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1. Schwinger parameters and hyperlogarithms

Many talks at this conference demonstrate the remarkable progress in the exact eval-
uation of Feynman integrals that was achieved during the past few years. A key element
shared by many of these advances is an improved understanding of multiple polylogarithms

Lin1,...,nr (z1, . . . ,zr) =
∑

0<k1<...<kr

zk1
1 · · ·zkr

r

kn1
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nr
r
, where n1, . . . ,nr ∈N, (1.1)

which suffice to express a wide class of Feynman integrals.1 They admit representations as
iterated integrals [19] of the form
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with σ1, . . . ,σn ∈C and σ1 6= 0, (1.2)

called hyperlogarithms [23], and can be manipulated symbolically very efficiently. In these
proceedings we consider the method put forward by Francis Brown [13], that aims at
integrating out Schwinger parameters αe one by one in the representation
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eΓ(νe)
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of Feynman integrals associated to a graph G with h1(G) loops and N edges E. This
formula assumes scalar propagators (k2

e +m2
e)−νe of mass me at each edge e (raised to some

power νe called index), but generalizations to tensor integrals exist [25]. The Symanzik
polynomials [9] sum all spanning trees T and 2-forests F in

ψ =
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αe+ψ
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αem
2
e, (1.4)

where q(F )2 is the square of the momentum flowing between the two components of F . We
choose an order e1, . . . ,eN of edges and compute Ik :=

∫∞
0 Ik−1 dαek

iteratively, starting
with the original integrand I0 of (1.3). Details of the involved algorithms are given in
[12, 13] and a public implementation in Maple [24] is available [28]. Also the more general
approach presented at the preceeding conference [7], based on iterated integrals in several
variables (instead of just one), is going to be published in the nearest future.

The crucial limitation of this method is that all Ik(αek+1 , . . . ,αeN ) must be expressible
as C(αek+1 , . . . ,αeN )-linear combinations hyperlogarithms (1.2) with respect to the next
integration variable z=αek+1 . If this holds for some order on E, we call G linearly reducible.
This criterion depends only on the Symanzik polynomials and reduction algorithms are
available [12, 13] that check conditions sufficient for linear reducibility.2

In particular this discussion is unaffected by infinitessimal expansions in analytic regu-
lators, like the popular shiftD= D̂−2ε away from an even dimension D̂ ∈ 2N of spacetime3

1Counterexamples are known in massive [3, 5], massless [15] and even supersymmetric theories [17, 26].
2This means that reductions can reveal linear reducibility, but not disprove it.
3Even if one starts out with D̂ = 4 dimensions, a reduction of tensor integrals will produce scalar

integrals also in even dimensions above D̂.
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5P1 5P2 5P3 5P4 5P5 5P6

5P7 5N1 5N2 5N3 5N4

Figure 1: All three-connected five-loop vacuum graphs [27], divided into planar (P ) and non-planar
(N) ones. The zig-zag 5P3 = ZZ5 and 5N1 were considered in [13]. Cutting any edge produces a
propagator with four loops, deleting a three-valent vertex creates a three-loop three-point graph.

P7,8 = P7,9 = P7,11 =

Figure 2: The most complicated primitive periods in φ4-theory at seven loops are given by the
three graphs P7,8, P7,9 and P7,11 in the notation of the census [30].

such that Φ(G) =
∑
kΦk(G) ·εk becomes a Laurent series. All of its coefficients can in prin-

ciple be computed as soon as G is linearly reducible, and remarkably this also applies for
the multivariate expansions in the indices νe = ν̂e+εe close to integers ν̂e ∈ Z.

2. Massless propagators up to 6 loops

Originally, this method was applied to convergent massless propagators G only [13].
These transform into vacuum graphs G̃=G ∪̇{e} upon joining the external legs of G by an
edge e. Then only the first Symanzik ψ

G̃
= ψGαe+ϕG is of interest and a powerful toolbox

of algebraic identities becomes available [12, 15, 16].
We verified that all massless propagators up to four loops (e. g. all which arise by

cutting an edge of the graphs shown in figure 1) are linearly reducible [27]. The recent
computation [4, 32] of the corresponding master integrals (using different methods) can
therefore be extended to higher orders in ε and to include self-energy insertions. Such
results will be needed for calculations at higher loop orders and are already available for
many examples [27].

The traditional benchmark in this field is the evaluation of primitive divergent periods
of φ4-theory in D = 4 dimensions [11]. This problem is now completely solved up to 7
loops: All primitive graphs of the census [30] to this order are linearly reducible—except
for P6,4 (that can be computed with graphical functions [31]) and P7,11 of figure 2 which
we address below. These results suggest that all massless propagators with at most 6 loops
could be computable using multiple polylogarithms. This is the most optimistic scenario,
as some 7 loop massless propagators are known to exceed the world of polylogarithms [14].
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2.1 Changing variables for linear reductions

After ten integrations for P7,11, the partial integral I10 = L/d10 consists of a hyperlog-
arithm L of weight 8 and the irreducible, totally quadratic denominator
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2
1−α2
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2
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(2.1)

Further integration would introduce square roots of the discriminant of this polynomial
and therefore escape the space of hyperlogarithms with rational arguments; P7,11 is not
linearly reducible as such. But (2.1) can be linearized: If we change variables according to
α′3α1 = α3(α1 +α2 +α4), α4 = α′4(α2 +α′3) and α1 = α′1α

′
4, the new denominator

d′10 = (α2 +α′3)(α2 +α2α
′
4−α′1)(α′1α′4 +α2 +α2α

′
4 +α′3α

′
4) (2.2)

factorizes linearly such that α′1, α′3 and α′4 can indeed be integrated without further com-
plications (α2 = 1). Interestingly, the final period is not a multiple zeta value but a linear
combination of multiple polylogarithms (1.1) evaluated at a sixth roots of unity.

2.2 Missing alternating sums

The other two of the most complicated vacuum graphs with 7 loops (shown in figure 2)
are linearly reducible without further ado and we succeeded to compute

P7,9 = 92943
160 ζ11 + 3381

20

(
ζ3,5,3− ζ3ζ3,5

)
− 1155

4 ζ2
3ζ5 + 896ζ3

(
27
80ζ3,5 + 45

64ζ3ζ5− 261
320ζ8

)
(2.3)

using hyperlogarithms. This result was recently proposed by David Broadhurst [10] and is
now confirmed. Interestingly, for both P7,8 and P7,9 the last integrand I12 has denominator
(α1 +α2)(α1−α2) and produces a result involving alternating sums. Only after reducing
these to the data mine basis [6] we arrived at the multiple zeta value (2.3). So far, the
reason for this absence of alternating sums in massless φ4-theory still eludes us.

3. Non-trivial kinematics

With non-trivial kinematics, the second Symanzik ϕ makes linear reducibility a more
restrictive criterion that depends sensitively on the distribution of external momenta and
internal masses. In particular it requires at least one propagator to be massless.4

Some examples of reducible graphs with masses are shown in figure 3 and some explicit
results were computed [29]. However, no combinatorial characterization of this class of
graphs is known so far. We now specialize to two particular kinematic configurations in
order to state more general results.

4This restriction does not apply when there is no momentum dependence at all. Important examples
of such graphs that are linearly reducible are known and hyperlogarithms are used to compute generating
functions for Mellin moments of massive operator matrix elements [1, 2].
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Figure 3: Examples of linearly reducible graphs with some massive internal and off-shell external
momenta (thick edges).

Figure 4: Two-loop four-point graphs without self-energy (propagator) subgraphs.

3.1 Massless three-point functions

Massless three-point functions (depending on arbitrary p2
1, p2

2 and p2
3) seem to be very

well suited for parametric integration: Linear reducibility holds for all such graphs at 2
loops [18] and even at 3 loops [29]. This includes all graphs obtained by removing one
three-valent vertex from any of the vacuum graphs in figure 1 (external legs are attached
to the neighbours of that deleted vertex).

When these integrals are written as hyperlogarithms, one encounters the square root
of the Källén function λ=

(
p2

1 +p2
2−p2

3
)2−4p2

1p
2
2. The reparametrization given by

p2
2 = p2

1 ·zz̄ and p2
3 = p2

1 · (1−z)(1− z̄) rationalizes
√
λ=±(z− z̄) (3.1)

in terms of two new variables z and z̄. Then Φ(G) is given by p−2ω
1 and a rational linear

combination of hyperlogarithms Lv(z)Lw(z̄). The polynomial reduction provides an upper
bound on the set of letters that may appear in the words v and w; put differently it restricts
the entries of the symbol [20] of the hyperlogarithms.

Details and explicit results for some integrals can be found in [29]. There are reducible
examples at higher loop orders, but non-reducible graphs appear already at 4 loops.

3.2 Massless four-point functions

All massless four-point on-shell graphs (p2
1 = p2

2 = p2
3 = p2

4 = 0) with at most two loops
are linearly reducible [8]. In particular these include the graphs of figure 4.

At 3 loops the first graphs that are not linearly reducible occur, including the com-
plete graph K4 (first graph in bottom row of figure 3 with the fourth external momentum
attached to the center) which was recently evaluated [21] to harmonic polylogarithms [?].
For its parametric integration, a change of variables is necessary [29].

While the general type of massless four-point functions is not clear, it seems that
at least all of the n-loop box ladders Bn (figure 5) are linearly reducible: For on-shell
kinematics we always obtained a result in terms of harmonic polylogarithms. Due to the
recent interest [22] into these integrals in D = 6 dimensions (where they are finite), we list
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B3 = B4 =

Figure 5: Examples of the box ladder graphs Bn of n= 3 and n= 4 loops.

the values cn := Φ(Bn)|s=1,t=0 for n ≤ 6 where s = (p1 + p2)2 and t = (p1 + p4)2 measure
the momentum running through Bn in the horizontal and vertical directions:5

c2 = 2ζ2, (3.2)
c3 = 4ζ2
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3
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2
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)
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4. Problems for parametric integration with hyperlogarithms

1. To compute divergent integrals in dimensional regularization, one first needs to con-
struct a representation involving only convergent integrands. An algorithm that
solves this problem was presented in [29], but already for low numbers of divergences
it can produce expressions that become untractibly large. It seems very promising to
combine this algorithm with programs for integration by parts, in order to obtain a
reduction to finite (convergent) master integrals.

2. We know many cases (like K4 and P7,11 mentioned above) of integrals that are not
linearly reducible in the original Schwinger parameters, but become so after a suitable
change of variables. It is unclear under which general circumstances this is possible.
So far, there is only one combinatorial analysis available which considers a particular
kind of transformation for vacuum integrals [33].

3. Why do alternating sums so far not occur in massless propagators?

4. The implementation [28] works in the Euclidean region. Analytic continuation to
various kinematic regimes of the physical region can in general be very cumbersome
and should be automated.

5Printing the expressions for Φ(Bn) including the dependence on s and t would take too much space.
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