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Introduction

Quantum field theory, or to be more precise, perturbative quantum field the-
ory, provides the framework for theories or models in particle physics, such
as the Standard Model of elementary particle physics. The Standard Model is
our most complete description of nature on the small scale, although it has its
problems.

Experimentally measurable quantities, such as scattering cross sections
and decay rates, are obtained from the correlation functions. Feynman graphs
and Feynman rules are the tools one uses to compute these functions. These
computations involve integrals over momenta, and it is known that for scalar
theories these can be rewritten systematically as integrals over positive param-
eters (Schwinger parameters), involving certain polynomials (the Symanzik
polynomials). This will be discussed in chapter 2.

Many tools have been and are being developed to compute these paramet-
ric integrals and study the underlying mathematics.* Together with a pro-
gram that generates Feynman graphs and finds the subdivergences’, one has
in principle a powerful tool to do computations. However, a serious problem
is that the expressions can get gigantic.

The goal of this thesis is to extend this parametric representation from
scalar theories to gauge theories: quantum electrodynamics, scalar electrody-
namics and Yang-Mills theories will be discussed here, in chapter 3, 4 and 5
respectively. This adds to to previous work for QED by Nakanishi, Cvitanovi¢
and Kinoshita.t

Furthermore, the respective Ward identities in these theories are studied.
These identities show that the gauge bosons, or photons in the case of (s)QED,
are transversal, as expected from the classical theory.

*For example, see [5], [2], [13] and [14].
*such as [4]
#[12], section 9-2 and [8] respectively. See also [1], section V.



Scalar Theories

2.1 Feynman Graphs

We start by introducing the combinatorial tool we need for our computations:
Definition 2.1. A Feynman graph* I' is defined by:

* a finite set of half-edges I'"®,

® a partition I’ 0] on he, which we call the set of vertices,

e and a set of internal edges’ I'lll, which consists of disjoint unordered pairs
of half-edges.

The half-edges that do not show up in I’ 1} are called external edgest and
the set of external edges is denoted by I'**:

ret=rhe\ | J e. (2.1)
ecr(l]

Anedgee c I 1) is called incident to a vertex v € Tl if v e # @. Two
vertices are said to be adjacent if there is an edge incident to both of them, and
two edges are adjacent if they are incident to the same vertex.

We use the words ‘graphs’, ‘edges’ and “vertices’ for a reason: we represent
Feynman graphs indeed graphically:

Example 2.2. i. Let I be given by
e ={1,2,3,4,5,6}, rli={{1,2,3},{4,56}}

and Il ={{3,4}}.

*or Feynman diagram
*In physics literature the word lines is also used.
Yor legs



This graph looks like:

We have I'™t = {1,2,5,6}.
ii. Let I'"® and I'l% be as above, but now take

i = {{2,4},{3,5}}.

This one looks like:

In this case: '™ = {1,6}.
iii. The empty graph @ ("¢ = @) is a graph too.

The number of half-edges #v in a vertex v is called the valence of v. If every
vertex in a graph has the same valence k, we say that it is a k-reqular graph.
Both graphs in example 2.2.i and ii are 3-regular.

Definition 2.3. Let I7 and I; be Feynman graphs. A Feynman graph isomor-
phism ¢ : I} — I is given by a bijection ¢ : I'"® — I''® which respects the
vertices, internal edges and external edges. By this we mean:

o ifve Flm, then ¢(v) € FZ[O],

o ife e 'Y, then ¢(e) € 1Y,
* and for every h € I'™: ¢(h) = h.

If such an isomorphism between I7 and I; exists, we say that I7 and I, are
equivalent Feynman graphs: I7 = I5.

Note that the third condition above implies that I7 and I can only be
equivalent if I = I,

Example 2.4. i. Let

100 __99

7

and ¢ : I'1 — I given by

1—1, 22, 337, 442, 5+—99, 6+ 100.

¢ is a isomorphism in the sense of definition 2.3 and hence I = I5.

ii. Let
8 7
10 27T 7 94 W6
12f \
n=1- R and =1 1211 }2
45 3777y

Bijections I — I1'® exist, but none of them will meet the first two
properties in above definition simultaneously. So I7 2 I5.



iii. Because of the third condition in above definition:

Definition 2.5. Let I' and y be Feynman graphs. We say that - is a subgraph
of I' (notation: v C I') if ')/[O] c rlo and 'y[l] c ril,

For example:

8
\‘\\ _ 12 9 __ 8
107 10 #7177
/ 512y \
1 =mmemee < C 1 T B SRS 2
3N = \11
4 e 3l
e 1 4 5
5

Definition 2.6. The symmetry factor of a Feynman graph I is defined as
Sym(I') := #Aut(I'), (2.2)
the order of the group of automorphisms on I" (i.e. isomorphisms I' — I').

Example 2.7.

’3
9/§1"7 .
Sym (1 4 . ) =#{id} =1,
5 I‘\\

‘2

6_5

Sym (1 e z) = #{id, (36)(45)} =2
374

(using the cycle notation),

N

sym (1 2) = #{id, (34)} = 2,

34
Sym (1 ----- e z) = #{id, (35)(46), (37)(48), (57)(68),
4
(357)(468),(375)(486)} =6.
Definition 2.8.  i. A graph I' is connected if one can go from any vertex to

any other one by hopping over only adjacent vertices. To put it differ-
ently: A graph is connected if it cannot be written as a disjoint union of
several nonempty graphs.

A graph that is not connected is called disconnected.

ii. The number of connected components of a graph I" is denoted by cr.



iii. A graph I is called 1-particle reducible (1PI)* if for every e € T1l: '\ e is

connected.

The graph

is not. Both are connected.

Definition 2.9. i. For a graph I' and an edge e € I'lll, we define the fol-
lowing operation: cutting the edge e gives a new graph I' \ e given by

(r'\ e)l% := rl0)

and

(I'\e)W =Tl {e}.

We use the following notation:

I'\{e,...,en} =T \er\ - \en.

(2.3)

(2.4)

ii. Let e € T'll be incident to the vertices viand v, € T (1], and assume
v] # vy. (Anticipating to definition 2.11.i: e should not form a self-loop.)

If we contract e, we get a new graph I'/e given by

(r/e)0 := O\ {v,0,} U{v Uwy \ e}

and

(/) = 1\ {e}.
For this operation, we also write
r'/{ey,...,en} :=T/er/ - /ey.
iii. For a subgraph v C I" we define the cograph I' /-y by:
(f/,),)[O] _ rlo] \7[0] Uyt and (1’/,),)[1] — ri \,),[1] )

Example 2.10.

i. o s I
1{ 2 \ {3,4} = /:—;_)—6-:\\
374 3 .
i. 8/73 5
1<} /{4,5} =1-2{_}7
588 ®
2 2

*Mathematicians would use the term 2-connected.

(2:5)

(2.6)



ii.

iv.

The dot indicates the 2-valent vertex {6,9}.

Definition 2.11. i. A loop* is a connected subgraph where every vertex
contains two internal half-edges. We denote the set of loops of a graph
r by 2 T-

A loop with only one vertex is called a self-loop.

ii. A connected graph without loops is called a tree and a disjoint union
of n trees is a forest, or n-forest, if one wants to specify the number of
connected components.

iii. The loop order Ir of a connected graph I is the number of edges one has
to cut, such that the result is a tree.

For a disconnected graph I' = 1 - - - ¢, the loop order is
Ip=lyy 4ot b,

Example 2.12. The graph

9 -==-.
10,777
JEVE I
1 ------ \ ' it 2
\11f
3l 6
5
has the following set of loops:
948
1238 10 ™7
Ly =14 1 I -2
176 376
4’5
4 11

and loop order /.5 = 2.

Note that if one cuts an edge e € I'll], either the loop number of the graph
decreases by 1, or one gets one more connected component:

Ipe—cpe=1Ir—cr—1. (2.7)

Lemma 2.13 (Euler’s formula). For any graph

#0040 — o (2.8)

*In mathematical literature, this is usually called a cycle.
*This is what mathematicians usually call a loop.



Proof. By induction in #I'[1):

e If I" has no internal edges, it is only a bunch of disconnected vertices. So
#I'0 = ¢ and I = 0. So (2.8) holds.

e Let e € I'lYl. Note that per definition #(I"\ e)!! = #I'l!l —1 (equation
(2.4)). Assume (2.8) is true for I' \ e. Then:

#rl — 40 — g(r\ o) —#(r\ ) +1
:lf\e_cf\e+1 =Ir—cr,
where we used equations (2.3) and (2.7). O

Lemma 2.14. For k-regular Feynman graphs:
#I' + 2(Ir — cr)

i #r00 — .
P , (2.9)
.. t
11. #F[” —_ #I +k(lf — CF) ) (2'10)
k—2
Proof. This follows from Euler’s formula together with
k10 = grhe = our(t) 4 grext, O
Although the graph
I'=1--—-- 2,
does not fit in our definition 2.1, we will allow it. If we take I'*™* = {1,2}
and I = 0, then from above lemma we have paradoxically #I'® = 0 and
#ril = —1.

Note that the 1-loop vacuum bubble,

does not fit in our setup either.

Definition 2.15. An orientation on a Feynman graph I' is an assignment of a
sign ¢, € {1, —1} to every half-edge h € '™, such that for all {h;,h,} € I'lll:
€hy = &€y

If e, = 1, we say h is ingoing and if e, = —1, we say it is outgoing.

We represent such an orientation by grey arrows. For example: the orien-
tation on the graph

3_5
1 == I‘,""é
274
isgivenbye; = ez =g =1and ep = e5 = g = —1.
1 3 4 2 5 6

In the rest of this thesis, instead of labelling the half-edges, we will give
labels to the vertices and the edges.

10



2.2 Feynman Rules

In this chapter, we look at theories in d space-time dimensions with a classical
Lagrangian of the form

L = 1(3,9) (") — HAP", (2.11)

where ¢ is a real scalar field and k € IN, k > 3.

For odd k, these theories are actually unphysical. The potential term is
unbounded from below then, so there is no stable vacuum.

These theories are massless. For massive theories one includes a mass term
—%m2<p2. In this thesis, theories are assumed to be massless, because in the
end we are interested in gauge theories. But occasionally a comment will be
made on the massive case.

In the quantum theory we want to compute correlation functions or Green's
functions, and to do so Feynman graphs and Feynman rules are used.

We exclude graphs with vacuum bubbles components (a vacuum bubble is
a graph without any external edges), such as

Furthermore, we exclude graphs with tadpole subgraphs (a tadpole graph is a
graph with only one external edge), such as

________

In ¢*-theory, k-regular graphs are the graphs we need. The Feynman rules
in this case are:

Definition 2.16. Let I' be a ¢*-theory Feynman graph. Choose an orientation
on I'. Choose a set of I loops L C £ (I') and for each loop in L a clockwise
or anticlockwise orientation.” Assign a momentum vector ¢, to every edge
e € I'"l and a momentum vector k; to every loop ¢ € L. I'’s Feynman amplitude
is then:

1
O(T) = — 72 /dk , (2.12)
r IT »?
ecrll
where we use the short-hand notation

/dk - H/ a'k (2.13)

leLl

and

Pe = Ge+ Z eetky . (2.14)
el
Mse

*By this we mean that for every vertex v in the loop, the two internal half-edges Iy, h, € v are

oriented opposite: g, = —¢y,-

11



The sign ¢,y € {1, —1} is 1 if e is oriented the same way in I' and ¢, and —1 if
it is oriented the opposite way.

The reader might miss some factors i, —iA and ﬁ ; these will be included

in definition 2.19. Also, the factor W which we included here will be
compensated there. In example 2.21 and theorem 2.24 it will be clear why this
is convenient.

For massive theories we have p2 — m? in the denominator instead of p2.

Example 2.17. Consider the graph

3
s LA
1--4916
4 7~
57\
2
with L = {¢1,(,}, where the loops are
7
. 8 3
5, f N
b= 119 and b= 9y i6
4 STETN
5 4 2

(-] V=% _ A%k dk,
g ™)) pipipipipips

_ 1 // ddkglddkgz

7 J) (8a ke )2 (85 + ke,)? (8o +key)2 (67 4 key)2 (G + Koy )2 (8o + Koy — ke, )2

Definition 2.18. For a graph I', momentum conservation (abbreviation: m.c.) is
given by the following system of equations:

vo e 'l Z pn =0, (2.15)
hev
or equivalently
voerl®. Yy & =o. (2.16)
hev

(For an edge e = {hy,hy} € I'Yl we write & = Cn, = Cn,-) We also assign
momenta pj, = {j, to the external edges h € '™

&(I') is a function of the internal &, and @(I')|m.. is a function of the
external momenta p,, with the condition that overall momentum conservation

holds:
Z pr=0. (2.17)
he]"ext

One-scale graphs graphs are graphs for which the amplitude depends on
only one momentum (with momentum conservation), such as all propagator

12



graphs (i.e.: graphs with 2 external edges). For such graphs, we drop the
index for the external momentum, and just write p.

In theorem 3.9 it will be clear why we do not impose momentum conser-
vation from the beginning.

If for two graphs IT and I; @(I1)|m.c. = P(I2)|m.c., we write I} ~ I. Note
that I = I, implies I} ~ I;. In other words: @(I')|m. does not depend
on [’s internal labelling. Neither depends it on the orientation of its internal
edges and the choice of the set L.

Definition 2.19.  i. We represent a full combinatorial Green’s function as fol-
lows:

G= O (2.18)

and define it as:

1 Aril (_M)#F[ol ilr /2
G:= r (2.19)
; Sym(I') (2mr)dir

where the sum runs over all Feynman graphs possible in the theory I
modulo equivalence in the given theory with the given external struc-
ture, in this case: I'™* = {1,...,n}.

ii. We represent a connected combinatorial Green’s function as

G= % (2.20)

and define it with the same formula (2.19), but with the sum restricted
to only connected graphs.

iii. And we represent a 1PI combinatorial Green’s function as

(2.21)

Here the sum in (2.19) is restricted to only 1PI graphs.

In above definition we have the pre-factors we promised just after defini-

tion 2.16: for every edge we have a factor i, for every vertex a factor —iA and
for every independent loop a factor 1. The factor —— in equation (2.12)
' r

(2m)*

also gets compensated.

13



If G is a connected or 1PI Green’s function, using lemmata 2.13 and 2.14,
we can rewrite it as:

G = —irk= Zx’G(l) (2.22)
1
where )
iAR=2
X = W y (2.23)
and 1
G = — T .
(0 ZF: Sym(T) (2.24)
Ir=I

is the I-loop combinatorial Green'’s function, or the combinatorial Green’s func-
tion at order | in perturbation theory.

Example 2.20. i. In ¢? theory, the connected 2-loop propagator function is

and the 1PI one is

ii. In ¢* theory they are

and

We use the word ‘combinatorial’ for G; the actual Green'’s function is given
by applying the Feynman rules to G: @(G)|m... (G is a linear combination of
graphs, so @’s definition is extended linearly.)

2.2.1 Power Counting

A thing we have to worry about a lot is the convergence of the integral in
equation (2.12). We will do this in section 2.4, but for now we can say a little
bit about how much the amplitude of a graph diverges.*

For a graph I', the superficial degree of divergence wr is defined as follows:
scale every momentum in @(I') by a factor «, then

O(I) ~ a“rd(T).

In ¢F theory it is
wr =dly — 2411 (2.25)

*See for example also [10], subsection 8-1-3.

14



We say that I' is superficially convergent if wr < 0 and superficially di-
vergent for wr > 0. In particular: if wr = 0, we say that I' is logarithmically
divergent, if wr = 1 we say it is linearly divergent (this will not occur in
this chapter, but it will in the next ones) and for wr = 2 it is quadratically
divergent.

The word ‘superficial” is used above, because wr does not say everything
about convergence. It does not see subdivergences: divergent subgraphs. For
example: in 6 dimensions,

7

is superficially convergent (w._, = —2), while the triangle subgraph is loga-

rithmically divergent, so the inte:gral is undefined.
Using lemma 2.14, wr for ¢* theory can be expressed in the number of
external edges and the loop order:

2(k — #Iext)
wr=—%—3

+ (d - 27")&. (2.26)

k—2

The divergences we talked about so far are ultraviolet divergences, called
so because they arise from the contributions to the amplitude with large mo-
menta. In massless theories, superficially convergent graphs turn out to have
infrared divergences, caused by low-momentum contributions. In this thesis, we
only deal with the ultraviolet ones.

2.3 Parametric Representation

In definition 2.16 we introduced the Feynman amplitude of a graph as an
integral over loop momenta. In this section we will rewrite this as an integral
over scalar parameters.

It all starts with the Schwinger trick:

1 [e)
- = /dAg e Pl (2.27)
ve 4

where A, is called the Schwinger parameter. If we introduce the parametric
integrand to be

2
(T) = —ip / dk e~ Teerit Pie (2.28)
the Feynman amplitude can be written as
o(r) = [dar (D), (2.29)
where we use the following short-hand notation:
/dAr = H /dAg. (2.30)
ecrfly

15



So the product of propagators in equation (2.12) turns into a sum in the expo-
nent.
Note that the mass dimension of the Schwinger parameters is

1

A= —— .
[Ac] mass?

The next step is to perform the integration over the loop momenta. Before
discussing the general case, we look at a simple example:

Example 2.21. The parametric integrand of the graph

is
1() -1 / A9k o~ (E3H02 A3 (4 +h)2As
Ny 7T

Complete the square in the exponent

1() -1 / Ak oI (As+A) 12k (3 As+EaAs) +E3 As+E3 A

@A+&A (63-84)%A3A
[ ate (RIS sag - felfe
Tt

and now it is just a Gaufsian integral:
_(G3-=ty)A54y
. e Az+Ay
()=
(A3 + Ag)d/2
Here we see why we had the factor —— in definition 2.16: it disappears here.
T

Momentum conservation gives us the relation 3 — {4 = p. (p is the exter-
nal momentum. See the remark below equation (2.17).) So

_ PPAsAy

o A3idy
(" ) =
( oot )m.c. (A3+A4>d/2

The amplitude of this graph is given by the following parametric integral:

(- / dAsd A, 1(~>).

One remark has to be made: the Gauf$ian integration above is actually not
defined in a Minkowski metric, since it is not positive definite. But with a
Wick rotation it can be made positive, i.e. the space-time is made Euclidean.
At the end of the computation one has to Wick rotate back.

For the general case, we need to define two polynomials in the Schwinger
parameters:

Definition 2.22. For a connected graph I', define the set

¢r .= {C CcrM|Ir\Cisan n-forest} . (2.31)

16



i. I'’s first Symanzik polynomial is defined as

yro=Y. []A4., (2.32)

(721
CegtecC

ii. and its second Symanzik polynomial as

ori="Y, q[]4, (2.33)
Cg?flg ecC
where
gc =Y €cele- (2.34)
ecC

ece € {1,0,—1} is defined as follows: I' \ C consists of two connected
components: I' \ C = T1T,. Choose one of those, say T;. Then

1 if e is oriented going into Tj,
€ce = § —1 if e is oriented coming out of 17,
0 otherwise.

Note that choosing T, instead of T; gives a minus sign, but since g¢ is
squared, ¢ does not depend on that choice.

At momentum conservation g¢ can be written as

aclpe == Y ePn= Y, EPn- (2.35)

helrextnTxt herstnTsxt
For one-scale graphs we write

or|,.. = Por. (2.36)

Both ¢r and ¢r are homogeneous polynomials of degrees

degyr =Ir (2:37)
and
degor =1Ir+1. (2.38)
Example 2.23.  i. The Symanzik polynomials for the graph in example 2.21
- poo=As+Ay  and @ = q3A3A,,
where

Jau =8 — 4 ==p.

Because it is one-scale we can write

¢l = AsAy

17



ii. For the graph

the Symanzik polynomials are

Yo = Ast+ As+ Ag

and
P = GasA6As + 435 AsAs + G35 As Ag,
where
Goa = Co — & == p1,
15 = €4 — &5 == po,
gs6 = &5 — C6 == p3.
iii. For
670
14} ;=2
N
3"y
we have
P = (A3 + Ag)(As + A7) + Ay(Az + A5 + Ag + A7)
and
Q- = L]%éAgAG(A4 + A5+ A7) + lx]§7A5A7(A3 + Ay + Ag)
+ G345 A3 A4 As + 06, AsAc Ay
+ 4347 A3 A4 A7 + 356 AsAs As
where

q36 = 33+ Go == p,
gs7 =G5+ & == p,
Gaas = G5 — 84+ G5 == p,
Qa7 = Ca+ 86+ &7 ==1p,
Qa7 = G3 — 84— Gy ==0,

m.cC. O

g456 = G4 — G5+ L6 ——

Because it is one-scale:

¢l = A3Ag(As+ As + A7) + AsA7(Az + Ay + Ag)
+ (A3A5 + A6A7)A4 .

18



The second Symanzik polynomial can also be written as:

or= Y qc ( IT Ae)lpr\c / (2.39)

Ceef? ecC

where ‘Kl’-z consists of the minimal C C 'l (by ‘minimal” we mean that for
all e € C: ec, # 0) such that I' \ C has two connected components. Example
2.23.iii above is a good example of this.

Theorem 2.24. For a general Feynman graph, the parametric integrand with
the loop momenta integreated out can be written as:

e—¢r/vr .
I(T) = — (2.40)
¥r

In the massive case, one gets mass terms in the exponential:
2
o Pr/¥r—m"Y, rn) Ae

I(I) = 1/13{/2 (2.41)

So, we have written the amplitude of a graph I' as an #I'!!l-dimensional
integral over positive parameters. The number of integrations can be reduced
by one as follows:

Proposition 2.25.  i. ®(T) = /er(r), (2.42)
where -
J(T) = / a1y, (2.43)
J A=ta
and
Qr = dgf5(1 -y /\eae). (2.44)
ecrl]

All A, > 0 and are such that there is at least one A, # 0.
This also holds in other theories than ¢*.

ii. In ¢* theory .#(T') is
(/J[*/Z

j(]“) = WF(_EMH. (245)
r

(T stands for the Euler I'-function.)

Proof.  i. First note that the number 1 can be written as

eecrl

7dt(5(t— Y Ade) =1,
0

*For a proof, we refer to [10], subsection 6-2-3 together with [3], and to [14], subsection 2.1.1.

19



because of the restrictions we have put on the A.. Plug this into equation
(2.29):

r)= Zdt/dAF(S(t - ee%l] Ao ) I(T)

Substitute A = tar (by this we mean A, = ta. for everye € I [1]):

= /dt/dgr t#r[lL15<1 - Z AE”E)I(FHAF:%'
0

eerll

Note that the form of the integrand is not used, which means that it also
holds for other theories.

ii. If we use the expression for I(I') (theorem 2.24), we get

[e9)

; dp TN =d1/2-1 ,~tor /yr
EL’F 0

—w /271 —t
71 r (pr/llJr
i/2 /dtt e ’-

Recall (2.37) and (2.38). (We did not explicitly write that ¢ and ¢r
are polynomials in the parameters g, instead of A,.) In the second step
equation (2.25) is used. Doing the integral by using the definition of the
I'-function gives the result.

For this integration, we have to assume an Euclidean space-time, such
that ¢r > 0. See the remark about Wick rotation after example 2.21 [

Remark 2.26. Because of the I'-function, .#(I') diverges if wr > 0 and con-
verges if wr < 0. This is precisely the ultraviolet divergence we described
in subsection 2.2.1. Actually, it is also convergent for odd wr > 0, but we
will not see such a case. Sub- and infrared divergences arise if we do the
Qr-integration.

One is free to choose the A, in equation (2.44); a different choice is just a
change of integration variables. A choice where one A, = 1 and the other ones
are 0 is usually the best for doing the computations.

Example 2.27. We continue with example 2.21 / 2.23.i, for which w ¢ =d —4.
With proposition 2.25.ii we have

- 2
7 g \’L__ m.c. (P a3a4)
( e ) (a3 + a4)4—2

This diverges (ultraviolet) for d € {4,6,8,...}.

d/2-2
r(2-1d),.

i d/z ) d/2 2
TN 5 1
o (- 3) = (p?) /da a3+1)d ST(2— Ld)

_ 8\/52“(;22)‘”272@”2 —1d).
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Here we see another divergence: I'(3d — 1) diverges for d € {0,2}. This is the
infrared divergence.

2.4 Renormalization

2.4.1  ¢° Theory in 6 Dimensions

So, we have these divergent integrals. In the following we will show how we
deal with it in the case of ¢> theory in 6 space-time dimensions, although this
theory is not physical.

With equation (2.26), one can see that the superficial degree of divergence
is

wr = 6 — 2HI, (2.46)

Note that it does not depend on the loop order, only on the external structure.
The only divergent graphs are propagator (quadratically divergent) and vertex
graphs (logarithmically divergent):

Wep..=2 and w_o =0.

First, we look at graphs without subdivergences.” Loosely said, we make
sense of these divergent integrals by subtracting another divergence. To keep
things defined, we do this subtraction on the level of the integrand.

Definition 2.28. Let I" be a vertex graph:

I'=1- ,
"
and assume that it has no subdivergences. We introduce a momentum scale
and define the renormalized integrand as:

[ (T) == I(T') = I°(T"), (2.47)

where the superscript © means evaluation at a point in the space of external
momenta p;, p2 and p3 given by p? = p3 = p3 = y2. Momentum conservation

is assumed, so p1-p2 = p1-pP3 =p2-pP3 = —%yz. The renormalized integrand
fulfills the renormalization condition

ren —

POl =0 (2.48)

Doing one integration, as in proposition 2.25, gives:

jren — i / i e—ter/yr _ e*t‘P?/‘/’F) . (2.49)
1/) t
0
With the identity
%;tw/wr = —Ic—yg—In zf +6(c) (2.50)

c

*In Hopf-algebraic language one says primitive graphs.
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(as ¢ — 0), can be written as

gren(r _771 9r ]
(I) e (2.51)

The number g ~ 0.577 is the Euler-Mascheroni constant.

Example 2.29. Take the graph from example 2.23.ii. For this one:

_gren (___{—-’1111 ) _ 1 In P%ﬂ6a4 + p%a4115 + P%‘ZS‘ZG )
) (a3 +as+a6)®  p?(asay + asas + asag)

If one takes p? = p3 = p3 = p?, to make life easier, it is

2
gren ( ; ) _ _;3 n?.
(ag + as + ae) U

The amplitude is then:

gren (___{/"illl ) — / % In ﬁ —_1 In pﬁ .
R2 (a4 +as+1)3  p? ’

Definition 2.30. For propagator graphs, the following renormalization condi-
tions are assumed:

(T g =0 (2.52)
and Fen (1)
e R (2:53)

So for a propagator graph I" without subdivergences, we define:

2
() i= 1) = I(T)] oy = 55 (1] o e = 1) o)

H
1 L (2.54)
1/; (e PPer/yr 1 _ %(e*# $r/yr _ 1)) )
T
(Recall equation (2.36).)
ST is:
[e0] 2 ,
I = 1/)13 / % e~ tPOr/Yr _ 1 _ %(ffuzfﬂr/wr _ 1)) (2.55)
o
A partial integration and equation (2.50) give:
g(e*tpzfp’p/wr _y=_Ft% At e ryr 1( —ePo/yr _ )
t2 Yr t
c ¢ (2‘56)
ol P*e]
-5 F(')/E+ln J r +lncfl) +0(c),
r r
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and so:
2

I = ﬂlnp— (2.57)
yroow
Note that the boundary terms from the partial integration cancel.

Example 2.31. Actually, there is only one primitive propagator graph in ¢3-
theory: the 1-loop graph in example 2.27. For this one:

2 2
gren( Ty ) = _pTasas 1 P ,
( ) (a5 +ag)t 2
and so the amplitude is

2

x 2
ren( /N — 2 a3 pﬁ — 2 pﬁ
o) ( ) p O/dag (@5 1 1)4 In P‘z p°In ;42 .

=

For the renormalization of subdivergences, we need the following defini-
tion:

Definition 2.32. A forest (of subdivergences) f of a graph I is a set of divergent,
connected subgraphs of I such that for every ;1,72 € f: either 71 C 7, or
T2 Er,0r 11Ny =D,

The set of all forests of I' is denoted by .7 (I').

In definition 2.11.iii the word ‘forest’” was used already. Forests of subdi-
vergences have an interpretation as forest graphs.

Definition 2.33. Let I' be a graph with only logarithmic subdivergences. To
make life slightly easier, propagator subdivergences are excluded. Then the
renormalized integrand is given by the forest formula:*

reNry =y, (MrONr/f). (2.58)

feF(I)

The integrand of a forest is the following product of integrands of cographs:

ri=T1r(/ U"). (2.59)

vef 7Sy
v'ef
Example 2.34. The graph
3
6 _1?/1"
1-<7i518
4
2

has the following forests:

//I/ //I/ 6 /.'I -1/ //l/
y (“"::j:. i ) N {®’ {“:::i i }, {“:::~ i ’ }, {--(:; i ’ “:::E. E } } ‘

*See [10], subsection 8-2-3 and [6], equation (40). In the latter, propagator divergences in the
parametric context are discussed as well.
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The renormalized integrand is

-1

ren (__ <1
S ]

d

‘I

Y

For an overall divergent graph I', the forest formula can be split in two
sums, one with the forests that do not contain I itself, and one with the
forests that do. So:

rery =y, (MO ) = POIT/S)), (2.60)

feF!(I)

where
F () ={feF()|f2T}. (2.61)

Let us denote the renormalized integrand of a graph I', where the subdiver-
gences are ignored by I'*"(I"). Then

reNry =y (=) I(HINT/f). (2.62)
feF!(I)

2.4.2 Other Theories
Three classes of theories are distinguished:

® Superrenormalizable theories: theories with only a finite number of super-
ficially divergent graphs.

* Renormalizable theories: theories with infinitely many superficially diver-
gent graphs, but with a finite number of divergent Green’s functions.
The degree of divergence does not depend on the order in perturbation
theory.

* Unrenormalizable theories: theories where every Green’s function is diver-
gent from some point three in perturbation theory.

Looking at equation (2.26), we see that the renormalizable ¢*-theories are

the ones for which d = %, in order to let the Ir dependency disappear. The

three only ones are:
* 6-dimensional ¢° theory (wr is given in equation (2.46)),
e 4-dimensional 4)4 theory, where
wr =4 — #I>t, (2.63)
¢ and 3-dimensional ¢° theory, where

wr =3 — et (2.64)
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Note that for these theories propagator graphs are always quadratically diver-
gent and vertex graphs (i.e. k-point graphs) are always logarithmically diver-
gent. Furthermore, the propagator and vertex graphs are the only superficially
divergent ones in these theories. (4-regular 3-point graphs and 6-regular 3-,
4- and 5-point graphs do not exist and we disregard vacuum and tadpole

graphs.)
We conclude this chapter with remark on self-loops in ¢* theory:

Remark 2.35. The integrand of a self-loop graph in 4-dimensional ¢* theory
is: 3

Because it does not depend on the momentum, the renormalized integrand
vanishes:
Jren (__‘;;l_) —

Together with the forest formula, this implies that every graph with self-
loops, and also more general graphs like

S VA

have a vanishing integrand after renormalization.
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3

Quantum Electrodynamics

3.1 Feynman Rules

3.1.1 Lagrangian

First of all: from now on, everything will be in 4-dimensional space-time.

In quantum electrodynamics (QED) we have two fields: a spinor field 1 for
the fermions and a vector field A, called the gauge field for the photons. The
Lagrangian is

L = —{EuF" +igDy. (3.1)

Here,
Dy =9y +ieAy (3.2)

is the covariant derivative and

Fy = [Dy, Dy] = 0, Ay — 0y Ay (3-3)

i
e
is the field tensor.
Furthermore, we need the Clifford algebra, which is generated by 4 x 4 ma-
trices y* that fulfill the Clifford relation:

Py 4Vt =2gM. (3.4)

The Feynman slash notation is a short-hand notation for the Clifford represen-
tation of a Lorentz vector a:
4= ')/,uay . (3-5)

This Lagrangian describes massless QED. For massive fermions, one adds
a term —mp.

An important property of this Lagrangian is gauge invariance, U(1) gauge
invariance to be precise. This means that for a U(1)-valued function U on the
space-time, the Lagrangian is invariant under the gauge transformation

p—Uyp, D, —UDU . (3.6)
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If you like the Lie algebra formalism better than the Lie group formalism,
let ia be a u(1) = ilR-valued function and write

U=e". (37)

Then the gauge transformation can be written as

. 1
P — ey, Ay Ay — anoc. (3.8)

3.1.2 Feynman Graphs

For QED, we need to enrich the notion of Feynman graphs from section 2.1
a bit: half-edges occur in three types instead of one. We have photon half-
edges and incoming and outgoing fermion half-edges, which we represent
graphically as

s, [U— and _

respectively.

Edges come in two types: photon edges consists of 2 photon-half-edges
and fermion edges consist of an incoming and an outgoing fermion edge.
Naturally, they look like

~~and —

respectively.
There is one vertex type with a photon and an incoming and an outgoing

fermion: w<
]

We denote the set of photon edges by I’ P], the set of fermion edges by I’ E ,
the set of external ingoing fermion half-edges by I’ etcetera.

Feynman graph isomorphisms need an extra condition with respect to in
definition 2.3.i: an isomorphism also has to respect half-edge type. This has
for example the implication that

sym (~(O-) =1

instead of %

Note that this implies that in QED every symmetry factor is simply 1,
because the vertex has no symmetries.

There is an analogon of lemma 2.14 for QED:

Lemma 3.1. For a QED graph I':

i. #70 = 41t L 2(1p — cp), (3.9)
ii. #rl = 41t L 3(1p — cp), (3.10)
. art —pret g o) (3.11)
iv. arlt = arext faret o1 op). (3.12)

Proof. Taking k = 3 in lemma 2.14 gives i and ii. For iii and iv, use

ot yrext — grbe — grhe — yrlt | grext, 0
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3.1.3 Feynman Rules

To write down the Feynman amplitude of a QED graph I', assign to every
internal and external photon half-edge # € I'"® a Lorentz index p; and to

every fermion edge e € I’ 2 Lorentz index He. Actually, the fermion half-
edges also carry a spinor indices, but these will not be written explicitly in
this thesis. The Feynman amplitude is

N(I
o(r) = e [~ 613
IT ve
ecrl]
The numerator N(I') is a product of the following;:
e for every photon edge e = {hy,hp} € I’ 11 factor
peﬂh pel’lh
S i, — (1 — ) Tl (3.14)
e
(« is the gauge parameter),
¢ for every fermion edgee € I 11 3 factor
He
TePe' = Per (3.15)
¢ and for every vertex
h3
I w< erll a factor e (3.16)
ha

We have to be careful with the order of the y-matrices, since they do not
commute. We write the numerator as

N(F)I’Y(F)( H (g}lhl}‘hz (10();%%))

2
{hlth}ZEEFE] Pe

(T1),

eeFE]

(3-17)

where all the y-matrices are collected in y(I').

Note that @(I') has ‘open’ Lorentz indices for the external photons. The
other Lorentz indices are contracted.

For the Feynman gauge, i.e. « = 1, the numerator can be simplified with
some abuse of notation. For this, instead of assigning Lorentz indices to the
photon half-edges, we assign them to the internal and external photon edges.
We drop the Sty 1y and do not care about upper or lower indices, but still use
Einstein’s summation convention for repeated indices. The numerator is then
simply

N(I) =~(I) T pe” (3-18)
ecl [
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The Feynman gauge is assumed unless indicated otherwise. We will briefly
come back to other covariant gauges in remark 3.14.

Example 3.2. For the graph

we have

N(% )=v(~§ A

v (% ) = M7 5 Iy he (Moo 7o bs)

If external fermions are in a physical state, a spinor u, has to be included
if it is ingoing and 1, if it is outoing. These spinors fulfill the Dirac equation in
momentum space:

with

Pole = 0 (3.19)
and
uep, =0. (3.20)

(Remember that that our fermions are massless.) For anti-fermions, it is cus-
tomary to write 7, and v,.
For physical external photons, one has to include a polatization vector e}°,
which is transversal:
Pe-€ =0. (3-21)

Furthermore, physical photons have lightlike momentum:
pe =0. (3.22)
We represent physical external particles graphically by a dot:
-, — and o~~~

Analogous to definition 2.19, we define Green’s functions as
(1] yp
1 (_i)#Fm l-#F* (ie)#f[o] 7_[211-

G:— ;(_)#XF Sym(T) )i r. (3.23)

Note the sign in front: every fermion loop in I' gives a minus sign. (<}
denotes the set of fermion loops in I'.) This is a consequence of Fermi statistics.
Using lemma 3.1, it can be written as

G = (_)#FiXt+#F£XtieFeXt72 2 le(l) , (324)
1=0
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with

.2
X = —11667 (3-25)
and ,
G = 4 I. .26
() ZF:( ) Sym(F) (3-26)

3.1.4 Power Counting
Looking at equations (3.13) and (3.18), we see that the superficial degree of
divergence is
wr = 4l — 267 g —op 4l _oprl (3.27)
With the use of lemma 3.1 it can be written as
wr =4 — #I' — 3Het, (3.28)
This means we have the following superficial divergences:

Wep. = 2, w » =1, w =0,
Y

Ay
o (3.29)
Weoo =1, and w =0.

~

v N

We will get back on this at the beginning of section 3.4.
The following result will be useful there:

Lemma 3.3 (Furry’s theorem).

0 odd number of photons,

N (W> BTN (W) even number of photons. (3:30)

By this unoriented fermion loop we mean the sum over both orientations:

=0 Y 63

The relation ~ means that the left- and the right-hand side have exactly
the same Feynman rules.

Proof.

1 n

1
M = Tr(’)/]’ln,yl/ln/ e /)/Hl,),]/lll )PZ,,,/ o plf,ll

()T (et ttt
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The n minus signs appear because in the clockwise orientation, the momenta
are oriented opposite to the fermion arrow. The y-matrices have the following

property:*
Tr(r)/yn r)/;‘n’ e r)/}‘l 7]41’) — Tr(f)/”l]’ r)/Vl e r)/”ln’ r)/”l”),
so the statement is proven. O

Note that unoriented fermion loops have symmetry factor and that they
respect them, for example:

O~ 3 (-0 4-O) ~~O-

3.2 Ward Identities

In classical electrodynamics we know that electromagnetic waves are trans-
verse. The Ward identities confirm that in the quantized theory longitudinal
photons are indeed unphysical:

pgocb(o

(We omit writing ‘m.c.” in this section, but momentum conservation is as-
sumed everywhere.)
If we introduce a new notation for external edges (a longitudinal photon):

’

with the Feynman rule that one has to include a factor

ph (3-32)

for such an external edge e, the Ward identities can be written as

Lemma 3.4.

(3-33)

*[15], equation (A.28)
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The dotted line is just there to keep it consistent with momentum conser-
vation; it does not alter the Feynman rules.

Proof. With momentum conservation, pg = —p1 + p2, one has

(D< O ) = plo Y Py _ Y N Yhap A
. ° pirs p3 p?

4 4
= @( —0 \E 4+ 0 (E ) . O
3 3

Before we go to the Ward identities, we first give the Ward-Takahashi identi-
ties, which relate of-shell 1PI functions to each other:*

Theorem 3.5 (Ward-Takahashi identities).

(3-34)

Proof. Consider a 1PI graph I of the form

\'/.
/N

and take a fermion line that is going through it:

F::N .
=~

The next step is to sum over the fermion edges in the line and insert a longi-

F:

*See also for example [15], section 7.4
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tudinal photon into each of these edges. With lemma 3.4 we get:

b A
S

~ e H =+ e — +

The terms in the middle line cancel in pairs, except for the two outer ones.
Now take fermion loop in I':

and do the same thing:

Here we see that the whole thing cancels pairwise.
So, if we insert a longitudinal photon in every internal fermion edge in T,
we get for every open fermion line two contributions:

B 2R Ve VO
. “\ L‘\ S
VA2 \AN /N
Note that the graph remains 1Pl after inserting a photon into an internal
fermion edges.
We do not have to worry about symmetry factors. In subsection 3.1.2 we
remarked that in QED we do not have symmetry factors oter than 1. (We do

not use the notation of lemma 3.3.)
Summing over all such graphs completes the proof. O
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Corollary 3.6. Write the 1PI fermion propagator function as
Za)(p) = (@) (3.35)
the photon propagator function as
H1K2 —
H(l) (p) = ¢(1~®82) (3.36)
and the vertex function as

3
Il (P2, p3) = <P(1 “@a) ) (337)
2
Then:
i pHIIG (p) =0, (3.38)
i, PiT (P2 p2+ p1) = Zqy(p2) — 2y (p2 + 1) (3:39)
dz . (p)
1ii. i _a=mlp
F(z)(P/P) = dpp (3-40)
Proof. The identities i and ii follow directly from theorem 3.5. Identity iii
follows from ii by differentiating to p; and setting it to 0. O

For the Ward identities, we first need something similar to lemma 3.4, but
with physical external fermions:

Lemma 3.7.

i
AAAAA RO , (3.41)
3 P
~ e , (3.42)

iii.

..... ~0. (343)
Proof. i. With the Dirac equation (3.19):
3 ')/V3 Uy r)/.u3 (_ + )ul
0 pz p2



ii. This is proven analogously using (3.20).
iii. And for this one, use both (3.19) and (3.20). O
Theorem 3.8 (Ward identities).

= (3-44)

Proof. The proof is the same as in theorem 3.5, except if one takes a fermion
line going through the graph,

we do not only insert the photon in the internal fermion edges, but also in the
external ones. With lemmata 3.4 and 3.7, one sees that

S

S R G
NN

ok

The rest of the proof is the same. O

3.3 Parametric Representation

In analogy with equation (2.28), we define the parametric integrand in QED
as

I(T) = = / dk N(I)e™ Teerll Po4e (3-45)
such that
~ [aarur). (3.46)

The numerator N(I') contains loop momenta, so theorem 2.24 cannot be
applied here directly. In the following we will use a little trick using a suitable
differential operator acting on the parametric integrand in scalar theory.

Theorem 3.9. Define the differential operator

1 9
SMe .
Pt = oy 3Con, (3-47)
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and let N(I') be the differential operator obtained by replacing every momen-
tum pe (e € F,m) in N(I') by pe:

N(I) = N(Dlype iz, = 7 ]_[]ﬁf“, (3.48)
eeF

Then, the parametric integrand in QED can be written as

~ e*#’r/ll)r
I(F>:N(F)T~ (3-49)
T
Proof. First note that
2
p Z/El—[l f‘,/ e p e ):e’el"m pe/Ae/_ (350)

This is the reason we assigned an independent ¢, to each edge in definition
2.16, instead of using momentum conservation right away.
The integrand can be written as

N — 2
() = N(F)ﬁ /dke Loerlt) Pele

Since every p. appears in N(I') at most once, we do not have to take the
Leibniz rule (the product rule) into account.

The object the differential operator N(I') acts on is exactly the integrand
in scalar theory (equation (2.28)), so we can apply theorem 2.24. O

Remark 3.10. i. Before we go to some examples, let us introduce some
useful notations. The first one is:

Pe == —Peor- (3-51)
It is homogeneous of degree
deg P, = Ir (3.52)

in the Schwinger parameters. For one-scale graphs we can write

el . = plae. (3-53)

@r is quadratic in the momenta. This means that ﬁgﬁ}i is always propor-

tional to g*¥, so we write

ﬁlé 7546/2 = gyvﬁ81fz ’ (3-54)
where B, is of degree
deg e, = Ir — 1. (3.55)
Furthermore,
11 ~H2 A~
Per Pes Pes or = 0.
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ii. Applying the differential operators and using the Leibniz rule, we see
that the integrand can be written as

4 /2)
- s
= sl i
4
The index i counts the number of times the Leibniz rule is applied. B;(I")

is:

BAD) = 1Dy L gt ghonta
1

perm. of I'_ (3.57)
Hesia SHex
X Beer *** Bes 1esiPeriiy " Pey s

= {e1,...,er}. The combinatorial factor compen-

sates double counting. B;(I") is of degree

where we labelled I’

deg Bi(I') = Ip#r!Y — i) —i (3.58)
in the Schwinger parameters.
Example 3.11. i. Take the graph
1 -—O—— 2.
3

In example 2.23.i the Symanzik polynomials were given, but with this
orientation

gau =G+ 8 ==p.

So:
~] m.cC.
b = qh Ay == plAy.

The y-structure is

7(,.@_) — qMaHanhs — _Dok3

This gives us the parametric integrand

I<._O—) - ﬁ(@—)ei’]z/w = —27Pl3 f,\gsegolpz/lp

>H3 2 A3 A
= 29 pie—fﬂr«:}/ P 0 —2p Ay e ixszf .
3. (A3 + Ag)3
ii. For the graph
4
1 MOW 2
3
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we have:

ﬁg = qg4A4 == PHA4I
FN’Z _‘134A3 _— _P”A3r

and

1
8" Bas = 3?’% 38"
The ~y-structure is:

0% (MOW) = Tr(r)/ﬂlzyPM ,),Hz 7#3)

= 4(gﬂlll4gﬂzﬂa — gﬂlﬂzgmm + gﬂlmgﬂzmz) .

Putting this together, we get for the integrand:

S SovA AN
() = Te(ytitaqtagia) phopyt S —

P2,
M3 14

P3P H3Ha 34
:Tr(yi‘w?‘w?@ym)( ;44 +gtp3ﬁ )e 90/
7%‘3 Ha An A
— Tr( M1 yHanH2nH3 _ PP AsA,
(YFryfeqtey )( (As T Ag)?

Az + A4)4

1 _
_ o2~
5 At A4)3>

iii. The Symanzik polynomials of the graph

5
1 6
4

2

are given in example 2.23.ii, but with this orientation

qas = —& + &5 == py,

qae = &1 + 6 == p2,

56 = €5+ o == p3.
Then

Py = —d4sAs + ‘746A6 == —piAs + py As,

Pb = dhsAs + qhgAs = Pl Ag + i As,

8" Bas = 58"

38



We have

7(‘<{ ) = yloqtoytintinle = —ayteyhials,

and the integrand is

ei(P“’f\‘iﬂ /¥ 4
_ Sl -

ZHa 55 ﬁ4ﬂ5 - /P .
Py 4175 4 81415 Bys ) e T

e —2')/”‘4 r)/}’ll 7#5
» /)/Vl ? 1 P / 110
:2<_ M_F,YH]T)(E
lp ¢

If we take the photon momentum p; = 0 and the fermion momenta
p2 = p3 = p, it simplifies to

I<~<< )’5;:23_10:2(—?17%‘1}711;5+wllpa)e

iv. And finally a slightly more complicated 2-loop example:

_ PP(Ag+45)Ag
[

6 5
3 7

for which the Symanzik polynomials were given in example 2.23.iii. For
this one, one has:

P = qheAe(As+ As + A7) + 455 AsAs + Gy, AsAz
== pH (Ag(Ag+ As + A7) + AsAs) = plas,

Py = —Gh5434s + Qg AcA7 — 0347 A3 A7 + Q50 As Ag
B pi(— AsAs + AsAz) = play,

Ps = 45;A7(As + Ay + As) + 4hys Az As — Gysg AsAs
== pl (A7(As + Ag+ Ag) + A3AL) = plas,

g Bas = 38" (As + A7),
g Bas = —1g" Ay,
g Bus = 38" (A3 + Ag) .

7<._®.) = FTpHS M Hang T yMaq s — _BaksH3yhe
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— -/ P
_ s g gs €T HE
(D) = st P33P44P5ST

~H3 M4 ~H5
P3 Py Ps

N gl /334,5?5 4 ghsks /335752’4 4 gtaks B 45%3)

— ,Sgﬂsﬂa),m (

« e~/

<. azo4xs | PBaans + 4Pssay + Basas
=y (4? e I )

124
x e P/ Yo

Remark 3.12. Applying 7, on equation (2.39), gives us:

=Y ecal( T1 Ae)¥rc (3-59)
Ce‘ﬁ}z e'eC\{e}
C>e

By applying another p, one can see that

Beer = _% Z Ecece < H Ae/’)lpF\C ’ (3-60)
Ces? e"eC\{ee'}
Coee

for e # ¢'. For the case e = ¢/, one has

1
ﬁee = —2A 1—[ Ae/)ll)r\c . (361)
e Ce%{? e'eC\{e}
Coe

The case e = ¢’ does not occur in QED in the Feynman gauge, but it does in
other gauges (see the remark 3.14) and sQED and non-Abelian gauge theories
(see the next two chapters). (Note that because of the A%,r Bee this is not a
homogeneous polynomial, but a homogeneous rational function.)

Remark 3.13. Recall proposition 2.25.i. Using equation (3.56), we can see that
in QED

1wl /2)

[0
7(I) = Z Bi(I') dt t#F[l]—le—i—le—t(pr/l/Jp (3.62)
o #rlt_ito ' >
i=0 1’[7 - 0

With equations (3.58) and (3.27), we have:

14 /2] o0
s = Y Bi(I) [ gy p—eor+#r)/2-i-1 ~tor /gy
= IP#FELiJrz /

(3-63)

#rllsa) o ( )q)(wr*#FE])/ZH .
= ——— (L (—wr +#rM) — i),
i;() llJ(UJf-i-#FE])/Z-i-Z (z(-wr +#I7) 1)
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For an even number of internal fermions, the most divergent term of .# (I)
isati = %#11[1]; there we have I'(— %wp), just like in remark 2.26. For odd #11[1],
the most divergent term is at i = %(#11[1] —1). Then we have I'(—3wr +1).
So in this case the integral is a little bit less divergent than we would expect.

Remark 3.14. With a little bit more effort, we can make a parametric inte-
grand for other gauges than the Feynman gauge. Recall (3.14). Instead of the
replacement p, ~+ P, we replace
Pepy,, Pepy, o~ 1
;g o AePeyhl pfﬂhz + igyhl Hhy
to obtain N(I'):

N(r) = 7(”( 1—[ (z(1+ "‘)8#111#;12 —(1- “)Aeﬁeml ﬁemz))
{h,hp}=eer!V

) (3.64)
<(T1 )
eeFE]
Proof.
/ dAe(Aeﬁeyhl ,ﬁeyhz + %gyhlyhz)e—p%e = Peup, Pemn, / dA, Ace PiAe
0 0
_ Pewp, Pepy,
(P2)?
We used that .
v [ /1
PebPe = —52-8" (365)
so the term from the Leibniz rule vanishes against J¢/"1""2, and
7 _ ZA 1
[dacae it — . (3.66)
0 (p2) ]

Example 3.15. Let us go back to example 3.11.i. We label the two half-edges
of the photon edge 4 with 4’ and 4”:

The Feynman rules give the numerator

YU I

M) = o (gene - S

4

The corresponding differential operator is then

KI(._O—) — e M3ty (%(1 +a)ghita — (1— ) Ayl ﬁZM)ﬁgs ‘
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Whith this, we get for the interand

(Or) - RO

. A
_mc. ,)/]44// ,)/}43,)/]44/ (%(1 4 a)g]l4/]/l4u pyg, 4

(A3+A4)3
A3A?
— (1= Hyt by phs ___~ 3774
(1= w)pt pfsrp (A3 + Ag)®
1 g pH3 o ol B3 g Py U3y A3 Aq
+ 2 (1 —a) (gl pls 4 ghata phar 4 gharisp 4)@)

_P*A3Ay
w ¢ A3tAg
- ((2 — 40()A3A4 — (1 + D()Ai
(A3 + Ag)?
AZAZ _p2A3A4
- pz(l - IX) 4 5
(A3 + Ay)

For « = 1 we indeed get back the result of example 3.11.i.

3.3.1 A Ward-Takahashi Identity Revisited

In this subsection we give an alternative proof of the Ward identity in corollary
3.6.iii using the parametric representation.

Lemma 3.16. Let I' be a fermion propagator graph. Then:
ADlne _ 5 3IT)
dpl/l gef[l] agg],[ m.cC.

(3-67)

Proof. Let C € ¢/? and label C = {1,...,1}. Two things can happen:
¢ Assume that C is such that I'\C is of the form

A

NC=1 2 - 2-12k 2%k+1- - 1.
N
Then
qe=C -G+ + 1 — G+t + 8 ==0,
and

aqv 2k aqv
agC: aCC :gVV_gVV++g#V_gyV:O
EFE] ey e=1 ey

e
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So

dqlé |m.c4
dpy

v
—0= Z an

e Assume that C is such that I'\C is of the form

VAR

- 2%

\T\:zkﬂ —

\ 2k +2 dj
!
Then

p) .
eel"m gey

qc=C -G+ — o+ o1 +Cusat+ -+ E ==p,
and
aqv 2k+1 aq”
eEFE] el e=1 e
So
dgelme. 9q¢
dpu il IGep
So for any C € ¢/
dqt|m.c. 9q¢
dp}l FE] acey
From this
d(PT|mc a(PT
dpy FE] ageﬂ m.c
and a5 v
Pelm.c Pe
dpu le:E] ICep
follow.

Lemma 3.17. Let I" be a fermion propagator graph. Then:

0D (I )|me.
apm - Z (p(F(e))|m.c.’

eeFE]
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where I, is the graph one gets by inserting an external photon edge (labelled
]

0) in fermion edge e € I’ E : for a I' of the form

T(e) looks like

The momentum of this photon is pp = 0; so momentum is conserved.
Proof. Integrating lemma 3.16 over all Schwinger parameters yields

3D(M |me. o0 (T)

IPuq m

m.cC.

ecl’ E
From the Clifford relation (3.4) follows

d p P =20y, p P,

Ko v PP (P

SO
9d(I)

ag@ﬂo N

Corollary 3.6 follows from this by summing over all 1PI fermion propaga-
tor graphs at loop order I.

—o(I,).- O

3.4 Renormalization

The superficially divergent graphs are given in equation (3.29). From Furry’s
theorem (lemma 3.3) we know that the 3-photon Green’s function vanishes.
Furthermore, because of the Ward identity (theorem 3.5), the 4-photon func-
tion is finite, despite the superficial degree of divergence being 0.* This is
why we can regard the fermion and photon propagator graphs and the vertex
graphs to be the only divergent ones.

Definition 3.18. Let I" be a fermion propagator graph:

=~ ~.

*See [15], around equation (10.9).
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The integrand I(I') is proportional to p (see equation (3.72)):

I(I') =: pI'(T) (3-69)
Let
I°(T) = I/(F)’pzzyz- (3-70)
Then, the overall divergence of I is renormalized as follows:
[=(r) = 1 pI°(T). (371
Example 3.19. In example 3.15, the integrand for the 1-loop fermion propa-

gator graph was computed for a general covariant gauge. The renormalized
integrand is:

2 —4a)AzAs — (1 +a)A2 , _PAsds _p2AsA
Iren<——< )-—):V( JAsAs — (1+a) 4(3 A3tA; _ o A3+A4)

(Az+ Ag)t
242 2
o B e
4 ) (Az+ Ay)d y y

Integrating ¢ gives (equation (2.43)):
C 2 —4a)azay — 1 +a) a2 7 dt (PRa3ay _12asay
jl‘GH( ) — ( 4 /7 a3+a4 — a3+a4)
y (a3 +a4)* 4 t ‘

P a3y /" a3a4
_ p(l El3ﬂ4 /dt a3+a4 _ ‘MZE*t aztay )
Ll3 + ﬂ4

(2 —4a)azas — (1 + tx)a4 n p?

(a3 + ay)* u

=7
The amplitude of this graph, and hence the 1-loop Green’s function, is then

(2—4a)az — (1+a), p? p?
Z(1)(P) = ‘I’ren< = —V/dﬂ3 (a5 +1)° ln? = zx;z)ln?.

Remark 3.20. From lemma 3.1.iv, it follows that for fermion propagator graphs

r #Il[l] = 2Ir — 1. Now go back to equation (3.56): i runs from O to Ir — 1. I’

is 1-scale, and there are 2/ — 2i — 1 powers of p in B;(I'), so B;(I') is of the
form:

Bi(I') = p(p*)'r ' BU(I), (372)
where B/(I') contains no momenta. So:
I*™(I) = I— pI°(I)

Ir—1
- M(( )il 0/ br _ (2l 1P9f /4r)
=7, 0 P2r—i+1 P # ‘
=
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With equation (2.43), one has:

Ir—1 e
Ry = Bi{(I) At fr—i=2((y2)lr—i~1,~ P29 /yr
(I =yp ;} g ((r*) e
i= 0

B (‘uZ)ll-—i—le—tyzqo/F/lPr) (3-73)

B] r 2
G
lplf+2 ]/lZ

where we used

AT —14deg Bi(I)— (2lp—i+1) deg yr _ 4lr—i-2
Note that it simplifies to only one remaining term; the terms with i < Ir —1
all vanish.

Definition 3.21. Let I" be a vertex graph:

I'' =1~
AN
2

At p; =0 and pp = p3 = p, the integrand is of the form
() = A*I'(T) + pp"I"(I). (3-74)

We subtract for the overall divergence as follows:

I*NI) = I(T') — ™M I°(I), (3.75)

where

I°(r) = I'(T')| (3.76)

pr=p2

This is motivated as follows: Recall the definitions (3.35) and (3.37). These
are of the form

Loy (pp) = AT (") +pp'T"(p*)  and  Zg)(p) = pZ(p(p?). G.77)
Then, the Ward-Takahashi identity (3.40) can be written as

r'(p*) = =2 (r?),

dx, (p*) (3.78)
F//(PZ) —_2 ) .
dp?

With the renormalization scheme given in definitions 3.18 and 3.21, one has
IRV (p)? = iy (pP) = Zy (7)) = =T'(P) + T'(#?) = =™ (p*)  (3.79)
and Ten/ (1,2 / 2
Ten
B Zdz(l) (r°) B dZ(l) (p*)

dpz - _2 dpz = F//(p2> = Fﬁ//(r)z) ° (380)
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So this scheme is compatible with the Ward identities.*

Example 3.22. Continue with example 3.11.iii: with the Clifford relation (3.4),
the integrand with p; = 0 can be written as

_ PP(Ay+As)Ag

AZ A2 1N
: < L =P e

so the counter-term is

and the renormalized integrand is

. 1o 7;42(A$+A5)A6
~ ~ TP Y
ren (*< ) = *ZF(VM"YW pse T+t Age L)

, /o _ yZ(A$+A )Ag
+ 2,)/#1 1pT (e 4{\4. -1 = e ) .

With equation (2.43) the t-integration can be done:

17 ~to /9 ’t}lz%ﬁwé
7 (G )=—2¢T / dt(pyrtipse T otptage )

oo 2 (ay+a5)a
w1 [dt, e /v B
2 sz,/T(e e )
=40
?47]41 ”55 ag 1
=-2 m__ 76
lPB 2 (ay +as)as

To make life easier, we make the graph 1-scale by taking p; = 0 and pp =
p3 = p. Then, .# simplifies to

M1 a 1 B
_gren —_9 ey + 6 29H In P .
T G AST I S Y

so the amplitude, and hence the 1-loop Green’s function, is

M __ pren _ VPH pZ
) = o (-<{ ) = 22—yl

*In [16] it is discussd that it also works with subdivergences.
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Definition 3.23. For a photon propagator graph

F: 1~~~

wzl

the integrand is of the form

I(I') = p"p™I'(T) + pPghie I (I).

(3.81)
Up to subdivergences, we define the renormalized integrand as
() = ppt (1)~ (D) ) -
3.82
+ ngPllPQ (]’/(1—') _ ]//(l—v) ’pzzyz) ,

where

J(1) = 1) = J(D)] oy (383)

Example 3.24. Continue with example 3.11.ii: The renormalized integrand is

[ren (~O~) _  (F2ptp 4 gibep?) As Ay 2030y Raghy

(As + As)? (e BT —e Bi)
2 2
_4& l = S - PN
(Az+ Ayg)3 \p? u?
3 4

Do the t-integration:

© 2
2ph1ph2 Hip2 P 304 g Hazay
fren(MOW)zél( plipt + ghiep? asﬂ4/df t
0

- a3+a4 — ¢ mtay )
(a3 + aq) 4 t

H1p2 _ pPaza
L P8 /i;(iz(e i 1)
(a3+a4) ) t=\p

1 —t” 304

_72(6 a3+ay _1))

H

2
= 8(ptpH2 — g#lMPZ)&l p

(as + aq)* n u>’

Here we can see already that the amplitude of this graph is transversal. The
amplitude is:

2
o2 (-Or) = - gl

For the 1-loop Green’s function, we have to include a minus sign for the
fermion loop (equation 3.26):

2
H?‘ll)ﬂz(p) _ (Dren( _ G) — 4(—phaphs 4 pPglars)In % ‘



Remark 3.25. For a photon propagator graph I', there is a similar simplifica-
tion as we have seen for fermion propagators in remark 3.20. From lemma

3.1.iv follows that #I il] = 2Ir, so i in equation (3.56) runs from 0 to Ir. There
are 2l — 2i powers of p in B;(I'), so because of Lorentz covariance, B;(I') has

to be of the form:

Bi(l—') =: p}llpﬂz (pZ)lr—i—lBl{(F) +g;41y2 (FZ)IF—iBl(/(I—.)

(3-84)

where Bj(I') and B}(I') contain no momenta. Note that Bj (I') = 0. The

integrand is now:

Ir—1 ) Hiph2 B! (T 2012 B (T
_ipMpBi(T) + p°g () 2y
(1) = Y (p)r==! e

i=0
Bl/ (F)

1 2

pipy L ompter/y
e e T
Subtraction for the overall divergence gives:

I*™(T)

_ 5 ppBUD) + g BT

=0 l/)211—71+2

% ((pz)lr—i—le—p2<p’r/¢r _ (VZ)lr—i—le—P‘Z‘P/r/ll’F)

"

By () 2
1 2 p 20
+gﬂlﬂzﬁ(e Pq’rﬂlﬂr—l—fz(e H ?r/WF—l)).

H

Performing the t-integration, with

AT —14deg B;(I')— (2l —i+2) deg yr _ 4r—i-2

one obtains:

- Ir=1 pipi2 BY(T) 4 p2etii2 B (I) 7 .

pip"2Bi(I) + p°g (I e
i=0 0

« ((pZ)lffifleftpz(p}/le _ (yz)lffz‘fleftuz(p’r/wr)

By (I) /°°dt

lplf+2 t7

+ gﬂﬂlz
0

2
% (e*tPZ‘Plr/llJF 1 %(e*tyz(/’}/lpf _ 1))
I

_ —plptBy (D) +pPgiie (= B ((I) + Bl (1) ¢f)
- lplr+3

pZ

xln?.

Only three terms are left.
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To conclude this chapter, we give an example with subdivergences:

Example 3.26. Continue with example 3.11.iv. For the renormalization we use
the forest formula 2.62. The forests for our graph (only the ones that do not
contain the graph itself) are

#(-D) = {o 4= L)
(D) D) < )0
S POr)

3

(D) = 7 (D) - (=] 3 ~Or)
~u({ J>-}-O)

The first term is (see remark 3.20):

oy  PBaaas + 4Bass + Basas | p?
g (»{]}—) —8 iy ln;.

For the second and third term, we used the notation
M(f,T/f) = /dt FT R (O )| e
0

The second term turns out to be

u({<{ }-0r)

— azaz ( 1 _ 1 )
Vo Nl o+ Baglotpy g P TP

R AL e
N T AT

7

+4p
whith
Yo =as+ay, ¢N{(=a3+a4+ﬂ6,

Pl = asaz, and 4)1{( = (a3 +ay)ag .

50



The third one is something similar. This can be integrated to:*

2

o (D) = —p (10 Ly +1n ).

*Erik Panzer’s Maple program HyperInt is used for this; see [13] and [14], chapter 4.
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Scalar Quantum
Electrodynamics

4.1 Feynman Rules

4.1.1  Lagrangian

In this chapter we study scalar quantum electrodynamics (sQED),* which is a
theory similar to QED, but with a complex scalar field ¢ instead of the spinor
field. The Lagrangian is

L = —{FuF" + (D) (D'9") — 3A(97¢)* (41)
Just like QED, this is U(1) gauge invariant.

4.1.2 Feynman Graphs

For the Feynman graphs, we have photon half-edges (as in QED) and incom-
ing and outgoing scalar half-edges, which we represent graphically as

bt —— and -----

respectively. In chapter 2 we had real scalar fields; now they are complex.
That is why we have an arrow here.
As in QED, these half-edges combine to two types of edges:

~nnn and -

But unlike QED we have several types of vertices:

7 s 7
~{ :} and S

» A 7 N\

*See [10], subsection 6-1-4.
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4.1.3 Feynman Rules

We take the Feynman gauge again, which means that we can use the same
abuse of notation as in subsection 3.1.3. Assign to every internal and external

photon edge e € I 'y rext 4 Lorentz index He-
As in the previous chapter, the Feynman amplitude is

o) = Ay [ diy
IT »
ecril
Here, the numerator N(I') is a product of:
¢ for every vertex 3
1 wvz’f er w[l]
N \
2
a factor

¢ and for every vertex

a faCtOI
— Zg 1#2 : ‘/ ,

so the numerator N(I') looks like

N(r):( 1 Vj‘)( H]Vv).

verl \E:] vell w[?;
The Green’s functions are
1] 1] 4l 4l 4rld
Gy LM M (o) (i) X (id)
o = Sym T (27)4r
Take A = —¢?. Then the connected and 1PI functions can be written as

#Fext . ext o
G=(=)"iM 2 leG(l),
1=0

where
ie?
1672

The superficial degree of divergence in sQED is

wr = 4lp +#r% — 20 4 prlty

This turns out to be the same as in ¢* theory:

wr =4 —#I'*,
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so we have the following superficial divergences:

(4.11)

It is not difficult to see that Furry’s theorem (lemma 3.3) also holds here.
The Feynman rule for 3-valent vertex gives a minus sign when the arrow is
flipped. So the numerators for both orientations cancel.

Note that the 4-scalar function is divergent. In order to renormalize sensi-
bly, we therefore need the 4-scalar vertex.

4.1.4 The 2-Scalar-2-Photon Vertex
Definition 4.1. i. For a scalar edgee € I P], we define the operator

% I'\e if e is incident to two 3-valent vertices:
keI := W Cr, (4.12)
0 otherwise,

ii. and we define

Kl = 2 kel . (4.13)

661",[.1]

Example 4.2.

ii. K—ﬁ}* = &3,
. Koy = 0.

Lemma 4.3. Let G be a connected Green'’s function. Then
1 —
E1%Glioq = Gliype - (4-14)
Gy is G, restricted to the graphs with exactly k 2-photon-2-scalar vertices.

Proof. 1t is clear that the left and the right hand side contain the same graphs.
The point of this proof is to show that the coefficients for these graphs are
equal.

To do this, we start with a graph I" with #I_ i?] =k+1landletv €I EE(,)]. We
represent I as:
A ;(

.~ N,
ll \\
i \
1 ]

AN Vd

4

I =
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Using definition 4.1, we can write:

< !f.! \,\IS.,. & g - e
e TN e i QV% o
N ;)))m* -~ 193

for example if

and so
Then
and so:

The following two cases can occur:
Then

}
Here we see why « is defined with a factor %: It compensates for the two ways
L[]
L]

of making a 2-scalar-2-scalar vertex.
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Symmetrizing over all vertices in I (that gives the factor k}rl) and then sum-

ming over all graphs I" with #I', 1) (as always, with a given external structure

and modulo equivalence) proves the lemma. O
Example 4.4.
b @ - S OO
TN 1.@. +-{j,-
O O

G G
:%%(-@*+-Q*+%2§+§2+.§1,§}.)
i‘}
SR e AN
i, / ( ;S b
@ | o G o f o )
%(110}: §\ Q e .‘ A
-d e s
=1 G D
~ N A N
‘ / '
ol ) e 20 )
N N \
4 \1 // 4 f
_.NQ _|_R\£~} +l~ﬂ*\‘ +l“~»\,l 4.4 "
> S ) ~ A

We miss the graphs that add the factor % up to 1.
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Lemma 4.5. For connected Green's functions G:
¢*Gly, =G. (4.15)

Proof. Using lemma 4.3 and induction in k, one can see that

%KkG|o>< = G’kX : (4.16)

Summing over all k proves the lemma:
eKG|0>~< =) %KkG|o>< =) G|k>< =G. (4-17)
k>0 k>0 O

Remark 4.6. The exponent

T = Z %ka (4.18)

is defined as an infinite sum, but actually it is just a finite one. Let m be the
number such that "' T # 0 and "7 1" = 0, for example

m =2.
We can write
mr
eI = %Kk]—'. (4.19)
k>0

The exponent can also be written as

eI = Z Z Key -+ Ke L. (4.20)
kzO {61,...,6k}gf£1]

The factors % were just there to compensate for double counting.

4.2 Ward Identities

First, a lemma analogous to lemmata 3.4 and 3.7:

Lemma 4.7.
. o  op
i. \, if’# \, ;_x
(14 %1 4+ x2) -~ . ~ —(1+x2) -2 ~
! VRN VRN
co ‘ \' ’ (4.21)
\, l,x’
+ (1K) i .
4N
ll »
.. 8 vty 8 g
11. N 1‘;;‘ N ;f
(1+x2) - \ ~ - - (4.22)
\/\/2 \\\ / \‘\\
. S < S



iii o/ N/
. f,)\‘l // \\ //
/’I \‘\‘ /’I \‘\‘

l’ - \. l’ - »

Proof. i. Actually, a lot of cases have to be distinguished: Both edges 1
and 2 can be incident to a 1-photon-2-scalar vertex, a 2-photon-2-scalar
vertex or a 4-scalar vertex.

e If both edges 1 and 2 are incident to 1-photon-2-scalar vertices, one

has (using momentum conservation, pg = —p1 + p2):
6 4
- 6 4 6 4
v
CD(o»-ﬁ +%0-.. i2 +%o--"ﬁd >
L i i~
; 3 5 3 5 3
_ o (ps+p1)"(p1+ p2)"(p2 + pe)™
= Po 2.2
pipz
e (pat e (ps+p)pyt
P ri
_ _(pstp)(patpe) | (ps+p1)™(pa2+ ps)™
- 2 2
P2 P
(=p1+p2)"(p2+pe) | (ps+p1)(p1 —p2)™
- +
r: pi
__(pstp2)"(patpe)t | (ps+p1)"(p1+ pe)
- 2 + 2
P2 P
6 4 6 4
v v
=@ —o-.d2 +o0-7h ,
(~of, L)
5 3 5 3
SO
v A 1l | |
—(14x)b2 +(1+x)41 =—-.} —L1.¥ L. L1l.. <
(I +m)- 2 + (1 +m)-"1 472 Lotz
Ly
. 1
7 -

~ _|_l.,'; _|_l4.-
TN T N
1
=1+r +K2)-'~4“ .
.

* If edge 1 is incident to a 2-photon-2-scalar vertex and edge 2 to a
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1-photon-2-scalar vertex:

< »4‘{54—201’&/)

1o gVB.”At(pl -+ pz)ﬂo (pz + p3) + p‘uo g.uS.ungVOVé

—P
0 pips °n

_ g (papa)te gt (pa +pa)te | MM (—p1 4 pa)l
- 2 - 2 + 2

P> P1 P1

g;‘3}44 (pz + p3)}‘6 g}‘3}‘4 (pl + ps)}%
r pi
3 6 3 6

—@(—10-2T’5+1o~1~'?”5>

202k 5+ 30145 ),
4 4

SO

v

4

(1451 +K2)5 4
I\

A
[V
4

-

{,: A

(1 +K2)% -2

”""r.”’

f\
+
oy
+
K
N

,r'\-’-

i
All other cases are proven similarly.

ii. Here too some different cases have to be distinguished. The edge 2 can

be incident to three differend types of vertices, for instance the 1-photon-
2-scalar vertex:

4 4
b o~-A1\2~3+10~4~w3>
(gt
_ Mo (p1+ p2)H(p2 + pa)t® _ M3
= Po 2 Po
P
2
+ M3
— _M F(pa+ Pt — (—py + po)s

P>

The external edge 1 representes a physical photon, wich has a null mo-
mentum: p% =0.

iii. This is proven analogously to ii. O

From this lemma follows:
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Corollary 4.8. The following blobs represent a graph without any 2-boson-2-
scalar vertices.

. by rd < 1 LN
1. N ;,r' \ ;fﬂ N A
e - \\1 ~ 761(‘.“__‘.‘; \ + ex‘ \ , (4-24)
7 \\‘ /’I \‘\\ /" N,
L) AS Pt - \S Jq .. )Y
.. g LY
1. N A N A
. \ ‘/ . \ ,.—f'f
Y
d o h ¢ N
iii. ’}\ ::f N\ :;H
e Do —f (4.26)
P AS ¢ .. e
Theorem 4.9 (Ward identities).
(4-27)

that has no 2-boson-2-scalar vertices. As in the proof of theorem 3.8, insert a
longitudinal photon in every internal and external scalar edge. Next, apply
the operator ¢ and sum over all I-loop connected graphs whithout 2-boson-
2-scalar vertices (with the given external structure, modulo equivalence and
weighted by the symmetry factors). This gives, using corollary 4.8:

With lemma 4.5 one can see that the theorem is true. O

4.3 Parametric Representation
4.3.1 Marking Edges

The operator x. forgets information about the topology of a graph. In this
section this information is useful, so therefore we introduce a related operator
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Xe that keeps the topology: instead of contracting the edge ¢, it puts a little
mark on it:

Definition 4.10. i. For a scalaredgee € I ,[1], we define
Yol := ',,": L = ,/‘“ N (4.28)
N {‘;}) i {;}J}
0 otherwise,

ii. and we define
XM=Y xel'. (4.29)
661",[,1]

Example 4.11. Analogously to example 4.2, we have:

. N ST ™ ITA L
L X =D+ -
1. X”“ﬂf % ¥
iii. X1 =0.

This marked edge is just a different notation for the 2-scalar-2-photon ver-
tex, and as such this edge type does not represent a propagator. The Feynman
rule for this new edge type is:

Wei=o( :3’) = o( >*) =3V, = gl (4-30)

We replace the 2-scalar-2-photon vertex by this marked edge. The denomina-

tor is now
N = (T we)( IT w) (43

eEF,,[},l] UEFW[E)]

Because the marked edges are not propagators, they have to be excluded from
the denominator:

N(I)
_ 1
(D(F) - 7ar / dkL H pg . (432)
eef[ll\ﬂ[&]

Furthermore, they are only allowed as internal edges.

4.3.2 Parametric Representation

Just like in the previous chapters we define the parametric integral as:

- PEAB
eerlth it
Hr) = e [dk N(e = 433)
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but now, we omit the marked edges from the exponent. For the amplitude,
we do not integrate over them:

() = / dA ;. mI(T) (4.34)

Theorem 4.12. First some things have to be defined: As in theorem 3.9, N(I')
is the differential operator obtained by replacing the momenta p, by differen-
tial operators p, (equation (3.47)) in N(I'). So in sQED

N(ry = ( TT we)( H Vv). (4:35)

eef[ | UGF

Let ¢ be ¢r plus contributions for the external scalar edges:

Pri=or+ Y GAwp. (4-36)
hEFEXt
Define: B
u(r) = Ny 437)
o 4712" Afext:O ’ 437

where Aret = 0 is a short-hand notation for Vh € I'™t: Aj, = 0.
Having defined this, one has

1
u(r) =, DY A i e X)) (4.38)
i20 e1,...ei617£1] ‘ %
where the u(I') have the property
D)4 =0 = 1) (4-39)

v

Proof. Using theorem 2.24 reversely, we have

I / dlk ]’[ w)( H Vv) Ll rext PEA )

Apext=0
EEF UEF rex

Note that in the sum in the exponent the external scalar edges are also in-
cluded. For e € T'l1l u rext,

gt - Zeef[l] urext pgAL’
e€ -

DY
e

¢~ Leerll PeAe

=Pr
Afext =0

so for v € Fw[?]:

2
pe A
"\, Zeer[l]urre“ etie V. -} oerlll p2A, ]

Afext =0
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This equation also holds for vertices v with an external scalar edge incident
to it. That is the reason why ¢ is used rather than just ¢r. The Schwinger
parameters of these external edges are set to 0, after applying the differential
operator.

Unlike QED, we have to take the Leibniz rule into account. If v1,v, € T

N

(0]

are not adjacent, Vvl Vo, = 0. If they are adjacent, then with equation (3.65)
one sees that:

e If there is one scalar edge, ¢, incident to both v; and vy,

1 4
o
le CT,

U1~
3

then

_ o ) W
Vor Vo, = (P Pe)! (pe + pa)" = — 578" = 725

e If there are two scalar edges, e; and e;, incident to both v; and vy,
e
1o 2 C T,

€1

then
Vo, Vo, = (Pey + Pey )" (Pey + pe,)!' = 72Ael g — 24, g
— W€1 WEZ
24, | 2A,

So

M v
UGFQ]

3
e not inc. to v

U(I’):ﬁ/dﬁ<n We)( [T Vet ) ZWAEE

EEFE] UGFW[?] eEI’E]

N

We, W,
1 e r'e;
t1 X o, IV
epepert? b UGFB]
not adj. e1,ep not inc. to o

+ % . .)ezeerm PeAe )

The factors 1, L etc. are just there to compensate for double counting.) If we
27 3l ) p g
introduce

_ %Ae
WD) = 2 [ dy N(D)e Eerti 4, (440
it can we written as
1 1
U) =u()+ ), srulxelD)+3 Y six g #Xaxel)+5
1] e 1 e14le;
e€rl: e1,e€l.



And indeed, u(I') has the property

1 g - Zeef[l] \F[l] pc%Ae
u(D)|, o= 77 / dk; N(I)e S ). 0
!
For the following, we alter definition (3.51) a bit:
pe = —Pedr- (4-41)

For internal edges e nothing changes actually; for external edges e:

pe = Cbyr = peyr. (4.42)

Furthermore, it is convenient to define

Vo= —Vopr (4-43)
and _ o
W0, i= Vo, Vo, - (4-44)

Wo,o, is proportional to g1, if e; and e, are the photon edges incident to
v1 and v; respectively. And for 1-scale graphs, Vj, is proportional to p#e1.

Remark 4.13. Analogously to remark 3.10.ii, we have

o Bi{(I') _
u(r) = ! or/yr , .
(I L #rj?]—z+ze (4-45)
Yt
where
Bi(T') := ( H We) m Z I/~vv102 T szmvz; vﬂzm T Vvk (4.46)

e GF,,[,,]] perm. of T B]

Ay

and we labelled Fw[?] = {vy,..., 0}

So U(I') can be computed. The question is now how to get the u(I') from
this, because if one has those, it is not difficult to get the parametric integrands
I(T).

Theorem 4.14. i. u(I') can be computed recursively:
1
u(l) =u(r) - ,17 Z mu()cel o Xe L), (4.47)
i>1 61,...,€i€F[1] €l €i
ii. or directly from the Us:
; 1
ul) =Y. ()% ¥ mU(Xq c X T) - (4-48)
i>0 eq,....e;elll e Al

Proof. i. This is equation (4.38).
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ii. Proof by strong induction in m (this is defined in remark 4.6):

e For mp = 0: we have u(I') = U(I)

¢ Assume that (4.48) holds for all graphs of the form x., - - - xe

where ¢4, . € € F,,m:
o xeD =L L E Ty
j=0 EF i
X U(Xei e 'Xe}Xel - 'Xeir) .

Note that mXe'I"'Xe’.F = myp — i. Use theorem i:
1

1
u< Z Z Z 21+]A A
i>1j>0 el elﬂe]" el Citj
X u(qu T 'X61+jr)
1
- ) Z D DRy s—e
k>1j=0 ( ] e1,...ex €M A, -+ Ay,

X U(Xﬁ t 'Xekr)
1

T)"‘Z(_)k% 2 mu(?(el"'

k>1 €1,...,€kEF[]] k

k =i+ j is substituted and the trick

Y-V = & LV = (-1 =0

j=0 j=0
is used.
Example 4.15. i. Take the graph
4
1=4a bl=2.

S

3

T #0,

Xekr) .

The Symanzik polynomials and p3 were given in example 3.11.i. With

Va=(p1+p3) and V= (p3+p)M

we have
Va= (1 + Pl == pl (o + Ag) = pM(As +24A4),
Vo = (Fa + P2)" 225 pls(Ag + o) = pi (A3 +244),
and B »
W, = — Pl = _igmm — _T;'
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Applying the differential operator gives

e P P V.V, W o
u (.._(“‘1-) AR 67 = ( a4 b 3ab ) e P/ P
- ¥2 la=a=0 LACR oS
¢4 A31/’3
We also need
PPl s -2 I
U(—{H\%—) mc. W;’f = —ghams® ;
e e s
—p? Pl /P
TN

Using theorem 4.14, one obtains the integrand

0 -01) =805

2A3 h o

- (r,ZMJrL) PRl

ph 3
Note that the pole A% disappears.

ii. For the graph
4
1 wa b}-2 ,
5
the Symanzik polynomials and p3 and ps were given in example 3.11.ii.
With R R
Va=(pa+p3)" and  Vp = (P3+py)?

one has
‘76\ = (ﬁ4+ﬁ3)ﬂl 2 F‘1(7A3+A4)I
Vb:(ﬁ3+f~74)”2A (—A3—|—A4),
and
. L o A )
Wap = (Ba + a)P (P + )Pz = g2 (1 - 27143 - ﬁ) :

Applying the differential operator gives us

u(w: ) AT e = (Vavb + Wé?)e“”z:v/ Yoo

P2 UASHN A8
me. Az — Ay)?
e (r)#l pt2 ( 34]4 1)
Ay Az 1 _ L/
HiK2 e S S P 4’ .
+ge (1 24, 2A4)¢3§)



We also need

2 —_ 20 ..
o P o P Wy

m.cC. ~

e

and likewise

PPl P
P2,

u (w"*“,m) = gtz

Using theorem 4.14, we get integrand
- - 1 - 1 -
I(w" ) = U(w" ) — —u(w’ ‘,-) ——U(~{ ‘,-)
et ) el ) 2A3 i 2A4 ( -’

2
= (p#l phz (A31p4 A4) + ngm 1/;) e*l’zfﬂf{},/%’)rr ,

which does not have the poles Ais and A%. Renormalizing as in definition

3.23 gives
ren /™ M1 4y H2 2 2 o H1k2 g 1 pz
54 (w\wl;w) = (—p"p"(az —as)* 4+ 2p°g q))wT In P
This gives the amplitude:
= 1 2 r
@ () = §ptp g n Ly

'~

It is transversal, as one would expect.

By the way, with the same argument as in remark 2.35, we see that

1 yren ":)' __ ren 7N _
1 (m) —1 ("“‘~+~"“) —0.

In remark 3.14 it is explained how in QED a parametric integrand can be
constructed for other covariant gauges than the Feynman gauge. Exactly the

same thing can be done for scalar QED.
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5

Non-Abelian Gauge Theories

5.1 Feynman Rules

5.1.1 Lagrangian

In the previous two chapters we had an Abelian gauge group: U(1). In this
chapter we look at non-Abelian gauge theories or Yang-Mills theories,” which have
a non-Abelian gauge group G.

The gauge group is a Lie group, and we denote the generators of the Lie
algebra g corresponding to G by #*. Since the Lie algebra is closed under the
bracket, we introduce the structure constants f°:

(87, £0]) = i fabege (5.1)

(Einstein’s summation convention is used.) They are antisymmetric in every
index, because the Lie bracket is antisymmetric. In terms of the structure
constants, the Jacobi identity reads:

faoalbfa2a3h + fa0a3bfa1a2b + faoazbfa3a1b —0. (5.2)
The Yang-Mills Lagrangian is
L = —%FZUF““V - E“BVD;d“bch . (5-3)

This needs some explanation. The first term is the generalization of the first
term in equation (3.1). The covariant derivative is now

Dy =9, —igAut” (5-4)

and the field tensor Fj, is given by

i
F]/lavta = §[D]/l/ DV]/ (55)

*See [15], chapters 15 and 16 and [10], sections 12-1 and 12-2.
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SO
Fi, =M A™ — 0V A™ + gf™C AL AS . (5.6)

In the second term of the Lagrangian we have the Faddeev-Popov ghost field
c. This is a Grafsmannian field: it has spin 0, but fulfills anti-commutation
relations. Under gauge transformations it transforms in the adjoint represen-
tation, therefore one has the covariant derivative in the adjoint representation
((tc)ab _ flle):

D;dab — 5acay _ gfabcA;L ) (57)

This Lagrangian is gauge invariant; the two terms are even gauge invari-
ant separately. The reason ghosts are introduced is to make the ‘measure’ of
the Feynman path integral, and hence the path integral itself, gauge invariant.
Because of their anti-commutativity, the ghost fields form a kind of a deter-
minant, the Faddeev-Popov determinant, which acts as a Jacobian if one changes
the gauge.”

Ghosts violate spin-statistics: they anti-commute and have integer spin.
This means that they cannot be physical, so they will not occur in a physical
initial of final state of a scattering process.

To keep notations a bit simpler, we only focus on the pure gauge theory;
we do not consider couplings to fermion or scalar fields.

5.1.2 Feynman Graphs
There are the following half-edges:

s, ——n and ...... -

the gauge boson, and the ingoing and outgoing ghost respectively, which
combine to the edges
PO and ........ .

There is a 3-boson, 4-boson and ghost vertex:
4
~ }{ and =~ .
»

5.1.3 Feynman Rules
As always, the Feynman amplitude of a graph I is given by:

r)
pe
]

(T = / dk (5.8)

N(
ecrht
In the Feynman gauge, the numerator N(I') is now given as follows: As in

QED and sQED, assign to each internal and external boson edge e € I 1 pext
a Lorentz index p,, but now also assign to every internal and external edge
e € Ty et 3 ‘color” index a,. Then to obtain N (I), include

e for every 3-boson vertex 3

1-~<12 EFE]

2

*See [15], section 16.2 and [17], section 15.5-6.
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a factor

fﬂlﬂzﬂs (g”lzi'{:i(pz — p?))"{l
+ g3 M (p3 — p1)"? (5.9)
+ 8" (pr — p2)t3) =1 Vs,

e for every 4-boson vertex L4 .
P
2" 3
a factor
fﬂlﬂzbfﬂ3a4b (ghtaglaba _ gliiaglaks)
+ frasb pasasb (olpa ghista _ gl1ba glisiia)) (5.10)
+ fmasb fazuab(gm;lz ghats — gl glaiiz) —: 2

¢ and for every ghost vertex

13

1y el
» S
2

a factor
4

frmmplt = V,h (5.11)

So the numerator is
N = ( TT v ) ( TT ve) ( T %*)- (5.12)
vef\ﬁ] Z]EFE? UEFB]

The Green’s functions are given by

0]

a0
G = Z(_)#f/r' 1 g~ (—zgz) “(=g) (=) i r (5.13)
B T SymTI 24l s2Ir : 513

Because the ghost fields anti-commute, there is a minus-sign for every ghost
loop. Connected and 1PI functions can be written as

_srext ext i
G =i #I© 1g#F 2 Z le(l) , (514)
1=0
where -
18
Xi= 10 (5.15)
and
1

(5.16)
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5.1.4 Marking Edges

As in subsection 4.3.1, we replace the 4-valent vertex by an edge with a little
mark. Here we give it the following Feynman rule: for every marked edge

ecl ll], for which the adjacent edges are labeled as

1 4
}‘f-{ , (5-17)
2 3
include a factor
b £asaib (giibs ghiatis _ gliba ghaliz) = W, | (5.18)

This is one of the three terms of (5.10), so:

The amplitude is now

N(I'
o(r) = | dkl—I()pz (5:20)
eerinrtt

with the numerator

Ny = (TT we) ( IT ve)( TT %*)- (5.21)

EEFE] UGFE] vEFW[?]

N

As already said in subsection 4.3.1, it is important to note that these marked
edges are not propagators, and that they are only allowed as internal edges.

Lemma 5.1. A connected graph I" without any marked edges (but possibly
with 4-valent vertices) can as follows be written in terms of graphs with
marked edges and no 4-valent vertices:

1 1
— I ~ — T .
SymTI’ ; SymI" (5-22)
(0] _
#F‘}{ =0
r'/rit=r

The sum runs over all connected graphs I’ modulo equivalence with the same
external structure as I'.

Proof. 1t is clear that on the right hand side we have the right graphs to make
I' using (5.19); the point of the following proof is to show that the symmetry
factors are correct. The proof is quite similar to the proof of lemma 4.3.
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]

We start by taking a v € I’ io . We represent I as:

R

W
and apply equation (5.19):
™ A <1”f e/
—_ om ¥ ()
- \o/ ).

)

The following three cases can occur:

(I
for example for w w w
r:i@«:»@a+~@~+m&~z3@~.

Then

and so

&
s
S

(or another combination of two inequalities and one equality), for exam-
ple for

R R e o= I n
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Then

Then

This can be repeated until all 4-valent vertices are converted into marked
edges. O

Example 5.2.

: RIS ;(~Q~+~$«+~g~) =~

The graph with the tadpole does not contribute, because it has a vanish-
ing color factor.

N|—=
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Even for a 1Pl graph I', we need the sum in equation (5.22) to run over
connected graphs I"’. For example:

o -0

From lemma 5.1 follows:

Corollary 5.3. Using the 4-boson vertex or using the marked edge is com-
pletely equivalent. In other words: for a connected Green’s function G,

G|k>< = G’k+’ (5-23)

where G|, is G restricted to graphs with exactly k 4-valent vertices (and no

marked edges) and G| is G restricted to graphs with exactly k marked edges
(and no 4-valent vertices).

Example 5.4. With example 5.2.i and ii, we can write:

@, -+ 110

)

1

D+ 10O @,

As in definition 4.10, we define operators ). and x that mark edges:

Definition 5.5. i. For a graph I and an edge e € I il]:

Y/ Y/

ifI'= ,
AR a) €8 o
0 ‘ otherwise, ‘
ii. and
xli= ) xel. (5.25)
eEI’E]
Example 5.6.

I £ ) A
ii. X““Q}":“Qj“/
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i )(»ij =0 and Xw:tjw =0.

This operator can be used to express connected Green'’s functions in fully
3-valent Green’s functions:

G|, ~ #x"G|,. . (5.26)

For example:

O = 4 () = 1+

Summing (5.26) over all k gives:

N|—=

G~ eXG‘w. (5.27)
The same thing can be done with ghost loops. For this we define:

Definition 5.7.

i if ol0] — gl
8 5@1—’ = F’every internal edge in ¢ replaced by if E[ )= E“‘( ! (528)
0 otherwise,
ii. and
6 = Z 6T . (5.29)
EEZ,—
Example 5.8.

1 _ 1 e A 1S

As in lemma 3.3, a ghost loop without arrows is a short-hand notation for
both orientations:

e e S G S
R IR W s W

The numerator for such a graph can be written as

( H Wf’)( H Vv)(zl;l C/z)r (5.30)

eeF veF
~

where for an unoriented ghost loop
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N N
i)

C ::N(

_ g sy g (5.31)
P R (1 () (i gy )
nf(,_ n 4 n L n
:falﬂnlﬂll,..fu a( l)la/(pi,l...r)z, +pz}p§,2pl(/lnil)/)

Then:
G~e G|, . (5.32)

Glo is the Green’s function G without the graphs with ghost loops. The
minus sign in fron of the ¢ is the Fermi minus for the ghost loops.

With these two operators, Green’s functions can be expressed in fully 3-
valent, ghost-less Green’s functions.

G~ eXe*5G|O>< . (5-33)
0

5.2 Ward Identities

Like the Ward-Takahashi identities give relations between off-shell functions
in QED, there are more complicated relations for Yang-Mills theories, the
Slavnov-Taylor identities.

In this section, we go straight to the Ward identities:

% L0, (5-34)

(Recall the diagrammatic notation from equation (3.32).) The proof given in
this section is similar to Gerard "t Hooft’s in [9], section 4. See also Predrag
Cvitanovi¢’ treatise in [7], chapter 7.

It is convenient to extend the Feynman rule (3.32) also for internal edges:
for every edge

p? ¢ if e is external,

et include a factor ple £ ois internal (5-35)
pe '

Before we prove the Ward identities, it’s useful to prove some identities
using this new notation:

Lemma 5.9.

) . AA“\SMJF “A“A,WM+ ,.:‘;MMJF x:\_“_w’ (5.36)
}W‘ ; ; ) 7 53

where we introduced:

1
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ii. ;f"<+>‘”<+;{:+ +%+%~0. (5:38)

i, 5 %
F *
Vo= = el gme ~ 0, (5-40)
B Y A U A >4
Proof.
i. 0.

(D( ,}M2> = [ (p1 + p2)!0 (M2 (=1 + p2)

1
=810 (2p2 + p)" + MM (21 + p2)'?)

= fronez(—pightt + paghit + py' pi* — py'py?)

0 0
=@ ( ) 2 + : 2
’ 4
1 1
0 . 0 .
+ kY - \ 2)
1 4 1'{

The first two terms are precisely our newly defined (5.37), in the last two
we recognize the ghost vertex (5.11) and equation (5.35).

ii. For the first two terms we have:
0 3 0 3
()
1 f 2 1 2
= fromb fea0 (ghsi (2ps + pa)2 — gMH2 (2pa + p3)! + 812 (py — pa)™)
+ 12 frsnb (— g (py + py + pa)t2 + M2 (pr + p2 + p3)!)

_ faombfazasb (gﬂzﬂa (Pz _ pa)ﬂl +gﬂsﬂ1(p3 _ pl)ﬂz +gﬂlﬂz(pl _ pz)ﬂs) .

Up to the color factor, this is cyclic in the indices 1, 2 and 3. So with the
Jacobi identity (5.2) we have:

0 3 0 3 0 3 0
@( . ,,< + M + 0+
1 2 1 2 1/’1\\2 1
0 3

__ 0, 3
+ "'u.' + y/ )
~ ~
1 2 2

1

3

— (fuoalbfu2a3b _|_fa0u3bfu1a2b +fa0u2bfa3a1b)
X (gl‘2H3 (Pz _ p3)}41 +g143}41 (PS _ pl)ﬂz +gl41}42 (Pl _ PZ)M) =0.
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ii.

0
1 ' 4 b bayc razayc L
q;( H}-&-{ ) :fﬂoﬂ1 f 2 f 304 (gﬂlﬂsgﬂzm _gll1144g#2}3).
2 3

Using the antisymmetry of the structure constants and Jacobi identity
we get:

0 9 9 9
2 3 2 3 2 3 2 3

— fﬂoll1bfbﬂcha3ﬂ4c(gm%gﬂzm — gt ghai3)
+ faouzb fbalc fa0aC (ghakz ghiba _ gh2Ha glh1H3)
+ fflofl3b fha4c fha2e(ghath ghabia _ g3z gllapin)
+fu0a4hfhu3Cfa1azc(gmy]gygyz — gl ghiain)

— (( fuoulb fbuzc _ faoazh fhu1c> e 4 ( fagu3b fba4c _ fa0u4b fb[lg,C) fuaazc)

1
X (g]’lly3g‘u2ﬂ4 — g‘ulﬂ‘lg.uﬂ 3)

- _ (faObeb“laZfﬂ3ﬂ4C + fﬂ()Chfhflsﬂ4fﬂlflzc) (g}ll V3g}l2}44 _ g}ll }44gl42]43)
- _ (fﬂochfbﬂ1ﬂzfﬂ3ﬂ4c + fﬂobCfCﬂsﬂ4fﬁ1ﬂ2b) (gﬁlﬂagﬂzm _ gﬂlmgﬂz%) —0.

iv. 0. 3 0 3 0 3 0 3
@ D e
o s A P
1 2 1 2 1 2 1 2

— fﬂgba3fba2ll1 p3 : (po + p?))pgl _ fa3ba0fba2a1 PO ’ (PO + p3)pgl
(po+p3)? (po+p3)?
_faoﬂlhfﬂ3ﬂ2bpg] +fagﬂ2hfﬂ3ﬂ]bpgl
— (faoha3fba2a1 _ faoalbfa3a2b “‘fﬂoazhf%alb)Pg] —=0.

Here we used antisymmetry and the Jacobi identity again. O

From the last two terms in lemma 5.9.i we see that ghosts are more or less
longitudinal gauge bosons. The general idea is that they cancel, because ghost
loops provide a Fermi —-sign. We will make this precise in the following.

Before we continue to the case of connected functions, we prove the Ward
identities for the full functions, i.e. including disconnected graphs.

Theorem 5.10 (Ward identities (full Green’s functions)).

%)/ ~0. (5-41)

Proof. Inlemma 5.9.i we see some kind of recursivity; the longitudinal degrees
of freedom ‘travel” though the graph (if we neglect the contributions drawn
with the squared).
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We take the following full Green’s function:

(5-42)

The outgoing ghost on the bottom is connected to the external one at the
top; either directly or via one or more interactions with a gauge boson:

The first term of the right-hand side is interesting; this is the object we want
to show to be 0, which means that we have to show that

Let us do the same thing with the boson on the bottom in (5.42). It can be
incident to a 3-valent vertex, a 4-valent one, or a ghost:

(5-43)

In the last two terms we have to distinguish two cases: the longitudinal line
ends in itself, or in a ghost loop. For the latter case we have to include a
Fermi —-sign for that ghost loop. We did not include the possibility that it
is an external boson since these contributions vanish because of transversality
(equation (3.21)) anyway:

and
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because tadpoles have vanishing color factors.
Apply this and lemma 5.9.i on the first term of the right-hand side of (5.43):

" (5.44)

Note that because of the mass-shell condition (equation (3.22)) we have

~0.

The first and the sixth term in (5.44) cancel (lemma 5.9.ii):

With a similar symmetrization argument and using lemma 5.9.iii it can be

8o



seen that the second term of (5.44) is zero:

Theorem 5.11 (Ward identities (connected Green’s functions)).

\% ~0. (545)

Proof. We use complete induction in over the number of external legs:

e The statement is trivially true for tadpole functions, because the color
factor of tadpole graphs always vanish.

¢ First note that

Vm<n: %/ ~0.

Recall that we exclude vacuum graphs, so then

% ~0. O
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Example 5.12. i. Apply lemma 5.9.i twice on the following little graph:

ii.

%,,_{:}.N ,e’:}.Jra’t}.N r:}w+/‘w+f‘_ e

and use this to show that the 1-loop 2-point function is indeed transver-

sal:
@ O O O
S g SR Y S .
The first and fourth term in the third line cancel because of lemma 5.9.ii,
the other three because of lemma 5.9.iv.

Apply lemma 5.9.i repetitively to the following 4-point graph:

ju s s R G
I
AT AT O
“ R N LN
+ + M—F L Y {
TSN T AL

We will not prove the transversality of the 1-loop 4-point function, but
show using two examples that for each of these terms, there are contri-
butions from other 4-point graphs to which they cancel.

For example, the third term gets cancelled as follows, using lemma 5.9.ii:

+f;§+;}{+ v“},»‘(+ v«'{:+ y>~{~0

These are contributions from
A , 3y , A , , and H
jugn g o) =

And the fifth one gets cancelled in this way (lemma 5.9.iv):

respectively.
"«w._,f’ e

Y
- -ﬂ+ 7 0.
N 2’%

The last two terms are contributions from

i L

respectively.
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5.3 Parametric Representation

Our approach for a parametric representation for amplitudes in non-Abelian
gauge theories is very similar to our method for scalar quantum electrody-
namics in subsection 4.3.2.

The parametric integrand is again

1 “X ) pi e
I(I) = ¢ /de(f)e T, (5.46)
such that the Feynman amplitude is
o(I) = [dA, - (5-47)

Theorem 5.13. As before, N(I') is the differential operator obtained by replac-
ing the momenta p, by differential operators p. (equation (3.47)) in N(I'). So
in non-Abelian gauge theory

N(I) :( 1 w)( T 17)( 1 @). (5.48)

eefﬂ] veFEE] ey

The polynomial ¢ is ¢r plus contributions for the external edges:

Fro=or+ Y, GiAwp. (5-49)
hEFeXt
Define:
u(r) = R 650
= — . .50
l/]% Arext:O 2
Having defined this, one has
1
ur =Y.+ 3 T e xe), (5.51)
i>0 61,...Ei€r[1] €1 €i
where the u(I") have the property
u(D)] ;g =1(T). (552
T

~

Proof. Using theorem 2.24, we have

u(r) =y i (TT we)(TT Vo) ( TT Gr)e Hertirm s
ey

Apet=0
eefﬂ] UEFM[E e

Fore € Iy rext

4

> >
phe” Leerltlyrext Pede — phe” Loerltl rext Po e
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so forv € TM[?].

~ 2 2

Ve Loerlyrext Pede _ \ Loerltyrest Pefte
and for ghost loops

~ 2 2

Cre Leerltyrext Pede — Cre Leerltlyrext Pe e .

There is no momentum appearing more than once in Cy; that is why there is
no Leibniz rule involved.
For the product over the 3-boson vertices, we do have to consider the Leib-

niz rule. If v1,vp € T’ M[?] are not adjacent, Vvl Vo, = 0. If they are adjacent, then
with equation (3.65) one sees that:
o If there is one edge, ¢, incident to both v; and v,

1 4
U1 U2 Q r ’
2 3

We

e

5 1
Vvl sz — Efalﬂzﬂefﬂ3ﬂ4ue (gylmgyzm _ gy1y4g;12y3) —

e If there are two edges, ¢ and ey, incident to both v and vy,

1»@2@1“,

€1

N 1
‘/v1 sz — " falaezael fﬂ2”62 ey (gﬂl,“ZgVez Hey gﬂl Hey gﬂez P‘Z)

€1

+ Lf”l“el ey fﬂzﬂel ey (g#lﬂzgﬂel Pep _ gﬂlﬂel g?‘el P‘Z)

A,
_ Wey + We
Ao A
So
u(p):n;lr/dkL(HWe)<HVy+ZA: I W
EEFE] vefm[gl EEFE] UE.FE(]
e not inc. to v
W, W,
1 e e
+3 L A:Ae2 Yo
el,eZEFE] e veFE:]
not adj. e1,ep not inc. to v
_ 2
+31u)( I1 Cﬂ)e Leertt) Pede
ey
With

— 2
u(l) = ﬁ/dg N(I)e Zeerlt Pehe |
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it can we written as

e

1 1
U(r) =u(l') + 2 E”(Xer) +% Z AETEU(XQXQF) +
1 2

€1, Efm

And indeed,

- 1] Pe Ae
w(l)|, =k /dkLN(F)e et ). 0

=0 207
1 s

Note that we do not have the factor % we have in sQED (theorem 4.12).
If one wants, one can include fermions without problems.;

Theorem 5.14.

1
! wl)=u) =Y 5 Y A e xel), (5:53)
i>1 o, eeri] 270 €i
. . 1
1. u(l') = Z(—)I% Z ﬁu(Xel o 'Xeif)~ (5-54)
i>0 61,...,€i€F[1] €1 i
Proof. See the proof of theorem 4.14. O

Recall equations (4.43) and (4.44) from previous chapter. We use these
notations in the following example too.

Example 5.15. Take the graph

12.

3

See example 3.11.ii for the Symanzik polynomials and p3 and pj.
For this graph, we have:

Va = fﬂ1ﬂ3ﬂ4 (gﬂslh;(f;% — @1)#1 + gV4Pl (@1 — ﬁl)% + gV1H3(ﬁ1 + ﬁg)m) ,
‘7b _ fa2a4ﬂ3 (gluﬂa(_m — 133)142 _,_gﬂaﬂz(ﬁ?’ + 1/9\2)%4 +g”2ﬂ4(—f9\2 4 1’7‘4)]43) ,
which give,
V, S fmsas (ghstaph (— Ay + Az) + MM pie (—2A5 — Ay)
+g”1”3p”4(A3 +2A4)) ,
Vb e faza4a3 (gﬂ4ﬂapm(A3 — Ay + g;l3yzpy4 (A3 +2A4)
+gilzﬂ4pﬂ3(_2A3 _ A4)) .
Their product is

m.cC.

VoW, C396m 2 (ph ph2 (2A% +2A% + 14A3A4)

— g2 (5A% + 5A% + 8A3Ay)),
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where C39 is the quadratic Casimir operator of the adjoint representation of
g, which is defined as:*

fu1a3a4fﬂzﬂ3ﬂ4 — ngéam . (5-55)

It also appears in

W = aCplamengie (14 22 4 23).

Az Ay
Apply the differential operator:
PN efa / P ‘7& Vb Wab . -
_ e T _ —@n /P
u (""Q"“) Va Vb l/)2 Ay=Ay=0 ( lp4 + ¢3 ) e

m.C. ng5a1u2 ((pylpﬂz (2A§ + ZAE + 14A3A4)
1
— p2ghi2(5A% + 5A% + 8A3A4)) IIJT

A4 A3 1 020 [
+3ghre 1+A3+A4)¢3@)e :
We also need

—p2 e S

e PP ad < e
— A < 12102~
U(~{ 3) =W 7~ 3C3donng .

—p2¢ e [
LG e - _
U(“{t}“) m.c _3C§d501ﬂzgﬂlﬂzT .

So now, the integrand is

1(-0r) = u(0r) = 24 () - 2,00

_ ngyzlaz ((p}ll pP‘Z (2A§ + ZAE + 14A3A4)

and

1 Hip2 R
= PP (545 4 54+ 843A) o - 9g¢3“ Jer /v,

The integrand of the ghost loop graph can be computed as:

() = u(~ )

9./ P

_ _cad Sigin | ooy € POV

= =G0 (p5 Py + Py 5’ P2 la=A=0

SH1 ¢ SH1 1
_ 7ng5u1az (P31P42 1‘ Py P35’ + ngzzﬁ?"l)e—<P~a:>~/¢~«:}
Yo P
me  cadgmay (HP MpleAs Ay ghte e P Y
2 vt 3 '

*See [15], equation (15.93).
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The two computed integrals combine to
-0 - B w“
e ) = 1(A D= )
= Cadsmm ((p”l P2 (2A% + 242 + 12A5A,)

1
— p?gM112(5A5 + 5A% + 8A3A,)) e

H1H2
+8 g¢3 ) e P/

Renormalize it as in definition 3.23:

gren (ef‘LQW) = C396m92 (— pM1pH2(2a} + 245 + 12a30a4)

2
npi

1
+ ngumz (5a§ + 5a}1))71 5

Vo M
and this integrates to

2
pren (67(5%0«) _ %ngéﬂﬂlz (_p}‘l pﬂz + ngﬁlﬂz) In % .

As expected, it is transversal.
To get the Green’s function, the only thing one has to do is to include a
symmetry factor %:

2

ren _ pren( x,—61 — 5adgajay (o u1 M2 2 o H1H2 pﬁ
o) (m%;) ) (ee 2»{)«) 3C390MR2 (—plph? + p°g )lnyz.
The x does not do much here actually, because it results in a self-loop, for
wich the renormalized amplitude vanishes. (See remark 2.35.)

5.3.1 The Corolla Polynomial

In [11], the operator N(e~°T") (where I' has only 3-boson vertices) is intro-
duced using the so-called corolla polynomial. This is a polynomial in the half-
edge variables ay,.

For a graph I' that has no 4-valent vertices, but possibly internal unori-
ented ghost loops, one first defines the polynomial:

= (1T Eo) (1 o)
vefm[g] hev vefwm

where I, € v is the boson half-edge in the vertex v. Then, the corolla polyno-
mial for a graph with only 3-boson vertices is defined as

F(T;a) := € (e °T;a).
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Example 5.16. We label the half-edges by the label of the vertex and the edge
they belong to.

4

%(1 2;g) 1= (Aq1 + a3 + A24) (ap1 + Ap3 + aps)

3

and
%<-i,._“_}“; Q) = Aa10p2,
so the corolla polynomial is
() =0 ()
= (@a1 + a3 + das) (Ap1 + ap3 + Gps) — da1p -
Next, we define for an half-edge i € I'M® the differential operator
Dy = freteatagheatea (e, Pe, — ep, ey

where {h,h1,hy} € T'0 is the vertex containing / and e,e1,¢p € T’ (1] are the
edges incident to that vertex: e 3 I, ey 2 hy and e 3 hy. For example: for the

graph

3
Dy = f”1”3ﬂ4gﬂ3ﬂ4(_ﬁ3 — @1)#1 and Dyp = fﬂ2ﬂ304gﬂaﬂ4 (ﬁa + @)Hz .

With this definition, one has, forv € T’ [0],
Z D h = ‘72) 7
heov

so if I" has no ghost loops

¢([;D) = [] Vo=N(I).
verlhl

Now take a ghost loop:

1 n
nl

L

‘5( 1 {51 v”; (”—1)/}2) = Dy;1- Doy

= fOaay L A1y gl gl P (B By )M (Pn1y + )
= 4 P (B Py (Bay + P )

The string of metric tensors gives a factor 4. Working out the brackets gives
2" terms. The two terms where every p, (or equivalently: every A%) shows up
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exactly once give the ghost contributions. So if we get rid of the other 2" — 2
terms we get:

SR
AL

= At fU Y (GREpl Bl ) = 4N

(See equation (5.31).)
So in general:

%(I') :==¢(I;D)] = 4" N(I).

Veef[l]:/%gwo
In the same way the corolla polynomial was defined for a graph I' with
ro =r J{O]/ the following differential operator is defined:

~

G(I) =€ (e /4T).

The factor % in the exponent compensates the factor 4 that arises for every
ghost loop, so:

Z(I) = N(e™T).
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Summary

In this thesis a systematic method is given for writing the amplitudes in
(scalar) quantum electrodynamics and non-Abelian gauge theories in Schwin-
ger parametric form. This is done by turning the numerator of the Feynman
rules in momentum space into a differential operator. It acts then on the
parametric integrand of the scalar theory. For QED it is the most straight-
forward, because the Leibniz rule is not involved here. In the case of sQED
and non-Abelian gauge theories, the contributions from the Leibniz rule are
satisfyingly related to 4-valent vertices. Another feature of this method is that
in the used renormalization scheme, the subtractions for 1-scale graphs cause
significant simplifications.

Furthermore, the Ward identities for mentioned three theories are studied.

Zusammenfassung

In dieser Arbeit wird eine systematische Methode gegeben um die Ampli-
tuden in (skalarer) Quantenelektrodynamik und nicht-Abelsche Eichtheorien
in Schwinger-parametrische Form zu schreiben. Dies wird erreicht in dem
der Zihler der Feynmanregeln im Impulsraum in einem Differentialoperator
umgewandelt wird. Dieser Differentialoperator wirkt dann auf den parametri-
chen Integranden der skalaren Theorie. Fiir die QED ist das am einfachsten,
weil die Leibnizregel hier nicht nétig ist. Im Fall der sQED und den nicht-
Abelsche Eichtheorien stehen die Beitrdge der Leibnizregel in Verbindung mit
4-valente Vertices. Eine andere Eigenschaft dieser Methode ist, dass mit dem
hier benutzten Renormierungsschema die Subtraktionen fiir 1-scale Graphen
signifikante Vereinfachungen verursachen.

Weiterhin wurden die Ward-Identitite fiir die genannten drei Theorien
studiert.
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