is defined to be

B(M0,n) = Ω•(M0,n)⊗ V (M0,n)
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equipped with the differential induced by d. In [5] it was shown that

Theorem 1. The cohomology of the bar-de Rham complex of M0,n is trivial:

H i(B(M0,n)) =




Q if i = 0

0 if i > 0

In particular, B(M0,n) is closed under the operation of taking primitives, which is one ingredient

for computing integrals symbolically. The next ingredient states that one can compute regularised

limits along boundary divisors D ⊂ M0,n\M0,n with respect to certain local canonical sections v of

the normal bundle of D. Let Z denote the Q-vector space generated by multiple zeta values (1.2).

Theorem 2. There exist canonical ‘regularised limit’ maps

RegvD : V (M0,n) −→ V (M0,r)⊗ V (M0,n+2−r)⊗Z

for every irreducible boundary divisor D of M0,n which is isomorphic to M0,r ×M0,n+2−r.

This states that the regularised limit of iterated integrals on moduli spaces are products of such

iterated integrals with coefficients in the ring Z of multiple zeta values. By applying these two

operations of primitives and limits, one can compute period integrals on M0,n. In more detail:

2.4.1. Total primitives. Taking primitives of differential one-forms is a trivial matter. Let η be a

1-form in B1(M0,n) such that dη = 0. We can write it as a finite sum

η =
∑

k

ωk
0 ⊗ [ωk

1 | . . . |ω
k
n]

A primitive is given explicitly by
∫

η =
∑

k

[ωk
0 |ω

k
1 | . . . |ω

k
n] .

The constant of integration is uniquely (and automatically) determined by the property

ε(

∫
η) = 0

where ε : V (M0,n) → Q is the augmentation map (projection onto terms of weight 0). The fact

that
∫
η satisfies the integrability condition (2.3) follows from the integrability of η and the equation

dη = 0. In practice, the algorithm we actually use for taking primitives on the universal curve needs

to be more sophisticated and is described below.

2.4.2. Limits. When taking limits, one must bear in mind the fact that the elements of V (M0,n)

represent multivalued functions, and hence depend on the (homotopy class) of the path γz of analytic

continuation (2.4). When computing period integrals by the method described above, however, all

iterated integrals which occur will be single-valued on the domain of integration ([17], theorem 58).

In cubical coordinates, the domain of integration is the unit cube Xn = [0, 1]n−3, and so it suffices

in this case to define limits along the divisors in M0,n defined by xi = 0 and xi = 1, where xi

are cubical coordinates. Recall that the integration map from V (M0,n) to multivalued functions

is normalised at the point (0, . . . , 0) with respect to unit tangent vectors in cubical coordinates xi,
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and it follows that the limits at xi = 0 are trivial to compute. Any function f in the image of

(2.4) is uniquely determined on the simply connected domain Xn = [0, 1]n−3, and admits a unique

expansion for some N

(2.6) f(x1, . . . , 1− ǫi, . . . , xn−3) =

N∑

k=0

log(ǫ)kpk(ǫ)fk(x1, . . . , xi−1, xi+1, . . . , xn−3)

where pk(ǫ) is holomorphic at ǫ = 0 and where fk is in the image of V (M0,i+2)⊗Q V (M0,n−i). The

‘regularised limit’ of f along xi = 1 (with respect to the normal vector − ∂
∂xi

) is the function

Regxi=1 f = p0(0)f0(x1, . . . , xi−1, xi+1, . . . , xn−3) .

It is the composition of the realisation map (2.4) with a certain map (theorem 2)

V (M0,n) −→ Z ⊗Q V (M0,i+2)⊗Q V (M0,n−i)

where Z is the ring of multiple zeta values. This map can be computed explicitly as follows.

Recall first of all the general formula for the behaviour of iterated integrals with respect to

composition of paths, where γ1γ2 denotes the path γ2 followed by the path γ1:
∫

γ1γ2

ω1 . . . ωn =

n∑

i=0

∫

γ1

ω1 . . . ωi

∫

γ2

ωi+1 . . . ωn .

If Eγ is the function on V (M0,n) which denotes evaluation of a (regularised) iterated integral along

a path γ, then the previous equation can be interpreted as a convolution product:

(2.7) Eγ1γ2 = m(Eγ1 ⊗ Eγ2) ◦∆

Ignoring, for the time being, issues to do with tangential base points and regularisation, a path from

the origin 0 to a point z = (x1, . . . , xi−1, 1, xi+1, . . . , xn−3) which lies inside the cube Xn = [0, 1]n−3

is homotopic to a composition of paths γ1γ2 (‘up the ith axis and then along to the point z’), where

γ2 = straight line from 0 to 1i = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . 0︸ ︷︷ ︸
n−i−4

)

and γ1 is a path from 1i to z which lies inside xi = 1. The segment of path γ2 can be interpreted

as a straight line from 0 to 1 in M0,4 = P1\{0, 1,∞} (with coordinate xi). Iterated integrals along

this path give rise to coefficients of the Drinfeld associator, which are multiple zeta values. Iterated

integrals along γ1 can be identified with our class of multivalued functions on the boundary divisor

D of M0,n defined by xi = 1, which is canonically isomorphic to M0,i+2 ×M0,n−i. One can check

that the above argument makes sense for regularised (divergent) iterated integrals, and putting the

pieces together yields the regularisation algorithm which is described below.

Remark 3. For the computation of period integrals, one needs slightly more. We actually require

an expansion of the function (2.6) as a polynomial in log(ǫ) and a Taylor expansion of pk(ǫ) up to

some order K in ǫ. This is because f can occur with a rational prefactor which may have poles in ǫ

of order K. This Taylor expansion is straightforward to compute recursively by expanding ∂
∂xi

f and

integrating (we know the constant terms by the previous discussion). The partial derivative ∂
∂xi

f is
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simply a component of the total differential d defined in (2.5), which decreases the length and hence

this gives an algorithm which terminates after finitely many steps, also described below.

Note that in order to compute period integrals (1.1), one only requires taking limits with respect

to the final cubical variable xi for i = n.

2.4.3. More general limits. It can happen, for example when computing Feynman integrals, that

one wants to take limits at more general divisors on M0,n. The compactification of the standard

cell Xn (the closure of Xn in M0,n for the analytic topology) is a closed polytope

Xn ⊂ M0,n

which has the combinatorial structure of a Stasheff polytope. It can happen that one wants to

compute limits at a (tangential) base point on the boundary of Xn. An example is illustrated in

the figure below in the case n = 5, and where X5 is a pentagon.

x1 = 0 x1 = 1

x2 = 0

x2 = 1

x1x2 = 1

E

z1

z2

Figure 2.1. On the left is a picture of M0,5 in cubical coordinates (x1, x2), and two
paths going from the origin to (1, 1). On the right-hand side is the space obtained
by blowing up the point (1, 1). The exceptional divisor is E ∼= P1. There are two
tangential base points defined over Z which lie above (1, 1), which are based at z1
and z2. The inverse image of the two paths end at the point z1, or z2 respectively.

The case of such limits can be dealt with using explicit local normal crossing coordinates on the

boundary of Xn such as the dihedral coordinates uij defined in [5]. One can show that any such limit

is in fact a composition of regularised limits along divisors xik = 1 and xik = 0 in some specified

(but not necessarily unique) order. This order can be determined from the combinatorics of the

dihedral coordinates, and gives an algorithm to compute limits in this more general sense.

For example, in the figure, the point z1 is reached by taking the limit first as x2 goes to 1 and

then x1 goes to 1; the point z2 corresponds to the opposite order. The regularised limits of iterated

integrals (such as Li1,1(x, y)) at (1, 1) along each path is different. Note that a path which approaches

(1, 1) with a gradient which is strictly in between 0 and ∞ corresponds to a limit point which is not

equal to either z1 or z2 on E and could take us outside the realm of multiple zeta values.
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Finally, it is worth noting that one can imagine situations when one needs to take limits at points

‘at infinity’ corresponding to the case when, for example, some cubical co-ordinates xi go to infinity.

This will not be discussed here.

2.5. Fibrations. The space V (M0,n) is defined by a system of quadratic equations (2.3) and its

structure is hard to understand from this point of view. We will never need to actually solve the

integrability equations (2.3).

A different description of V (M0,n) comes from considering the morphism

M0,n −→ M0,n−1(2.8)

(x1, . . . , xn−3) 7→ (x1, . . . , xn−4)

which is obtained by forgetting the last cubical coordinate. It is a fibration, whose fiber over the

point (x1, . . . , xn−4) is isomorphic to the punctured projective line

Cn = P1\{0, (x1 . . . xn−4)
−1, . . . , x−1

n−4, 1,∞}

with coordinate xn−3. Let An = A(M0,n) denote the model for the de Rham complex on M0,n

defined earlier, and let FĀn = An/An−1 denote the Q-vector space of relative differentials.

Denote the natural projection by

(2.9) ω 7→ ω : An → FĀn

Using the representation of forms in cubical co-ordinates, we can choose a splitting

(2.10) λn : FĀn
∼
→ FAn ⊆ An

which is defined explicitly in (3.1), and obtain a decomposition of An−1-modules:

(2.11) An
∼= An−1 ⊗Q

FĀn .

Armed with this decomposition, the quadratic relation (2.2) can be reinterpreted as a multiplication

law on 1-forms on the fiber:

µn : FA1
n ∧ FA1

n −→ A1
n−1 ⊗Q

FA1
n(2.12)

which is used intensively in all computations. The product of two elements in FA1
n lies in A2

n
∼=

A2
n−1⊕ (A1

n−1⊗Q
FA1

n) since FA2
n = 0. In fact, our choice of splitting λn is such that the component

of the previous isomorphism in A2
n−1 vanishes, which defines the map (2.12).

Theorem 4. [5] The choice of map λn gives a canonical isomorphism of algebras

(2.13) V (M0,n) ∼= V (M0,n−1)⊗Q V (Cn) ,

(which does not respect the coproducts on both sides) where

V (Cn) =
⊕

k≥0

( FĀ1
n)

⊗k

is the Q-vector space spanned by all words in FĀ1
n, equipped with the shuffle product.

This gives a very precise description of the algebraic structure on V (M0,n): by applying this

theorem iteratively, every element of V (M0,n) can be uniquely represented by a sum of tensors of
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words in prescribed alphabets. In order to go back and forth between the two representations on

the left and right hand sides of (2.13) we have the symbol and unshuffle maps, defined as follows.

(1) The symbol map is a homomorphism, which depends on the choice (2.10),

(2.14) Ψ : V (Cn) −→ V (M0,n)

which can be thought of as the map which takes a function defined on a fiber of the universal

curve Cn and extends it to a function on the entire moduli space M0,n.

It is constructed as follows. One can define a Gauss-Manin connection [20], corresponding

to ‘differentiation under an iterated integral’ which is a linear map

∇ : V (Cn) −→ A1
n−1 ⊗ V (Cn)

by the following recipe: lift words in FĀn to words in An via the map λn; then apply the

usual internal differential of the bar construction:

(2.15) D[ω1| . . . |ωn] =
n∑

i=1

[ω1| . . . |dωi| . . . |ωn] +
n−1∑

i=1

[ω1| . . . |ωi ∧ ωi+1| . . . |ωn]

and finally project all one-forms on the right-hand side to FĀ1 via the map (2.9) and project

all two forms (namely, dωi and ωi ∧ ωi+1) onto A1
n−1 ⊗

FĀ1 via the decomposition (2.12).

Pulling out all factors in A1
n−1 to the left gives the required formula for ∇.

The connection ∇ can be promoted to a total connection

∇T : V (Cn) −→ A1
n ⊗ V (Cn)(2.16)

by setting ∇T = ∇− d, and identifying A1
n−1 ⊕

FA1
n
∼= A1

n via the decomposition (2.11). It

is straightforward to show that in this context the total connection is flat (∇2
T = 0).

Finally, the symbol map is the unique linear map (necessarily a homomorphism)

(2.17) Ψ : V (Cn) −→ V (M0,n)

which satisfies the equation

(id⊗Ψ) ◦ ∇T = d ◦Ψ

This can be viewed as a recursive formula to compute the symbol map Ψ since ∇T strictly

decreases the length of bar elements. Explicitly, it can be rewritten

Ψ =

∫
(id⊗Ψ) ◦ ∇T

where the total primitive operator
∫

was defined in §2.4.1.

(2) In the other direction, there is the unshuffle map which is a homomorphism of graded algebras

(2.18) Φ : V (M0,n)
∼

−→ V (M0,n−1)⊗ V (Cn)

which is the inverse of the map m(id ⊗ Ψ) : V (M0,n−1) ⊗ V (Cn) → V (M0,n) (which we

abusively denote simply by Ψ), where m denotes multiplication. It can be computed as
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follows. Denote the natural map

r : V (M0,n) −→ V (Cn)

[ω1| . . . |ωr] 7→ [ω1| . . . |ωr]

given by restriction of iterated integrals to the fiber induced by (2.9) component-wise on bar

elements. Note that the map Ψ has the property that r ◦Ψ is the identity on V (Cn).

Recall the morphism (2.8) from M0,n to M0,n−1 defined in terms of cubical coordinates.

The projection map π : An → An−1 implied by the section λn is given by sending first dxn−3

to zero and then xn−3 to zero. One can see that it is a homomorphism by inspection of the

explicit equations in §3.1: the product of two elements in FA1
n have no component in A2

n−1.

It defines a homomorphism

π : V (M0,n) → V (M0,n−1)

and one easily verifies that the homomorphism Φ defined by

Φ(ξ) = (π ⊗ r) ◦∆

is an inverse to the symbol map Ψ.

Alternatively, we can view M0,n−1 as being embedded in M0,n by identifying it with the

divisor defined by xn−3 = 0. An element of V (M0,n) can be thought of as an iterated integral

along a path from the unit tangential base point at the origin 0 in cubical coordinates to a

point x = (x1, . . . , xn−3). It is the composition of a path from the unit tangential base point

at 0 to (x1, . . . , xn−4) in the base M0,n−1, followed by a path in Cn from the unit tangential

base point at xn−3 = 0 to x. Since composition of paths is dual to deconcatenation in

V (M0,n), this yields a geometric interpretation of the above formula for Φ.

Thus it is possible, via the symbol and unshuffle maps, to pass back and forth between a repre-

sentation of an iterated integral on M0,n as a symbol in V (M0,n) or a product of words in V (Ci)’s.

This gives a precise algorithmic equivalence between the two approaches described in §1.2.

2.6. Representation as functions. In order to represent elements of V (M0,n+1) as functions

(although in principle one never needs to do this) the simplest method is to apply the unshuffle map

Φ defined above, which reduces to the problem of representing elements of V (Cn) as functions. This

is simply the case of computing iterated integrals in a single variable xn, i.e. hyperlogarithms.

V (Cn) −→ Iterated integrals on Cn(2.19)

[ω1| . . . |ωn] 7→

∫
ω1 . . . ωn

The iterated integrals on Cn are normalised with respect to the tangential base point ∂
∂xn

at xn = 0.

They can be written as polynomials in log(xn) and explicit power series which were studied in the

work of Lappo-Danilevsky. In this way, the unshuffle map reduces the expression of elements of

V (M0,n+1) as functions to a product of hyperlogarithms, which are very well understood, and can

be computed to arbitrary accuracy by standard techniques.
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2.7. ‘Mixed’ primitives. Suppose that we have an element ξ ∈ V (M0,n+1), and a one form

ω ∈ FA1
n+1 which is only defined on the fiber. The mixed primitive is defined to be

ω ⋆ ξ := Ψ
( ∫

ωΦ(ξ)
)

∈ V (M0,n+1) .

In other words, ξ is viewed as an element of V (M0,n)⊗V (Cn) via the unshuffle map, then multiplied

by 1⊗ ω before computing its primitive
∫

in V (Cn) (which is simply given by left concatenation of

forms in FA1, as in §2.4.1). Clearly, the map ⋆ is bilinear over Q and satisfies

(2.20) ω0 ⋆Ψ([ω1| . . . |ωn]) = Ψ([ω0| . . . |ωn])

for all ωi ∈
FA1

n+1. Furthermore, ⋆ is right-linear over V (M0,n):

(2.21) ω ⋆ (bx ξ) = bx (ω ⋆ ξ)

for all b ∈ V (M0,n), and ξ ∈ V (M0,n+1), and ⋆ is uniquely determined by (2.20) and (2.21) by

(2.13). Evidently, one does not want to have to compute ⋆ by applying the unshuffling and symbol

maps Φ and Ψ which would be highly inefficient (and largely redundant).

The approach we have adopted is more direct. Suppose that ξ =
∑

I cI [ωi1 | . . . |ωim]. As a first

approximation to the mixed primitive ω ⋆ ξ take the element

ξ0 =
∑

I=(i1,...,im)

cI [λn(ω)|ωi1 | . . . |ωim ]

The projection of ξ0 onto V (Cn) coincides with that of ω ⋆ξ, but ξ0 does not satisfy the integrability

condition (2.3). The idea is to add correction terms ξ1, . . . , ξk to ξ0 so that the sum ξ0 + . . .+ ξk =∑
J c

′
J [ηj1 | . . . |ηjm+1

] satisfies the first k integrability equations (with the notation of (2.3))
∑

J

c′J [ηi1 | . . . |ηjr ∧ ηjr+1
| . . . |ηjm+1

] = 0 for 1 ≤ r ≤ k

The correction term ξk+1 is obtained using the quadratic relations µn to expand out each wedge

product ωi ∧ ωj in the k + 1th integrability equation, applied to ξ0 + . . .+ ξk. The mixed primitive

ω ⋆ ξ is equal to the sum ξ0 + . . .+ ξm+1 if ξ is of length m. The precise details are described below.

2.8. Feasibility and orders of magnitude. By iterating theorem (4) one obtains a formula for

the dimension of all symbols on M0,n+3 in weight N :

(2.22)
∑

N≥0

(dimQ V (M0,n+3)N )tN =
1

(1− 2t)(1− 3t) . . . (1− (n+ 1)t)

This gives a coarse upper bound for the possible size of expressions which can occur during the

integration process. At the initial step of integration, the integrand is of weight 0 on a moduli space

of high dimension M0,n+3, and at the final step, the integrand is of high weight on a moduli space

of low dimension M0,4. The dimensions (2.22) peak somewhere in the middle of the computation.

For example, for (the maximal weight part) of a period integral (1.1) in five variables, one works in

a sequence of vector spaces of dimension 20, 125, 285, 211, 32.

In the case of Feynman diagrams, one can estimate in advance (using the linear reduction algo-

rithm) the number of marked points n which will be required at each step of the integration to get a
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bound on the size of the computation. In practice, it seems that the limit of what is reasonable with

current levels of computing power should be adequate to reach the ‘non-polylogarithmic’ boundary

where amplitudes which are not periods of mixed Tate motives first start to appear.

3. Computing on the moduli space

In this section we spell out the details of the above algorithms and present them in a version which

is ready for implementation on a computer. As a proof of concept we implemented these algorithms

in a Maple-based computer program. With this program we computed all examples below and all

applications of section 5.

For notational convenience let m = n− 3 denote the number of cubical coordinates xi on M0,n.

As bases for A1
n, FĀ1

n and FA1
n we choose the sets of closed 1-forms

Ωm =





dx1
x1

, ...,
dxm
xm

,
d
(∏

a≤i≤b xi

)

∏
a≤i≤b xi − 1

for 1 ≤ a ≤ b ≤ m



 ,

Ω̄F
m =





dxm
xm

,

(∏
a≤i≤m−1 xi

)
dxm

∏
a≤i≤m xi − 1

for 1 ≤ a ≤ m



 ,

ΩF
m =





dxm
xm

,
d
(∏

a≤i≤m xi

)

∏
a≤i≤m xi − 1

for 1 ≤ a ≤ m



 ,

respectively. The isomorphism ¯FAn

λn∼= FAn ⊆ An of eq. 2.10 is defined explicitly by

λn
dxm
xm

=
dxm
xm

,(3.1)

λn

(∏
a≤i≤m−1 xi

)
dxm

∏
a≤i≤m xi − 1

=
d
(∏

a≤i≤m xi

)

∏
a≤i≤m xi − 1

for 1 ≤ a ≤ m.

According to these chosen bases, we refer to the vector-spaces V (Cn), V (M0,n) by V (ΩF
m), V (Ωm)

respectively. Iterated integrals are written as linear combinations of words [ω1|...|ωk], whose letters

are 1-forms in these sets. Note that Ωm is the disjoint union of Ωm−1 and ΩF
m.

3.1. Arnold relations. With the above choices, the Arnold relations of eq. 2.12 read explicitly:

dxm
xm

∧
d (xi...xm)

xi...xm − 1
= −

m−1∑

k=i

dxk
xk

∧
d (xi...xm)

xi...xm − 1
,

d (xj ...xm)

xj...xm − 1
∧

d (xi...xm)

xi...xm − 1
=

d (xi...xj−1)

xi...xj−1 − 1
∧

(
d (xi...xm)

xi...xm − 1
−

d (xj...xm)

xj ...xm − 1

)
−

j−1∑

k=i

dxk
xk

∧
d (xi...xm)

xi...xm − 1

for 1 ≤ i ≤ j ≤ m. For the implementation on a computer, it is efficient to generate these equations

to a desired number of variables once and for all, and to store them as a look-up table since they

are used very frequently by the algorithms below.

The splitting of theorem 4 is realised by a certain application of the Arnold relations. We define

an auxiliary map ρi by the following operations. For a word ξ = [ω1|...|ωk] with letters in Ω̄F
m and
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some 1 ≤ i < k we consider the neighbouring letters ωi|ωi+1 and consider the wedge-product of

their images in ΩF
m. By the corresponding Arnold relation, we express this product as a Q-linear

combination of wedge-products, with one factor in the base Ωm−1 and one in the fiber ΩF
m. We

replace the letters ωi|ωi+1 in ξ by the factor in ΩF
m and pull the base-term in Ωm−1 and rational

pre-factors out of the word. In summary, this defines the auxiliary map

ρi : V
(
Ω̄F
m

)
→ Ωm−1 ⊗Q V

(
Ω̄F
m

)

by

ρi [a1|...|ak] =
∑

j

cjηj ⊗ [a1|...|ai−1|αj |ai+2|...|ak]

where ηj ∈ Ωm−1, αj ∈ ΩF
m, cj ∈ Q are determined by the Arnold relation

λnai ∧ λnai+1 =
∑

j

cjηj ∧ αj .

Note that these are the same operations as in our definition of the Gauss-Manin connection ∇ above,

which we obtain by summing the ρi over i. This is because the first sum on the right-hand side of

eq. 2.15 vanishes in our set-up, as all our 1-forms are closed, and the operations on the terms of the

second sum correspond to the definition of ρi.

Example 5. For n = 5,m = 2 we have the Arnold relations

x1dx2 + x2dx1
x1x2 − 1

∧
dx2
x2

=
dx1
x1

∧
x1dx2 + x2dx1

x1x2 − 1
,

x1dx2 + x2dx1
x1x2 − 1

∧
dx2

x2 − 1
=

(
dx1
x1

−
dx1

x1 − 1

)
∧
x1dx2 + x2dx1

x1x2 − 1
+

dx1
x1 − 1

∧
dx2

x2 − 1
.

For the words κ =
[

x1dx2

x1x2−1 |
dx2

x2−1

]
, ξ =

[
x1dx2

x1x2−1 |
dx2

x2
| dx2

x2−1

]
in V (Ω̄F

2 ) we compute

ρ1κ =

[
dx1
x1

]
⊗

[
x1dx2

x1x2 − 1

]
−

[
dx1

x1 − 1

]
⊗

[
x1dx2

x1x2 − 1

]
+

[
dx1

x1 − 1

]
⊗

[
dx2

x2 − 1

]
,

ρ1ξ =

[
dx1
x1

]
⊗

[
x1dx2

x1x2 − 1
|
dx2

x2 − 1

]
,

ρ2ξ = 0.

3.2. The symbol map. Both the total connection and the symbol map can be computed conve-

niently by use of the maps ρi. The total connection (see eq. 2.16) is computed as

∇T [a1|...|ak] = d [a1|...|ak]−
∑

1≤i<k

ρi [a1|...|ak]

where (by eq. 2.5)

d [a1|...|ak] = a1 ⊗ [a2|...|ak] .

The symbol map Ψ (see eq. 2.17) is applied to a word in V (Ω̄F
m) by the recursive algorithm

Ψ([ai]) = [λn (ai)] ,

Ψ([ai1 |ai2 |...|aik ]) = λn (ai1) ⊔Ψ([ai2 |...|aik ])−
∑

1≤i<k

⊔ ((id ⊗Ψ) ρi [ai1 |...|aik ]) , 1 < k,(3.2)
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where ξ1 ⊔ ξ2 ≡ ⊔(ξ1 ⊗ ξ2) denotes the concatenation of two words ξ1, ξ2. Note that on the right

hand side of eq. 3.2 the map Ψ acts on words of length k − 1.

Example 6. Making use of the relations derived in example 5, we compute

Ψ

([
x1dx2

x1x2 − 1
|
dx2
x2

|
dx2

x2 − 1

])
=

[
x1dx2 + x2dx1

x1x2 − 1
|
dx2
x2

|
dx2

x2 − 1

]
−

[
dx1
x1

]
⊔Ψ

([
x1dx2

x1x2 − 1
|
dx2

x2 − 1

])

=

[
x1dx2 + x2dx1

x1x2 − 1
|
dx2
x2

|
dx2

x2 − 1

]
−

[
dx1
x1

|
x1dx2 + x2dx1

x1x2 − 1
|
dx2

x2 − 1

]

−

[
dx1
x1

|
dx1

x1 − 1
|
x1dx2 + x2dx1

x1x2 − 1

]
+

[
dx1
x1

|
dx1

x1 − 1
|
dx2

x2 − 1

]

+

[
dx1
x1

|
dx1
x1

|
x1dx2 + x2dx1

x1x2 − 1

]
.

The map Ψ is defined such that for any ξ ∈ V
(
Ω̄F
m

)
we have DΨ(ξ) = 0 and therefore Ψ(ξ) ∈

V (Ωm) . The vector space V (Ωm) is generated, over V (Ωm−1), by the image of V
(
Ω̄F
m

)
under Ψ.

We furthermore note the property

Ψ(ξ1 x ξ2) = Ψ(ξ1)xΨ(ξ2)

for any ξ1, ξ2 ∈ V
(
Ω̄F
n

)
.

A slightly different algorithm for Ψ in terms of differentiation under the integral was already

given in [2]. In section 4 we will make use of Ψ as a part of a procedure to map hyperlogarithms in

Schwinger parameters to multiple polylogarithms of cubical variables. We expect the map Ψ also to

be useful in different contexts such as [52].

3.3. Primitives. Let ω ∈ Ω̄F
m and let ξ =

∑
I cI [ωi1 |...|ωik ] be an iterated integral in V (Ωm). In

subsection 2.7, we discussed the strategy of building up the mixed primitive ω ⋆ ξ by naive left-

concatenation of the form to the word

(3.3)
∑

I

cI [λn(ω)|ωi1 |...|ωik ]

and the addition of correction terms until the resulting combination satisfies the integrability condi-

tion of eq. 2.3. For the explicit computation of the correction terms, let us introduce some auxiliary

notation. For all 0 ≤ i < k let Ci (Ωm)k = Ω⊗i
m−1 ⊗ ΩF

m ⊗ Ω
⊗(k−i−1)
m be the Q-vector space of words

of length k with letters in Ωm, whose first i letters, counted from the left, are in the base Ωm−1,

and whose (i + 1)th letter is in the fiber ΩF
m. The members of these auxiliary sets of words do not

necessarily stand for homotopy invariant iterated integrals. We define the auxiliary maps

⋆i : Ci−1 (Ωm)k → Ci (Ωm)k

for i < k by the following recipe

⋆i[a1|...|ai−1|ai|ai+1|...|ak] = [a1|...|ai+1|ai|...|aq] if ai+1 ∈ Ωm−1,

⋆i[a1|...|ai−1|ai|ai+1|...|ak] =
∑

j

cj [a1|...|ai−1|ηj |αj |ai+2|...|aq] if ai+1 ∈ ΩF
m,(3.4)
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where the forms ηj ∈ Ωm−1, αj ∈ ΩF
m and constants cj ∈ Q are determined by an Arnold relation

ai ∧ ai+1 =
∑

j

cjηj ∧ αj .

Note that indeed, in each word on the right-hand side of eq. 3.4 the 1-forms in the first i positions

are in Ωm−1 and the form in the (i + 1)-th position is in ΩF
m. This procedure can be iterated.

Since 3.3 lies in C0 (Ωm)k+1, we repeatedly apply ⋆• to obtain the following formula for the mixed

primitive

ω ⋆ [a1|...|ak] = (1 + ⋆1 + ⋆2 ⋆1 +...+ ⋆k...⋆1)[λm(ω)|a1|...|ak].(3.5)

The construction satisfies the relations (2.20) and (2.21).

Example 7. We consider the 1-form ω = dx2

x2
, the iterated integral

ξ = Ψ

([
x1d(x2)

x1x2 − 1
|
dx2
x2

])
=

[
d(x1x2)

x1x2 − 1
|
dx2
x2

]
−

[
dx1
x1

|
d(x1x2)

x1x2 − 1

]
,

and the concatenation

ξ′ = λ2(ω) ⊔ ξ =

[
dx2
x2

|
d(x1x2)

x1x2 − 1
|
dx2
x2

]
−

[
dx2
x2

|
dx1
x1

|
d(x1x2)

x1x2 − 1

]
.

Following eq. 3.5, we compute the primitive

ω ⋆ ξ = ξ′ + ⋆1ξ
′ + ⋆2 ⋆1 ξ

′

where we obtain

⋆1ξ
′ =

[
dx1
x1

|
d(x1x2)

x1x2 − 1
|
dx2
x2

]
−

[
dx1
x1

|
dx2
x2

|
d(x1x2)

x1x2 − 1

]
,

⋆2 ⋆1 ξ
′ = −2

[
dx1
x1

|
dx1
x1

|
d(x1x2)

x1x2 − 1

]

by use of the Arnold relations given in the example of section 3.1.

3.4. Limits. We consider limits at xl = u, l ∈ {1, ..., m} where u ∈ {0, 1}. By definition, any

ξ ∈ V (Ωm) vanishes along xl = 0. Limits at 1 are computed as follows.

As in the previous sections, let Z be the Q-vector space of multiple zeta values. It was shown in

[5] that for any ξ ∈ V (Ωm) the limits limxl→1 ξ are Z-linear combinations of elements of V (Ωm−1)

(after a possible renumbering of the cubical coordinates: (xl+1, . . . , xm) 7→ (xl, . . . , xm−1).) Our

algorithm for the computation of limits proceeds in two steps:

• Expand the function ξ at xl = u as a polynomial in log(xl −u), whose coefficients are power

series in xl − u, and

• Evaluate the constant term (coefficient of log(xl − u)0) at xl = u.

The series expansion is the non-trivial part in this computation while the evaluation of the series is

immediate. Let Expxl=uξ(xl) denote the expansion of the function ξ(xl) at xl = u. We compute the
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expansion recursively as

(3.6) Expxl=uξ(xl) = Regxl=uξ(xl) +

∫
dx′l Expx′

l
=u

∂

∂x′l
ξ(x′l).

where the integral on the right is the regularised integral from the tangential base point ∂
∂xl

at xl = u

to xl, or equivalently, is an indefinite integral in xl whose constant of integration is fixed by declaring

that its regularised limit at xl = u vanishes. Note that if ξ(xl) is a linear combination of words of

length k, then in the integrand on the right-hand side of eq. 3.6, Expx′

l
=u is computed on words of

length k− 1. Rational prefactors are trivially expanded as power series in xl = u also. The notation

Regxl=uξ(xl) stands for the operation of taking the regularised limit of ξ at xl = u. For u = 0 we

define

Regxl=0ξ(xl) = 0.

For u = 1 regularised limits are defined and computed in the remainder of this subsection.

Let us start by computing regularised limits of iterated integrals in only one variable and then

extend to the n-variable case. We consider Ω1 =
{

dx1

x1
, dx1

x1−1

}
and for ξ ∈ V (Ω1) we use a simplified

notation where in each word we symbolically replace dx1

x1
→ 0 and dx1

x1−1 → 1 and multiply the word

with (−1)m where m is the number of 1-forms dx1

x1−1 . Following [4] we define the map

Regx1=1 : V (Ω1) → Z

by the following relations for different cases of words ξ = [a1|...|ak] , ai ∈ {0, 1}, i = 1, ..., k:

• Case 1: If all letters are equal, a1 = a2 = ... = ak, we have

Regx1=1 [a1|...|ak] = 0.

• Case 2: If the word begins with 0 and ends with 1 (from left to right), we have

Regx1=1[0|...|0|1|︸ ︷︷ ︸
nr

...|1| 0|...|0|1︸ ︷︷ ︸
n1

] = ζ(n1, ..., nr) for nr ≥ 2, ni ≥ 1, n1 + ...+ nr = k.

• Case 3: If the word begins in 1 we apply the relation

Regx1=1 [a1|...|ak] = Regx1=1 [1− ak|...|1 − a1]

which is also true in all other cases.

• Case 4: If the word ends with 0 we use the relation

Regx1=1[0|...|0|1|︸ ︷︷ ︸
n1

...|1| 0|...|0|1︸ ︷︷ ︸
nr

| 0|...|0︸ ︷︷ ︸
m

] =

(3.7) (−1)m
∑

i1+...+ir=m

(
n1 + i1 − 1

i1

)
...

(
nr + ir − 1

ir

)
Regx1=1[0|...|0|1|︸ ︷︷ ︸

n1+i1

...|1| 0|...|0|1︸ ︷︷ ︸
nr+ir

],

where m, n1, ..., nr ≥ 1.

By these relations, the regularized value of any ξ ∈ V (Ω1) can be expressed as a Q-linear combination

of expressions as in case 2, which are multiple zeta values.
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Example 8. We consider ξ =
[

dx1

x1−1 |
dx1

x1
|dx1

x1

]
which in short-hand notation reads ξ = −[1|0|0] and

falls into the above case 4. By eq. 3.7 we have Regx1=1(−[1|0|0]) = Regx1=1(−[0|0|1]) and obtain

by case 2:

Regx1=1ξ = −ζ(3).

Now we extend the definition of regularized limits to V (Ωm) . Let us first define the auxiliary

restriction maps

Rxl
: V (Ωm) → V (Ω1)

by

(3.8) Rxl
ξ = ξ|dxi=0, xi=0 for all i∈{1, ...,m}, i 6=l

and

Lxl
: V (Ωm) → V (Ωm−1)

by

(3.9) Lxl
ξ = ξ|dxl=0, xl=1.

and relabelling cubical coordinates as mentioned above.

These maps play a similar role as the restrictions Eγ in section 2.4. The map Rxl
restricts the

iterated integral to the straight line from the origin to 1l (called γ2 in section 2.4) and Lxl
restricts

to the divisor of M0,n defined by xl = 1 (in which γ1 of section 2.4 lives). According to eq. 2.7,

we take the deconcatenation co-product ∆ of ξ ∈ V (Ωm) and apply Lxl
and Rxl

to the left and

right part of the tensor product respectively. The right-hand side of the tensor product is then in

V (Ω1) and we apply the above map of regularized values to this part. In summary, we extend the

definition of regularized values to

Regxl=1 : V (Ωm) → Z ⊗Q V (Ωm−1)

by

(3.10) Regxl=1ξ = m
(
Lxl

⊗ Regxl=1Rxl

)
◦∆ξ.

This completes our algorithm for computing limits of ξ ∈ V (Ωm) at xl = 0, 1.

Example 9. We consider the iterated integral

ξ = Ψ

([
x1dx2

x1x2 − 1
|
dx2
x2

|
dx2

x2 − 1

])

=

[
d(x1x2)

x1x2 − 1
|
dx2
x2

|
dx2

x2 − 1

]
−

[
dx1
x1

|
d(x1x2)

x1x2 − 1
|
dx2

x2 − 1

]
−

[
dx1
x1

|
dx1

x1 − 1
|
d(x1x2)

x1x2 − 1

]

+

[
dx1
x1

|
dx1

x1 − 1
|
dx2

x2 − 1

]
+

[
dx1
x1

|
dx1
x1

|
d(x1x2)

x1x2 − 1

]

∈ V (Ω2) .

In this case, the only contibutions to the limit at x2 = 1 are given by the term Regx2=1ξ(x2) of eq.

3.6, which we compute by use of eq. 3.10. The coproduct of ξ involves 20 terms, most of which
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vanish after applying Lx2
to the left and Rx2

to the right part. From the non-vanishing terms we

obtain

Regx2=1ξ(x2) = m

([
dx1

x1 − 1

]
⊗ Regx2=1

[
dx2
x2

|
dx2

x2 − 1

]
−

[
dx1
x1

|
dx1

x1 − 1

]
⊗ Regx2=1

[
dx2

x2 − 1

]

+

[
dx1
x1

|
dx1
x1

|
dx1

x1 − 1

]
⊗ 1−

[
dx1
x1

|
dx1

x1 − 1
|
dx1

x1 − 1

]
⊗ 1

+

[
dx1
x1

|
dx1

x1 − 1

]
⊗ Regx2=1

[
dx2

x2 − 1

])
.

Due to

Regx2=1

[
dx2

x2 − 1

]
= 0 and Regx2=1

[
dx2
x2

|
dx2

x2 − 1

]
= −ζ(2)

or by cancellation of the second and fifth terms, we obtain the limit

lim
x2→1

ξ =

[
dx1
x1

|
dx1
x1

|
dx1

x1 − 1

]
−

[
dx1
x1

|
dx1

x1 − 1
|
dx1

x1 − 1

]
− ζ(2)

[
dx1

x1 − 1

]
.

4. Feynman-type integrals

In this section we consider finite integrals derived from Feynman integrals. We present an algo-

rithm to map such integrals to hyperlogarithms in cubical variables (corresponding to the morphism

X → M0,n+1 in the diagram 1.3). The integration over one chosen Schwinger parameter maps

to the integration over one cubical variable. Then this integration can be computed by the algo-

rithms of section 3. After the integration, as a preparation for the integration over a next Schwinger

parameter, we map back to iterated integrals in Schwinger parameters.

4.1. Schwinger parameters. In dimensional regularization, scalar Feynman integrals of Feynman

graphs G with N edges and loop-number L, can be written in the Feynman parametric form

IG(D) =
Γ(ν − LD/2)∏n

j=1 Γ(νj)

∫

αj≥0
δ

(
1−

N∑

i=1

αi

)


N∏

j=1

dαjα
νj−1
j


 U

ν−(L+1)D/2
G

FG
ν−LD/2

,

where ν =
∑N

i=1 νi is the sum of powers of Feynman propagators and D ∈ C. We refer to the

variables α1, ..., αN as Schwinger parameters and the above integration is over the positive range

of each of these variables. The functions UG and FG are the first and second Symanzik polynomials

respectively. They are polynomials in the Schwinger parameters and FG is furthermore a polynomial

of kinematical invariants, which are quadratic functions of particle masses and external momenta of

G. For more details we refer to [11, 12, 3].

Assume that we want to compute IG(2n) for some n ∈ N. There are different scenarios in which

our algorithms may be useful. In the simplest case, the integral IG(2n) is finite and we may attempt

to compute it without further preparative steps. If IG(2n) is divergent there may be a n 6= m ∈ N

such that IG(2m) is finite and the method of [13, 14] may provide useful relations between IG(2n)

and IG(2m). These relations however may involve further integrals to be computed. The method of

[16] allows for a subtraction of UV divergent contributions by a renormalization procedure on the

level of the integrand. Alternatively, for a possibly UV and IR divergent integral, we may attempt
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to expand IG as

IG =

∞∑

j=−2L

cjǫ
j

where ǫ = (D−2n)/2 and the cj are finite integrals. In principle such an expansion can be computed

by sector decomposition [22], however in this case, a use of our algorithms may be prohibited by

the type of polynomials appearing in the integrands of the resulting cj . Recently, an alternative

approach, where the latter polynomials are given by Symanzik polynomials of G and its minors was

suggested in [40].

Let us assume that these or alternative methods have led us to an integral over the positive range

of Schwinger parameters where the integrand is of the form

(4.1) f(α1, ..., αN ) =

∏
Qi∈Q

Qδi
i hyperlogarithms(Pi)
∏

Pi∈P
P βi

i

where all δi, βi ∈ N0 and where P = {P1, ..., Pr} and Q = {Q1, ..., Qq} are finite sets of irreducible

polynomials in Schwinger parameters. We assume furthermore that all Pi are homogeneous and pos-

itive or negative definite. This is the case for all Symanzik polynomials in the Euclidean momentum

region and in the massless case, and also for the polynomials arising from their linear reduction in

a large class of situations. This simplifying assumption allows us to apply the particular change of

variables constructed below. However, the general method is not restricted to this case.

A more precise description of the numerator is given below. For our algorithms to be applicable

we furthermore have to assume that there is an ordering on the Schwinger parameters such that the

set P is linearly reducible [18, 17]. In the following let αN , αN−1, ..., α1 be such a fixed ordering.

4.2. From Schwinger parameters to cubical variables. In the following, we transform a given

integrand f of the type given by eq. 4.1 to an integrand in cubical variables. According to our fixed

ordering on the Schwinger parameters, let αN be the parameter to be integrated out in the present

step. Linear reducibility implies that the polynomials in P are of degree at most 1 in αN , while

there are no implications for Q. We write P = PN ∪P\N where PN ⊂ P is the subset of polynomials

linear in αN and P\N ⊂ P is the set of polynomials independent of αN . Let us fix the numbering

on the Pi such that PN = {P1, ..., Pn} with n ≤ r. We also write the set of all polynomials Qi as

Q = QN ∪Q\N where the polynomials in QN depend on αN and the ones in Q\N do not.

Now let us be more specific about the functions occurring in the numerator of eq. 4.1. We write

Lw(αN ) for a hyperlogarithm in αN , given by a word w in differential 1-forms in the alphabet

(4.2) ΩFeynman
N =

{
dαN

αN
,

dαN

αN − ρi
where ρi = −

Pi|αN=0
∂Pi

∂αN

for i = 1, ..., n

}
.

Here ρi is a rational function such that Pi vanishes for αN = ρi.

We assume as an induction hypothesis that the functions in the numerator of the integrand are of

a certain type. We will see in section 4.3 that this assumption will be satisfied after integration and

will be the starting point for the next integration. The numerator of the integrand f is assumed to
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be a linear combination of hyperlogarithms in αN :

(4.3) numerator(f) =
∑

k

akbk(αN )Lwk
(αN ),

where the wk are words in the alphabet ΩFeynman
N and where we denote the αN -dependent and αN -

independent factor of the k-th coefficient by bk(αN ) and ak respectively. The αN -dependent factor

bk(αN ) is a product of Qi ∈ QN while the αN -independent factor ak is allowed to be a product of

Qi ∈ Q\N and of hyperlogarithms which do not depend on αN . As αN -independent factors of the

numerator remain unchanged in the integration procedure, we restrict our attention to integrals of

the type

(4.4)

∫ ∞

0
dαNf(α1, ..., αN ) =

∫ ∞

0
dαN

∏
Qi∈Qn

Qδi
i Lw(αN )

∏
Pi∈P

P βi

i

.

Let us now express the integral of eq. 4.4 as an integral over cubical coordinates such that the

algorithms of section 3 apply. Let RN
+ be the subspace of RN where all Schwinger parameters are

greater than or equal to zero and let Rn
cube be the unit cube in n cubical variables, i.e.

RN
+ =

{
(α1, ..., αN ) ∈ RN |0 ≤ αi, i = 1, ..., N

}
,

Rn
cube = {(x1, ..., xn) ∈ Rn|0 ≤ xi ≤ 1, i = 1, ..., n} .

Consider the αN -dependent polynomials PN = {P1, ..., Pn} and the corresponding ρi = −
Pi|αN=0

∂Pi
∂αN

for i = 1, ..., n. We introduce an ordering on the set PN as follows. Let Λ ⊂ RN
+ be a sufficiently

small open N -dimensional cube whose closure contains the origin, such that if for any two distinct

indices i, j ∈ 1, ..., n the relation ρi < ρj is satisfied in Λ, the same relation is true everywhere in

Λ. Then we number the polynomials in PN = {P1, ..., Pn} such that everywhere in Λ we have

(4.5) 0 > ρn > ρ1 > ρ2 > ... > ρn−2 > ρn−1.

For the given, ordered set (P1, ..., Pn), consider the rational map between affine spaces

φ : AN → An,

(equivalently a homomorphism φ∗ : Q(x1, . . . , xn) → Q(α1, . . . , αN )) given by

φ∗(xn) =
αN

αN − ρn
,

φ∗(xn−1) = 1−
ρn
ρn−1

,

φ∗(xk) =
1− ρn

ρk

1− ρn
ρk+1

for 1 ≤ k ≤ n− 2.(4.6)

These variables xi will be our cubical coordinates and we construct the set of 1-forms Ω̄F
n as above.

Note that the restriction of φ to the first N−1 coordinates defines a rational map φ : AN−1 → An−1,

since ρ1, . . . , ρn do not depend on αN . For fixed α1, . . . , αN−1, the curve P1 with coordinate αN and

punctures at {0, ρ1, . . . , ρn,∞} (i.e., the fiber of AN → AN−1), is isomorphic, via 4.6, to the curve

with coordinate xn and punctures at {0, x−1
1 , . . . , (x1 . . . xn−1)

−1,∞, 1}, in that order. Via such a

(family of) isomorphisms, we can explicitly express all 1-forms in ΩFeynman
N as Q-linear combinations
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of 1-forms in Ω̄F
n in cubical co-ordinates. We obtain

dαN

αN
= ρn

(
dxn
xn

−
dxn

xn − 1

)
,(4.7)

dαN

αN − ρn
= −ρn

dxn
xn − 1

,

dαN

αN − ρi
= −ρi

(
xi...xn−1dxn
xi...xn − 1

−
dxn

xn − 1

)
,

for i = 1, ..., n − 1. As a consequence, we can express each hyperlogarithm Lw(αN ) as a Q-linear

combination of hyperlogarithms in cubical variables ξ ∈ V
(
Ω̄F
n

)
.

Note that due to eq. 4.5, φ is constructed such that if (α1, ..., αN ) ∈ Λ then (x1, ..., xn) ∈ Rn
cube.

Furthermore

lim
α1→0

... lim
αN→0

xk(α1, ..., αN ) ∈ {0, 1}, k = 1, ..., n,

and these limits are approached from inside the cube Rn
cube. This is an important condition1 for the

computation of limits in subsection 4.3. The domain of the αj-integration is mapped to the domain

0 ≤ xn ≤ 1. The Jacobian is J = − ρn
(xn−1)2

.

Up to rational functions which do not depend on xn, we can now express integrals of the type of

eq. 4.4 as integrals of the type

(4.8)

∫ 1

0
dxn

∏
qγii∏
f δi
i

ξ

where γi, δi ∈ N, and where each qi is a polynomial in Schwinger parameters without αN or in

cubical variables, and the integrand involves functions fi ∈ {xn, xn−1, xn−1xn−1, ..., x1 · · ·xn−1}

and hyperlogarithms ξ ∈ V
(
Ω̄F
n

)
. Before we can apply our algorithm of subsection 3.3 for the

computation of primitives, we use a standard procedure of applying finitely many successive partial

fraction decompositions and partial integrations until all powers δi are equal to 1.

As a last step of preparation, we apply the symbol map Ψ of subsection 3.2 to ξ. We obtain

an integral as in eq. 4.8 where now ξ ∈ V (Ωn) . Now we compute the definite integral eq. 4.8 by

use of the algorithms of subsections 3.3 and 3.4. Up to rational prefactors, we obtain a Z-linear

combination of functions in V (Ωn−1) .

4.3. Back to Schwinger parameters. Note that after the integration, we have a function in terms

of both types of variables, the Schwinger parameters and the cubical coordinates. In order to proceed

with the integration over a next Schwinger parameter and apply the same steps again, we firstly

have to express the integrand only in terms of Schwinger parameters again. Let I be the result of

the αN -integration, expressed as a linear combination

I =
∑

ciξi

of multiple polylogarithms ξi ∈ V (Ωn−1). The coefficients ci are trivially expressed by Schwinger

parameters by application of φ∗. However, expressing the multiple polylogarithms ξi in terms of

1We thank Erik Panzer for many useful discussions on the material of this section and particularly for suggesting the
map φ such that this property is fulfilled.
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Schwinger parameters is more subtle, as we have to respect the limiting conditions of iterated

integrals in both sets of variables.

For any function f of variables y1, ..., yn and numbers c1, ..., cn let us introduce the notation

lim
(y1, ..., yn)→(c1, ..., cn)

f = Regyn→cn...Regy1→c1f.

where in the right-hand side, Reg denotes the regularised limits with respect to unit tangent vectors

in either cubical coordinates xi (or 1−xi), or Schwinger parameters αi. In the following let us write

0n for the vector (0, ..., 0) with n components. We consider the vector xp = (xp(1), ..., xp(n−1)) of the

remaining cubical coordinates, where the ordering is given by a permutation p on the set {1, ..., n−

1}. We furthermore consider the vector of remaining Schwinger parameters α = (αN−1, ..., α1) in

the ordering in which we integrate over them, as fixed above.

Consider a multiple polylogarithm ξ ∈ V (Ωn−1) . By definition, it satisfies

(4.9) lim
xσ→0n−1

ξ = 0

for every permutation σ on {1, ..., n − 1}. We want to express each ξ as iterated integrals η in

Schwinger parameters, for which we impose the condition

(4.10) lim
α→0N−1

η = 0.

By assumption on the polynomials Pi, and the choice of cubical coordinates x1, ..., xn of subsection

4.2, the condition 4.10 corresponds to a vanishing condition for the iterated integral ξ ∈ V (Ωn−1)

at a tangential base point on M0,n+2 which is on the boundary of the connected component of

M0,n+2(R) defined by the unit hypercube 0 ≤ x1, . . . , xn−1 ≤ 1. One can verify that such a

point can always be represented by a permutation p on {1, ..., n − 1} (non-uniquely) and a vector

c = (c1, ..., cn−1) (uniquely) with all ci ∈ {0, 1} such that for any rational function g of the xi we

have

(4.11) lim
xp→c

g = lim
α→0N−1

φ⋆g,

where on the left-hand side c is approached inside Rn−1
cube and on the right-hand side (0, ..., 0) is

approached inside RN−1
+ . Such a point c and permutation p determine the procedure to express ξ in

terms of Schwinger parameters. The components of c are computed by

ci = lim
ασ→0N−1

xi,

where i ∈ {1, ..., n− 1}, and lies in {0, 1}, by inspection of 4.6 and 4.5. A permutation p satisfying

eq. 4.11 can be computed with the help of dihedral coordinates uij , which are related to the cubical

coordinates as discussed in [5]. A permutation p satisfies eq. 4.11 for any rational function g in the

cubical coordinates if it satisfies

lim
xp→c

uij = lim
ασ→0N−1

φ⋆uij

for all dihedral coordinates. This condition determines p.
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Now let xp and c be vectors satisfying eq. 4.11. We define η by the following equation, where

ξ ∈ V (Ωn−1) is the result of the integration of eq. 4.8,

(4.12) η = m

(
φ⋆ ⊗ φ⋆ lim

xp→c

)
∆ξ

and m is multiplication. Then η is the desired expression in terms of Schwinger parameters.

As a last step, we express each iterated integral in terms of hyperlogarithms, such that we arrive

at the starting point for the next integration over the variable αN−1. As a consequence of linear

reducibility, all iterated integrals are now given by differential forms of the type f = dP/P where

P are polynomials in the Schwinger parameters which are of degree ≤ 1 in the variable αN−1. In

analogy to the construction of the unshuffle map we define the auxiliary restriction operations

παi
f = f |dαi=0, αi=0

and

rαi
f = f |dαj=0 for all j 6=i.

By

(4.13) η′ = m
(
rαN−1

⊗ παN−1

)
∆η

we finally arrive at a linear combination of hyperlogarithms Lw(αN−1) whose coefficients are products

of rational functions in Schwinger parameters, multiple zeta values and iterated integrals independent

of αN−1. Iterating the computation of eq. 4.13 for the remaining Schwinger parameters we can

express all iterated integrals as hyperlogarithms. With this expression we can repeat the above

steps to integrate out αN−1, and so on.

4.4. Summary of the integration algorithm. Let us summarize the above steps for integrating

over one Schwinger parameter αN . We start from a finite integral I =
∫∞
0 dαNf whose integrand

f , as in eq. 4.3, is a linear combination of hyperlogarithms Lw(αN ) as functions of αN , and whose

coefficients are products of rational functions b(αN ) of the Schwinger parameters including αN , and

further functions (possibly hyperlogarithms) not depending on αN . As above, we write PN for the

set of n polynomials depending linearly on αN , which are in the denominators of b(αN ) and define

the differential forms of Lw(αN ) by eq. 4.2. The set PN is linearly reducible with respect to an

ordered set (αN , ..., α1) of all Schwinger parameters.

The main steps of the algorithm are combined as follows:

• Define the n cubical variables x1, ..., xn, and express the integrand f via the map 4.7 as a

linear combination of hyperlogarithms in V
(
Ω̄F
n

)
. The integration over αN is mapped via

4.6 to the integration over xn from 0 to 1.

• Apply the symbol map Ψ of subsection 3.2 to lift each function in V
(
Ω̄F
n

)
to multiple

polylogarithms in V (Ωn) .

• Use iterated partial integration and partial fraction decomposition to bring the integrand

into the appropriate form. Then use the map ⋆ of subsection 3.3 to compute the primitive

of f.
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• Take the limits of the primitive at xn = 0 and xn = 1 to obtain the definite integral from

0 to 1, using the algorithm of subsection 3.4. The result is a linear combination of multiple

polylogarithms in V (Ωn−1) with coefficients possibly involving multiple zeta values.

• Apply the change of variables to obtain an expression only in Schwinger parameters again.

For iterated integrals, apply eq. 4.12 such that the regularised limit at α → 0N−1 is preserved.

• Write the result as a combination of hyperlogarithms in the next integration variable by eq.

4.13.

Examples for the application of this algorithm by use of our computer program are given below.

5. Applications

5.1. Cellular integrals. A particular instance of period integrals on moduli spaces are given by

the cellular integrals defined in [21] in relation to irrationality proofs. The basic construction is to

consider a permutation σ of {1, . . . , n} and define a rational function and differential form

f̃σ =
∏

i

zi − zi+1

zσ(i) − zσ(i+1)
and ω̃σ =

∏

i

dzi
zσ(i) − zσ(i+1)

,

on the configuration space Cn(P1) of n distinct points z1, . . . , zn in P1, where the product is over all

indices i modulo n. Now PGL2 acts diagonally on Cn(P1), and the quotient is

M0,n
∼= Cn(P1)/PGL2 .

The rational function f̃σ and the form ω̃σ are PGL2-invariant, and therefore descend in the standard

way to a rational function and form fσ, ωσ on M0,n. Because PGL2 is triply-transitive, we can put

z1 = 0, zn−1 = 1, zn = ∞, and replace zi+1 by xixi+1 . . . xn−3 for i = 1, . . . , n−3, where x1, . . . , xn−3

are cubical coordinates on M0,n.

Therefore we can formally write

fσ =
∏

i

zi − zi+1

zσ(i) − zσ(i+1)
and ωσ =

dx1 . . . dxn−3∏
i zσ(i) − zσ(i+1)

,

where the product is over all indices i modulo n, and all factors involving zn = ∞ are simply omitted.

For all N ≥ 0, consider the family of basic cellular integrals

(5.1) IσN =

∫

[0,1]n−3

fN
σ ωσ

where the domain of integration is the unit hypercube in the cubical coordinates xi. Conditions for

the convergence of the integral are discussed in [21]. When it converges, this integral is a rational

linear combination of multiple zeta values of weights ≤ n−3 and can be computed with our program.

In the case n = 5, 6 and σ(1, 2, 3, 4, 5) = (1, 3, 5, 2, 4), and σ(1, 2, 3, 4, 5, 6) = (1, 3, 6, 4, 2, 5) it gives

back exactly the linear forms involved in Apéry’s proofs of the irrationality of ζ(2) and ζ(3). A

systematic study of examples for higher n (described in [21]) was undertaken using the algorithms

described in this paper.
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5.2. Expansion of generalized hypergeometric functions. Many Feynman integrals can be

expressed in terms of generalized hypergeometric functions

pFq(a1, ..., ap; b1, ..., bq; z) =

∞∑

k=0

∏p
j=1 (aj)k z

k

∏q
j=1 (bj)k k!

,

converging everywhere in the z-plane if q ≥ p, and in the case q = p − 1 for |z| < 1 or at |z| = 1 if

the real part of
∑p−1

j=1 bj −
∑p

j=1 aj is positive. Here we used the Pochhammer symbol

(a)n =
Γ(a+ n)

Γ(a)
.

Multi-variable generalizations, such as Appell and Lauricella functions, play a role in Feynman

integral computations as well. If the Feynman integral is considered in D = 4− 2ǫ dimensions, the

parameters take the form

(5.2) ai = Ai + ǫαi, bi = Bi + ǫβi where αi, βi ∈ R.

In the case of massless integrals, the numbers Ai, Bi are integers while in the case of non-vanishing

masses, some of them are half-integers.

In order to arrive at a result for the Feynman integral where pole-terms in ǫ can be separated, one

has to expand these functions near ǫ = 0. Several computer programs are available for this task. The

programs of [43, 44] use algorithms for the expansion of very general types of nested sums [42] while

the program [46] writes an Ansatz in harmonic polylogarithms and determines the coefficients from

differential equations. A method using systems of differential equations was presented in [47, 48, 49].

Alternatively, we can start from an integral representation of the function, expand the integrand

and compute the resulting integrals explicitly. This approach was applied in [45] for the expansion

of 2F1. The algorithms presented above are very well suited for this method and can be used to

extend it to more general functions.

As a first example we still consider 2F1. We have the integral representation

2F1(a1, a2; b; z1) =
Γ(b)

Γ(a2)Γ(b− a2)

∫ 1

0
za2−1
2 (1− z2)

b−a2−1(1− z1z2)
−a1dz2

for Re(b) > Re(a2) > 0 and |arg(1−z1)| < π. The parameters ai and b may depend on ǫ as in eq. 5.2.

The expansion at ǫ = 0 leads to integrands whose denominators are products of z2, (1−z2), (1−z1z2)

and whose numerators may involve powers of logarithms of these functions. We can view the variables

z1, z2 as cubical coordinates and apply the algorithms of section 3 to integrate over z2 analytically.
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Example:

2F1(1, 1 + ǫ; 3 + ǫ; z1) =
Γ(3 + ǫ)

Γ(1 + ǫ)

∫ 1

0

zǫ2(1− z2)

1− z1z2
dz2

=

∫ 1

0

2(z2 − 1)

z1z2 − 1
dz2 + ǫ

∫ 1

0

(2 ln(z2) + 3) (z2 − 1)

z1z2 − 1

+ǫ2
∫ 1

0

(
ln(z2)

2 + 3 ln(z2) + 1
)
(z2 − 1)

z1z2 − 1
dz2 +O

(
ǫ3
)

=
2

z21
(z1 + (1− z1) ln(1− z1)) +

ǫ

z21
(z1 + 3(1− z1) ln(1− z1)

+2(1 − z1)Li2(z1)) +
ǫ2

z21
((1− z1) ln(1− z1)

+3(1 − z1)Li2(z1)− 2(1 − z1)Li3(z1)) +O
(
ǫ3
)

We extend the approach to generalized hypergeometric functions, starting from the integral rep-

resentation

pFq(a1, ..., ap; b1, ..., bq; z)

=
Γ(bq)

Γ(ap)Γ(bq − ap)

∫ 1

0
tap−1(1− t)bq−ap−1

p−1Fq−1(a1, ..., ap−1; b1, ..., bq−1; zt)dt

in the region where it converges. Here again the expansion of the integrand leads to integrals over

cubical coordinates which can be computed by the algorithms of section 3.

Example:

3F2(2, 1 + ǫ, 1 + ǫ; 3 + ǫ, 2 + ǫ; z1) =
Γ(3 + ǫ)Γ(2 + ǫ)

Γ(1 + ǫ)2

∫ 1

0

∫ 1

0

z2z
ǫ
3(1− z2)

ǫ

(1− z1z2z3)1+ǫ
dz2dz3

=
2

z21
((1− z1) ln(1− z1) + z1) +

ǫ

z21
(7(1 − z1) ln(1− z1)

+5z1 + (2− 4z1)Li2(z1)) +
ǫ2

z21
(9(1 − z1) ln(1− z1)

+(7− 12z1)Li2(z1) + (6z1 − 2)Li3(z1) + 4z1) +O
(
ǫ3
)

While for these functions the integral representations are readily given in cubical coordinates, an

extension to further cases may require a change of variables. For example the first Appell function

F1(a; b1, b2; c; x, y) =
∑

m≥0

∑

n≥0

(a)m+n (b1)m (b2)n
m!n! (c)m+n

xmyn where |x|, |y| < 1

with the integral representation [50]

F1(a; b1, b2; c; x, y) =
Γ (c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− tx)−b1(1− ty)−b2dt

for Re(c) > Re(a) > 0 can be expressed in the appropriate form after introducing cubical coordi-

nates z3 = t, z2 = y, z1 = x/y.
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Example:

F1(1; 1, 1; 2 + ǫ; x, y) =
Γ(2 + ǫ)

Γ(1 + ǫ)

∫ 1

0

(1− z3)
ǫ

(1− z1z2z3)(1− z2z3)
dz3

=
1

x− y
(ln(1− y)− ln(1− x))

+
ǫ

x− y

(
ln(1− y)− ln(1− x) +

1

2
ln(1 − y)2 −

1

2
ln(1− x)2

− Li2(x) + Li2(y)) +O
(
ǫ2
)

We checked the examples with 2F1 and 3F2 analytically with the program of [46] and the example

with F1 numerically with the built-in first Appell function in Mathematica.

5.3. Feynman integrals. As a third application we turn to the computation of Feynman integrals

by direct integration over their parameters. As a first example we consider the period integral of

the four-loop vacuum-type graph of figure 5.1 a). The integral is finite in D = 4 dimensions and is

given in terms of Feynman parameters as

I1 =

∫

xi≥0

8∏

i=1

dxiδ(1 − x8)
1

U2
.

The first Symanzik polynomial U is linearly reducible in this case. We use our implementation of

the algorithms of sections 3 and 4 to integrate over x1, ..., x7 in an appropriate ordering and to

compute the limit at x8 = 1 in the last step.

The computation time per integration grows at first due to the increasing weight and complexity

of the functions involved, but decreases in the end as fewer variables remain. Here we compute with

multiple polylogarithms of weight 2, 3, 4 and 5 in the fourth, fifth, sixth and seventh integration

respectively. We obtain the result I1 = 20ζ(5) which is well-known [51]. Period integrals of this type

appear as coefficients of two-point integrals corresponding to graphs obtained from breaking open

one edge in the vacuum-graph (see [18, 51]).

As an example for a Feynman integral with non-trivial dependence on masses and external mo-

menta, we consider the hexagon-shaped one-loop graph of figure 5.1 b) with incoming external

momenta p1, ..., p6. Introducing one particle mass with m2 < 0 we impose the on-shell condition

p21 = m2, p2i = 0, i = 2, ..., 6. In D = 6 dimensions the Feynman integral reads

I2 =

∫

xi≥0

6∏

i=1

dxiδ(1− x6)
2

F3

with the second Symanzik polynomial

F =
∑

1≤i<j≤6

xixj
(
−s2ij

)

and kinematical invariants

sij =

(
j∑

k=i

pk

)
.
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Figure 5.1. a) wheel with four spokes b) one-mass hexagon

This integral is computed in [29]. In a first step in this computation, the integral is expressed in

terms of the cross-ratios

u1 =
s226s

2
35

s225s
2
36

, u2 =
s213s

2
46

s236s
2
14

, u3 =
s215s

2
24

s214s
2
25

, u4 =
s212s

2
36

s213s
2
26

as

I2 =
1

s214s
2
25s

2
36

∫

xi≥0

3∏

i=1

dxi
1

(u2 + x1 + x2)(u3x1 + u1x3 + x2)(u4x1x2 + x2 + x1x3 + x3)
.

We choose the parametrization

u1 =
1

1 + y
, u2 =

1 + v

1 + v − u
, u3 =

(1− u)(−y − x)

(1 + y)(−1 + u− v)
, u4 =

1 + v − x

1 + v

which differs from the one in [29]. This parametrisation is not pulled from thin air: it is con-

structed recursively out of the polynomials occurring in the linear reduction algorithm, applied to

the integrand. With this choice each ui tends to 1 at the tangential base-point which we choose

by the ordering (x2, x3, x1, u, v, x, y) and furthermore the polynomials in the denominator of the

re-written integrand of I2 are linearly reducible for the ordering (x2, x3, x1). Therefore we can

apply our implementation to integrate over the xi in this order and we obtain a result for positive

u, v, x, y. We checked the result analytically with the program of [41].

6. Conclusions

In this article we have presented explicit algorithms for symbolic computation of iterated integrals

on moduli spaces M0,n+3 of curves of genus 0 with n+3 ordered marked points, based on [5]. These

algorithms include the total differential of these functions, computation of primitives and the exact

computation of limits at arguments equal to 0 and 1. The algorithms are formulated by use of

operations on an explicit model for the reduced bar construction on M0,n+3 in terms of cubical

coordinates xi. In this formulation, the algorithms are well suited for an implementation on a

computer. We have furthermore presented an algorithm for the symbol map, out of which the

vector space of homotopy invariant iterated integrals on M0,n+3 can be constructed.

We expect the algorithms to apply to a variety of problems in theoretical physics and pure math-

ematics. Here we have concentrated on two main applications. As a first application, we have

considered the computation of periods on M0,n+3, for which our algorithms are readily applicable.
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Secondly, we have discussed the computation of a class of Feynman integrals by the method of [18].

In this approach, the Feynman integral is mapped to an integral on the moduli space, where our

algorithms are applied to compute a single integration. We have presented an explicit procedure

for the required change of variables from Schwinger parameters to cubical coordinates. A further

procedure maps the result of the integration back to iterated integrals in terms of Schwinger param-

eters, and this process can be iterated. Using an implementation of our algorithms based on Maple,

we have computed examples of such applications. As a third type of application, we have briefly

discussed an approach for the expansion of generalized hypergeometric functions.
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