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Abstract. We review an approach for the computation of Feynman integrals
by use of multiple polylogarithms, with an emphasis on the related criterion of
linear reducibility of the graph. We show that the set of graphs which satisfies
the linear reducibility with respect to both Symanzik polynomials is closed
under taking minors. As a step towards a classification of Feynman integrals,
we discuss the concept of critical minors and exhibit an example at three-loops
with four on-shell legs.

1. Introduction

In recent years we witnessed rapid progress in the developement of techniques
for the computation of higher order corrections in perturbative quantum field the-
ory. While other talks at this conference cover progress in the computation of entire
amplitudes, our talk refers to the ’classical’ approach of computing the amplitude
by its Feynman graphs, which is inevitable when meeting the needs of present col-
lider experiments. In this field of research, it has shown to be fruitful to discuss
Feynman integrals in their own right, without restrictions to a particular quantum
field theory.

Computations of higher order corrections to observables often start from the
consideration of hundreds or thousands of Feynman integrals with tensor structure,
and proceed via effective standard procedures to reduce the problem, possibly to a
relatively small number of scalar integrals. At higher loop-orders, the evaluation of
the latter remains to be the hard part of the problem. There is no algorithm which
would succeed in the analytical computation of every Feynman integral. However,
there is a variety of powerful methods which have been useful for a wide range
of relevant cases, such as the Mellin-Barnes approach (see [9, 59, 58, 55]), the
expansion of hypergeometric functions [47, 38, 39], differential equation meth-
ods [42, 52, 33, 48, 49], difference equations [43, 56, 57, 46] or position-space
methods [28] (also see [37]). In this talk we focus on the approach of iteratively
integrating out Feynman parameters by use of multiple polylogarithms.
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In order to choose an appropriate strategy for the computation of a given
Feynman integral, it would be desirable in general, to know in advance, which are
the classes of functions and numbers the integral may evaluate to. As a slightly
more refined question of this type we may ask: Which scalar Feynman integrals can
be expressed by multiple polylogarithms and multiple zeta values, and for which
integrals do we need a wider range of functions and numbers? In the past few years,
questions of this type turned out to define a fruitful common field of research for
quantum field theorists and algebraic geometers alike. While the physicist’s interest
in these questions is given by the desire to compute specific integrals or to learn
about the ’number content’ of a given quantum field theory, the mathematician
arrives at the same question from a different direction. In a very general context,
Feynman integrals can be viewed as period integrals, and the question of evaluating
to multiple zeta values is related to the question wether an underlying motive is
mixed Tate over Z (see [12, 20, 21, 24, 2, 3, 4]).

A definite classification of Feynman graphs with respect to the above questions
is missing. However, for vacuum and two-point graphs important progress was made
by considering the first Symanzik polynomial, given by the Feynman parametric
representation of a Feynman integral. Even though many vacuum-type Feynman
integrals evaluate to multiple zeta values [17, 18], this is not the case in general. A
first vacuum graph whose period has to belong to a set of numbers beyond multiple
zeta values was exhibited in a recent article by Brown and Schnetz [24] (also see
[22]). When allowing the Feynman integrals to depend on kinematical invariants
and particle masses, we can ask for graphs where multiple polylogarithms are not
sufficient to express the result. Here the first cases show up at much lower loop-
order, such as in the case of massive sunrise graphs and related graphs with a cut
through three massive edges (see e.g. [6, 7]).

In this talk we review a criterion on graphs which is related to the above
questions and show that if a graph satisfies the criterion, its minors do so as well.
In graph theory such a minor monotony is an important and desireable feature. In
section 2 we begin with a brief reminder on scalar Feynman integrals, their two
Symanzik polynomials and the approach of integrating out Feynman parameters
by use of multiple polylogarithms. In section 3 we briefly review the criterion of
linear reducibility of a graph, which is used to decide whether a given integral
can be computed by use of the method. If this is the case, the functions and
numbers in all intermediate steps and in the result will not exceed combinations
of multiple polylogarithms and their values at rational points. In this way the
criterion and the corresponding algorithm are useful tools for adressing the above
questions. In the case of integrals only involving the first Symanzik polynomial,
the criterion was extensively studied in [20, 21]. As the iterated integration over
Feynman parameters can be expected to be useful in the case of integrals depending
on kinematical invariants and particle masses as well, we intend to extend the
discussion to the second Symanzik polynomial. In section 4 we consider linear
reducibility with respect to both Symanzik polynomials and show that the set of
linearly reducible graphs is closed under taking minors. This property is useful for
a classification, as it allows us to characterize families of reducible graphs by a small
number of graphs not belonging to the family. In a case study we exhibit such a
’forbidden minor’ at the level of massless three-loop graphs with four on-shell legs.
Section 5 contains our conclusions.
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2. Multiple Polylogarithms and Feynman Integrals

In this section we recall some general facts about Feynman integrals, Symanzik
polynomials and a method to compute period integrals by use of multiple polylog-
arithms. Let us begin with a generic Feynman graph G with n edges, loop-number
(i.e. first Betti number) L ≥ 1 and with r external half-edges (or ’legs’). We label
each edge ei by an integration variable αi (Feynman parameter), an integer νi (ex-
ponent of the Feynman propagator), a real or complex variable mi (particle mass).
Each leg is labelled by a vector pj (external momentum).

To this labelled graph G we associate the scalar Feynman integral in Dimen-
sional Regularization:

(2.1) IG =
Γ(ν − LD/2)
∏n

j=1 Γ(νj)

∫

αj≥0

δ

(

1−

n
∑

i=1

αi

)





n
∏

j=1

dαjα
νj−1
j





U
ν−(L+1)D/2
G

FG
ν−LD/2

where ν =
∑n

i=1 νi. (We omit to write a trivial prefactor by which the integral
becomes independent of the physical mass-scale.) The Feynman integral IG and the
function FG depend on the particle masses and on certain kinematical invariants,
which are quadratic functions of the external momenta. The functions UG and FG

are the first and second Symanzik polynomial of the graph. A definition is given
below. Usually a Feynman integral is associated to a Feynman graph by Feynman
rules in momentum or position space, and we refer to the literature [40, 50] for the
standard computation leading from there to the Feynman parametric representation
given in eq. 2.1.

Eq. 2.1 defines a very general class of integrals which deserves our attention for
several reasons. Firstly, the class contains the Feynman integrals of scalar quantum
field theory such as φ3− or φ4−theory. Secondly, any Feynman integral with a
tensor-structure, arising from a physical quantum field theory, can in principle be
expressed in terms of scalar integrals of the above class [56, 57]. Thirdly, as we
allow the νj to take arbitrary integer values, there are well-known identities between
these scalar integrals which can be used for efficient reduction procedures [29]. As a
consequence, integrals of the above class appear in a wide range of physical set-ups
and their evaluation is the bottleneck of many computational problems in particle
physics.

The parameter D can either be fixed to the integer space-time dimension or, as
the integral is very often ill-defined in the desired dimension, one may consider IG in
Dimensional Regularisation where D is a complex variable. Then, in order to sep-
arate the pole-terms and obtain finite contributions in four-dimenional Minkowski
space, one usually attempts to compute the coefficients of a Laurent-expansion

IG =

∞
∑

j=j0

cjǫ
j ,

with D = 4− 2ǫ, to a desired order. Even though the computation of the functions
cj can be very difficult, we can make a general statement about them. It is shown in
[15] that if for an arbitrary Feynman graph we evaluate any function cj at algebraic
values of the squared particle masses m2

i and kinematical invariants si, where all
m2

i ≥ 0 and all si ≤ 0, we obtain a period according to the definition of Kontsevich
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and Zagier [41]. For the special case where the Feynman integral takes the form

(2.2) PG =

∫

αj≥0

δ

(

1−
n
∑

i=1

αi

)





n
∏

j=1

dαj





1

U
D/2
G

this statement was already proven in [8]. It seems that Feynman integrals in fact
evaluate to a restricted subset of periods and it is an important challenge to un-
derstand which one this is.

Let us now recall the definition of the Symanzik polynomials of a Feynman
graph G. The first Symanzik polynomial is defined as

UG =
∑

T

∏

ei /∈T

αi,

where the sum is over all spanning trees of the graph G. The second Symanzik
polynomial is defined as

FG = F0, G + UG

n
∑

i=1

αim
2
i

with

F0, G =
∑

(T1, T2)





∏

ei /∈(T1, T2)

αi



 s(T1, T2).

Here the sum runs through all spanning two-forests (T1, T2) of G, where T1 and T2

denote the connected components of the forest.
In order to define the kinematical invariants s(T1, T2), we introduce an arbitrary

orientation on G. We firstly say that each external momentum pj is incoming at
the vertex at the corresponding leg. We furthermore label each oriented edge by
a momentum-vector qi. If the edge ei is oriented from vertex vj to vk then qi is
said to be incoming at vk and −qi is incoming at vj . Momentum-conservation on
G is reflected in our labels by the condition that the sum of all external momenta
pj is zero, and at each vertex, the sum of all incoming momenta is zero. By these
conditions, except for L momenta, each of the qi can be expressed as a linear
combination of external momenta. The kinematical invariants are defined as

s(T1, T2) =





∑

ej /∈(T1, T2)

±qj





2

where the sign of qj is fixed by the condition that we sum over the momenta
incoming at the component T2. Note that by momentum conservation, the s(T1, T2)

are functions of the external momenta.
As an alternative to the above construction by spanning trees and forests, there

are several ways to obtain both Symanzik polynomials from determinants of certain
matrices [16, 13, 51, 21]. To demonstrate such a derivation, let us label each edge
ei by an auxiliary variable yi. Each vertex vi is labelled by

ui =

{

zj if a leg with incoming momentum pj is attached,
0 if no leg is attached.
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Figure 1. The non-planar double-box

For a Feynman graph with vertices v1, ..., vm we consider an m × m matrix M
whose entries are:

Mij =

{

ui +
∑

yk for i = j, ek attached to vi at exactly one end,
−
∑

yk for i 6= j, ek connecting vi and vj .

We compute the determinant

V(y1, .., yn, z1, ..., zr) = det(M)

and consider the function

W(α1, .., αn, z1, ..., zr) = V
(

α−1
1 , .., α−1

n , z1, ..., zr
)

n
∏

i=1

αi

which is a polynomial in the α− and z−variables. Note that M depends on a
chosen ordering on the vertices but W does not.

Let us assume that at least two legs are attached to the graph, i.e. r ≥ 2. We
expand W as W = W(1) +W(2) + ...+W(r) where W(k) is homogeneous of degree
k in the z−variables. We can directly read off the first Symanzik polynomial from
the first term in this expansion, as it satisfies

W(1)(α1, .., αn, z1, ..., zr) = UG(α1, .., αn)

r
∑

i=1

zi.

The massless second Symanzik polynomial F0G is directly obtained from W(2). By
construction, W(2) is homogeneous of degree 2 in the z−variables. We replace each
product zizj inW(2) by the scalar-product of the corresponding external momentum
vectors pi · pj. By momentum-conservation,

∑r
i=1 pi = 0, we express each of the

scalar products by the functions s(T1, T2). As result we obtain F0G [16].
As an example let us compute the two Symanzik polynomials of the massless

non-planar double-box, shown in figure 1 with auxiliary y− and z−variables. For



6 CHRISTIAN BOGNER AND MARTIN LÜDERS

this graph and a chosen ordering on the vertices we have

M =

















M11 −y2 0 0 −y1 0
−y2 M22 −y3 0 0 0
0 −y3 M33 −y7 0 −y5
0 0 −y7 M44 −y6 0

−y1 0 0 −y6 M55 −y4
0 0 −y5 0 −y4 M66

















,

where M11 = y1+y2+z1, M22 = y2+y3+z2, M33 = y3+y5+y7, M44 = y6+y7+z4,
M55 = y1+y4+y6, M66 = y4+y5+z3. Proceeding in the described way we compute

UG = (z1 + z2 + z3 + z4)
−1W(1)

= (α1 + α2 + α3)(α4 + α5 + α6 + α7) + (α4 + α5)(α6 + α7),

F0G = W(2)|zizj=pi·pj ,
∑

4
i=1

pi=0

= −p21α2(α1(α4 + α5 + α6 + α7) + α4α6)

−p22α2(α3(α4 + α5 + α6 + α7) + α5α7)

−p23(α4α5(α1 + α2 + α3 + α6 + α7) + α3α4α7 + α1α5α6)

−p24(α6α7(α1 + α2 + α3 + α4 + α5) + α1α4α7 + α3α5α6)

−(p1 + p2)
2(α1α3(α4 + α5 + α6 + α7) + α1α5α7 + α3α4α6)

−(p1 + p3)
2α2α5α6 − (p2 + p3)

2α2α4α7.

It is often sufficient to consider the Feynman integral after setting some of its
legs on-shell, which means that the corresponding external momenta are fixed by
setting their square to a squared particle mass. In our example we may assume
massless particles and set p2i = 0 for all i = 1, ..., 4. The corresponding Feynman
integral was evaluated in dimensional regularization by classical polylogarithms in
reference [58]. We will return to Symanzik polynomials of graphs with four on-shell
legs in section 4.

Let us now turn to iterated integrals. Let k be the field of either the real or
the complex numbers and M a smooth manifold over k. We consider a piecewise
smooth path on M , given by a map γ : [0, 1] → M , and some smooth differential
1-forms ω1, ..., ωn on M. The iterated integral of these 1-forms along the path γ is
defined by

∫

γ

ωn...ω1 =

∫

0≤t1≤...≤tn≤1

fn(tn)dtn...f1(t1)dt1,

where fi(t)dt = γ⋆(ωi) is the pull-back of ωi to [0, 1]. With the term iterated
integral we will more generally refer to k-linear combinations of such integrals.

We will consider classes of iterated integrals which define the same function
for any two homotopic paths. Such integrals are called homotopy invariant. They
are well-defined functions of variables given by the end-point of γ. In such iterated
integrals the differential forms and the order in which we integrate over them have
to satisfy a property known as the integrability condition. The condition is best
formulated on tensor products of 1-forms over some field K ⊆ k, which we denote
by [ω1|...|ωm] . LetD denote aK-linear map from tensor products of smooth 1-forms
on M to tensor products of all forms on M, given by

D ([ω1|...|ωm]) =

m
∑

i=1

[ω1|...|ωi−1|dωi|ωi+1|...|ωm] +

m−1
∑

i=1

[ω1|...|ωi−1|ωi ∧ ωi+1|...|ωm] .
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A K-linear combination of tensor products ξ =
∑m

l=0 ci1, ..., il [ωi1 |...|ωil ], ci1, ..., il ∈
K, is called an integrable word if it satisfies the equation

Dξ = 0.

Let Ω be a finite set of smooth 1-forms and let Bm(Ω) denote the vector space
of integrable words of length m with 1-forms in Ω. Now we return from words to
integrals by consider the integration map on integrable words:

(2.3)

m
∑

l=0

∑

i1, ..., il

ci1, ..., il [ωi1 |...|ωil ] 7→

m
∑

l=0

∑

i1, ..., il

ci1, ..., il

∫

γ

ωi1 ...ωil .

A fundamental theorem of Chen [27] states that this map is an isomorphism
from Bm(Ω) to the set of homotopy invariant iterated integrals in 1-forms in Ω of
length less or equal to m, if Ω satisfies further conditions which we do not specify
here.

In the following we fix K = Q and discuss two sets of 1-forms for which the
theorem applies. For a coordinate t1 on an open subset of C we firstly consider the
set of closed 1-forms

ΩHyp
n =

{

dt1
t1

,
dt1

t1 − 1
,

t2dt1
t1t2 − 1

, ...,
(
∏n

i=2 ti) dt1
∏n

i=1 ti − 1

}

.

As a trivial consequence of dt1 ∧ dt1 = 0, any tensor product of 1-forms in
ΩHyp

n is an integrable word. By applying the integration map eq. 2.3 to these
words, we obtain the class of hyperlogarithms [45]. In particle physics it is very
common to use sub-classes of hyperlogarithms. As an example, we may consider

ΩHyp
2 and fix the constant t2 = −1. To physicists, the iterated integrals obtained

from this restriction are well known as harmonic polylogarithms [53] and suffice for
the evaluation of many Feynman integrals.

We want to focus on a class of functions of severable variables, obtained from
another set of 1-forms, where now all the t1, ..., tn are considered to be coordinates
in an open subset of Cn :

ΩMPL
n =







dt1
t1

, ...,
dtn
t2

,
d
(

∏

a≤i≤b ti

)

∏

a≤i≤b ti − 1
where 1 ≤ a ≤ b ≤ n







.

For this set the integrability condition is not trivial and there are words for
which it is not satisfied. The homotopy invariant iterated integrals which we obtain
via the integration map from the the integrable words in ΩMPL

n form the vector space
B (Ωn) of multiple polylogarithms in n variables. We use the notation Bm (Ωn) for
the vector space of such functions obtained from integrable words of length ≤ m.
There is an explicit map [14] to construct all integrable words in ΩMPL

n , closely
related to the ’symbol’ in [34, 36, 32].

The functions in B (Ωn) were extensively studied in reference [19]. We just
want to recall a few statements which are relevant for the following considera-
tions. Firstly, the multiple polylogarithms of Goncharov [35], frequently used in
the physics literature, are contained in this class. As we want to use the elements
of B (Ωn) in an iterative integration procedure, it is important for us to know their
primitives and limits. It is proven in [19] that B (Ωn) is closed under taking prim-
itives. Furthermore if we take the limits of elements of B (Ωn) at tn equal to 0 and
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1, we obtain Z-linear combinations of elements in B (Ωn−1) , where Z denotes the
Q-vector space of multiple zeta values.

Now let us consider definite integrals of the form

I =

∫ 1

0

dtn
β({gi})

f

where f is a polynomial and β({gi}) ∈ B (Ωn) is a multiple polylogarithm whose
arguments are some irreducible polynomials gi. Let us call f and the gi the critical
polynomials of the integrand. If f and the gi are linear in tn we can evaluate the
above integral and from the mentioned properties it is clear that the result will
be a Z-linear combination of elements in Bm (Ωn−1) . If the result can be again
expressed by functions of the form of the above generic integrand and the critical
polynomials are linear in tn−1 then we can continue and integrate over this variable
from 0 to 1, and so on.

Such an iterative procedure can be used to compute Feynman integrals. For re-
cent examples in the physics literature, partly relying on different parametrizations,
we refer to [30, 31, 1, 26, 5]. Aiming at such a computation one has to express
the Feynman integral by a finite parametric integral such that the integrand can be
written in the above form, and if after each integration step, the critical polynomials
are linear in at least one of the remaining parameters. The method was introduced
systematically in [20] and demonstrated for certain Feynman parametric integrals
of the type of eq. 2.2, coming from primitive logarithmically divergent vacuum
Feynman graphs. However, the approach is not restricted to such graphs. Refer-
ence [23] presents a method to express Feynman integrals with UV sub-divergences
by finite parametric integrals to which the approach may apply. The treatment of
graphs with infrared divergences is not excluded in principle, but we are missing
a canonical method to express IR-divergent integrals by finite ones. In principle,
the method of sector decomposition [11] allows us to write down the coefficients
of a Laurent expansion for a dimensionally regularized, infrared divergent integral
in terms of finite integrals over Feynman parameters, however, the polynomials in
these integrals usually become very complicated. In view of the above approach
one would ideally wish for a method, where the critical polynomials in the finite
integrals could be obtained from the Symanzik polynomials in a rather simple way.

For the following discussion let us assume, that in some way we have already
been able to express a given Feynman integral by finite integrals of the type I and
that the critical polynomials are the Symanzik polynomials of the graph. We focus
on the criterion, that after each integration over a Feynman parameter, the new
critical polynomials have to be linear in a next Feynman parameter. The reduction
algorithm to be reviewed in section 3 allows us to study this criterion as it computes
for each integration step a set in which the critical polynomials are contained.

As a further motivation of the following discussion, let us have a glance at two
well-known Feynman graphs in view of the mentioned criterion. For the massless
two-loop graph of figure 2 (a) it was proven by use of the Mellin-Barnes approach
and expansions by nested sums that each coefficient of the ǫ-expansion is a com-
bination of multiple zeta values [10]. Reference [20] confirmed this statement for
this two-loop graph and several higher-loop graphs by relating them to integrals of
the type of eq. 2.2 whose integrands satisfy the criterion.

The case of the equal-mass two-loop sunrise graph, shown in figure 2 (b), is
very different. The desired coefficients in the ǫ-expansion can be derived from the
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p

m

m

m

Figure 2. (a) Massless two-loop graph, (b) Equal-mass sunrise graph

D = 2-dimensional version of the Feynman integral,

Isunrise =

∫

αj≥0

dα1dα2dα3δ

(

1−

3
∑

i=1

αi

)

1

FG
,

with the second Symanzik polynomial

FG = −p2α1α2α3 +m2(α1α2 + α2α3 + α1α3)(α1 + α2 + α3),

playing the role of the critical polynomial. As FG is not linear in any of the
Feynman parameters, integral Isunrise fails the criterion. It is in perfect match
with this simple observation, that the known result of the sunrise integral involves
elliptic integrals [44]. In general, it is possible that the polynomials of an integrand
fail the criterion and still the integral can be expressed by multiple polylogarithms.
However, the criterion may provide a useful first classification and give a hint where
to look for integrals, which exceed the class of multiple polylogarithms. We also
want to mention reference [25], where different criteria are used to search for such
integrals.

3. Linear Reducibility

Let us briefly review the polynomial reduction algorithm of [20]. Let S =
{f1, ..., fN} be a set of polynomials in the variables α1, ..., αn with rational coef-
ficients.

(1) If there is an index 1 ≤ r1 ≤ n such that all polynomials in S are linear in
αr1 we can write

fi = giαr1 + hi for all 1 ≤ i ≤ N,

where gi =
∂fi
∂αr1

and hi = fi|αr1
=0. We define

(3.1) S′
[r1]

=
{

(gi)1≤i≤N , (hi)1≤i≤N , (higj − gihj)1≤i<j≤N

}

and furthermore we define S[r1] to be the set of irreducible polynomials in S′
[r1]

. In

S[r1] we neglect all constants and monomials.
(2) If there is a 1 ≤ r2 ≤ n such that all polynomials in S(r1) are linear in

αr2 , we repeat the above step, now with S(r1) and αr2 in the roles of S and αr1 ,
and obtain a new set of polynomials which we call S[r1](r2). Then, assuming that
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starting from S the above steps can be done first for αr2 and then for αr1 , we
compute S[r2](r1) and take the intersection of both sets:

S[r1, r2] = S[r1](r2) ∩ S[r2](r1).

Whenever we speak of intersections here and in the following, we mean the common
zero loci, such that if a polynomial appears in two sets with a different constant
prefactor, it nevertheless belongs to the intersection. Then we choose a next variable
in which all polynomials of S[r1, r2] are linear and continue in the same way. At
each iteration we apply step (1) and take the intersection

S[r1, r2, ..., rk] = ∩1≤i≤kS[r1, ..., r̂i, ..., rk](ri).

If a set S[r1, ..., r̂i, ..., rk] contains a polynomial which is non-linear in αri , the set
S[r1, ..., r̂i, ..., rk](ri) is undefined and omitted in the intersection. If this happens for
all 1 ≤ i ≤ k the set S[r1, r2, ..., rk] is undefined and the algorithm stops. Unless this
situation occurs, we obtain for each sequence of variables (αr1 , ..., αrk), k ≤ n, a
sequence of sets S(r1), S[r1, r2], ..., S[r1, r2, ..., rk].

Definition 3.1. We say that S is Fubini reducible (or linearly reducible) if
there is an ordering of all n variables (αr1 , ..., αrn) such that every polynomial in
S[r1, r2, ..., rk] is linear in αrk+1

for all 1 ≤ k < n.

The linear reducibility of the set of critical polynomials of an integrand as
in eq. 2 is a criterion for the integral to be computable by the above approach.
The criterion is sufficient but not neccessary. The sets S[r1, r2] contain the critical
polynomials of the integrand after the first k integrations, but might as well contain
spurious polynomials which drop out in the integration procedure. A more refined
reduction algorithm presented in reference [21] omits such cases, but not necessarily
all of them. Furthermore the occurrence of a quadratic polynomial does not always
forbid us to continue with the computation.

By applying the above algorithm to first Symanzik polynomials, it was shown
in [20] that several vacuum Feynman integrals can be computed and evaluate to
combinations of multiple zeta values. Moreover the same is true for coefficients of
a dimensional series expansion of Feynman integrals with two legs, obtained from
cutting one edge in one of these vacuum graphs, as in the case of figure 2 (a). The
linear reducibility of first Symanzik polynomials is extensively studied in terms
of Dodgson polynomials in [21]. It is shown that the first five iterations of the
reduction succeed for any first Symanzik polynomial. Moreover, a first Symanzik
polynomial is reducible, if its graph has vertex width less or equal three. (This is
the class of graphs which decompose into two connected components after removing
three vertices or less.) These results explain, why one has to go up to complicated
graphs at high loop orders to find first examples for vacuum-type Feynman integrals
which exceed the set of multiple zeta values [24, 22].

In the following, we want to consider the above algorithm applied to both
Symanzik polynomials. In order to include F which may depend on particle masses
and external momenta, we slightly extend the above formulation of step (1), allow-
ing fi to be polynomials whose coefficients are rational numbers or algebraic func-
tions of additional parameters s1, ..., sm. The rest of the algorithm is not affected
by this change.

It will be useful to consider polynomial reduction in coordinates for products
of P1. Let P (α1, ..., αn) be a polynomial in n Feynman parameters and consider
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an associated function of new variables x1, ..., xn, y1, ..., yn defined by

P̄ (x1, ..., xn, y1, ..., yn) =

(

n
∏

i=1

y
di(P )
i

)

P

(

x1

y1
, ...,

xn

yn

)

,

where di(P ) denotes the maximal degree of P in αi for all 1 ≤ i ≤ n. We obtain
our original polynomial back by setting

(3.2) P̄ (α1, ..., αn, 1, ..., 1) = P (α1, ..., αn).

The function P̄ is by definition a polynomial in x1, ..., xn, y1, ..., yn and it is linear
in xk if and only if P is linear in αk.

Let us consider a set of polynomials S = {P1, ..., PN} which are all linear in
αk. We can write

Pi = αk
∂

∂αk
Pi + Pi|αk=0.

Consider the corresponding set of polynomials S̄ = {P̄1, ..., P̄N}, obtained from S
by changing to the projective coordinates. Each of these polynomials is linear in
xk and we can write

P̄i = xkP̄i|xk=1, yk=0 + ykP̄i|xk=0, yk=1.

Let us use the convention that in a Fubini reduction with respect to the x-variables,
we neglect the above prefactor yk in the sense that in eq. 3.1 the terms are given
by gi = P̄i|xk=1, yk=0 and hi = P̄i|xk=0, yk=1, which does not affect the linear re-
ducibility. Step (1) of the reduction algorithm applied to S̄ with respect to xk then
gives the set S̄(k) consisting of the irreducible factors of

S̄′
(k) =

{

(

P̄i|xk=1, yk=0

)

1≤i≤N
,
(

P̄i|xk=0, yk=1

)

1≤i≤N
,

(

P̄i|xk=0, yk=1 · P̄j |xk=1, yk=0 − P̄i|x1=1, yk=0 · P̄j |xk=0, yk=1

)

1≤i<j≤N

}

.(3.3)

Considering a Fubini reduction in x-variables instead of α-variables, we con-
vince ourselves that the factorizations into irreducible polynomials are not affected
by the change of variables. Indeed if P factorizes as

P = f1 · f2

into two polynomials f1, f2 then P̄ factorizes as

f̄1 · f̄2 =

(

n
∏

i=1

y
di(f1)
i

)

f1

(

x1

y1
, ...,

xn

yn

)

·

(

n
∏

i=1

y
di(f2)
i

)

f2

(

x1

y1
, ...,

xn

yn

)

= P̄ ,

because of di(f1) + di(f2) = di(P ) for all 1 ≤ i ≤ n. As a consequence we obtain:

Lemma 3.2. P is linearly reducible with respect to the variables α1, ..., αn if

and only if P̄ is linearly reducible with respect to the variables x1, ..., xn.

Now let us choose some coordinate xl, 1 ≤ l ≤ n, and define two new sets of
polynomials by restrictions xl = 0, yl = 1 and xl = 1, yl = 0 respectively:

S̄(l, 0, 1) = S̄|xl=0, yl=1,

S̄(l, 1, 0) = S̄|xl=1, yl=0.
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To these sets we apply one reduction step with respect to xk. At first let us
assume l 6= k. Step (1) of the algorithm gives

S̄
(l, 0, 1)
(k) = irreducible factors of S̄′

(k)|xl=0, yl=1,

S̄
(l, 1, 0)
(k) = irreducible factors of S̄′

(k)|xl=1, yl=0.

If a polynomial P̄ factorizes as P̄ = f1 · f2 then furthermore

P̄ |xl=0, yl=1 = f1|xl=0, yl=1 · f2|xl=0, yl=1,

P̄ |xl=1, yl=0 = f1|xl=1, yl=0 · f2|xl=1, yl=0,

and the maximal degrees with respect to another variable xi satisfy di(fj) ≥
di (fj|xl=0, yl=1) and di(fj) ≥ di (fj|xl=1, yl=0) for j = 1, 2 and for all i = 1, ..., n.
This means that for each polynomial f ∈ S̄(k) there is at most one polynomial

f ′ ∈ S̄
(l, 0, 1)
(k) , and di(f) ≥ di(f

′) for all i = 1, ..., n. The same is true for S̄
(l, 1, 0)
(k) .

Lastly we observe that in the case of l = k, the irreducible factors of S̄(l, 0, 1)

and S̄(l, 1, 0) are already contained in S̄(k). This proves the following lemma:

Lemma 3.3. If S̄ is linearly reducible with the ordering (xr1 , ..., xrn) then for
any 1 ≤ l ≤ n the sets S̄|xl=0, yl=1 and S̄|xl=1, yl=0 are linearly reducible with
(xr1 , ..., x̂l, ..., xrn) .

In combination with the previous lemma we obtain:

Lemma 3.4. Let S = {P1, ..., PN} be a set of polynomials which is linearly

reducible with (αr1 , ..., αrn) and whose members are linear in αl. Then the sets

Sl =
{

∂P1

∂αl
, ..., ∂PN

∂αN

}

and Sl = {P1|αl=0, ..., PN |αl=0} are linearly reducible with

(αr1 , ..., α̂l, ..., αrn).

4. Towards a Classification by Critical Minors

Let G be a graph and EG its set of edges. For e ∈ G we denote by G\e the
graph obtained from G by deletion of e. Furthermore we write G//e for the graph
obtained from G by contraction of e. This is the graph where the end-points of e are
identified and then e is removed. For any distinct edges e1, e2 ∈ EG the operations
of deleting (or contracting) e1 and deleting (or contracting) e2 commute. Therefore
we can more generally write γ = G\D//C with distinct D, C ⊂ EG, for the unique
graph obtained from G by deleting all edges in D and contracting all edges in C.
Any such γ is called a minor of G.

If G is connected and there is an edge such that G\e is disconnected then e is
called a bridge. When speaking of Feynman graphs, we may ignore disconnected
graphs, so we introduce the convention that the corresponding Symanzik are zero:

UG\e = 0, F0G\e = 0 if e is a bridge.

Let us furthermore call et ∈ EG a tadpole if it is attached to the same vertex at both
ends. In this case we have a factorization in the corresponding Feynman parameter:

UG = UG\etαt,

F0G = F0G\etαt.
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For any e which is not a tadpole we have the well-known deletion/contraction
identities:

UG = UG\eαe + UG//e,

F0G = F0G\eαe + F0G//e.

Now we consider a set of arbitrary particle masses m1, ..., mn distributed over the
edges of G, with the restriction that at least one edge ek is massless, mk = 0. Then
the second Symanzik polynomial

FG = F0G + UG ·
∑

i6=k

αim
2
i

is linear in αk and the above relations are extended by

FG = FG\ekαk if ek is a tadpole,

FG = FG\ekαk + FG//ek if ek is not a tadpole.

Equivalently, if ek is a massless edge of G then

(4.1)
∂

∂αk
UG = UG\ek , UG|αk=0 = UG//ek ,

(4.2)
∂

∂αk
FG = FG\ek , FG|αk=0 = FG//ek .

In the following let us call a Feynman graph G linearly reducible, if {UG, FG} is
linearly reducible. We arrive at the main statement of these notes:

Theorem 4.1. If G is a linearly reducible Feynman graph then any minor of

G is linearly reducible as well.

Proof. Let G be an arbitrary Feynman graph, ej any of its edges and G̃ =
G|mj=0 the graph obtained from G by setting the mass mj associated to ej equal
to zero. Assume that G is linearly reducible. Then G is linearly reducible for any
value of mj and therefore G̃ is linearly reducible as well. As ej is massless in G̃ we
can apply equations 4.1 and 4.2 and obtain

SG̃\ej
=

{

UG̃\ej
, FG̃\ej

}

=

{

∂

∂αj
UG̃,

∂

∂αj
FG̃

}

,

SG̃//ej
=

{

UG//ej , FG//ej

}

=
{

UG̃|αj=0, FG̃|αj=0

}

.

By lemma 3.4 it follows from the linear reducibility of G̃ that G̃\ej and G̃//ej
are linearly reducible. G and G̃ have the same minors with respect to deleting or
contracting ej :

G\ej = G̃\ej, G//ej = G̃//ej

and therefore SG\ej = SG̃\ej
and SG//ej = SG̃//ej

. By induction, this proves the

theorem. �

A set of graphs G is called minor closed if for all G ∈ G every minor of G
belongs to G as well. Let H be any set of graphs and let GH be the set of all graphs
which do not have a minor in the set H. Then the set GH is minor closed, and
the graphs in H are called forbidden minors of GH. A theorem of Robertson and
Seymour [54] states that any minor closed set of graphs can be defined in such a
way by a finite set of forbidden minors.
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Figure 3. K4 with four legs

A graph H is called a critical minor of a set of graphs G if the minors of H
belong to G but H does not. By removing a graph from H which is a minor of
another graph in H, we do not change the set GH. Therefore, to define a minor
closed set GH, it is sufficient to let H consist only of critical minors. A well-known
example for a characterization by critical minors is given by the set of planar graphs.
Due to a theorem of Wagner [60], the set of planar graphs is the set with forbidden
minors {K3,3, K5}.

In general we have to be careful when adapting notions from pure graph the-
ory to the study of Feynman graphs, which are equipped with labels and special
properties. However, theorem 4.1 suggests to attempt an analogous characteriza-
tion of the set of linearly reducible Feynman graphs by critical minors, i. e. by a
set of Feynman graphs which are not linearly reducible but have linearly reducible
minors. We conclude these notes with a first step towards such a characterization
for Feynman graphs with a dependence on external momenta. Let Λ be the set of
massless Feynman graphs with four on-shell legs, attached to four distinct vertices.
The on-shell condition restricts the four external momenta to satisfy p2i = 0 such
that the dependence on the external momenta can be expressed by two Mandelstam
variables. By use of a Maple-implementation of the Fubini algorithm, we find lin-
ear reductions for all two-loop graphs of this class. At three loops there are several
graphs in this class for which our program fails to find a linear reduction. Most of
these graphs have the graph of figure 3 as a minor. This is the complete four-vertex
graph K4 where we attached an on-shell leg at each vertex. From direct observa-
tion of the two Symanzik polynomials one can see that the graph is not linearly
reducible. As on the other hand all its minors are linearly reducible, the graph
plays the role of a critical minor for the set of all linearly reducible graphs. Our
case study suggests that only a few further critical minors are needed to distinguish
all linearly reducible graphs of Λ at three loops. In this way, a large class of graphs
can be separated into linearly reducible and irreducible members by knowing only
a small number of critical minors.

5. Conclusions

In this talk we reviewed the criterion of linear reducibility of Symanzik polyno-
mials, which can be used to decide whether a corresponding Feynman integral can
be computed by iteratively introducing hyperlogarithms or multiple polylogarithms.
Brown showed in [21] that with respect to the first Symanzik polynomial, the set
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of linearly reducible graphs is closed under taking minors and that therefore a char-
acterization of this set by forbidden, critical minors is possible. We extended this
line of argument to the case of graphs with masses and kinematical invariants, by
showing, that minor closedness is true for both Symanzik polynomials. We exhibit
a first critical minor with a non-trivial dependence on kinematical invariants.

We expect a classification with respect to the criterion of linear reducibility
to be useful for the more difficult question of which Feynman integrals evaluate to
multiple polylogarithms. Due to the simplicity of its derivation and the property
of minor closedness, such a systematic classification of a large class of Feynman
graphs appears feasible.
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