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Abstract

The structure of overlapping subdivergences, which appear in the perturbative expan-
sions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for
specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This
class of QFTs includes the Standard model. In kinematic renormalization schemes, in which
tadpole diagrams vanish, the lattices are semimodular. This implies that the Hopf algebra
of Feynman diagrams is graded by the coradical degree or equivalently that every maximal
forest has the same length in the scope of BPHZ renormalization. As an application of this
framework a formula for the counter terms in zero-dimensional QFT is given together with
some examples of the enumeration of primitive or skeleton diagrams.

1 Introduction

Calculations of observable quantities in quantum field theory rely almost always on perturbation
theory. The integrals in the perturbation expansions can be depicted as Feynman diagrams.
Usually these integrals require renormalization to give meaningful results. The renormalization
procedure can be performed using the Hopf algebra of Feynman graphs [7], which organizes the
classic BPHZ procedure into an algebraic framework.

The motivation for this paper was to obtain insights on the coradical filtration of this Hopf
algebra and thereby on the structure of the subdivergences of the Feynman diagrams in the
perturbation expansion.

The perturbative expansions in QFT are divergent series themselves. This divergence is
believed to be dominated by the growth of the number of Feynman diagrams. The coradical
filtration describes the hierarchy in which diagrams become important in the large-order regime.
Dyson-Schwinger equations exploit this hierarchy to give non-perturbative results [11]. This
work also aims to extend the effectiveness of these methods.

Notation and preliminaries on Feynman diagrams and Hopf algebras are covered in section 2
in a form suitable for a combinatorial analysis. Feynman diagrams are defined as a special case
of hyper graphs. This definition was used to clarify the role of external legs and isomorphisms
of diagrams. Based on this, Kreimer’s Hopf algebra of Feynman diagrams is defined.

The starting point in section 3 for the analysis of algebraic lattices in renormalization is the
basic fact that subdivergences of Feynman diagrams form a partially ordered set or poset ordered
by inclusion. In distinguished renormalizable quantum field theories a join and a meet can be
defined on these sets, promoting the posets to algebraic lattices. These renormalizable QFTs
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2 PRELIMINARIES 2

will be called join-meet-renormalizable. It is shown that a broad class of QFTs including the
standard model falls into this category. φ6-theory in 3-dimensions is examined as an example of
a QFT, which is renormalizable, but not join-meet-renormalizable.

The Hopf algebra of decorated posets or lattices is defined, which augments the incidence
Hopf algebra [13] by a decoration. Eventually, a Hopf algebra morphism from the Hopf algebra
of Feynman diagrams to the Hopf algebra of posets is given.

A further analysis in section 4 demonstrates that in QFTs with only three-or-less-valent ver-
tices, which are thereby join-meet-renormalizable, these lattices are semimodular. This implies
that the Hopf algebra is bigraded by the loop number of the Feynman diagram and its coradical
degree. In the language of BPHZ this means that every complete forest has the same length. Gen-
erally, this structure cannot be found in join-meet-renormalizable theories with also four-valent
vertices as QCD or φ4. An explicit counter example of a non-graded and non-semimodular lattice,
which appears in φ4 and Yang-Mills theories, is given. The semimodularity of the subdivergence
lattices can be resurrected in these cases by dividing out tadpole (also snail or seagull) diagrams.
This quotient can always be formed in kinematic renormalization schemes.

This whole framework is used in section 5 to illuminate some results of zero-dimensional
QFTs [8, 1] from the perspective of the Hopf algebra of decorated lattices. A closed formula for
the counter term calculation is given using the Moebius function on the lattices. This formula is
applied to the enumeration of primitive diagrams in a variety of cases.

2 Preliminaries

2.1 Combinatorial quantum field theory

In what follows a quantum field theory (QFT) will be characterized by its field content, its
interactions, associated ‘weights’ for these interactions and a given dimension of spacetime D.
Let Φ denote the set of fields, Rv the set of allowed interactions, represented as monomials
in the fields and Re ⊂ Rv the set of propagators, a set of distinguished interactions between
two fields only. Re consists of monomials of degree two and Rv of monomials of degree two or
higher in the fields Φ. Additionally, a map ω : Re∪Rv → Z is given associating a weight to each
interaction. The requirement Re ⊂ Rv ensures that there is a two-valent vertex for every allowed
edge-type. This is not necessary for the definition of the Hopf algebra of Feynman diagrams,
but it results in a simpler formula for contractions among other simplifications. Of course, this
does not introduce a restriction to the underlying QFT: A propagator is always associated to the
formal inverse of the corresponding two-valent vertex and a two-valent vertex always comes with
an additional propagator in a diagram. The two valent vertex of the same type as the propagator
can be canceled with the additional propagator.

In physical terms, the interactions correspond to summands in the Lagrangian of the QFT
and the weights are the number of derivatives in the respective summand.

Having clarified the important properties of a QFT for a combinatorial treatment, we can
proceed to the definition of the central object of perturbative QFTs:

2.2 Feynman diagrams as hypergraphs

Definition 1 (Feynman diagram). A Feynman diagram Γ is a tuple (H,E, V, η). Consisting of

1. a set H of half-edges,
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2. a coloring of the half-edges by fields in Φ:

η : H → Φ. (1)

This coloring also induces an additional map, the residue,

res : 2H → (N0)Φ, a 7→
∏
h∈a

η(h), (2)

of subsets of half-edges, or arbitrary adjacency relations, to monomials in the fields,

3. a set E of edges, adjacency relations between two half-edges with a residue in Re,

E ⊂ {e ⊂ H : res(e) ∈ Re} and (3)

4. a set V of vertices or corollas - adjacency relations between any other number of half-edges
with a residue in Rv:

V ⊂ {v ⊂ H : res(v) ∈ Rv} . (4)

With the conditions:

5. All the edges and all the vertices are each pairwise disjoint sets: ∀v1, v2 ∈ V, v1 6= v2 :
v1 ∩ v2 = ∅ as well as ∀e1, e2 ∈ E, e1 6= e2 : e1 ∩ e2 = ∅.

6. Every half-edges is in at least one vertex:
⋃
v∈V

v = H.

Conditions 1-4 form the definition of a colored hyper graph. The other conditions 5 and 6
almost restrict these hyper graphs to mulitgraphs with the exception that half-edges that are
not in any edge are still allowed. These half-edges will play the role of the external legs of the
Feynman diagram. Feynman diagrams will also be called diagrams or graphs in this article. If
the reference to the diagram is ambiguous, the sets in the tuple Γ = (H,E, V, η) will be denoted
as H(Γ), E(Γ) and V (Γ).

To clarify the above definition an example is given, in which different depictions of Feynman
diagrams are discussed.

Example 1 (Yukawa theory). Let Φ =
{
ψ̄, ψ, φ

}
, Rv =

{
ψ̄ψ, φ2, ψ̄ψφ

}
and Re =

{
ψ̄ψ, φ2

}
.

Figure 1 shows different graphical representations for a simple Feynman diagram in this theory.
The usual Feynman diagram representation is given in fig. 1a. The adjacency relations E

are represented as edges and the adjacency relations V as vertices. The half-edges are omitted.
Figure 1b shows a hypergraph representation of the diagram. Its half-edges are drawn as

little circles. They are colored by the corresponding field. The adjacency relations are shown as
big ellipses, enclosing the adjacent half-edges. The adjacency relations, a ∈ E∪V can be colored
by the different allowed residues, res(a) in Re and Rv.

In figure 1c, the same diagram is depicted as a bipartie graph. Half-edges are identified with
the first class of vertices of the graph and adjacency relations with the second. Half-edges and
an adjacency relation are connected if the half-edge appears in the respective adjacency relation.
This representation is useful for computational treatments of Feynman diagrams, because colored
bipartie graphs are common and well studied in computational graph theory.
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(a) Typical graph representation of a Feynman
diagram.

ψ̄

ϕ

ψ ψ̄

ϕ

ψψ̄ϕψ ψ̄ϕψ

ψ̄ψ

ϕϕ

(b) Hyper graph representation of a Feynman
diagram.

ψ̄ ϕ ψ ϕ ψ̄ ψ

ψ̄ϕψ ϕϕ ψ̄ψ ψ̄ϕψ

(c) Bipartie graph representation of the Feynman diagram.

Figure 1: Equivalent diagrammatic representations of Feynman graphs

Isomorphisms of diagrams An isomorphism j : Γ → Γ′ between one Feynman diagram
Γ = (H,V,E, η) and another Γ′ = (H ′, V ′, E′, η′) is an bijection j : H → H ′, which preserves
the adjacency structure j (E ∪ V ) = E′ ∪ V ′ and the coloring η = η′ ◦ j, where j is extended
canonically to E ∪ V ⊂ 2H .

If there is an isomorphism from one diagram Γ to another diagram Γ′, the two diagrams are
called isomorphic.

An automorphism is an isomorphism of the diagram onto itself. The group of automorphisms
of Γ is denoted as Aut Γ. The inverse of the cardinality of the automorphism group, 1

|Aut Γ| , is

the symmetry factor of the diagram Γ.

External legs The half-edges which are not included in an edge are called external legs or
legs, Hext := H \

⋃
e∈E

e. Hint =
⋃
e∈E

e is the set of half-edges which are not external. Feynman

diagrams can be classified by the colors of the half-edges in Hext. This classification is called the
residue of the diagram.

Residues of a diagrams Using the external half-edges, Hext, a monomial
∏

h∈Hext

η (h) in the

fields can be associated to a diagram. This map will also be called res:

res : (H,E, V, η)→ (N0)Φ,Γ 7→
∏

h∈Hext(Γ)

η (h) . (5)

The choice of the same name for this map and the coloring of the adjacency relations will be
justified by a certain compatibility of res for adjacency relations and diagrams in the scope
of renormalizable QFTs (see definition 2). Furthermore, this should underline the operadic
structure of Feynman diagrams.
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(Non)-fixed external legs In the above definition the external legs of a diagram do not have
a specific labeling as usual. The legs are not ‘fixed’ and permutations of them can result in

additional automorphisms. For instance, the diagrams ' ' are isomorphic with

respect to each other in the present scope. The symmetry factor of is 1
|Aut | = 1

16 .

The labeling of the legs was omitted, because it makes the definition of the Hopf algebra of
Feynman diagrams more involved without any gain in generality.

Multiplying by the number of possible permutations of the external legs, which is 4! = 24 in
the case of scalar four-leg diagrams, we reobtain the symmetry factors for the leg-fixed case:

4! · 1

16
=

3

2
=

1

|Autlf |
+

1

|Autlf |
+

1

|Autlf |
, (6)

where Autlf are the automorphisms which leave the legs fixed. In the same way, we can always
replace diagrams with non-fixed legs by a formal sum of diagrams with fixed legs and reobtain
the usual notation.

Singular homology For a diagram Γ = (H,E, V, η), take the free abelian groups with the
base field Z/2Z with two elements over the sets E and V and let

∂ : Z/2ZE → Z/2ZV, e 7→
∑
v∈V
|v ∩ e| v, (7)

map the edges to the sum over all vertices with each vertex weighted by the number of half-edges
which the edge and the vertex share.

The kernel ker ∂ is called the loop space, ker ∂ =: H1(Γ) ⊂ Z/2ZE of the Feynman diagram.
Its dimension, h1(Γ) := dimH1(Γ), is called the loop number. This is the first Betty number of
the topology of the diagram. The cokernel of ∂ is called the space of connected components of
the diagram, coker ∂ =: H0(Γ) ⊂ Z/2ZV . Its dimension, h0(Γ) := dimH0(Γ), is the number of
connected components. By the Euler characteristic, h1(Γ)− |E|+ |V | − h0(Γ) = 0.

Subdiagrams A subdiagram of a Feynman diagram Γ = (H,E, V, η) is a Feynman diagram
γ = (H ′, E′, V ′, η′) such that E′ ∪ V ′ ⊂ E ∪ V and η′ = η|H′ . The relation γ is a subdiagram of
Γ is denoted as γ ⊂ Γ.

The union and the intersection of two subdiagrams γ1 = (H1, E1, V1, η1), γ2 = (H2, E2, V2, η2) ⊂
Γ = (H,E, V, η) is defined as

γ1 ∪ γ2 = (H1 ∪H2, E1 ∪ E2, V1 ∪ V2, η|H1∪H2
) (8)

γ1 ∩ γ2 = (H1 ∩H2, E1 ∩ E2, V1 ∩ V2, η|H1∩H2
). (9)

γ1 ∪ γ2 and γ1 ∩ γ2 are also subdiagrams of Γ.

Connectedness A diagram Γ is connected if it does not have two subdiagrams γ1 and γ2 such
that γ1 ∪ γ2 = Γ and γ1 ∩ γ2 = ∅, where ∅ is the diagram with no half-edges, |H(∅)| = 0.

Using the singular homology of Γ, the important notion of 1PI subdiagrams can be introduced:

1PI subdiagrams First, the set of subdiagrams

PL=1
1PI (Γ) =

γ ⊂ Γ such that

 ∑
e∈E(γ)

e

 ∈ H1(Γ) and γ is connected

 (10)
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is the set of one loop, 1PI subdiagrams of Γ and

P1PI(Γ) :=

γ ⊂ Γ such that γ =
⋃
γ′∈I

γ′ with I ⊂ PL=1
1PI (Γ) and γ is connected

 (11)

is the general set of 1PI subdiagrams. 1PI stands for one particle irreducible. This definition is
equivalent to the requirement that the subdiagram is still connected after removing an arbitrary
edge. A diagram Γ is called 1PI if Γ ∈ P1PI(Γ).

Example 2 (1PI subdiagrams of a diagram in φ4 theory). For the diagram in φ4 theory

( Φ = {φ}, Rv =
{
φ4, φ2

}
and Re =

{
φ2
}

).

P1PI

( )
=

{
, , , , , ,

, , , , ,

}
,

where subdiagrams are drawn with thick lines.

Contractions A 1PI subdiagram γ = (H ′, E′, V ′, η′) ∈ P1PI(Γ) of a diagram Γ = (H,E, V, η),
γ ⊂ Γ can be contracted. The result is denoted as Γ/γ. Explicitly:

Γ/γ := ((H \H ′) ∪H ′ext, E \ E′, (V \ V ′) ∪ {H ′ext} , η′
∣∣
(H\H′)∪H′

ext
). (12)

The contraction of a subdiagram involves the removal of all the internal half-edges, all the edges
and vertices of the subdiagram. Only the legs of the subdiagram are kept and ‘tied together‘ to
form a new vertex of the resulting diagram. For a propagator-type subdiagram this means that
an additional vertex with the same residue as the contracted graph is added. The new vertex in
the produced diagram, v∗ ∈ Γ/γ has the residue as the contracted subdiagram, res(v∗) = res(γ).
For Γ/γ to be a valid Feynman diagram with vertex-types in Rv, the residues of contracted
subdiagrams need to be restricted in a certain way. This will lead to the notion of superficial
divergent subdiagrams. Moreover, this will explain the requirement Re ⊂ Rv.

Superficial degree of divergence Using the map ω, which is provided by the QFT, to assign
a weight to every vertex and edge-type, an additional map ωD can be defined, which assigns a
weight to a Feynman diagram. This weight is called superficial degree of divergence in the sense
of [16]:

ωD (Γ) :=
∑
e∈E

ω(res(e))−
∑
v∈V

ω(res(v))−Dh1 (Γ) (13)

Neglecting possible infrared divergences, the value of ωD coincides with the degree of divergence
of the integral associated to the diagram in the perturbation expansion of the underlying QFT in
D-dimensions. A 1PI diagram Γ with ωD(Γ) ≤ 0 is superficially divergent (s.d.) in D dimensions.
For notational simplicity, the weight 0 is assigned to the empty diagram, ωD (∅) = 0, even though
it is not divergent.

Definition 2 (Renormalizable Quantum Field Theory). A QFT is renormalizable in D dimen-
sions if ωD(Γ) depends only on the external structure of Γ and the superficial degree of divergence
agrees with the weight assigned to the residue of the diagram: ωD(Γ) = ω(res Γ). This can be
expressed as the commutativity of the diagram:
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T Z

NΦ

ωD

res ω

where T is the set of all connected admissible Feynman diagrams of the renormalizable QFT.
Specifically, ωD(Γ) needs to be independent of h1(Γ). Working with a renormalizable QFT,
we need to keep track of subdivergences or superficially divergent subdiagrams appearing in the
integrals of the perturbation expansion. The tools needed are the set of 1PI subdiagrams and
the superficial degree of divergence. The compatibility of the vertex and edge-weights and the
superficial degree of divergence of the diagrams is exactly what is necessary to contract these
subdivergences without leaving the space of allowed Feynman diagrams.

Superficially divergent subdiagrams The set of superficially divergent subdiagrams or s.d.
subdiagrams,

Ps.d.
D (Γ) :=

{
γ ⊂ Γ such that γ =

∏
i

γi, γi ∈ P1PI(Γ) and ωD(γi) ≤ 0

}
, (14)

of subdiagrams, whose connected components are s.d. 1PI diagrams, is the object of main interest
for the combinatorics of renormalization. The renormalizability of the QFT guarantees that for
every γ ∈ Ps.d.

D (Γ) the diagram resulting from the contraction Γ/γ is still a valid Feynman
diagram of the underlying QFT.

Example 3 (Superficially divergent subdiagrams of a diagram in φ4 theory). Consider the same
diagram as in example 2 in φ4 theory with the weights ω(φ2) = ω( ) = 2 and ω(φ4) = ω( ) = 0.
The superficially divergent subdiagrams for D = 4 are

Ps.d.
4

( )
=

{
, , , ,

}
.

2.3 Hopf algebra structure of Feynman diagrams

The basis for the analysis of the lattice structure in QFTs is Kreimer’s Hopf algebra of Feynman
diagrams. It captures the BPHZ renormalization procedure which is necessary to obtain finite
amplitudes from perturbative calculations in an algebraic framework [6]. In this section, the
basic definitions of the Hopf algebra of Feynman diagrams will be repeated. For a more detailed
exposition consult [12] for mathematical details of Hopf algebras or [3] for more computational
aspects.

Definition 3. Let Hfg
D be the Q-algebra generated by all mutually non-isomorphic Feynman

diagrams, whose connected components are superficially divergent 1PI diagrams of a certain
QFT in D-dimensions. The multiplication of generators is given by the disjoint union: m :
Hfg
D ⊗H

fg
D → H

fg
D, γ1 ⊗ γ2 7→ γ1 ∪ γ2. It is extended linearly to all elements in the vector space

Hfg
D. Hfg

D has a unit u : Q 7→ IQ ⊂ Hfg
D, where I is associated to the empty diagram and a counit

ε : Hfg
D → Q, which vanishes on every generator of Hfg

D except I: ε ◦ I := 1. The coproduct on
the generators is defined as follows:

∆DΓ :=
∑

γ∈Ps.d.
D (Γ)

γ ⊗ Γ/γ : Hfg
D → H

fg
D ⊗H

fg
D, (15)
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where the complete contraction Γ/Γ is set to I and the vacuous contraction Γ/∅ to Γ. The notion
of superficial degree of divergence, ωD, hidden in Ps.d.

D (Γ) (eq. (14)) is the only input to the
Hopf algebra structure which depends on the dimension D of spacetime.

Example 4 (Coproduct of a diagram in φ4-theory). Take the same diagram of φ4-theory as in
examples 2 and 3. The coproduct is calculated using the set Ps.d.

4 (Γ) and the definition of the
contraction in eq. (12):

∆4 =
∑

γ∈{ , , , , }
γ ⊗ /γ =

I⊗ + ⊗ I+

+ ⊗ + ⊗ + ⊗ =

I⊗ + ⊗ I + 2 ⊗ + ⊗

The last equality holds because and are the same diagrams up to a permutation of the
legs.

Extended linearly to all elements of Hfg
D, the coproduct ∆D : Hfg

D → H
fg
D ⊗H

fg
D is an algebra

morphism. This implies ∆DI = I ⊗ I and ∆D ◦ m = (m ⊗ m) ◦ τ23 ◦ (∆D ⊗ ∆D), where τ23

switches the second and the third entry of the tensor product. The coproduct is coassociative:
(∆D ⊗ id)⊗∆D = (id⊗∆D)⊗∆D. Hfg

D is graded by the loop number, h1(Γ), of the diagrams,

Hfg
D =

⊕
L≥0

Hfg
D

(L)
and (16)

m : Hfg
D

(L1)
⊗Hfg

D

(L2)
→ Hfg

D

(L1+L2)
(17)

∆D : Hfg
D

(L)
→

⊕
L1,L2≥0
L1+L2=L

Hfg
D

(L1)
⊗Hfg

D

(L2)
, (18)

where Hfg
D

(L)
⊂ Hfg

D is the subspace of Hfg
D which is generated by diagrams Γ with h1(Γ) = L.

Because Hfg
D is coassociative, it makes sense to define iterations of ∆D:

∆0
D := ε, ∆1

D := id, ∆n
D := (∆D ⊗ id⊗n−2) ◦∆n−1

D for n ≥ 2, (19)

where ∆k
D : Hfg

D → H
fg
D

⊗k
. Hfg

D

⊗0
' Q, because the unit I is the only generator with 0 loops.

For this reason, Hfg
D is a connected Hopf algebra. The reduced coproduct is defined as ∆̃D :=

P⊗2 ◦∆D, where P := id−u ◦ ε projects into the augmentation ideal, P : Hfg
D →

⊕
L≥1

Hfg
D

(L)
.

Example 5 (Reduced coproduct of a non-primitive diagram in φ4-theory).

∆̃4 = 2 ⊗ + ⊗ (20)

The kernel of the reduced coproduct, is the space of primitive elements of the Hopf algebra,
PrimHfg

D := ker ∆̃D. Primitive 1PI diagrams Γ with Γ ∈ ker ∆̃D are exactly those diagrams,
which do not contain any subdivergences. They are also called skeleton diagrams. More general,
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Figure 2: Characteristic subdiagram of every tadpole diagram

we can define ∆̃n
D = P⊗n ◦∆n

D. These morphisms give rise to an increasing filtration of Hfg
D, the

coradical filtration:

(n)Hfg
D := ker ∆̃n+1

D ∀n ≥ 0 (21)

Q ' (0)Hfg
D ⊂

(1)Hfg
D ⊂ . . . ⊂

(n)Hfg
D ⊂ . . . ⊂ H

fg
D. (22)

Hfg
D is equipped with an antipode SD : Hfg

D → H
fg
D, implicitly defined by the identity, m◦(id⊗

SD) ◦∆D = u ◦ ε. Because Hfg
D is connected, there is always a unique solution for SD, which can

be calculated recursively.

Group of characters The characters of Hfg
D are linear algebra morphisms from Hfg

D to some
commutative, unital algebra A. The set of all these morphisms forms a group and is denoted as

G
Hfg

D

A . The product on this group, called the convolution product, is given by φ ∗ ψ = mA ◦ (φ⊗
ψ) ◦∆D for φ, ψ ∈ GH

fg
D

A and the unit of the group is the morphism uA ◦ εHfg
D

.

Hopf ideals A Hopf ideal I of a Hopf algebra H is an ideal of the algebra and a coideal of the
coalgebra. Explicitly, it is a subspace of a Hopf algebra, I ⊂ H, such that

m(I ⊗H) ⊂ I (23)

∆I ⊂ I ⊗H+H⊗ I. (24)

For every ideal I, the quotient Hopf algebra H/I can be defined, where two elements x, y ∈ H are
equivalent if their difference is in the ideal x− y ∈ I. The quotient H/I is also a Hopf algebra.

Hopf algebra morphisms Algebra morphisms which also respect the coalgebraic structure of
the Hopf algebra are called Hopf algebra morphisms. They are linear maps from a Hopf algebra
H1 to another Hopf algebra H2. Explicitly, this means that ψ : H1 → H2 is a Hopf algebra
morphism iff mH2

◦ (ψ⊗ψ) = ψ ◦mH1
and ∆H2

◦ψ = (ψ⊗ψ) ◦∆H1
. A Hopf algebra morphism

as ψ always gives rise to a Hopf ideal in H1. This ideal is the kernel of the morphism denoted
as kerψ. The quotient Hopf algebra H1/ kerψ is isomorphic to H2.

An useful example of a Hopf algebra morphism is the projection of Hfg
D to the Hopf algebra of

Feynman diagrams without ‘tadpoles’ (also snails or seagulls). Tadpoles are diagrams which can
be split into two connected components by removing a single vertex such that one component
does not contain any external leg. A tadpole diagram always has a subdiagram of a topology as
depicted in fig. 2. The Hopf algebra of Feynman diagrams without tadpoles is denoted as H̃fg

D.

Definition 4. We define H̃fg
D as Hfg with the difference that no tadpole diagrams are allowed

as generators and replace Ps.d.
D (Γ) in the formula for the coproduct, eq. (15), with

P̃s.d.
D (Γ) :=

{
γ ∈ Ps.d.

D (Γ) : such that Γ/γ is no tadpole diagram
}
. (25)
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Only the s.d. subdiagrams which do not result in a tadpole diagram upon contraction are
elements of P̃s.d.

D (Γ).

A Hopf algebra morphism from Hfg
D to H̃fg

D is easy to set up:

ψ : Hfg
D → H̃fg

D, (26)

Γ 7→

{
0 if Γ is a tadpole diagram.

Γ else.
(27)

This map fulfills the requirements for a Hopf algebra morphism. The associated ideal kerψ ⊂ Hfg
D

is the subspace of Hfg
D spanned by all tadpole diagrams. This ideal and the map ψ are very useful,

because the elements in kerψ evaluate to zero after renormalization in kinematic subtraction
schemes [5] and in minimal subtraction schemes for the massless case.

3 Algebraic lattice structure of subdivergences

To highlight the lattice structure of renormalizable QFTs, it is necessary to have more infor-
mation on the structure in which subdivergences can appear. The classic notion of overlapping
divergence, which addresses the case of two or more subdiagrams which are neither contained in
each other nor disjoint, is central for this analysis.

3.1 Overlapping divergences

Definition 5. Two diagrams γ1, γ2 ∈ P1PI(Γ) are called overlapping if γ1 6⊂ γ2, γ2 6⊂ γ1 and
γ1 ∩ γ2 6= ∅.

To proof the important properties of overlapping divergences exploited in the following sec-
tions, we need the following two lemmas:

Lemma 1. For two arbitrary subdiagrams γ1, γ2 ⊂ Γ:

Hext(γ1 ∩ γ2) = (Hext(γ1) ∪Hext(γ2)) ∩H(γ1) ∩H(γ2) (28)

Hext(γ1 ∪ γ2) = (Hext(γ1) ∪Hext(γ2)) \Hint(γ1) \Hint(γ2) (29)

|Hext(γ1)|+ |Hext(γ2)| = |Hext(γ1 ∪ γ2)|+ |Hext(γ1 ∩ γ2)|. (30)

Proof. We abbreviateH(γ1) =: H1, Hint(γ2) =: H2
i , Hext(γ1∪γ2) =: H1∪2

e , Hext(γ1∩γ2) =: H1∩2
e

and so on. The first and the second identity follow from the definition ofHext(γ) and the condition
that edges of a diagram Γ are either disjoint or equal:

H1∩2
e =

(
H1 ∩H2

)
\

 ⋃
e∈E(γ1)∩E(γ2)

e

 (31)

using condition 5 of definition 1,

=
(
H1 ∩H2

)
\
(
H1
i ∩H2

i

)
=
(
H1
e ∩H2

)
∪
(
H2
e ∩H1

)
=
(
H1
e ∪H2

e

)
∩H1 ∩H2. (32)

Analogously, the second identity follows. The third identity follows from the other two by
applying inclusion-exclusion on the right hand side of eq. (28) and eq. (29), |H1∩2

e | = |H1
e ∩
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H2| + |H2
e ∩ H1| − |H1

e ∩ H2
e |, |H1∪2

e | = |H1
e \ H2

i | + |H2
e \ H1

i | − |H1
e ∩ H2

e |, adding both and
using inclusion-exclusion again:

|H1∩2
e |+ |H1∪2

e | = |(H1
e ∩H2) ∪ (H1

e \H2
i )|+ |(H1

e ∩H2) ∩ (H1
e \H2

i )|
+ |(H2

e ∩H1) ∪ (H2
e \H1

i )|+ |(H2
e ∩H1) ∩ (H2

e \H1
i )|

− 2|H1
e ∩H2

e | = |H1
e |+ |H2

e |
(33)

Lemma 2. For every proper subdiagram γ of a connected diagram Γ:

|Hext(γ) ∩Hint(Γ)| ≥ 1 (34)

Proof. Suppose |Hext(γ) ∩ Hint(Γ)| = 0, that means there are no external legs of γ, which are
internal in Γ. As a consequence, all half-edges of γ can be removed from Γ without breaking
an edge. That means, Γ \ γ = (H(Γ) \ H(γ), E(Γ) \ E(γ), V (Γ) \ V (γ), η

∣∣
H(Γ)\H(γ)

) is also a

Feynman diagram. But (Γ \ γ) ∪ γ = Γ and (Γ \ γ) ∩ γ = ∅, thus Γ must be disconnected.

Corollary 1. For every proper subdiagram γ of a 1PI diagram Γ:

|Hext(γ) ∩Hint(Γ)| ≥ 2 (35)

Proof. Suppose |Hext(γ)∩Hint(Γ)| = 1 and let h ∈ Hext(γ)∩Hint(Γ). As h belongs to some edge
e ∈ E of Γ = (H,E, V, η) such that h ∈ e , this edge can be removed from Γ. Let Γ′ = (H,E \
e, V, η) which is still a connected diagram, because Γ is 1PI. Accordingly, |Hext(γ)∩Hint(Γ

′)| = 0,
which contradicts the result of lemma 2.

Proposition 1. If γ1 and γ2 are overlapping subdiagrams in P1PI(Γ), and µ ⊂ γ1 ∩ γ2 some
connected component of γ1 ∩ γ2, then |Hext(µ)| ≥ 4.

Proof. γ1 and γ2 are overlapping and µ is a proper subdiagram of both. In this case corollary1
applies: |Hext(µ) ∩ Hint(γ1)| ≥ 2 and |Hext(µ) ∩ Hint(γ2)| ≥ 2. It remains to be proven that
the sets Hext(µ) ∩ Hint(γ1) and Hext(µ) ∩ Hint(γ2) are mutually disjoint. µ is a connected
component of γ1 ∩ γ2, consequently Hext(µ) ⊂ Hext(γ1 ∩ γ2). Lemma 1 implies Hext(γ1 ∩ γ2) ⊂
Hext(γ1) ∪Hext(γ2) ⊂ Hint(γ1) ∩Hint(γ2). Hence, Hext(µ) ∩Hint(γ1) ∩Hint(γ2) = ∅.

3.2 Posets and algebraic lattices

The set of subdivergences of a Feynman diagram is obviously partially ordered by inclusion.
These posets are quite constrained for some renormalizable QFTs: They additionally carry a
lattice structure. In this section, the necessary definitions of poset and lattice theory will be
repeated followed by the definition of join-meet-renormalizability and the introduction of the
Hopf algebra of decorated posets. The definitions will be illustrated by the application to the
set of subdivergences of a Feynman diagram. For a more detailed exposition of poset and lattice
theory we refer to [14].

Definition 6 (Poset). A partially ordered set or poset is a finite set P endowed with a partial
order ≤. An interval [x, y] is a subset {z ∈ P : x ≤ z ≤ y} ⊂ P . If [x, y] = {x, y}, x covers y and
y is covered by x.
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Hasse diagram A Hasse diagram of a poset P is the graph with the elements of P as vertices
and the cover relations as edges. Larger elements are always drawn above smaller elements.

Example 6. The set of superficially divergent subdiagrams Ps.d.
D (Γ) of a Feynman diagram Γ is

a poset ordered by inclusion: γ1 ≤ γ2 ⇔ γ1 ⊂ γ2 for all γ1, γ2 ∈ Ps.d.
D (Γ).

The statement that a subdiagram γ1 covers γ2 in Ps.d.
D (Γ) is equivalent to the statement that

γ1/γ2 is primitive. The elements that are covered by the full diagram Γ ∈ Ps.d.
D (Γ) are called

maximal forests. Whereas, a maximal chain ∅ ⊂ γ1 ⊂ . . . ⊂ γn ⊂ Γ, where each element is
covered by the next, is a complete forest of Γ.

The Hasse diagram of a s.d. diagram Γ can be constructed by the following procedure: Draw
the diagram and find all the maximal forests γi ∈ Ps.d.

D (Γ) such that Γ/γi is primitive. Draw the
diagrams γi under Γ and draw lines from Γ to the γi. Subsequently, determine all the maximal
forests µi of the γi and draw them under the γi. Draw a line from γi to µi if µi ⊂ γi. Repeat
this until only primitive diagrams are left. Then draw lines from the primitive subdiagrams to
an additional ∅-diagram underneath them. In the end, replace diagrams by vertices.

Example 7. For instance, the set of superficially divergent subdiagrams for D = 4 of the

diagram, can be represented as the Hasse diagram , where the vertices represent the

subdiagrams in the set given in example 3.

Definition 7 (Lattice). A lattice is a poset L for which an unique least upper bound (join) and
an unique greatest lower bound (meet) exists for any combination of two elements in L. The join
of two elements x, y ∈ L is denoted as x ∨ y and the meet as x ∧ y. Every lattice has a unique
greatest element denoted as 1̂ and a unique smallest element 0̂. Every interval of a lattice is also
a lattice.

In many QFTs Ps.d.
D (Γ) is a lattice for every s.d. diagram Γ:

Definition 8 (Join-meet-renormalizable quantum field theory). A renormalizable QFT is called
join-meet-renormalizable if Ps.d.

D (Γ), ordered by inclusion, is a lattice for every s.d. Feynman
diagram Γ.

Theorem 1. A renormalizable QFT is join-meet-renormalizable if Ps.d.
D (Γ) is closed under taking

unions: γ1, γ2 ∈ Ps.d.
D (Γ)⇒ γ1 ∪ γ2 ∈ Ps.d.

D (Γ) for all s.d. diagrams Γ.

Proof. Ps.d.
D (Γ) is ordered by inclusion γ1 ≤ γ2 ⇔ γ1 ⊂ γ2. The join is given by taking the union

of diagrams: γ1 ∨ γ2 := γ1 ∪ γ2. Ps.d.
D (Γ) has a unique greatest element 1̂ := Γ and a unique

smallest element 0̂ := ∅. Therefore Ps.d.
D (Γ) is a lattice [14, Prop. 3.3.1]. The unique meet is

given by the formula, γ1 ∧ γ2 :=
⋃

µ≤γ1 and µ≤γ2
µ.

A broad class of renormalizable QFTs is join-meet-renormalizable including the standard
model:

Theorem 2. If all diagrams with four or more legs in a renormalizable QFT are superfi-
cially logarithmic divergent or superficially convergent, then the underlying QFT is join-meet-
renormalizable.

Proof. From γ1, γ2 ∈ Ps.d.
D (Γ) immediately follows γ1 ∪ γ2 ∈ Ps.d.

D (Γ) if γ1 and γ2 are disjoint or
contained in each other. The statement only needs to be validated if γ1 and γ2 are overlapping.
In this case, we have γ1 ∪ γ2 ∈ P1PI(Γ).
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(a) Example of a diagram where Ps.d.
3 (Γ) is not

a lattice.

(b) The corresponding non-lattice poset. Triv-
ial vertex multiplicities were omitted.

Figure 3: Counter-example for a renormalizable but not join-meet-renormalizable QFT: φ6-
theory in 3 dimensions.

From definition 2.2 of ωD and inclusion-exclusion:

ωD(γ1 ∪ γ2) = ωD(γ1) + ωD(γ2)− ωD(γ1 ∩ γ2) (36)

γ1∩γ2 has four or more external legs as was proven in proposition 1. Consequently, ωD(γ1∩γ2) ≥
0 and if ωD(γ1) ≤ 0 and ωD(γ2) ≤ 0, then ωD(γ1∪γ2) ≤ 0. For this reason γ1∪γ2 is superficially
divergent, γ1 ∪ γ2 ∈ Ps.d.

D (Γ) and Ps.d.
D (Γ) is closed under taking unions.

Corollary 2. All renormalizable QFTs with only four-or-less-valent vertices are join-meet-
renormalizable.

Proof. If there are only four-or-less-valent vertices, the diagrams with |Hext(Γ)| > 4 must be
superficially convergent. This also implies that ωD(Γ) ≥ 0 for |Hext(Γ)| ≥ 4.

In general, renormalizable QFTs are not join-meet-renormalizable. Fig. 3 shows an exam-
ple of a s.d. diagram Γ, where Ps.d.

D (Γ) is not a lattice . The diagram is depicted in fig. 3a
and the corresponding poset in fig. 3b. The diagram appears in φ6-theory, which is therefore
renormalizable, but not join-meet-renormalizable, in 3-dimensions.

To proceed to the Hopf algebra of decorated posets some additional notation of poset and
lattice theory must be introduced:

Order preserving maps A map σ : P → N0 on a poset to the non-negative numbers is called
strictly order preserving if x < y implies σ(x) < σ(y) for all x, y ∈ P .

Cartesian product of posets From two posets P1 and P2 a new poset P1×P2 = {(s, t) : s ∈ P1 and t ∈ P2},
the Cartesian product, with the order relation, (s, t) ≤ (s′, t′) iff s ≤ s′ and t ≤ t′, is obtained.

The Cartesian product is commutative and if P1 and P2 are lattices P1 × P2 is also a lattice
[14]. It is compatible with the notion of intervals:

P1 × P2 ⊃ [(s, t), (s′, t′)] = {(x, y) ∈ P1 × P2 : s ≤ x ≤ s′ ∧ t ≤ y ≤ t′} = [s, s′]× [t, t′]. (37)

Isomorphisms of posets An isomorphism between two posets P1 and P2 is a bijection j :
P1 → P2, which preserves the order relation: j(x) ≤ j(y)⇔ x ≤ y.
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3.3 The Hopf algebra of decorated posets

Using the preceding notions a new Hopf algebra structure on posets, suitable for the description
of the subdivergences, can be defined. This structure is essentially the one of an incidence Hopf
algebra [13] augmented by a strictly order preserving map as a decoration.

Definition 9 (Hopf algebra of decorated posets). Let D be the set of tuples (P, ν), where P
is a finite poset with a unique lower bound 0̂ and a unique upper bound 1̂ and a strictly order
preserving map ν : P → N0 with ν(0̂) = 0. One can think of D as the set of bounded posets
augmented by a strictly order preserving decoration. An equivalence relation is set up on D by
relating (P1, ν1) ∼ (P2, ν2) if there is an isomorphism j : P1 → P2, which respects the decoration
ν: ν1 = ν2 ◦ j.

Let HP be the Q-algebra generated by all the elements in the quotient P/ ∼ with the
commutative multiplication:

mHP : HP ⊗HP → HP, (38)

(P1, ν1)⊗ (P2, ν2) 7→ (P1 × P2, ν1 + ν2) , (39)

which takes the Cartesian product of the two posets and adds the decorations ν. The sum of the
two functions ν1 and ν2 is to be interpreted in the sense: (ν1 + ν2)(x, y) = ν1(x) + ν2(y). The
singleton poset P =

{
0̂
}

with 0̂ = 1̂ and the trivial decoration ν(0̂) = 0 serves as a multiplicative

unit: u(1) = IHP := (
{

0̂
}
, 0̂ 7→ 0).

Equipped with the coproduct,

∆HP : HP → HP ⊗HP, (40)

(P, ν) 7→
∑
x∈P

([0̂, x], ν)⊗
(
[x, 1̂], ν − ν(x)

)
, (41)

where (ν − ν(x))(y) = ν(y) − ν(x) and the counit ε which vanishes on every generator except
IHP , the algebra HP becomes a counital coalgebra.

Proposition 2. HP is a bialgebra.

Proof. The compatibility of the multiplication with the coproduct needs to be proven. Let
(P1, ν1), (P2, ν2) ∈ P.

∆HP ◦mHP((P1, ν1)⊗ (P2, ν2)) = ∆HP (P1 × P2, ν1 + ν2) =∑
x∈P1×P2

([0̂, x], ν1 + ν2)⊗
(
[x, 1̂], ν1 + ν2 − ν1(x)− ν2(x)

)
=

∑
y∈P1

∑
z∈P2

([0̂P1
, y]× [0̂P2

, z], ν1 + ν2)⊗
(
[y, 1̂P1

]× [z, 1̂P2
], ν1 + ν2 − ν1(x)− ν2(x)

)
=

(mHP ⊗mHP) ◦
∑
y∈P1

∑
z∈P2

[
([0̂P1 , y], ν1)⊗ ([0̂P2 , z], ν2)

⊗ ([y, 1̂P1 ], ν1 − ν1(x))⊗ ([z, 1̂P2 ], ν2 − ν2(x))
]

=

(mHP ⊗mHP) ◦ τ2,3 ◦ (∆HP ⊗∆HP)((P1, ν1)⊗ (P2, ν2)),

(42)

where τ2,3 switches the second and the third factor of the tensor product.

Corollary 3. HP is a connected Hopf algebra.

Proof. HP is graded by the value of ν(1̂). There is only one element of degree 0 because ν must
be strictly order preserving. It follows that HP is a graded, connected bialgebra and therefore a
Hopf algebra [12].
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3.4 A Hopf algebra morphism from Feynman diagrams to lattices

Theorem 3. Let ν(γ) = h1(γ). The map,

χD : Hfg
D → HP, (43)

Γ 7→ (Ps.d.
D (Γ), ν), (44)

which assigns to every diagram, its poset of s.d. subdiagrams decorated by the loop number of the
subdiagram, is a Hopf algebra morphism.

Proof. First, it needs to be shown that χD is an algebra morphism: χD◦mHfg
D

= mHP◦(χD⊗χD).

It is sufficient to prove this for the product of two generators Γ1,Γ2 ∈ Hfg
D. Subdiagrams of the

product m(Γ1 ⊗ Γ2) = Γ1Γ2, which is defined as the disjoint union of the two diagrams, can be
represented as pairs (γ1, γ2) where (γ1, γ2) ⊂ Γ1Γ2 if γ1 ⊂ Γ1 and γ2 ⊂ Γ2. This corresponds to
the Cartesian product regarding the poset structure of the subdivergences. The loop number of
such a pair is the sum of the loop numbers of the components. On those grounds:

χD(Γ1Γ2) =(Ps.d.
D (Γ1Γ2), ν) = (Ps.d.

D (Γ1)× Ps.d.
D (Γ2), ν1 + ν2) = (45)

mHP(χD(Γ1)⊗ χD(Γ2)). (46)

To prove that χD is a coalgebra morphism, we need to verify that,

(χD ⊗ χD) ◦∆Hfg
D

= ∆HP ◦ χD. (47)

Choosing some generator Γ of Hfg
D and using the definition of ∆D:

(χD ⊗ χD) ◦∆Hfg
D

Γ =
∑

γ∈Ps.d.
D (Γ)

χD(γ)⊗ χD(Γ/γ), (48)

the statement follows from χD(γ) = ([0̂, γ], ν(γ)) and χD(Γ/γ) = ([∅,Γ/γ], ν) ' ([γ,Γ], ν−ν(γ)),
which is a direct consequence of the definition of contractions in eq. (12).

Corollary 4. In a join-meet-renormalizable QFT, im(χD) ⊂ HL ⊂ HP, where HL is the sub-
space of HP which is generated by all elements (L, ν), where L is a lattice. In other words:
In a join-meet-renormalizable QFT, χD maps s.d. diagrams and products of them to decorated
lattices.

Example 8. For any primitive diagram Γ ∈ PrimHfg
D,

χD(Γ) = (Ps.d.
D (Γ), ν) =

L

0
, (49)

where the vertices in the Hasse-diagram are decorated by the value of ν and L = h1(Γ) is the
loop number of the primitive diagram.

The coproduct of χD(Γ) in HP can be calculated using eq. (40):

∆HP

L

0
=

L

0
⊗ I + I⊗

L

0
. (50)

As expected, these decorated posets are also primitive in HP.
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Example 9. For the diagram ∈ Hfg
4 , χD gives the decorated poset,

χD

( )
=

3
2 2

1

0

, (51)

of which the reduced coproduct in HP can be calculated,

∆̃HP

3
2 2

1

0

= 2

2

1

0

⊗
1

0
+

1

0
⊗

2
1 1

0

. (52)

This can be compared to the coproduct calculation in example 4,

∆̃4 = 2 ⊗ + ⊗ (53)

and identity eq. (47) is verified after computing the decorated poset of each subdiagram of
and comparing the previous two equations:

χ4

  =

2

1

0

χ4

( )
=

1

0
χ4

( )
=

2
1 1

0

. (54)

4 Properties of the lattices of subdivergences

Although, the above Hopf algebra morphism can be applied in every renormalizable QFT, we
shall restrict ourselves to join-meet-renormalizable QFTs, where χD maps to HL, the Hopf
algebra of decorated lattices, as a result of corollary 4.

The decorated lattice, which is associated to a Feynman diagram, encodes the ‘overlapping-
ness’ of the diagrams’ subdivergences. Different join-meet-renormalizable QFTs have quite distin-
guished properties in this respect. Interestingly, the types of the decorated lattices appearing de-
pend on the residues or equivalently on the superficial degree of divergence of the diagrams under
consideration. For instance, it was proven by Berghoff in the context of Wonderful models that ev-
ery diagram with only logarithmically divergent subdivergences (i.e. ∀γ ∈ Ps.d.

D (Γ) : ωD(γ) = 0)
is distributive:

Proposition 3. [2, Prop. 3.22] If Γ has only logarithmically s.d. subdiagrams in D dimensions,
(i.e. ∀γ ∈ Ps.d.

D (Γ)⇒ ωD(γ) = 0), then the distributivity identities,

γ1 ∧ (γ2 ∨ γ3) = (γ1 ∧ γ2) ∨ (γ1 ∧ γ3) (55)

γ1 ∨ (γ2 ∧ γ3) = (γ1 ∨ γ2) ∧ (γ1 ∨ γ3), (56)

hold for γ1, γ2, γ3 ∈ Ps.d.
D (Γ).

This is a pleasant result for diagrams with only logarithmically divergent subdiagrams. Be-
cause distributive lattices are always graded, this implies that we have a bigrading on HL for
these elements. One grading by the value of ν(1̂), corresponding to the loop number of the
diagram, and one grading by the length of the maximal chains of the lattice, which coincides
with the coradical degree of the diagram in Hfg

D. The coradical filtration of Hfg
D, defined in eq.

(21), consequently becomes a grading for the subspaces generated by only logarithmically s.d.
diagrams.
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Figure 4: Structure of overlapping divergences in three-valent QFTs

4.1 Theories with only three-or-less-valent vertices

From the preceding result the question arises what structure is left, if we also allow subdiagrams
which are not only logarithmically divergent. In renormalizable QFTs with only three-or-less-
valent vertices, the lattices Ps.d.

D (Γ) will turn out to be semimodular. This is a weaker property
than distributivity, but it still guarantees that the lattices are graded. To capture this property
of Ps.d.

D (Γ), some additional terms of lattice theory will be repeated following [14].

Join-irreducible element An element x of a lattice L, x ∈ L is called join-irreducible if
x = y ∨ z always implies x = y or x = z.

Atoms and coatoms An element x of L is an atom of L if it covers 0̂. It is a coatom of L if
1̂ covers x.

Semimodular lattice A lattice L is semimodular if for two elements x, y ∈ L that cover x∧y,
x and y are covered by x ∨ y.

With these notions we can formulate

Lemma 3. In a QFT with only three-or-less-valent vertices, vertex-type s.d. diagrams Γ (|Hext(Γ)| =
3) are always join-irreducible elements of Ps.d.

D (Γ).

Proof. Suppose there were γ1, γ2 ∈ Ps.d.
D (Γ) with γ1 6= Γ, γ2 6= Γ and γ1 ∨ γ2 = Γ. The

subdivergences γ1 and γ2 are therefore overlapping. From lemma 1 and proposition 1 we know
|Hext(γ1)|+|Hext(γ2)| = |Hext(γ1∪γ2)|+|Hext(γ1∩γ2)| and |Hext(γ1∩γ2)| ≥ 4. If |Hext(γ1∪γ2)| =
3, these equations cannot be fulfilled for |Hext(γ1)| ≤ 3 and |Hext(γ2)| ≤ 3.

Proposition 4. In a renormalizable QFT with only three-or-less-valent vertices, the lattice
Ps.d.
D (Γ) is semimodular for every Feynman diagram Γ.

Proof. For two diagrams µ1, µ2 ∈ Ps.d.
D (Γ) we can always form the contractions by µ1 ∧ µ2:

µ1/(µ1 ∧ µ2) and µ2/(µ1 ∧ µ2). Hence, the statement that µ1, µ2 cover µ1 ∧ µ2 is equivalent to
stating that µ1/(µ1 ∧ µ2) and µ2/(µ1 ∧ µ2) are primitive.

To prove that µ1 ∨µ2 covers µ1 and µ2 if µ1 and µ2 cover µ1 ∧µ2, it is therefore sufficient to
verify that for γ1, γ2 primitive (γ1∪γ2)/γ1 and (γ1∪γ2)/γ2 are primitive as well. This is obvious
if γ1, γ2 are not overlapping.

If γ1 and γ2 are overlapping, they must be of vertex-type and γ1 ∪ γ2 of propagator-type.
Because only three-valent vertices are allowed and |Hext(γi) ∩ Hint(γ1 ∪ γ2)| ≥ 2 (corollary 1),
each γ1 and γ2 must provide one external edge for γ1∪γ2. The situation is depicted in fig. 4. For
both γ1 and γ2 to be primitive, they must share the same four-leg kernel, depicted as a striped
box. Contraction with either γ1 or γ2 results in a one loop propagator, which is primitive.
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Γ =

(a) Example of a diagram where Ps.d.
4 (Γ) forms

a non-graded lattice.

χ4(Γ) =

(b) The Hasse diagram of the corresponding
non-graded lattice.

α1 = , α2 = , α3 =

β1 = , β2 = , β3 =

γ1 = , γ2 = , γ3 =

δ1 = , δ2 =

with the complete forests ∅ ⊂ δ1 ⊂ αi ⊂ Γ, ∅ ⊂ δ2 ⊂ βi ⊂ Γ and ∅ ⊂ γi ⊂ Γ.

(c) The non-trivial superficially divergent subdiagrams and the complete forests which can be formed
out of them.

Figure 5: Counter example of a lattice, which appears in join-meet-renormalizable QFTs with
four-valent vertices and is not graded.

Semimodular lattices have a very rich structure, see for instance Stern’s book [15]. Eventually,
semimodularity implies that the lattices under consideration are graded:

Theorem 4. In a renormalizable QFT with only three-or-less-valent vertices:

• Ps.d.
D (Γ) is a graded lattice for every propagator, vertex-type diagram or disjoint unions of

both.

• HL is bigraded by ν(1̂) and the length of the maximal chains of the lattices, which coincides
with the coradical degree in HL.

• Hfg
D is bigraded by h1(Γ) and the coradical degree of Γ.

• Every complete forest of Γ has the same length.

Proof. Every semimodular lattice is graded [14, Proposition 3.3.2].

4.2 Theories with only four-or-less-valent vertices

We have shown that every lattice associated to a s.d. diagram in a QFT with only three-or-less-
valent vertices is semimodular. For join-meet-renormalizable QFTs with also four-valent vertices
the situation is more involved as the example in fig. 5 exposes. The depicted lattice in fig. 5b
associated to the φ4-diagram in fig. 5a is not semimodular, because it is not graded. This implies
that not all complete forests are of the same length in theories, where this topology can appear.
This includes φ4 and Yang-Mills theory in four dimensions. The s.d. subdiagrams of the counter
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example are illustrated in fig. 5c. It can be seen that there are six complete forests of length
four and three complete forests of length three.

The pleasant property of semimodularity can be recovered by working in the Hopf algebra
of Feynman diagrams without tadpoles or equivalently by setting all tadpole diagrams to zero.
This is quite surprising, because the independence of loops in tadpoles from external momenta
and the combinatorial structure of BPHZ, encoded by the Hopf algebra of Feynman diagrams,
seem independent on the first sight.

Formally, we can transfer the restriction to tadpole-free diagrams to HL by the following
procedure: The Hopf algebra morphism ψ : Hfg

D → H̃
fg
D defined in eq. (26) gives rise to the ideal

kerψ ⊂ Hfg
D. Using the Hopf algebra morphism χD an ideal of HL, χD(kerψ) ⊂ HL, is obtained.

This can be summarized in a commutative diagram:

Hfg H̃fg

HL H̃L

ψ

χD

ψ′
χ′D

where H̃L is the quotient H̃L := HL/χD(kerψ) and ψ′ is just the projection to H̃L.

The interesting part is the morphism χ′D : H̃fg
D → H̃L, which maps from the Hopf algebra of

Feynman diagrams without tadpoles to H̃L. Such a map can be constructed explicitly and for
theories with only four-or-less-valent vertices, it can be ensured that χ′D maps Feynman diagrams
to decorated semimodular lattices.

Proposition 5. In a renormalizable QFT with only four-or-less-valent vertices, χ′D maps ele-
ments from the Hopf algebra of Feynman diagrams without tadpoles to decorated lattices.

Proof. Explicitly, χ′D is the map,

χ′D : Γ 7→ (P̃s.d.
D (Γ), ν), (57)

where the decoration ν is the same as above.
We need to show that P̃s.d.

D (Γ) ordered by inclusion is a lattice. This is not as simple as

before, because γ1, γ2 ∈ P̃s.d.
D (Γ) does not necessarily imply γ1 ∪ γ2 ∈ P̃s.d.

D (Γ). From definition

4 of P̃s.d.
D (Γ), we can deduce that if γ1, γ2 ∈ P̃s.d.

D (Γ), then γ1 ∪ γ2 /∈ P̃s.d.
D (Γ) iff Γ/γ1 ∪ γ2 is a

tadpole.
To prove that there still exists a least upper bound for every pair γ1, γ2 we must ensure that

every element µ ∈ Ps.d.
D (Γ) and µ /∈ P̃s.d.

D (Γ) is only covered by one element in P̃s.d.
D (Γ). This is

equivalent to stating that if γ ⊂ δ ⊂ Γ and δ/γ is a primitive tadpole (i.e. a self loop with one
vertex), then there is no δ′ ⊂ Γ such that δ′/γ is a primitive tadpole. There cannot be such a
second subdiagram δ′. Suppose there were such δ and δ′. δ and δ′ are obtained from γ by joining
two of its external legs to an new edge. As only four-or-less-valent vertices are allowed, such a
constellation can only be achieved if γ is a diagram with four external legs. δ and δ′ are the
diagrams obtained by closing either pair of legs of γ. This would imply that δ1 ∪ δ2 is a vacuum
diagram without external legs, which is excluded.

Example 10. The map χ′D can be applied to the example in fig. 5 where the lattice obtained
by χD is not semimodular. It can be seen from fig. 5c that the only diagrams, which do not



5 APPLICATIONS TO ZERO DIMENSIONAL QFT AND DIAGRAM COUNTING 20

result in tadpole diagrams upon contraction are δ1 and δ2. Accordingly,

χ′4

( )
=

5
3 3

0
, (58)

which is a graded lattice.

Proposition 6. In a QFT with only four-or-less-valent vertices χ′D maps elements from the
Hopf algebra of Feynman diagrams without tadpoles to decorated semimodular lattices.

Proof. As above we only need to prove that if γ1 and γ2 are overlapping and primitive, then
(γ1 ∨ γ2)/γ1 and (γ1 ∨ γ2)/γ2 are primitive as well. The key is to notice that Hext(γ1 ∨ γ2) 6⊂
Hext(γ1) and Hext(γ1 ∨ γ2) 6⊂ Hext(γ2). Otherwise one of the contracted diagrams would be
a tadpole. For this reason, we can characterize the overlapping divergences of a diagram by
the proper subset of external half-edges of the full diagram it contains. If γ1 ∨ γ2/γ1 was not
primitive, we could remove the half-edges Hext(γ1)∩Hext(γ1 ∨ γ2) and the adjacent vertices and
edges. The result would be a s.d. subdiagram of γ2 in contradiction with the requirement.

It is interesting how important taking the quotient by the tadpole diagrams is, to obtain the
property of semimodularity for the lattices of Feynman diagrams.

Theorem 5. In a renormalizable QFT with only four-or-less-valent vertices:

• P̃s.d.
D (Γ) is a graded lattice for every propagator, vertex-type diagram or disjoint unions of

both.

• H̃L is bigraded by ν(1̂) and the length of the maximal chains of the lattices, which coincides
with the coradical degree in HL.

• H̃fg
D is bigraded by h1(Γ) and the coradical degree of Γ.

• Every complete forest of Γ, which does not result in a tadpole upon contraction, has the
same length.

Proof. Every semimodular lattice is graded [14, Proposition 3.3.2].

The overlapping diagrams in P̃s.d.
D (Γ) are characterized by the external legs of Γ they contain.

As a consequence, there is a limited number of possibilities for primitive diagrams to be over-
lapping. A two-leg diagram can only be the join of at most two primitive overlapping diagrams
and a three-leg diagram can only be the join of at most three primitive divergent overlapping
diagrams. For four-leg diagrams in theories with only four-or-less valent vertices the restriction is
even more serve: In these cases a four-leg diagram can only by the join of at most two primitive
overlapping diagrams.

5 Applications to zero dimensional QFT and diagram count-
ing

As an application of the lattice structure, the enumeration of some classes of primitive diagrams
using techniques from zero-dimensional quantum field theories is presented. The characteristic
property of zero-dimensional QFT is that every diagram in the perturbation expansion has the
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amplitude 1 [8]. On the Hopf algebra of Feynman diagrams such a prescription can be formulated
by the character or Feynman rule:

φ : Hfg
D → Q[~], (59)

Γ 7→ ~h1(Γ), (60)

which maps every Feynman diagram to ~ to the power of its number of loops in the ring of

powerseries in ~. Clearly, φ is in G
Hfg

D

Q[~], the group of characters of Hfg
D to Q[~]. Note, that we are

not setting D = 0 even though φ are the Feynman rules for zero-dimensional QFT. Every diagram
would be ‘convergent’ and the Hopf algebra Hfg

0 trivial. It might be more enlightening to think
about φ as toy Feynman rules which assign 1 to every Feynman diagram without any respect
to kinematics. This way we can still study the effects of renormalization on the amplitudes in
an arbitrary dimension of space-time. Moreover, φ ‘counts’ the number of diagrams weighted by
their symmetry factor.

We define the sum of all 1PI diagrams with a certain residue r weighted by their symmetry
factor as,

Xr :=
∑
Γ∈T

res(Γ)=r

Γ

|Aut(Γ)|
, (61)

such that φ(Xr) is the generating function of these weighted diagrams with ~ as a counting
variable. This generating function is the perturbation expansion of the Green’s function for the
residue r.

The counter term map [7] is defined as,

SRD := R ◦ φ ◦ SD, (62)

in a multiplicative renormalization scheme R with the antipode SD of Hfg
D. SRD is called the

counter term map, because it maps the sum of all 1PI diagrams with a certain residue r to
the corresponding counter term, which when substituted into the lagrangian renormalizes the
QFT appropriately. The renormalized Feynman rules are given by the convolution product
φRD := SRD ∗ φ. In zero-dimensional QFTs, they vanish on all generators of Hfg

D except on I. This
can be used to obtain differential equations for the Z-factors and other interesting quantities as
was done in [8, 1].

For the toy Feynman rules φ, there are no kinematics to choose a multiplicative renormaliza-
tion scheme from. The renormalization will be modeled as usual in the scope of zero-dimensional-
QFTs by setting R = id. Consequently, SRD = φ ◦ SD.

The antipode in this formula is the point where the Hopf algebra structure enters the game.
The lattice structure can be used to clarify the picture even more and to obtain quantitative
results.

We define φ′ ∈ GHL

Q[~], a Feynman rule on the Hopf algebra of decorated lattices, analogous to

φ ∈ GH
fg
D

Q[~]:

φ′ : HL → Q[~], (63)

(P, ν) 7→ ~ν(1̂), (64)

which maps a decorated lattice to the value of the decoration of the largest element. Immediately,
we can see that φ = φ′ ◦ χD. For the counter term map,

SRD = φ′ ◦ χD ◦ SD, (65)
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is obtained. Using theorem 3, we can commute χD and SD,

SRD = φ′ ◦ S ◦ χD. (66)

For this reason, the evaluation of SRD can be performed entirely in HL! SRD reduces to a com-
binatorial calculation on the lattice which is obtained by the Hopf algebra morphism χD. The
morphism φ′ ◦ S maps decorated lattices into the ring of powerseries in ~. Because S respects
the grading in ν(1̂), we can write

φ′ ◦ S(L, ν) = ~ν(1̂)ζ ◦ S(L, ν), (67)

where ζ is the characteristic function (L, ν) 7→ 1. It was shown in [9], that ζ ◦ S is the Moebius
function, µ(0̂, 1̂), on the lattice. It is defined recursively as,

Definition 10 (Moebius function).

µP (x, y) =

1, if x = y

−
∑

x≤z<y
µP (x, z) if x < y. (68)

for a poset P and x, y ∈ P .

We summarize these observations in

Theorem 6. For zero-dimensional-QFT Feynman rules as φ above the counter term map takes
the form

SR
′
(L, ν) = ~ν(1̂)µL(0̂, 1̂) (69)

on the Hopf algebra of lattices, where SRD = SR
′ ◦χD and with 0̂ and 1̂ the lower and upper bound

of L.

Corollary 5.

SRD(Γ) = ~h1(Γ)µPs.d.
D (Γ)(0̂, 1̂) (70)

on the Hopf algebra of Feynman diagrams with 0̂ = ∅ and 1̂ = Γ, the lower and upper bound of
Ps.d.
D (Γ).

On these grounds, the counter terms in zero-dimensional QFT can be calculated only by
computing the Moebius function on the lattice Ps.d.

D (Γ)! The Moebius function is a well studied
object in combinatorics. There are especially sophisticated techniques to calculate the Moebius
functions on lattices (see [14, 15]). The following two theorems, which are quoted from the
respective sources, should serve as an illustration of this sophistication:

Theorem 7. (Rota’s crosscut theorem for atoms and coatoms (special case of [14, cor. 3.9.4]))
Let L be a finite lattice and X its set of atoms and Y its set of coatoms, then

µL(0̂, 1̂) =
∑
k

(−1)kNk =
∑
k

(−1)kMk, (71)

where Nk is the number of k-subsets of X whose join is 1̂ and Mk is the number of k-subsets of
Y whose meet is 0̂.



5 APPLICATIONS TO ZERO DIMENSIONAL QFT AND DIAGRAM COUNTING 23

With this theorem the Moebius functions of all the lattices appearing in this article can be
calculated very efficiently.

In many cases, an even simpler theorem, which is a special case of the previous one, applies:

Theorem 8. (Hall’s theorem [15, cor. 4.1.7.]) If, in a lattice 1̂ is not a join of atoms or 0̂ is
not a meet of coatoms, then µ(0̂, 1̂) = 0.

In lemma 3, we proved that every vertex-type subdiagram in a QFT with only three-valent
vertices is join-irreducible. Hence, it is also no join of atoms except if it is an atom itself.

Theorem 9. In a renormalizable QFT with only three-or-less-valent vertices and Γ a vertex-type
s.d. diagram (i.e. Hext(Γ) = 3):

SRD(Γ) =

{
−~h1(Γ) if Γ is primitive

0 if Γ is not primitive.
(72)

Proof. In both cases the element 1̂ = Γ in the lattice Ps.d.
D (Γ) is join-irreducible (lemma 3). If Γ

is primitive φ ◦ S(Γ) = −φ(Γ) = −~h1(Γ). If Γ is not primitive, it does not cover 0̂. This implies
that 1̂ is not a join of atoms. Therefore, µPs.d.

D (Γ)(0̂, 1̂) vanishes and so does SRD(Γ) in accordance

to eq. (70).

Corollary 6. In a renormalizable QFT with only three-or-less-valent vertices and r ∈ Rv a
vertex-type residue:

SRD(Xr) = −φ ◦ PPrim(Hfg
D)(X

r), (73)

where PPrim(Hfg
D) projects onto the primitive elements of Hfg

D.

Summarizing, we established that in a theory with only three-or-less-valent vertices the
counter term SRD(Xr) counts the number of primitive diagrams if r ∈ Rv. This fact has been
used indirectly in [8] to obtain the generating functions for primitive vertex diagrams in φ3.

The conventional Z-factor for the respective vertex is Zr = 1+r!SRD(Xr), where the factorial
of the residue r =

∏
ϕ∈Φ

ϕnϕ is r! =
∏
ϕ∈Φ

nϕ!. This factorial is necessary to return to the leg-fixed

case.
Further exploitation of the lattice structure leads to a statement on propagator-type diagrams

in such theories:

Theorem 10. In a renormalizable QFT with three-or-less-valent vertices the propagator-type

diagrams Γ, for which SRD(Γ) 6= 0, must have the lattice structure or .

Proof. A propagator-type diagram Γ either has a maximal forest which is the union of propagator
diagrams, has at least two vertex-type subdiagrams or it is the primitive diagram of the topology

. In the first case Γ is join-irreducible and SRD(Γ) = 0. In the third case the corresponding
lattice is . In the second case, Γ covers at least one vertex diagram γ which is join-irreducible.

Every lattice L with µL(0̂, 1̂) 6= 0 is complemented [15, Cor. 4.1.11]. In a complemented lattice
L, there is a y ∈ L for every x ∈ L such that x ∨ y = 1̂ and y ∧ x = 0̂. For this reason, all
the join-irreducible elements of L must be atoms if µL(0̂, 1̂) 6= 0. As was shown in the proof of
proposition 4, a propagator cannot be the join of more than two primitive diagrams. Accordingly,

is the only possible lattice if Γ is not primitive.
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(a) Structure of overlapping divergences of
four-leg diagrams in theories with four-or-less-
valent vertices.

. . .

(b) Chain of overlapping divergences of type
in fig. 6a, which will evaluate to a non-zero
Moebius function.

Figure 6: Overlapping divergences for diagrams four legs in theories with only four-or-less-valent
vertices.

The Z-factors for the propagators can also be obtained using the last theorem. To do this the
Moebius function for each propagator diagram must be calculated using the form of the lattices
and eq. (68). The Moebius functions for the vertex-type diagrams are known from theorem 9.

Example 11. In a renormalizable QFT with only three-or-less-valent vertices and r ∈ Re, a
propagator-type residue:

SRD(Xr) = ~
∑

res ΓP =r
{v1,v2}=V (ΓP )

1

Aut ΓP

(
−1 +

res(v1)!

2
φ ◦ PPrim(Hfg

D)(X
res(v1)) +

res(v2)!

2
φ ◦ PPrim(Hfg

D)(X
res(v2))

)
(74)

where the sum is over all primitive propagator diagrams ΓP with a topology as and exactly
two vertices v1, v2. Of course, this sum is finite.

The factorials of the residues must be included to fix the external legs of the vertex-type
subdiagrams. The factor of 1

2 is necessary, because every non-primitive diagram, which con-
tributes to the counter term, has exactly two maximal forests. This is an example of a simple
Dyson-Schwinger equation in the style of [10].

The conventional Z-factor for the propagator is Zr = 1 + r!SRD(Xr).

Although the counter term map for renormalizable QFTs with only three-or-less valent ver-
tices enumerates primitive diagrams, we cannot assume that the situation is similar in a more
general setting with also four-valent vertices. A negative result in this direction was obtained in
[1, p. 27] by Argyres et al. They observed that the vertex counter term in zero-dimensional φ4

does not count primitive diagrams.
From the perspective of lattice theory this result can be explained. The only way in which

overlapping divergences can appear in a diagram with four legs in a QFT with only four-
or-less-valent vertices is depicted in fig. 6a. The dashed lines indicate the possible cuts to
separate one overlapping divergence from the other. To obtain a Feynman diagram Γ with
µPs.d.

D (Γ)(0̂, 1̂) 6= 0, the blob in the middle must be either of the same overlapping type as fig.
6a or superficially convergent. Otherwise, a join-irreducible element would be generated, which
would imply µPs.d.

D (Γ)(0̂, 1̂) = 0. The possible non-primitive diagrams with four legs, which give a
non-vanishing Moebius function are consequently of the form depicted in fig. 6b, where each blob
must be replaced by a superficially convergent four-leg diagram such that the diagram remains
1PI. The lattice corresponding to this structure of overlapping divergences is a boolean lattice.
Every superficially divergent subdiagram can be characterized by the particular set partition
of ‘blocks’ it contains. This gives a bijection from {0, 1}n to all possible subdivergences. The
Moebius function of boolean lattices evaluates to (−1)n, where n is the number of atoms [14,
Ex. 3.8.4.]. Accordingly, the structure of overlapping four-leg diagrams depends on the number
of superficially convergent four-leg diagrams. The situation is especially simple in φ4-theory:
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Example 12 (Overlapping vertex-type diagrams in φ4-theory). The only superficially convergent
four-leg diagram in φ4-theory is the single four-leg vertex and so the only vertex-type s.d.
diagrams Γ which give µPs.d.

D (Γ)(0̂, 1̂) 6= 0 are . . . , the chains of one loop diagrams.

Their generating function is 1
8

∑
L≥0

~L

2L (every diagram is weighted by its symmetry factor) and

the counter term map in φ4 evaluates to,

SRD(X ) = −φ ◦ PPrim(Hfg)(X ) +
1

8

∑
L≥2

(−1)L
(
~
2

)L
. (75)

Note again, that in this setup the legs of the diagrams are not fixed as explained in section 2.2.
To reobtain the numbers for the case with fixed legs, the generating function must be multiplied
with the typical value 4! = 24. The formula for the usual vertex Z-factor is Z = 1+4!SRD(X ).

Using this result, we can indeed use the counter terms of zero-dimensional φ4-theory to
calculate the number of primitive diagrams. We merely must include the correction term on the
right hand side of eq. (75).

Example 13 (Overlapping four-leg-vertex diagrams in pure Yang-Mills-theory). In pure Yang-
Mills-theory there can be either the single four-valent vertex or two three-valent vertices joined
by a propagator as superficially convergent four-leg diagrams. Only chains of diagrams as in
fig. 6b or primitive diagrams give a non-zero SRD(Γ). At two loop for instance, the non-primitive
diagrams

, , , , and

contribute non-trivially to SRD(X ). These are the only four-leg diagrams which can be formed
as the union of two primitive diagrams in this theory. The generating function for L ≥ 2 of

these diagrams is 3
8

∑
L≥2

(
3~
2

)L
. Hence, the counter term map in pure Yang-Mills-theory for the

four-gluon amplitude in zero-dimensional QFT evaluates to,

SRD(X ) = −φ ◦ PPrim(Hfg)(X ) +
3

8

∑
L≥2

(−1)L
(

3~
2

)L
. (76)

To reobtain the numbers for the case with fixed legs this generating function needs to by mul-
tiplied with the value 4! = 24 as in the example for φ4-theory. The formula for the Z-factor is

Z = 1 + 4!SRD(X ).

6 Outlook

It was shown that the Hopf algebra morphism χD can be used to disentangle the combinatorial
and the analytic part of Feynman diagram calculations. The Hopf algebra of Feynman diagrams
is graded by the coradical degree of its elements as demonstrated in theorem 4 for the case
of three-or-less-valent theories and theorem 5 for four-or-less-valent theories with the tadpole
diagrams set to zero.

This grading could also be used to reorganize diagrams which ‘renormalize in the same way’.
The preimage χ−1

D of some a decorated lattice in H̃L is a space of such diagrams. With methods
from [5] this could be used to the express the log-expansion of Green functions systematically.
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Primitive diagrams of coradical degree one contribute to the first power in the log-expansion,
diagrams of coradical degree two to the second and diagrams with a coradical degree equal to
the loop number contribute to the leading-log [11].

Furthermore, this framework can be used to make more statements and explicit calculations
on the weighted numbers of primitive diagrams in different QFTs and their asymptotic behaviour.
These aspects will be analyzed from a combinatorial perspective in a subsequent article [4].
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