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Chapter 1

Introduction

In the last century various physicists and mathematicians tried to give a
precise meaning to Quantum Field Theory. Even though they developed
various successful tools for computations, most of those tools are still lacking
a mathematical rigorous meaning. Especially the intuitive but mathematical
ill defined path integral troubled the mathematicians in the last decades. One
of the advantages of the path integral formulation is the intuitive transition
between classical and quantum mechanics. This intuitive integral formula-
tion led to various results concerning the whole Quantum Field Theory. One
example is the Slavnov Taylor identities between the invariant charges of a
QFT, which follow from a symmetry of the classical action. Only recently
Dirk Kreimer and collaborators were able to give a mathematical definition
to renormalization and the combinatorics of QFT in terms of Hopf algebras.
The aim of this work is to give an introduction to the Hopf algebraic for-
mulation of QFT and to make an attempt to formulate the transition from
classical to quantum mechanics with the help of so called Dyson Schwinger
algebras. In Chapter 2 we will develop the needed mathematical theory like
Hopf algebras, algebraic Birkhoff decomposition and Hochschild cohomol-
ogy. Chapter 3 will give an introduction to the Hopf algebraic formulation
of QFT and renormalization. In 3.3 we will especially see how locality of a
QFT is linked to Hochschild cohomology and the so called Dyson Schwinger
equation. In Chapter 4 we will introduce Dyson Schwinger algebras and we
will see how a relation among classical coupling constants leads to a relation
among the corresponding invariant charges. 4.4 deals with the implication
for the combinatorics of a QFT when we restrict the coupling constants to
a linear subspace and how Slavnov Taylor identities naturally evolve in that
formulation. Finally 4.5 is dedicated to the applications to physics.
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Chapter 2

Hopf algebra

This chapter only gives an introduction to Hopf algebras. We will focus on a
selection of aspects, which are important for the thesis. For further insights
I refer the reader to [1] and [2].

2.1 Algebra

Let K be any of the fields R, Q or C. Let A and B be two vector spaces.
With Hom(A,B) we will denote the set of all linear maps Φ : A → B.

Definition 2.1.1 (Algebra)
Let A be a vector space, m ∈ Hom(A⊗A,A) and u ∈ Hom(A,K).
(A,m,u), or short A, is an (associative and unital) algebra if

1. m ◦ (id⊗m) = m ◦ (m⊗ id) (associativity) 2.1.1

2. m ◦ (u⊗ id) = id = m ◦ (id⊗ u) (unital property). 2.1.2

The map u is called the unit map.
A morphism Φ of unital algebras (A,mA, uA) and (B,mB, uB) is a map
Φ ∈ Hom(A,B) so that

1. Φ ◦mA = mB ◦ (Φ⊗ Φ)

2. Φ ◦ uA = uB.

Remark 2.1.1

i) We will always identify A⊗K with A (A⊗K ∼= A).

ii) By [m◦(u⊗id)](λ⊗a) = λu(1)a = λa=̃λ⊗a (for λ ∈ K, a ∈ A) the unit
map can be identified with the neutral element of the multiplication in
A setting u(1) = 1.
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iii) We define the iterated products mn : A⊗n+1 → A recursively by

m(n+1) := m ◦ (mn ⊗ id) ∀n ∈ N.

iv) If not stated otherwise we will always consider a unital and associative
algebra.

Definition 2.1.2
Let A be an algebra and G ⊆ A be a linear subspace. G is called an ideal of
an algebra if the following conditions hold.

1. m(A⊗ G) ⊆ G m(G ⊗A) ⊆ G

2. im(u) * G ⇔ (K.1) * G

Proposition 2.1.3
LetA be an algebra, let G ⊆ A be an ideal of an algebra and let π : A → A/G
be the projection onto the quotient. There exists a unique algebra structure
on A/G so that π is a morphism of algebras.

Proof. Set mA/G := π ◦m ◦ (π−1 ⊗ π−1) and uA/G := π ◦ u. This definition
is independent of the representatives since

π ◦m((a+ G)⊗ (b+ G)) = π ◦m(a⊗ b) + π(G) = π ◦m(a⊗ b).

We have to show that mA/G is associative and uA/G is a unit.

1. Associativity

mA/G ◦ (mA/G ⊗ idA/G)

= π ◦m ◦ (π−1 ⊗ π−1) ◦ [(π ◦m ◦ (π−1 ⊗ π−1))⊗ (π ◦ idA ◦ π−1)]

= π ◦m ◦ (m⊗ idA) ◦ [(π−1 ⊗ π−1)⊗ π−1]
(2.1.1)
= π ◦m ◦ (idA ⊗m) ◦ [π−1 ⊗ (π−1 ⊗ π−1)]

= mA/G ◦ (idA/G ⊗mA/G)

2. Unital property

mA/G ◦ (uA/G ⊗ idA/G) = [π ◦m ◦ (π−1 ⊗ π−1)] ◦ (π ◦ u⊗ π ◦ idA ◦ π−1)

= π ◦m ◦ (u⊗ idA) ◦ (idK ⊗ π−1)
(2.1.2)
= π ◦ idA ◦ π−1 = idA/G = mA/G ◦ (idA/G ⊗ uA/G)
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From the definition of mA/G and uA/G we obtain the relations

mA/G ◦ (π ⊗ π) = π ◦m uA/G = π ◦ u

, which show that π is indeed a morphism of algebras.

Even though there might be different algebra structures on the quotient
we will always consider this unique algebra structure so that the canonical
projection is a morphism of algebras.

Definition 2.1.4
Let A be an algebra and U ⊆ A be a subset.

1. span(U) is the smallest linear subspace of A that contains U .

2. < U > is the smallest ideal of an algebra in A that contains U .

2.2 Coalgebra

Definition 2.2.1 (Coalgebra)
Let C be a vector space, ∆ ∈ Hom(C,C⊗C) and ϵ ∈ Hom(C,K).
(C,∆, ϵ), or short C, is called a (coassociative and counital) coalgebra if the
following conditions hold

1. (id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (coassociativity) 2.2.1

2. (ϵ⊗ id) ◦∆ = id = (id⊗ ϵ) ◦∆ (counit property). 2.2.2

The map ϵ is called the counit.
A morphism of coalgebras (C,∆C, ϵC) and (D,∆D, ϵD) is a map
Φ ∈ Hom(C, D) so that

1. ∆D ◦ Φ = (Φ⊗ Φ) ◦∆C

2. ϵD ◦ Φ = ϵC.

Example 1 Let (A,m,u) be a finite dimensional algebra and let A∗ be the
dual vector space. A coalgebra (A∗, ∆, ϵ) can be obtained by dualizing
(A,m, u). Let U and V be two vector spaces and let F : U → V be a linear
map. The conjugate F ∗ : V∗ → U∗ of F is defined by (F ∗αV) = αV ◦ F
∀αV ∈ V∗. Conjugatingm and u leads tom∗ : A∗⊗A∗ :→ A∗ , u∗ : A∗ → K

and the relations below.

(id⊗m∗) ◦m∗ = (m∗ ⊗ id) ◦m∗
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(u∗ ⊗m∗) ◦m∗ = id = (m∗ ⊗ u∗) ◦m∗

To conclude, (A∗, m∗, u∗) is a coalgebra. We used that from dim(A) < ∞
follows (A⊗ A)∗ = A∗ ⊗ A∗.

Remark 2.2.1

i) The counit ϵ of a coalgebra C is unique, if it exists. This is shown by

ϵ = ϵ ◦ id = ϵ ◦ (id⊗ ϵ‘) ◦∆ = (ϵ⊗ ϵ‘) ◦∆ = ϵ‘ ◦ (ϵ⊗ id) ◦∆ = ϵ‘.

ii) The iterated coproducts ∆n : C → C⊗(n+1) are defined recursively by

∆0 := id and ∆n+1 := (id⊗k ⊗∆⊗ id⊗(n−k)) ◦∆n

∀n, k ∈ N : 0 ≤ k ≤ n.

This definition is independent of k, due to the coassociativity condition.

iii) If g ∈ C with ∆(g) = g ⊗ g we call g a grouplike element. The set of
all grouplike elements of C is Grp(C).

iv) With equation (2.2.2) we obtain for any grouplike element g, ϵ(g) = 1. R 2.2.1.iv

Lemma 2.2.2

∆n = (id⊗∆n−1) ◦∆

Proof. This follows from the coassociativity of ∆ and can be shown by in-
duction.

1. ∆1 = (id⊗ id) ◦∆ = (id⊗∆0) ◦∆

2. ∆n = (id⊗∆n−1) ◦∆

3. ∆n+1 = (id⊗n ⊗∆) ◦∆n = (id⊗ id⊗(n−1) ⊗∆) ◦ (id⊗∆n−1) ◦∆
(id⊗ [(id⊗(n−1) ⊗∆) ◦∆n−1]) ◦∆ = (id⊗∆n) ◦∆

NOTE 1 The proof of the lemma only used the coassociativity of ∆.

Definition 2.2.3 (Comodule)
Let C be a coalgebra, let N be a linear space and let
ΨL ∈ Hom(N,C⊗N),ΨR ∈ Hom(N,N⊗C) be two linear maps.

1. (N,ΨL) is called a left C-comodule if

(idC ⊗ΨL) ◦ΨL = (∆⊗ idN) ◦ΨL and (ϵ⊗ idN) ◦ΨL = idN.
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2. (N,ΨR) is called a right C-comodule if

(ΨR ⊗ idC) ◦ΨR = (idN ⊗∆) ◦ΨR and (idN ⊗ ϵ) ◦ΨR = idN.

3. (N,ΨL,ΨR) is called a C-comodule if (N,ΨL) is a left C-comodule,
(N,ΨR) is a right C-comodule and

(idC ⊗ΨR) ◦ΨL = (ΨL ⊗ idC) ◦ΨR.

Example 1 Every coalgebra C is a C-comodule. Just set ΨL = ∆ = ΨR.

Definition 2.2.4 (Coideal)
Let C be a coalgebra and let I ⊆ C be a linear subspace. I is called a
coideal ⇔

1. ∆(I) ⊆ I ⊗C+C⊗ I

2. ϵ(I) = 0

Proposition 2.2.5
Let C be a coalgebra and let I ⊆ C be a coideal. There exists a unique
coalgebra structure on C/I so that the canonical projection π : C → C/I is
a morphism of coalgebras.

Proof. Set ∆C/I = (π ⊗ π) ◦ ∆ ◦ π−1 and ϵC/I = ϵ ◦ π−1. Let [a] ∈ C/I
be an element of the quotient and let a, b ∈ C be two representatives of
[a] ⇒ (b− a) ∈ I.

∆(b− a) ∈ C⊗ I + I ⊗C ⇒ (π ⊗ π) ◦∆(b− a) = 0 since π(I) = 0

ϵ(b− a) = 0 since ϵ(I) = 0

Thus the definition is independent of the representative. We now have to
show that ∆C/I is coassociative and ϵC/I is a counit.

1. Coassociativity

(idC/I ⊗∆C/I) ◦∆C/I

=
(
[π ◦ idC ◦ π−1]⊗ [(π ⊗ π) ◦∆ ◦ π−1]

)
◦ (π ⊗ π) ◦∆ ◦ π−1

= (π ⊗ π ⊗ π) ◦ (idC ⊗∆) ◦∆ ◦ π−1

(2.2.1)
= (π ⊗ π ⊗ π) ◦ (∆⊗ idC) ◦∆ ◦ π−1

= (∆C/I ⊗ idC/I) ◦∆C/I
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2. Counit property

(idC/I ⊗ ϵC/I) ◦∆C/I = ([π ◦ idC ◦ π−1]⊗ [ϵ ◦ π−1]) ◦ (π ⊗ π) ◦∆ ◦ π−1

= π ◦ (idC ⊗ ϵ) ◦∆ ◦ π−1 (2.2.2)
= π ◦ idC ◦ π−1 = idC/I = (ϵC/I ⊗ idC/I) ◦∆C/I

From the definition of ∆C/I and ϵC/I one can obtain

∆C/I ◦ π = (π ⊗ π) ◦∆ and ϵC/I ◦ π = ϵ

, which shows that π is indeed a morphism of coalgebras.

Even though there might be different coalgebra structures on the quotient
we will always consider this unique coalgebra structure so that the canonical
projection is a morphism of coalgebras.

2.3 Bialgebra

Definition 2.3.1
Let A and B be two algebras and let C and D be two coalgebras.
Define σ : M1 ⊗M2 ⊗M3 ⊗M4 → M1 ⊗M3 ⊗M2 ⊗M4

through σ(x1 ⊗ x2 ⊗ x3 ⊗ x4) = x1 ⊗ x3 ⊗ x2 ⊗ x4.

1. A⊗B can be equipped with the structure of an algebra if one defines

mA⊗B := (mA ⊗mB) ◦ σ and uA⊗B := uA ⊗ uB.

2. C⊗D can be equipped with the structure of a coalgebra if one defines

∆C⊗D := σ ◦ (∆C ⊗∆D) and ϵC⊗D := ϵC ⊗ ϵD.

This definition can be extended to higher tensor products inductively.

Definition 2.3.2 (Bialgebra)
Let B be a vector space, m ∈ Hom(B ⊗ B,B), ∆ ∈ Hom(B,B ⊗ B),
u ∈ Hom(K,B) and ϵ ∈ Hom(B,K). (B,m, u,∆, ϵ) (short B) is called a
bialgebra ⇔ (B,m, u) is an algebra, (B,∆, ϵ) is a coalgebra and the follow-
ing conditions hold:

1. m is a morphism of coalgebras ⇔ ∆ is a morphism of algebras.

∆ ◦m = mB⊗B ◦ (∆⊗∆) [= (m⊗m) ◦ σ ◦ (∆⊗∆)]

∆ ◦m = (m⊗m) ◦∆B⊗B [= (m⊗m) ◦ σ ◦ (∆⊗∆)] .
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2. u is a morphism of coalgebras: ∆ ◦ u = u⊗ u⇔ ∆(1) = 1⊗ 1

3. ϵ is a morphism of algebras: ϵ⊗ ϵ = mK ◦ (ϵ⊗ ϵ) = ϵ ◦m. 2.3.1

A morphism of bialgebras is a morphism of algebras and a morphism of
coalgebras.

Remark 2.3.1

i) Sine 1 is a grouplike element it follows that ϵ(1) = 1 (see remark (R
2.2.1.iv)). Note the following

(u ◦ ϵ) : B � im(u) = 1.K, Ker(u ◦ ϵ) = Ker(ϵ) ⇒
(K.1) = im(u)

∼
= B/Ker(ϵ).

So B naturally decomposes into

B = K.1⊕Ker(ϵ).

We denote the projection onto Ker(ϵ) by P := id−u◦ ϵ := B � Ker(ϵ)
and call Ker(ϵ) the augmentation ideal.

ii) From equation (2.2.2) one can follow that ∀x ∈ Ker(ϵ) the following
holds

∆(x) = x⊗ 1+ 1⊗ x+Ker(ϵ)⊗Ker(ϵ).

Example 2 (Faá di Bruno)
This is a very important example. As we will see a multi-dimensional version
of the Faá di Bruno algebra is strongly related to the physicist invariant
charge.
Let

Diff0 = {P ∈ K[[x]] : P (x) = x+
∑
n>2

pnx
n}

be the set of formal diffeomorphisms tangent to the identity.
Choose P,Q ∈ Diff0 with coefficients pn, qn resp. We define linear maps
an : Diff0 → K with an(P ) = pn and the set BFDB := {an}∀n>1. Note that
by definition a1 ≡ 1 ∈ K. One can now define the following

1. u ∈ Hom(K,BFDB) u(1) = 1 := a1

2. m(an ⊗ am)(P ) = an(P ).am(P ) = pn.pm ∀P ∈ Diff0

3. ϵ ∈ Hom(BFDB,K) ϵ(1) = 1; ϵ(an) = 0 ∀n > 2
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4. ∆(an)(P ⊗Q) = an(Q ◦ P ) ∀P,Q ∈ Diff0.
Note: ∆ is well-defined since Q ◦ P ∈ Diff0

By straightforward computation one may follow the below relation.

∆(aN) =
∑

1≤n≤N

∑
m1+···+mn=N

am1 · · · amn ⊗ an. 2.3.2

∆ is extended to products so that it is a morphism of algebras.

Lemma 2.3.3
(BFDB,m, u,∆, ϵ) is a (connected*) bialgebra. *Connected

bial-
gebras
will be
con-
sid-
ered
in the
next
sec-
tion

Proof. The bialgebra properties follow from those of K.

1. The associativity of m follows from the associativity of K.

2. Since a1 = 1 = 1 ∈ K, it follows that m ◦ (u⊗ id) = m ◦ (id⊗ u) = id.

3. (∆⊗id)◦∆ = (∆⊗id)◦∆ can bee seen by straightforward computation.

4. By inspection of equation (2.3.2) one can observe that

∆(aN) = aN ⊗ 1+ 1⊗ aN + α⊗ β α, β ∈ Ker(ϵ)

⇒(ϵ⊗ id) ◦∆ = id = (id⊗ ϵ) ◦∆.

5. ∆ ◦m = (m⊗m) ◦ σ ◦ (∆⊗∆) by definition.

6. Again by inspection of equation (2.3.2) one can observe that ∆(1) =
1⊗ 1 so u is a morphism of coalgebras.

7. ϵ⊗ ϵ = ϵ ◦m follows from the following considerations

ϵ⊗ ϵ(λ1⊗ 1) = λ otherwise ϵ⊗ ϵ = 0

ϵ ◦m(λ1⊗ 1) = λ otherwise ϵ ◦m = 0

Define the following formal power series

A(x) :=
∑
n>1

anx
n ⇒ ∆(A(x)) =

∑
n>1

A(x)n ⊗ an. 2.3.3
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(BFDB,m, u,∆, ϵ) is called the Faa di Bruno algebra.

Definition 2.3.4
Let B be a bialgebra and I ⊆ B be a linear subspace. I is called an ideal
(of a bialgebra) if I is an ideal of an algebra and a coideal.

NOTE 2 Since B = im(u) ⊕ Ker(ϵ), the conditions im(u) * I and I ⊆
Ker(ϵ) are equivalent.

Example 3 The augmentation ideal Ker(ϵ) is an ideal.

1. ϵ(Ker(ϵ)) = 0 True

2. 0 = ∆ ◦ ϵ(Ker(ϵ)) = (ϵ⊗ ϵ) ◦∆(Ker(ϵ)) ⇒
∆(Ker(ϵ)) ⊆ Ker(ϵ)⊗B+B⊗Ker(ϵ)

3. 1 /∈ Ker(ϵ)

4. From equation (2.3.1) one can obtain Ker(ϵ).B ⊆ Ker(ϵ) andB.Ker(ϵ) ⊆
Ker(ϵ).

Definition 2.3.5
On a bialgebra B we define the reduced coproduct ∆̃.

∆̃ = (P⊗ P) ◦∆

The space of primitive elements Prim1(B) is

Prim1(B) := Ker(∆̃) ∩Ker(ϵ) = {p ∈ B : ∆(p) = 1⊗ p+ p⊗ 1}.

Remark 2.3.2

i) Choose some p ∈ Ker(ϵ). One obtains for the reduced coproduct of p

∆̃(p) = ∆(p)− 1⊗ p− p⊗ 1.

ii) The reduced coproduct is coassociative, which allows to define an iter-
ated product

∆̃0 := id and ∆̃n+1 := (id⊗k ⊗ ∆̃⊗ id⊗(n−k)) ◦ ∆̃n

∀n, k ∈ N : 0 ≤ k ≤ n.

iii) From the definition of ∆̃ follows ∆̃(Ker(ϵ)) ⊆ Ker(ϵ)⊗Ker(ϵ).

iv) As in lemma (2.2.2) one can show that ∆̃n = (id⊗ ∆̃n−1) ◦ ∆̃.
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Proposition 2.3.6
Let B be a bialgebra, let I ⊆ B be an ideal and let π : B → B/I be the
canonical projection. There exists a unique bialgebra structure on B/I so
that π is a morphism of bialgebras.

Proof. Since I is an ideal of an algebra and a coideal, there exists a unique
structure on B/I so that π is a morphism of algebras and a morphism of
coalgebras, which is precisely the definition of a morphism of bialgebras.

2.4 Filtrations and connectedness

Definition 2.4.1
A family (Bn)n∈N of growing subspacesBn ⊆ Bn+1 of a bialgebra (B,m, u,∆, ϵ)
is called a filtration if following conditions hold.

1. B =
∑

n>0 B
n

2. ∆(Bn) ⊆
∑

i+j=nB
i ⊗Bj =

∑
0≤i≤nB

n−i ⊗Bi ∀n ∈ N

3. Bn.Bm = m(Bn ⊗Bm) ⊆ Bn+m ∀n,m ∈ N

Remark 2.4.1

i) From the definition of a filtration follows that B0 is a subbialgebra.

ii) Every grouplike element is contained in B0.

Definition 2.4.2 (Wedge product)
Let B be a bialgebra and let U and W be two linear subspaces of B. The
associative wedge product is defined by U ∧W := ∆−1(U ⊗B+B⊗W )
and U∧(n+1) = U∧n ∧ U = (∆n)−1(

∑
0≤i≤nB

⊗i ⊗ U ⊗B⊗(n−i))

NOTE 3 Choose some p ∈ U ∧W . This is equivalent to

∆(p) ∈ U ⊗B+B⊗W.

Proposition 2.4.3
Let B be a bialgebra and L ⊆ B be a subbialgebra.
There exists a filtration of B starting with L⇔

B =
∑
n>0

L∧(n+1)

A filtration is then given by Bn = L∧(n+1).

Proof. A proof can be found in [1].
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Definition 2.4.4
A bialgebra B is called connected if there exists a filtration B =

∑
n>0 B

n so
that B0 = (K.1). By proposition (2.4.3) this is equivalent to

B =
∑
n>0

(K.1)∧(n+1).

Definition 2.4.5
Set Primn(B) := Ker(∆̃n) ∩Ker(ϵ) ∀n > 1.

Proposition 2.4.6
Let B be a bialgebra. Set B̃n = (K.1)∧(n+1).

Primn(B) = B̃n ∩Ker(ϵ) ∀n > 1

Proof. This can be shown by induction.

1.

x ∈ Prim1(B) ⇒∆(x) = 1⊗ x+ x⊗ 1

∈ B̃0 ⊗B+B⊗ B̃0

⇒Prim1(B) ⊆ B̃1 ∩Ker(ϵ)

x ∈ B̃1 ∩Ker(ϵ) ⇒∆(x) ∈ B̃0 ⊗B+B⊗ B̃0 ⇔ ∆(x) = 1⊗ x+ x⊗ 1

⇒Prim1(B) = B̃1 ∩Ker(ϵ)

In the second line from below we used the counit property(see equation
(2.2.2)).

2. Primn(B) = B̃n ∩Ker(ϵ)

3.

x ∈ Primn+1(B) ⇒∆̃(x) ∈ Ker(id⊗ ∆̃n) ∩Ker(ϵ) ⊆ B⊗ Primn(B) = B⊗ B̃n

⇒∆(x) = 1⊗ x+ x⊗ 1+ ∆̃(x) ∈ B̃0 ⊗B+B⊗ B̃n

⇒x ∈ B̃n+1 ∩Ker(ϵ)

x ∈ B̃n+1 ∩Ker(ϵ) ⇒∆(x) = 1⊗ x+ x⊗ 1+ ∆̃(x) ∈ B̃0 ⊗B+B⊗ B̃n

⇒∆̃(x) ∈ B⊗
(
B̃n ∩Ker(ϵ)

)
= B⊗ Primn(B)

⇒x ∈ Primn+1(B)

⇒Primn+1(B) = B̃n+1 ∩Ker(ϵ)
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Corollary 2.4.7
Let B be a connected bialgebra.

B = 1.K⊕Ker(ϵ) = 1.K⊕
∑
n>0

B̃n ∩Ker(ϵ) = 1.K⊕
∑
n>1

Primn(B) ⇒

∀x ∈ Ker(ϵ) ∃N > 1 : ∆̃n(x) = 0 ∀n ≥ N

We call the minimal N so that ∆̃N(x) = 0 the augmentation degree of x and
denote it with |x|aug.
Definition 2.4.8 (Graduation)
A graduation of a bialgebra B is a decomposition B = ⊕n∈NB

n so that for
any n,m ∈ N

1. Bn.Bm ⊆ Bn+m

2. ∆(Bn) ⊆ ⊕0≤j≤nB
j ⊗Bn−j.

NOTE 4 Every graduation is also a filtration, just set B̄n = ⊕0≤j≤nB
n.

Then B̄n is a filtration.

2.5 The convolution product

Definition 2.5.1 (Convolution Product)
Let (C, ∆, ϵ) be a coalgebra, let (A,m,u) be an algebra.
The convolution product ⋆ is defined for two linear maps ϕ, ψ ∈ Hom(C,A)
by

ϕ ⋆ ψ := m ◦ ϕ⊗ ψ ◦∆.

From the definition of the convolution product follows ϕ ⋆ ψ ∈ Hom(C,A).

Lemma 2.5.2
Set e := u ◦ ϵ.
e is the identity for the convolution product.
That means ψ ⋆ e = e ⋆ ψ = ψ ∀ψ ∈ Hom(C,A).

Proof.

ψ ⋆ e = m ◦ (ψ ⊗ u ◦ ϵ) ◦∆ = m ◦ (id⊗ u) ◦ (ψ ⊗ id) ◦ (id⊗ ϵ) ◦∆
(2.1.2)
= (ψ ⊗ id) ◦ (id⊗ ϵ) ◦∆ (2.2.2)

= ψ

The other relation can be shown identically.
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Lemma 2.5.3

ψ1 ⋆ · · · ⋆ ψn+1 = mn ◦ ψ1 ⊗ · · · ⊗ ψn+1 ◦∆n

Proof. This can be shown by induction.

1. ψ1 ⋆ ψ2 = m ◦ (id⊗ id) ◦ (ψ1 ⊗ ψ2) ◦ (id⊗ id) ◦∆ =
m ◦ (id⊗m0) ◦ (ψ1 ⊗ ψ2) ◦ (id⊗∆0) ◦∆ =
m1 ◦ (ψ1 ⊗ ψ2) ◦∆1

2. ψ1 ⋆ · · · ⋆ ψn = mn−1 ◦ (ψ1 ⊗ · · · ⊗ ψn) ◦∆n−1

3. ψ1⋆(ψ2⋆ · · ·⋆ψn+1) = m◦(id⊗mn−1)◦(ψ1⊗· · ·⊗ψn+1)◦(id⊗∆n−1)◦∆
= mn ◦ (ψ1 ⊗ · · · ⊗ ψn+1) ◦∆n

Definition 2.5.4
Let B be a bialgebra and let A be an algebra.
Set GB

A := {ϕ ∈ Hom(B,A)|ϕ(1B) = 1A}.
NOTE 5 Since e(1) = uA ◦ ϵB(1B) = uA(1) = 1A, one can observe that
e ∈ GB

A.

Lemma 2.5.5
Let B be a bialgebra, let A be an algebra and ϕ ∈ GB

A.

(e− ϕ)⊗(n+1) ◦∆n = (e− ϕ)⊗(n+1) ◦ ∆̃n ∀n > 1

Proof. Note the following.
Since e, ϕ ∈ GB

A and ∆n(1) = 1⊗(n+1), one can obtain

(e− ϕ)⊗(n+1) ◦∆n(1) = 0 = (e− ϕ)⊗(n+1) ◦ ∆̃n(1) ∀n > 1.

The relation can be shown by induction. Choose any x ∈ B.

1. (e− ϕ)⊗2 ◦∆1(x) = (e− ϕ)⊗ (e− ϕ) ◦ (∆̃(x)− 1⊗ x− x⊗ 1) =
(e− ϕ)⊗ (e− ϕ) ◦ ∆̃(x)

2. (e− ϕ)⊗n ◦∆n−1(x) = (e− ϕ)⊗n ◦ ∆̃n−1(x)

3. (e− ϕ)⊗(n+1) ◦∆n(x) = (e− ϕ)⊗ (e− ϕ)⊗n ◦ (id⊗∆n−1) ◦∆(x)
= (e− ϕ)⊗ [(e− ϕ)⊗n ◦∆n−1] ◦ (∆̃(x)− 1⊗ x− x⊗ 1))
= (e− ϕ)⊗ [(e− ϕ)⊗n ◦∆n−1] ◦ ∆̃(x)
= (e− ϕ)⊗ [(e− ϕ)⊗n ◦ ∆̃n−1] ◦ ∆̃(x) = (e− ϕ)⊗(n+1) ◦ ∆̃n(x)
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Theorem 2.5.6
Let B be a connected bialgebra and let A be an algebra. Then (GB

A, ⋆) is a
group.

Proof. Choose some ϕ, ψ ∈ GB
A

1. ψ ⋆ ϕ(1) = m ◦ ψ ⊗ ϕ ◦∆(1) = ψ(1).ϕ(1) = 1

2. Define ψ⋆0 = e, ψ⋆1 = ψ and with these definitions set

ϕ⋆−1 :=
∑
n>0

(e− ϕ)⋆n.

Let x be an element of B. From the connectedness of B follows that
∆̃n(x) = 0 ∀n ≥ |x|aug < ∞. Together with lemma (2.5.5) one can
observe that ϕ⋆−1(x) =

∑
n<|x|aug(e − ϕ)⋆n(x) is a finite sum ∀x ∈ B.

Further, note that since (e−ϕ)⋆n(1) = 0 ∀n > 1 one obtains ϕ⋆−1(1) =
e(1) = 1.
This leads to the conclusion that ϕ⋆−1 ∈ GB

A.
Choose some x ∈ Ker(ϵ)

− ϕ ⋆ ϕ⋆−1(x) = (e− ϕ) ⋆ ϕ⋆−1(x)− e ⋆ ϕ⋆−1(x) =∑
n<|x|aug

(e− ϕ)⋆(n+1)(x)−
∑

n<|x|aug

(e− ϕ)⋆n(x) =

[(e− ϕ)⋆(|x|aug) − (e− ϕ)⋆0](x) = −e(x) since ∆̃|x|aug(x) = 0

⇒ ϕ ⋆ ϕ⋆−1 = e and ϕ⋆−1 ⋆ (ϕ ⋆ ϕ⋆−1) = ϕ⋆−1 ⋆ e = ϕ⋆−1

⇔ ϕ ⋆ ϕ⋆−1 = e and ϕ⋆−1 ⋆ ϕ = e

The last line follows since e is unique.

2.6 Algebraic Birkhoff decomposition

Definition 2.6.1
Let B be a bialgebra and let A = A− ⊕A+ be an algebra, decomposed into
the direct sum of two linear spaces A− and A+.
A Birkhoff decomposition of a ϕ ∈ GB

A is a pair ϕ+, ϕ− ∈ GB
A so that

ϕ = ϕ⋆−1
− ⋆ ϕ+ and ϕ±(Ker(ϵ)) ⊆ A±
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Theorem 2.6.2
Let B be a connected bialgebra, let A = A−⊕A+ be an algebra decomposed
into two linear spaces A± and let R : A → A− be the projection induced by
the decomposition of the algebra A.
For every ϕ ∈ GB

A there exists a unique Birkhoff decomposition. It can be
computed recursively through

ϕ−(x) = −R ◦ ϕ̄(x) and ϕ+(x) = (id−R) ◦ ϕ̄(x) ∀x ∈ Ker(ϵ) (i)

ϕ̄ = ϕ+m ◦ (ϕ− ⊗ ϕ) ◦ ∆̃. (ii)

The map ϕ̄ is called the Bogoliubov map.

Proof. The proof consists of three steps.

1. Let ϕ± be some Birkhoff decomposition of some Birkhoff decomposable
ϕ.
From equation (ii) one can follow that ϕ̄ = ϕ+ − ϕ−.
Since ϕ±(Ker(ϵ)) ∈ A± and R(A+) = 0, one can conclude that
R◦ϕ̄(x) = R◦ϕ+(x)−R◦ϕ−(x) = −ϕ−(x) and (id−R)◦ϕ̄(x) = ϕ+(x).
This shows that every Birkhoff decomposition, if it exists, can be com-
puted with the help of equation (i) and (ii).

2. Let ϕ± be some Birkhoff decomposition of some ϕ. Taking any con-
nected filtration B̃n of B one can conclude the below.

(a) ϕ−(1) = 1.

(b) Since ∆̃(B̃N+1) ⊆
∑

1≤k≤N B̃k ⊗ B̃N+1−k, one can observe that

ϕ̄(B̃N+1) and thus ϕ±(B̃
N+1) are already completely determined

by the values ϕ̄(B̃n) ∀n < N + 1.

One may conclude that every Birkhoff decomposition satisfies equation
(i) and (ii) and every ϕ− which satisfies equation (i) and (ii) is uniquely
determined by the condition ϕ−(1) = 1. That shows that the Birkhoff
decomposition is unique if it exists.

3. As above we define ϕ− recursively by

(a) ϕ−(1) = 1

(b) ϕ−(x) = −R ◦ ϕ̄(x), ϕ̄ = ϕ+m ◦ (ϕ− ⊗ ϕ) ◦ ∆̃ ∀x ∈ Ker(ϵ)

It follows that ϕ−(Ker(ϵ)) ⊆ imR ≡ A−.
Set ϕ+ := ϕ− ⋆ ϕ ⇒ ϕ+(1) = 1 with Theorem (2.5.6) and
ϕ+|Ker(ϵ) = ϕ− ⋆ ϕ|Ker(ϵ) = [ϕ− + ϕ̄]Ker(ϵ) = [(id−R) ◦ ϕ̄]Ker(ϵ).
So ϕ+(Ker(ϵ)) ⊆ A+ and ϕ = ϕ⋆−1

− ⋆ ϕ+, which completes the proof.
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Example 4 Consider a connected bialgebraB with the target algebraA = B
decomposed into A− = B and A+ = {0}, hence R = id. Then for ϕ ∈ GB

B

its Birkhoff decomposition satisfies ϕ+(1) = 1 and ϕ+(Ker(ϵ)) = 0. One may
conclude that ϕ+ = e = u ◦ ϵ so that

ϕ = ϕ⋆−1
− ⋆ ϕ+ = ϕ⋆−1

− ⋆ e = ϕ⋆−1
− ⇔ ϕ− = ϕ⋆−1

This gives a recursive relation for the inverse of a ϕ ∈ GB
B.

∀x ∈ Ker(ϵ) : ϕ⋆−1(x) = ϕ−(x) = −R ◦ [ϕ+m ◦ ϕ− ⊗ ϕ ◦ ∆̃](x) ⇔
ϕ⋆−1(x) = −ϕ(x)−m ◦ ϕ⋆−1 ⊗ ϕ ◦ ∆̃(x)

2.7 Hopf algebra

Definition 2.7.1 (Hopf algebra)
Let H be a bialgebra and set End×⋆ (H) := {ϕ ∈ End(H)|∃ψ ∈ End(H) :
ϕ ⋆ ψ = e = ψ ⋆ ϕ}.
H is called a Hopf algebra if id ∈ End×⋆ (H). The unique inverse S := id⋆−1

is called the antipode.
A morphism ϕ : H1 → H2 of Hopf algebras is a morphism of bialgebras so
that

S1 ◦ ϕ = ϕ ◦ S2.

Definition 2.7.2
Let H be a Hopf algebra and I ⊆ H be a linear subspace.
I is called a Hopf ideal if it is an ideal of a bialgebra and

S(I) ⊆ I.

Proposition 2.7.3
Let H be a Hopf algebra, let I ⊆ H be a Hopf ideal and let π : H → H/I
the canonical projection.
There exists a unique Hopf algebra structure on H/I so that π is a morphism
of Hopf algebras.

Proof. Since H is a bialgebra, we already know from proposition (2.3.6) that
there exists a unique bialgebra structure on H/I so that π is a morphism of
bialgebras. Set SH/I := π ◦ SH ◦ π−1. This definition is independent of the
choice of a representative since SH(I) ⊆ I. We have to check that SH/I is
the convolution inverse of idH/I .
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Recall that mH/I = π ◦mH ◦ π−1 ⊗ π−1 and ∆H/I = π ⊗ π ◦∆H ◦ π−1 as in
proposition (2.1.3) and (2.2.5).

SH/I ⋆H/I idH/I = mH/I ◦ SH/I ⊗ idH/I ◦∆H/I =

π ◦mH ◦ π−1 ⊗ π−1 ◦ (π ◦ SH ◦ π−1 ⊗ π ◦ idH ◦ π−1) ◦ π ⊗ π ◦∆H ◦ π−1 =

π ◦mH ◦ SH ⊗ idH ◦∆H ◦ π−1 = π ◦ uH ◦ ϵH ◦ π−1 =

uH/I ◦ ϵH/I = eH/I

So SH/I is indeed the convolution inverse of the identity in H/I. From the
definition it follows that π ◦ SH = SH/I ◦ π.

Corollary 2.7.4
Every connected bialgebra is a Hopf algebra.

Proof. Follows from theorem (2.5.6) and id ∈ GB
B.

Proposition 2.7.5
Let B be a connected bialgebra and let I ⊆ B be an ideal of a bialgebra.
B/I is a connected bialgebra and the canonical projection π is a Hopf algebra
morphism.

Proof. Let B = (K.1B) ⊕
∑

n>1Bn be a connected filtration of B. Set
In = π(Bn). Since π is a morphism of algebras, it follows that π(K.1B) =
K.1B/I . Since π is surjective, one obtains B/I = (K.1B/I)⊕

∑
n>1 In. From

the bialgebra morphism property of π follows that In is indeed a connected
filtration of B/I. From corollary (2.7.4) we can follow that B and B/I are
Hopf algebras. In the proof of proposition (2.7.3) we saw that by setting
SB/I := π ◦ SH ◦ π−1 one obtains an antipode in B/I so that π is a Hopf
algebra morphism. But that completes the proof since the antipode of a Hopf
algebra is unique.

There are some interesting features about the antipode that I would like to
mention without a proof. The proof can be found in [1] or in [2].

Proposition 2.7.6
Let H be a Hopf algebra with antipode S.

1. S ◦ u = u⇔ S(1) = 1

2. ϵ ◦ S = ϵ⇒ S(Ker(ϵ)) ⊆ Ker(ϵ)

3. S ◦m = m ◦ τ ◦ (S ⊗ S) with τ(x1 ⊗ x2) = x2 ⊗ x1.

4. ∆ ◦ S = τ ◦ (S ⊗ S) ◦∆ with τ(x1 ⊗ x2) = x2 ⊗ x1.
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2.8 Characters and their decomposition

Definition 2.8.1
Let B be a bialgebra and let A be an algebra.
The set of characters is the set of all algebra morphisms ϕ : B → A.

ḠB
A := {ϕ ∈ GB

A|ϕ ◦mB = mA ◦ ϕ⊗ ϕ}

Proposition 2.8.2
Let H be a Hopf algebra and let A be a commutative algebra.
(ḠB

A, ⋆) is a group and one can compute the inverse of ϕ ∈ ḠB
A by ϕ⋆−1 = ϕ◦S.

Proof. Choose some ϕ ∈ ḠB
A.

(ϕ ◦ S) ⋆ ϕ = mA ◦ [(ϕ ◦ S)⊗ ϕ] ◦∆ = mA ◦ (ϕ⊗ ϕ) ◦ (S ⊗ id) ◦∆ =

ϕ ◦m ◦ (S ⊗ id) ◦∆ = ϕ ◦ (S ⋆ id) = ϕ ◦ u ◦ ϵ = uA ◦ ϵ = e

Further, ϕ ⋆ (ϕ ◦ S) = e can be proven analogously.
We have to prove that ϕ⋆−1 = ϕ ◦ S ∈ ḠB

A.
ϕ⋆−1(1) = ϕ ◦ S(1) = ϕ(1) = 1 and

ϕ⋆−1 ◦m = ϕ ◦ S ◦m = ϕ ◦m ◦ τ ◦ (S ⊗ S) = mA ◦ (ϕ⊗ ϕ) ◦ τ ◦ (S ⊗ S) =

mA ◦ τ ◦ [(ϕ ◦ S)⊗ (ϕ ◦ S)] = mA ◦ (ϕ⋆−1 ⊗ ϕ⋆−1)

We used the commutativity of A above.
Choose any two ψ, ϕ ∈ ḠB

A.

(ϕ ⋆ ψ) ◦m = mA ◦ ϕ⊗ ψ ◦∆ ◦m = mA ◦ ϕ⊗ ψ ◦ (m⊗m) ◦ σ ◦ (∆⊗∆)

= mA ◦ [(ϕ ◦m)⊗ (ψ ◦m)] ◦ σ ◦∆⊗∆

= mA ◦ (mA ⊗mA) ◦ [(ϕ⊗ ϕ)⊗ (ψ ⊗ ψ)] ◦ σ ◦ (∆⊗∆)

= mA ◦ (mA ⊗mA) ◦ σ ◦ [(ϕ⊗ ψ)⊗ (ϕ⊗ ψ)] ◦ (∆⊗∆)

= mA ◦ [(mA ◦ (ϕ⊗ ψ) ◦∆]⊗ [(mA ◦ (ϕ⊗ ψ) ◦∆]

= mA ◦ (ϕ ⋆ ψ)⊗ (ϕ ⋆ ψ)

We used the commutativity ofA again. Further, note ϕ⋆ψ(1) = ϕ(1).ψ(1) =
1. This proves that ϕ ⋆ ψ ∈ ḠB

A.

Lemma 2.8.3 (Rota-Baxter equation)
Let A be an algebra and R : A → im(R) be a projection so that im(R) and
Ker(R) are subalgebras (they do not need to be unital).
Then the following equality holds.

mA ◦R⊗R = R ◦mA ◦ [R⊗ id+ id⊗R− id⊗ id]. (i)
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Proof. Note that the Rota-Baxter equation is equivalent to

R(xy) +R(x)R(y) = R[R(x)y + xR(y)] ∀x, y ∈ A 2.8.1

1. x, y ∈ Ker(R) ⇒ xy ∈ Ker(R) since Kern(R) is a subalgebra. Then
both sides of equation (i) vanish.

2. x, y ∈ im(R) ⇒ xy ∈ im(R) since im(R) is a subalgebra. Together
with R|imR = id both sides reduce to 2R(xy) = 2xy.

3. x ∈ Ker(R) and y ∈ im(R), then equation (i) reduces to R(xy) =
R[xR(y)] = R(xy) again because R|imR = id.
Analogously for y ∈ Ker(R) and x ∈ im(R).

Proposition 2.8.4
Let B be a connected bialgebra and let A = A+ ⊕ A− be a commutative
algebra decomposed into two subalgebras. They do not have to be unital.

ϕ ∈ ḠB
A ⇒ ϕ+, ϕ− ∈ ḠB

A

Proof. We have already shown that under the assumptions above the convo-
lution product of two characters is a character. Since ϕ+ = ϕ− ⋆ ϕ, we only
need to show that ϕ− is a character. This can be proven with the help of the
Rota-Baxter equation.
Note the following.

∆̃(xy) = ∆(xy)− 1⊗ xy − xy ⊗ 1 = ∆(x)∆(y)− 1⊗ xy − xy ⊗ 1

= [∆̃(x) + 1⊗ x+ x⊗ 1][∆̃(y) + 1⊗ y + y ⊗ 1]− 1⊗ xy − xy ⊗ 1

= [∆̃(x) + 1⊗ x][∆̃(y) + 1⊗ y] + [∆̃(x) + 1⊗ x].y ⊗ 1

+ x⊗ 1.[∆̃(y) + 1⊗ y]− 1⊗ xy

With the help of the commutativity of A one can obtain the following.

mA ◦ ϕ− ⊗ ϕ ◦mB⊗B ◦ [∆̃(x) + 1⊗ x]⊗ [∆̃(y) + 1⊗ y]

= mA ◦ ϕ− ⊗ ϕ ◦mB ⊗mB ◦ σ ◦ [∆̃(x) + 1⊗ x]⊗ [∆̃(y) + 1⊗ y]

= mA ◦ (mA ⊗mA) ◦ σ ◦ (ϕ− ⊗ ϕ)⊗ (ϕ− ⊗ ϕ) ◦ [∆̃(x) + 1⊗ x]⊗ [∆̃(y) + 1⊗ y]

= mA ◦ (mA ⊗mA) ◦ (ϕ− ⊗ ϕ)⊗ (ϕ− ⊗ ϕ) ◦ [∆̃(x) + 1⊗ x]⊗ [∆̃(y) + 1⊗ y]

= ϕ̄(x).ϕ̄(y)
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Using both equations, the analogue of the last equation for the other terms
and the commutativity of A yields the below.

ϕ̄(xy) = ϕ(xy) +mA ◦ ϕ− ⊗ ϕ ◦ {[∆̃(x) + 1⊗ x][∆̃(y) + 1⊗ y]

+ [∆̃(x) + 1⊗ x].y ⊗ 1+ x⊗ 1.[∆̃(y) + 1⊗ y]− 1⊗ xy}
= ϕ̄(x)ϕ̄(y) + ϕ̄(x)ϕ−(y) + ϕ−(x)ϕ̄(y)

= ϕ̄(x)ϕ̄(y)− ϕ̄(x)R(ϕ̄(y))−R(ϕ̄(x))ϕ̄(y)

= −mA ◦ [R⊗ id+ id⊗R− id⊗ id](ϕ̄(x)⊗ ϕ̄(y)) ⇒
ϕ−(xy) = −R ◦ ϕ̄(xy) = ϕ−(x)ϕ−(y)

The last line follows by using the Rota-Baxter equation (2.8.1).

Proposition 2.8.5
Let B be a connected bialgebra graded as an algebra and let A be some
commutative algebra. Let T : N → End(A) be a family of endomorphism
so that

mA ◦ Ti ⊗ Tj = Ti+j ◦mA ◦ [Ti ⊗ id+ id⊗ Tj − id⊗ id] ∀n,m ∈ N.

Choose some ϕ ∈ ḠB
A and consider the Birkhoff decomposition defined recur-

sively by

ϕ−(1) = 1 ϕ−(x) = −T|x| ◦ ϕ̄(x) ∀x ∈ Ker(ϵ) ⇒

ϕ− and ϕ+ are both characters.

Proof. The proof is the same as for proposition (2.8.4).

ϕ−(xy) = −T|xy| ◦ [ϕ(xy) +m ◦ ϕ− ⊗ ϕ ◦ ∆̃(xy)] =

T|x|+|y|[ϕ̄(x)T|y|(ϕ̄(y)) + T|x|(ϕ̄(x))ϕ̄(y)− ϕ̄(x)ϕ̄(y)] =

ϕ−(x)ϕ−(y)
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2.9 Hochschild cohomology

Definition 2.9.1 (Hochschild cochain complex)
LetC be a coalgebra and letN be a C-bicomodul with left and right comodule
structure ΨL and ΨR.
Define cochains

HCk(N) := Hom(N,C⊗k) ∀k ∈ N

and coboundary maps dk : HCk(N) → HCk+1(N) by

dk :=
∑

06i6k+1

(−1)idki ; dki (L) :=


(id⊗ L) ◦ ψL i = 0

[id⊗(i−1) ⊗∆⊗ id⊗(k−i)] ◦ L 1 ≤ i ≤ k

(L⊗ id) ◦ ψR i = k + 1.

Lemma 2.9.2
(HC(N), d) is a cochain complex, meaning d ◦ d = 0.

Proof. I refer the reader to [9] for a more detailed proof. Let L ∈ HCk(N),
then one can prove that

dk+1
j ◦ dki = dk+1

i ◦ dkj−1 ∀0 6 i < j 6 k + 2

just by computing both sides and comparing them. From that relation one
can prove the assertion.

dk+1 ◦ dk =
∑

06j6k+2

(−1)jdk+1
j ◦

∑
06i6k+1

(−1)idk+1
i

=
∑

06j6i6k+1

(−1)i+jdk+1
j ◦ dki +

∑
06j−16i6k+1

(−1)i+jdk+1
j ◦ dki = 0

In the last step the indices were relabelled j − 1 → i, i→ j.

Remark 2.9.1

i) Consider a bialgebra B.
Then B can be equipped with the structure of a B- bicomodul. In the
following we will always consider the bicomodulstructure ψL = ∆ and
ψR = id⊗ 1.

ii) The maps L ∈ HZ1(B) := HC1(B) ∩Ker(d) are called Hochschild - 1
-cocycles.
If one uses our choice of bicomodul structure on a bialgebra B, then
the defining equation for a Hochschild - 1 - cocycle is

∆ ◦ L = L⊗ 1+ (id⊗ L) ◦∆.
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iii) In this text we will mostly consider Hochschild- 1 - cocycles L so that
L(1) ̸= 0. We will denote such Hochschild-1-cocycles just by cocycles.

Lemma 2.9.3
Let B be some bialgebra and let L be a Hochschild-1-cocycles.

im(L) ⊆ Ker(ϵ)

Proof. Choose some x ∈ Ker(ϵ).

ϵ ◦ id ◦ L(x) = (ϵ⊗ ϵ) ◦∆ ◦ L(x) = (ϵ⊗ ϵ) ◦ [L⊗ 1+ id⊗ L ◦∆](x)

= ϵ ◦ L(x) + (ϵ⊗ ϵ ◦ L) ◦∆(x)

= ϵ ◦ L(x) + (ϵ⊗ ϵ ◦ L) ◦ [1⊗ x+ x⊗ 1+ ∆̃(x)]

= ϵ ◦ L(x) + ϵ ◦ L(x) = 2ϵ ◦ L(x)

We used that ∆̃(x) ∈ Ker(ϵ)⊗Ker(ϵ).
Analogously, one can show that ϵ ◦ L(1) = 2ϵ ◦ L(1). So in total we obtain
ϵ ◦ L = 0, which proves the assertion.

Proposition 2.9.4
Let B be a connected bialgebra and let L be a cocycle. As one can follow
from Proposition (2.4.6) Primn(B) is a connected filtration of B.

x ∈ Primn(B) ⇒ L(x) ∈ Primn+1(B) ∀n ≥ 0

Proof. The property can be shown by induction.

1. ∆◦L(1) = L(1)⊗1+(id⊗L)◦∆(1) = L(1)⊗1+1⊗L(1) ⇒ L(1) ∈
Prim1(B)

2. x ∈ Primn−1(B) ⇒ L(x) ∈ Primn(B) for some n ∈ N.

3. Choose some x ∈ Primn(B). Since Primn(B) is a filtration, we know
that ∆̃(x) ∈ Primn−1 ⊗ Primn−1.

∆̃ ◦ L(x) = x⊗ L(1) + (id⊗ L) ◦ ∆̃(x) ⊆ Primn(B)⊗ Primn(B) ⇒
∆̃n+1 ◦ L(x) = (∆̃n ⊗ id) ◦ ∆̃ ◦ L(x) = 0 ⇒ L(x) ∈ Primn+1(B)
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Lemma 2.9.5
The space HZ1(B) of Hochschild-1-cocycles is a linear subspace of End(B).

Proof. Choose any two L1, L2 ∈ HZ1(B) and some α ∈ K.

∆ ◦ (L1 + αL2) = L1 ⊗ 1+ id⊗ L1 ◦∆+ α.(L2 ⊗ 1+ id⊗ L2 ◦∆)

= (L1 + αL2)⊗ 1+ id⊗ (L1 + αL2) ◦∆
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Chapter 3

Feynman graphs and Hopf
algebraic renormalization

3.1 The Hopf algebra of Feynman graphs

Feynman graphs are graphs which are built by a set of vertices R̄v, a set of
edges Re and an index set Iv for every vertex v ∈ R̄v. Let us further define
the set Rv := {vi|v ∈ R̄v, i ∈ Iv}, which is just the set of all labelled vertices.
Edges are connected to vertices so that the type of the vertex and the type
of the edges are compatible. Edges which are connected to two vertices are
called internal and edges which are connected to only one vertex are called
external. A Feynman graph is called one particle irreducible (1PI) if it is
connected and cannot be disconnected by removing a single line. Graphs
which are contained in R̄v and Re are not defined to be 1PI. In this text we
will neglect the external structure of a graph, meaning the labelling of the
external edges with momenta or space-time points. All the concepts that are
being described in this section can be generalized to Feynman graphs with
external structure with the help of distributions. I refer the reader to [3].

For example in ϕ3 theory, R̄v consists of the trivalent and the bivalent vertex,
Re just contains one straight edge. The index set for the trivalent vertex
would be just a set with one element and the index set of the bivalent vertex
would be a set with two elements. The index is needed to distinguish between
the monomial ϕ2 and (∂µϕ∂

µϕ) in the Lagrangian.

Definition 3.1.1
H is the algebra spanned as a linear space by D1PI , the set of all one par-
ticle irreducible graphs, with the commutative product defined through the
disjoint union. Let Γ1 and Γ2 be some elements of H.

m(Γ1 ⊗ Γ2) = Γ1.Γ2 = Γ1 ∪ Γ2
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The unit is given by u(1) = ∅ = 1.

Definition 3.1.2
Let Γ be some element in H. The residue of a graph Γ, in character res(Γ),
is the graph which remains after shrinking all internal structures to a point.

Example 5

res( ) =

Definition 3.1.3
Let Γ be some graph in H and let Γin be the set of internal lines of Γ. γ is
called a subgraph of Γ, in character γ ⊂ Γ, if the following conditions hold.

1. γ is a non trivial subset γ ⊂ Γin. Non trivial means in this case that γ
or the complement of γ are not the empty graph.

2. Every connected component of γ is 1PI.

3. res(γ) ∈ R̄v

Definition 3.1.4
Let Γ be some graph in H and let γ ⊂ Γ be a subgraph.
Γ/γi is the graph that is obtained if one replaces γ with res(γ)i and i ∈ Ires(γ).

At this stage we need to include labelled graphs and graphs with labelled
vertices into our algebra H. If res(Γ) = v ∈ R̄v we can label this graph
by the index set Iv. A labelled graph resp. a labelled vertex is treated
algebraically the same way as the unlabelled graph resp. unlabelled vertex.
We will need these labelled graphs and vertices in a moment for the Hopf
algebraic renormalization procedure.

We can define a coproduct on the algebra H. Let Γ ∈ H be a connected
graph. Set

∆(Γ) = Γ⊗ 1+ 1⊗ Γ +
∑
v∈R̄v

∑
i∈Iv

∑
γ⊂Γ

res(γ)=v

γi ⊗ Γ/γi

and extend the coproduct on products of graphs so that ∆ is a morphism of
algebras. Further, set ϵ(1) = 1 and ϵ(Γ) = 0 if Γ ̸= 1.

Example 6 An example of a coproduct in ϕ3 theory would be

∆

( )
= ⊗ 1+ 1⊗ +

0

⊗
0
+

1

⊗
1
.
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An example of a coproduct in QED would be

∆( ) = ⊗ 1 + 1⊗ + 2 ⊗ .

Note: Every index set in QED only consists of one element. Thus we don‘t
need to label the graphs.

Theorem 3.1.5
(H,m, u,∆, ϵ) is a connected bialgebra.

Proof. See [3] for a proof.

NOTE 6 By definition of the coproduct on graphs the set of all primitive
elements Prim1(H) consists of all graphs which have no subdivergences.
Thus the term primitive graph used here and the term primitive graph used
by physicists are the same.

3.2 The renormalization procedure

Let us recapitulate the renormalization procedure and try to identify the
famous BPHZ procedure as a Hopf algebraic Birkhoff decomposition (see
[8]).

The first step of renormalization is to choose a regularisation scheme and the
corresponding Feynman rules. Let us choose a scheme which depends on a
complex regularisation parameter z so that we obtain the physical limit as
z → 0. What is a Feynman rule? A Feynman rule is a map Φz which sends
a graph into the algebra of Laurent series in z. Let us denote this algebra
by A. This map is extended linearly to a linear combination of connected
graphs meaning Φz(

∑
n αnΓn) =

∑
n αnΦz(Γn) with αn ∈ K and Γn ∈ H.

A product of graphs is being sent to the product of Laurent series, meaning
Φz(Γ1.Γ2) = Φz(Γ1).Φz(Γ1) and by definition Φz(1) = 1.
To conclude, a Feynman rule is an element of the character group ḠH

A.

The second step of renormalization is to choose a renormalization scheme.
That is a rule how to obtain finite values for Φz(Γ) as z → 0 for a primitive
graph Γ ∈ Prim1(H). One example would be the famous minimal subtrac-
tion scheme. Let us denote it by TMS. The map TMS projects a Laurent series
to its principle part. So for example TMS(

∑
−5≤n≤∞ anz

n) =
∑

−5≤n≤−1 anz
n.

We can obtain finite values for primitive graphs by ΦR
z (Γ) = Φz(Γ)− TMS ◦

ΦZ(Γ) = [id− TMS] ◦ Φz(Γ).
As a result, a renormalization scheme is a projection onto a subspace A− of
A.
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The third step of renormalization is using the famous BPHZ procedure to
obtain renormalized values for graphs which contain subdivergences. We
define the so called counter term ΦC

z recursively through the following.

ΦC
z (Γ) = −T ◦ [Φz(Γ) +

∑
v∈R̄v

∑
i∈Iv

∑
γ⊂Γ

res(γ)=v

ΦC
z (γi).Φz(Γ/γi)]

= −T ◦ [Φz +m ◦ ΦC
z ⊗ Φz ◦ ∆̃](Γ) = −T ◦ Φ̄z(Γ)

ΦC
z (γi) returns the counter term which is proportional to the corresponding

monomial in the Lagrangian and Φz(Γ/γi) indicates to use the right Feyn-
man rule at the vertex labelled with i. Recall that every labelled vertex
corresponds to a monomial in the Lagrangian. Thus we obtain e.g. for the

graph in Φ3 theory the following relation.

Φz

( )
= m2ΦC

z

(
0

)
+ p2ΦC

z

(
1

)
+ ΦR

z

( )
One can then obtain the renormalized value by

ΦR
z (Γ) = Φz(Γ) +

∑
v∈Rv

∑
i∈Iv

∑
γ⊂Γ

res(γ)=v

ΦC
z (γi).Φz(Γ/γi) + ΦC

z (Γ)

= [Φ̄z + ΦC
z ](Γ) = [id− T ] ◦ Φ̄z(Γ).

We are now able to summarize the Hopf algebraic renormalization procedure.

1. Choose a regularization scheme and a character Φz ∈ ḠH
A which de-

pends on the regularisation parameter so that one obtains the physical
limit as z → 0.

2. Choose a decomposition of the target algebra A into two subspaces
A = A−⊕A+ so that the divergent parts in the complex regularisation
parameter are contained in A−.

3. Calculate the Birkhoff decomposition Φz = (ΦC
z )

⋆−1 ⋆ ΦR
z . The renor-

malized values can then be obtained with the help of the map ΦR
z .

This gives a precise definition of the renormalization procedure in terms of
Hopf algebraic Birkhoff decomposition.
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Every QFT is equipped with a special grading which indicates the order of
divergence of a graph, the superficial degree of divergence (sdd). One can
lower the sdd by subtracting the Taylor polynomial in the external variables
up to the order of the sdd to render the integral finite. For example consider
the integral

∞∫
0

g(x, t)dx =

∞∫
0

x

x+ t
.

The integrand is of the order x0 for large values of x. Thus it does not
converge. If one subtracts the Taylor polynomial in t up to the first order
one obtains

g(x, t)− g(x, t0)− ∂t|t=t0g(x, t) =
(t− t0)

2x

(x+ t)(x+ t0)2
.

This integrand is of the order x−2 for large values of x and is thus convergent.
The parameter t0 is arbitrary and is the so called renormalization point.

Notation 3.2.1
Let I be some finite set and let f ∈ N×I be some multi index indexed with
the set I. Let further {ζ(i)}i∈I be a set of object with a commutative product.
One then defines

ζf :=
∏
i∈I

(ζ(i))fi .

Further, set |f | :=
∑

i∈I fi, f ! :=
∏

i∈I fi! and for two multi indices f, g ∈
N×I we set f ≤ g ⇔ fi ≤ gi∀i ∈ I.
We are now ready to introduce the momentum scheme, which is a renor-
malization scheme with interesting properties. For simplicity we will set the
renormalization point to 0. This will simplify the optic of the calculations
but will not change the outcome. Set ∂io,k := ∂ixk |(xk=0).

Definition 3.2.2
On the algebra of smooth functions C∞(Kn) we define the Taylor operator
T ∈ End(C∞(Kn)) by

Tk(f)(x) :=
∑
|K|≤k

xK

K!
∂K0 f(x).

Proposition 3.2.3
The Taylor Operator satisfies the following property.

m ◦ Tk ⊗ Tl = Tk+l ◦m ◦ [Tk ⊗ id+ id⊗ Tl − id⊗ id] ∀k, l ∈ N.
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Proof. With the help of the Leibniz rule ∂ ◦m = m ◦ (∂ ⊗ id + id ⊗ ∂) one
can obtain the following relation by induction.

∂J0 ◦m =
∑
K≤J

(
J

K

)
∂K0 ⊗ ∂J−K0 (⋆).

Note the following

∂J0 (Tkf)(x) = ∂J0
∑
|K|≤k

xK

K!
∂K0 f(x) =

{
∂J0 f(x) |J | ≤ k

0 else
(⋆⋆)

Since Tkf is a polynomial in the variables x(k) and thus linear, it is sufficient
to check that the relation below holds.

∂J0 [(Tkf)g + f(Tlg)− fg] = ∂J0 [(Tkf)(Tlg)] ∀|J | ≤ k + l

This relation can be obtained with the help of (⋆) and (⋆⋆).

∂J0 [(Tkf)g + f(Tlg)− fg] =
∑
K≤J

(
J

K

)
m ◦ (∂K0 ⊗ ∂J−K0 )[(Tkf)⊗ g + f ⊗ (Tlg)− f ⊗ g]

=
∑
K≤J

(
J

K

)
[[∂K0 Tkf ][∂

J−K
0 g] + [∂K0 f ][∂

J−K
0 Tlg]− [∂K0 f ][∂

J−K
0 g]]

1. |K| ≤ k, |J −K| ≤ l:

[∂K0 Tkf ][∂
J−K
0 g] + [∂K0 f ][∂

J−K
0 Tlg]− [∂K0 f ][∂

J−K
0 g] = [∂K0 Tkf ][∂

J−K
0 Tlg]

2. |K| > k and |J −K| ≤ l:

[∂K0 Tkf ][∂
J−K
0 g]+[∂K0 f ][∂

J−K
0 Tlg]−[∂K0 f ][∂

J−K
0 g] = 0 = [∂K0 Tkf ][∂

J−K
0 Tlg]

3. |K| ≤ k and |J − K| > l: analogously to the case |K| > k and
|J −K| ≤ l.

4. |K| > k and |J −K| > l
Note |J −K| = |J | − |K| > l ⇔ |J | > k + l (since |K| ≤ |J |) and that
case is not needed by the definition of the Taylor operator.

If we summarize the above we obtain the assertion.

∂J0 [(Tkf)g + f(Tlg)− fg] =
∑
K≤J

(
J

K

)
[∂K0 Tkf ][∂

J−K
0 Tlg] = ∂J0 [(Tkf)(Tlg)].
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Let Φz be some Feynman rule. One can define the so called momentum
scheme which is induced by the Taylor operator. Set

ΦC
z (Γ) := −T|Γ|sdd ◦ Φ̄z(Γ) ΦR

z (Γ) := [id− T|Γ|sdd ] ◦ Φ̄z(Γ)

for any Γ ∈ Ker(ϵ) and ΦC,R
z (1) = 1.

Theorem 3.2.4
There exists a renormalization scheme so that the Birkhoff decomposition
maps ΦR,C

z are characters.

Proof. With the help of proposition (2.8.5) it is easy to notice that the mo-
mentum scheme leads to such a Birkhoff decomposition.

NOTE 7 If the momentum scheme leads to finite renormalized Feynman
rules, then the QFT is local and vice versa.

3.3 Combinatorial Dyson Schwinger equation

A QFT is completely determined by the so called 1PI vertex functions and
the 1PI propagators. Let us define those in terms of the Hopf algebra of
graphs. As mentioned before, a QFT is built by a set of vertices Rv and a
set of edges Re. For every labelled vertex v ∈ Rv there is a coupling constant
g(v).

Definition 3.3.1
Let Γ ∈ H be some graph. Define N(Γ) = (Nv1(Γ), · · · , Nvn(Γ)) ∈ N×Rv

where Nv(Γ) counts the number of vertices of type v in Γ. Set

X(e)(g) := 1−
∑

Γ∈D1PI
res(Γ)=e

1

Sym(Γ)
gN(Γ)Γ ∀e ∈ Re

X(v)(g) := g(v)1+
∑

Γ∈D1PI
res(Γ)=v

1

Sym(Γ)
gN(Γ)Γ ∀v ∈ Rv

Further, let ne(Γ) be the number of external edges of type e in Γ. We then
define the so called invariant charges

Q(v)(g) :=
X(v)(g)∏

e∈Re(X
(e)(g))ne(v)/2

∀v ∈ Rv. 3.3.1
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Expressions like 1
Xe

are understood as the corresponding power series. We
will treat those expressions in the next chapter more explicitly. Sym(Γ) is
just the well known symmetry factor of a graph which is the rank of the auto-
morphism group of Γ. Elements of the set {X(e)}e∈Re are called propagators,
elements of the set {X(v)}v∈Rv are called vertex functions and elements of
the set {X(r)}r∈Re∪Rv are called graph functions. The term proportional to
1 corresponds to the first order contribution which is the graph contained in
Re resp. Rv, which we defined not to be 1PI. That is why the first term of
the vertex function is proportional to the corresponding coupling constant.
For example the first order contribution to the vertex function in Φ3 theory
would be the graph which is already proportional to the coupling con-
stant g and thus this graph corresponds to g1 since we defined this graph
not to be 1PI. The first order contribution to the propagator is the graph
which is just 1 since we defined this graph not to be 1PI. As one can compute
Q(v)(g) is a power series in g and the only first order term is g(v)1. As we
will see in chapter 3, the invariant charge Q(v) is the quantum mechanical
generalization of the classical coupling constant g(v).

As we will see, graph functions are generated by so called insertion operators,
which turn out to be cocycles. Before we can define those insertion operators
and discuss their properties we will have to make some definitions first. The
properties of the insertion operators and their connection to graph functions
play a key role in the Hopf algebraic analysis of QFT. The definitions below
are being introduced and more explicitly discussed in [5].

Definition 3.3.2
Let Γ be some element in H. Define |Γ|V to be the number of distinct
elements in H which are equal after removing all external edges. Those
elements inH can be obtained from each other by permutation of the external
edges.

Each graph Γ consists of internal edges Γin and vertices Γv. Those edges
and vertices and subsets of them are called places of Γ. Every place of Γ
has adjacent edges. If the place is a vertex then the edges attached to it are
adjacent to the place. If the place is an edge which corresponds to a point
on that edge, the two edges attached to that point define the adjacent edges.

Definition 3.3.3
Let Γ be some connected 1PI graph and let X ∈ H be some element.

1. Γ|X is the number of insertion places of Γ so that X can be inserted
at those places.

2. bij(γ,X,Γ) is the number of bijections between the external edges of X
and the adjacent edges of insertion places p in γ so that Γ is obtained.
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3. maxf( Γ ) is the number of maximal forests of a graph Γ that is the
number of ways to shrink subdivergences to a point so that the resulting
graph is primitive.

NOTE 8 maxf(Γ) can be calculated the following way. If x is some connected
graph inH we can define x̂ to be the graph without any scalars in front. Then
set ∆(Γ) =

∑
c(Γ1,Γ2)Γ̂1 ⊗ Γ̂2. From this one obtains

maxf(Γ) =
∑

γ∈Prim1(H)

∑
c(Γ1,Γ2)δγ(Γ2) with

δγ ∈ H′ δγ(Γ) =

{
1 ⇔ γ = Γ

0 else

Definition 3.3.4 (Insertion operators)
For every γ ∈ Prim1(H) and for every X ∈ H we set

Bγ
+(X) :=

∑
Γ∈D1PI

bij(γ,X,Γ)

Sym(γ)

1

|X|Vmaxf(Γ){γ|Γ}
Γ

NOTE 9 The insertion Operator Bγ
+ inserts the argument X into the prim-

itive graph γ so that the resulting graph is divided by its symmetry factor
multiplied by the symmetry factor of the argument X.

Example 7

B+ (
1

2
) =

1

4

B+ ( ) =
1

2

I refer the reader to [4] and [5] for a proof of the following theorem.
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Theorem 3.3.5 (Hochschild Theorem)
LetBγ

+ be the insertion operator defined above. Set Λ(v)(g) :=
∏

e∈Re X
(e)(g)ne(v)/2.

1. The insertion operator Bγ
+ is a cocycle ∀γ ∈ Prim1(H).

2. The graph functions fulfil the following system of equations.

X(e)(g) = 1−
∑
|N |>1

∑
|γ|=1

N(γ)=N
res(γ)=e

Bγ
+(Q(g)

NX(e)(g)) ∀e ∈ Re

X(v)(g) = g(v)1+
∑
|N |>2

∑
|γ|=1

N(γ)=N
res(γ)=v

Bγ
+(Q(g)

NΛ(v)(g)) ∀v ∈ Rv

Remark 3.3.1

i) Since the set of Hochschild-1-cocycles is a linear space, we can rewrite
the above equations in terms of new cocycles.

X(e) = 1+
∑
|N |>1

L(N)
e (Q(g)NX(e)(g)) ∀e ∈ Re

X(v) = g(v)1+
∑
|N |>2

L(N)
v (Q(g)NΛ(v)(g)) ∀v ∈ Rv

ii) A system of equations of the type above is called combinatorial Dyson
Schwinger equation (DSE).

iii) Note that every graph that is contained in a graph function is in the
image of cocycles.

Let Φz be some Feynman rule. We then can define the unrenormalized Greens
function through

Gr({g}, {p}) := Φz(X
(r))({g}, {p}) ∀r ∈ Rv ∪Re

in which {p} is the set of external momenta and {g} is the set of coupling
constants. The structure of the DSE assures that the physical limit for the
renormalized Greens functions exists order by order. Fix the momentum
scheme. Let γ be some primitive graph. Set Φz(γ) =

∫
µγz . This defines a

rational function µγz . We assume that limz→0Φ
R
z (γ) = limz→0[Φz(γ) − T ◦

Φz(γ)] exists for any primitive graph. From the structure of the Feynman
rules it follows that Φz ◦ Bγ

+(Γ) =
∫
µγzΦz(Γ), since B

γ
+(Γ) inserts the graph

Γ into γ in a suitable manner.
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Theorem 3.3.6
Let Γ be some element in H.
If limz→0 Φ

R
z (γ) = limz→0[Φz(γ) − T ◦ Φz(γ)] exists for any primitive graph,

the physical limit limz→0Φ
R
z (Γ) will exist.

Proof. Since ΦR
z is a morphism of algebras for every z ̸= 0, it follows that if

limz→0Φ
R
z (Γ) exists it is a morphism of algebras. This means it is sufficient to

check the above for any connected graph Γ. From the Hochschild theorem we
know that every connected graph in H is in the image of insertion Operators.
The induction over the augmentation degree starts trivial for a primitive
graph since we have assumed that limz→0 Φ

R
z (γ) exists for every primitive

graph γ. Let P be the projection onto the augmentation ideal Ker(ϵ) and
choose some X ∈ H and γ ∈ Prim1(H). Now obverse the following.

Φ̄z(B
γ
+(X)) = [Φz +m ◦ ΦC

z ⊗ Φz ◦ ∆̃](Bγ
+(X))

= [Φz +m ◦ ΦC
z ⊗ Φ ◦ P ⊗ P ◦∆](Bγ

+(X))

= [Φz +m ◦ (ΦC
z ◦ P ⊗ Φ ◦ P ) ◦∆](Bγ

+(X))

= Φz(B
γ
+(X)) +m ◦ (ΦC

z ◦ P ⊗ Φ ◦ P )(Bγ
+(X)⊗ 1+ (id⊗Bγ

+) ◦∆(X))

= Φz(B
γ
+(X)) +m ◦ (ΦC

z ◦ P ⊗ Φ)(id⊗Bγ
+) ◦∆(X)

= m ◦ ΦC
z ⊗ Φz(1⊗Bγ

+(X)) +m ◦ (ΦC
z ◦ P ⊗ Φ ◦Bγ

+) ◦∆(X)

= m ◦ ΦC
z ⊗ Φz ◦Bγ

+ ◦∆(X) =

∫
µγz{m ◦ ΦC

z ⊗ Φz ◦∆(X)} =

∫
µγzΦ

C
z ⋆ Φz(X) ⇒

Φ̄z(B
γ
+(X)) =

∫
µγzΦ

R
z (X)

We used that Bγ
+ is a cocycle and so im(Bγ

+) ⊆ Ker(ϵ). So in total we obtain

lim
z→0

ΦR
z (B

γ
+(X)) = lim

z→0
[id− T ] ◦

∫
µγzΦ

R
z (X).

In general the integrands, which appear in the above line, are of the form
which are being discussed in [7] and thus one may conclude that the integral
converges. This completes the proof.

For a detailed example consider [6] or for a detailed analysis of a toy model
consider [9].
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We are now in the position to summarize the main ingredients for a local
and renormalizable QFT.

1. The Feynman rules for primitive graphs have to lead to local and thus
renormalizable expressions.

2. The Hopf algebra of graphs has to be “generated” from cocycles which
shall mean that every connected graph is in the image of cocycles. This
assures locality for higher order terms.

Actually, we will see that there is a Hopf subalgebra which is in mathematical
terms generated by cocycles, which governs the renormalization of the QFT.
These Hopf subalgebras are the topic of the next chapter (see [4]).
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Chapter 4

Dyson Schwinger algebras

4.1 Faá di Bruno

In this section we will describe the multi dimensional Faá di Bruno algebra.

Definition 4.1.1
Let L be some finite set.
We denote by WL the set of non empty words with letters in L.
Let u ∈ WL be some word. We denote by ∥u∥ the length of the word and by
uj the j-th letter in the word u.
For some x ∈ Kd and some u ∈ W{1,···d} set

xu :=

∥u∥∏
j=1

x(uj)

In the remainder of this section we will always consider the set L := {1, · · · , d}
where d is the dimension of the Faá di Bruno algebra, which is defined below.

Let Dd := {P ∈ K[[x1, · · · , xd]]|P (0) = 0 ∧ DP |x=0 = idK} be the set of
formal diffeomorphisms tangent to the identity. Let P ∈ Dd be some element
with P (j)(x) =

∑
v∈WL

p
(j)
v xv where P (j) is the j-th component of P (x) ∈ Kd.

One can define functionals a
(j)
v : Dd → K through a

(j)
v (P ) = p

(j)
v for any

j ∈ L and v ∈ WL. Note the following. By definition a
(j)
i = δi,j for the one

letter word i ∈ WL. Set 1 ≡ a
(j)
j ∀j ∈ L.

The product on the field K induces a product on the set of functionals a
(j)
v .

[m ◦ (a(j)v ⊗ a(i)w )](P ) = p(j)v p(i)w

Note that 1 is the unit.
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Definition 4.1.2 (Faá di Bruno)
The unital and commutative algebra AFdB, which is generated by the func-
tionals a

(j)
v with the product m defined above and the unit 1, is called the d

dimensional Faá di Bruno algebra.

Lemma 4.1.3
Let P,Q ∈ Dd be some elements. Then Q ◦ P ∈ Dd and

(Q ◦ P )(j) =
∑
u∈WL

xu
∑

∥w∥≤∥u∥
w∈WL

∑
v1···v∥w∥=u
vi∈WL

(
∏
k

p(wk)vk
)q(j)w (⋆).

Proof. If (⋆) is true then Q ◦ P ∈ Dd since q
(j)
i = δi,j and p

(j)
i = δi,j .

(Q ◦ P )(j)(x) =
∑
w∈WL

q(j)w
∏
k

(
∑
v∈WL

p(wk)vk
xv)

=
∑
w∈WL

q(j)w
∑

v1,··· ,v∥w∥∈WL

(
∏
k

p(wk)vk
)xv1···v∥w∥

=
∑
u∈WL

xu
∑
w∈WL

∑
v1···v∥w∥=u
vi∈WL

(
∏
k

p(wk)vk
)q(j)w

=
∑
u∈WL

xu
∑

∥w∥≤∥u∥
w∈WL

∑
v1···v∥w∥=u
vi∈WL

(
∏
k

p(wk)vk
)q(j)w

The last line follows since ∥vi∥ ≥ 1 by definition, so every time ∥w∥ > ∥u∥
the sum over vi is empty.

We define a coproduct on AFdB with the help of the composition.

∆(a(j)v )(P ⊗Q) = a(j)v (Q ◦ P )

The counit on AFdB is defined by ϵ(1) = 1 and 0 otherwise. The coproduct
is extended to a product so that it is a morphism of algebras and thus the
product m is a morphism of coalgebras.

Lemma 4.1.4

∆(a(j)u ) =
∑

∥w∥≤∥u∥
w∈WL

∑
v1···v∥w∥=u
vi∈WL

(
∏
k

a(wk)vk
)⊗ a(j)w

Proof. Follows from lemma (4.1.3).
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Theorem 4.1.5
(AFdB,m,1,∆, ϵ) is a connected bialgebra and thus a Hopf algebra.

Proof. The coproduct is defined so that it is a morphism of algebras. The
unital and associative property follows from that of K. So we only need to
check
(ϵ ⊗ id) ◦∆ = id = (id ⊗ ϵ) ◦∆ and that there exists a connected filtration
of AFdB.

1. From lemma (4.1.4) one obtains the following.

(ϵ⊗ id) ◦∆(a(j)u ) =
∑

∥w∥≤∥u∥

∑
v1···v∥w∥=u

(
∏
k

ϵ(a(wk)vk
))︸ ︷︷ ︸

δw,u

a(j)w = a(j)u

(id⊗ ϵ) ◦∆(a(j)u ) =
∑

∥w∥≤∥u∥

∑
v1···v∥w∥=u

(
∏
k

a(wk)vk
) ϵ(a(j)w )︸ ︷︷ ︸

δw,j

= a(j)u

2. Set Alin
FdB := {a(j)u }j∈L,u∈WL

.

Define a degree on AFdB through |a(j)u | := ∥u∥−1 and |a(j1)v1 · · · a(jk)vk | :=
|a(j1)v1 |+ · · ·+ |a(jk)vk | for any a(j1)v1 , · · · , a(jk)vk ∈ Alin

FdB.
Set An

FdB := span({ζ ∈ AFdB|ζ =
∏

h ζh ζh ∈ Alin
FdB ∧ |ζ| = n}).

Note A0
FdB = (K.1) and AFdB = ⊕n∈NA

n
FdB.

∆(a(j)u ) =
∑

1≤a≤∥u∥

∑
∥w∥=a

∑
v1···va=u

(
a∏
k=1

a(wk)vk
)⊗ a(j)w

=
∑

{0≤(a−1)≤(∥u∥−1)}

∑
{∥w∥−1=(a−1)}

∑
{v1···va=u}

(
a∏
k=1

a(wk)vk
)⊗ a(j)w

=
∑

{0≤b≤∥u∥−1}

∑
{∥w∥−1=b}

∑
{v1···vb+1=u}

(
b+1∏
k=1

a(wk)vk
)⊗ a(j)w

∈
∑

0≤b≤|a(j)u |

A
|a(j)u |−b
FdB ⊗Ab

FdB

In the last line we used the following.

|
b+1∏
k=1

a(wk)vk
| =

∑
1≤k≤b+1

(∥vk∥ − 1) = ∥u∥ − 1− b = |a(j)u | − b
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The relation
Aa
FdB.A

b
FdB ⊆ Aa+b

FdB

follows from the definition of the degree.

Definition 4.1.6
In analogy to the example we were discussing in the first chapter we define
the following power series.

A(j)(x) :=
∑
w∈WL

a(j)w xw

Notation 4.1.7
By AJ we will denote the set {A(j)}j∈J .
Proposition 4.1.8
The coproduct for the elements of AJ computes to

∆(A(j)(x)) =
∑
w∈WL

A(x)w ⊗ a(j)w .
4.1.1

Proof. This is a straightforward computation.

∆(A(j)(x)) =
∑
u∈WL

∆(a(j)u )xu

=
∑
u∈WL

{
∑

∥w∥≤∥u∥

∑
v1···v∥w∥=u

aw1
v1

· · · aw∥w∥
v∥w∥ x

v1 · · · xv∥w∥ ⊗ a(j)w }

=
∑
w∈WL

(
∑
v1∈WL

aw1
v1
xv1) · · · (

∑
v∥w∥∈WL

a
w∥w∥
v∥w∥ x

v∥w∥)⊗ a(j)w

=
∑
w∈WL

(∏
k

A(wk)(x)

)
⊗ a(j)w
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Remark 4.1.1

i) We can reobtain the coproduct for a
(j)
u from the power series A(j)(x)

by projecting on the u-th coefficient. R 4.1.1.i∑
u∈WL

xu∆(a(j)u ) = ∆(A(j)(x)) =
∑
w∈WL

(
∏
k

A(wk)(x))⊗ a(j)w

=
∑
w∈WL

(
∏
k

∑
v∈WL

a(wk)v xv)⊗ a(j)w

=
∑
w∈WL

∑
v1,···v∥w∥∈WL

xv1···v∥w∥(
∏
k

a(wk)v )⊗ a(j)w

=
∑
u∈WL

xu
∑

∥w∥≤∥u∥

∑
v1,···v∥w∥=u

(
∏
k

a(wk)v )⊗ a(j)w

ii) We say that AJ generates the Faá di Bruno algebra.

4.2 Dyson Schwinger algebra

In the next three sections we will determine the underlying structure of the
DSE defined in chapter 2. For that purpose it is convenient to start with a
more abstract definition of a so called Dyson Schwinger algebra (DSA). The

element a
(p)
u defined below will turn out to be the u-th order of the invariant

chargeQ(p) of the QFT considered where as the element b
(q)
u defined below will

turn out to be the u-th order of the propagator X(q) of the QFT considered.

Definition 4.2.1
Let L be a finite set. Let ⊘ denote the empty word. One then defines the
set of words with letters in L by W 0

L := {⊘} ∪WL and one further defines
x⊘ = 1.

Definition 4.2.2 (Dyson Schwinger algebra)
Let P and Q be some finite sets with |P | = p and |Q| = q. ℘ is called a
(p,q)-dimensional Dyson Schwinger algebra if the following conditions hold

1. ℘ is a commutative bialgebra with unit 1 and counit ϵ.

2. ℘ is generated as an algebra by some elements {a(p)u }p∈P,u∈WP
and

{b(q)u }q∈Q,u∈W 0
P

so that a
(p)
p′ = 1δp,p′ ∀p‘ ∈ P and b

(q)
⊘ = 1 are the

only elements proportional to 1 and the other elements are all distinct
from each other.
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3. The coproducts of {a(p)u }p∈P,u∈WP
and {b(q)u }q∈Q,u∈W 0

P
read

∆(a(p)u ) =
∑

∥w∥≤∥u∥

∑
v1···v∥w∥=u

(
∏
k

a(wk)vk
)⊗ a(p)w

∆(b(q)u ) =
∑

∥w∥≤∥u∥

∑
v0···v∥w∥=u

b(q)v0 (
∏
k

a(wk)vk
)⊗ b(q)w

Where the sum is over words in W 0
P and we set a

(p)
⊘ ≡ 0 for notational

convenience.

Remark 4.2.1

i) If we talk about a Dyson Schwinger algebra in this chapter, we will
always consider a fixed DSA ℘ with sets P and Q.

ii) Every (p, q)-dimensional DSA contains a p dimensional Faá di Bruno
algebra.

Theorem 4.2.3
Every Dyson Schwinger algebra ℘ is connected.

Proof. Set ℘lin := {a(p)u }p∈P,u∈WP
∪ {b(q)u }q∈Q,u∈W 0

P

Define a degree on ℘ through |a(p)u | = ∥u∥ − 1 and |b(q)u | = ∥u∥. For any
ζ1, · · · , ζn ∈ ℘lin set |ζ1 · · · ζn| := |ζ1|+ · · ·+ |ζn|.
Further, set ℘n := span({ζ ∈ ℘|ζ =

∏
h ζh ζh ∈ ℘lin ∧ |ζ| = n}).

Note: ℘ = ⊕n≥0℘
n and ℘0 = (K1). The relation ℘n.℘m = ℘n+m follows from

the definition of the degree. In the proof of theorem (4.1.5) we have already
proven that

∆(a(p)u ) ∈
∑

1≤k≤|a(p)u |

℘|a(p)u |−k ⊗ ℘k.

Let u be some word in W 0
P .

∆(b(q)u ) =
∑

0≤j≤∥u∥

∑
∥w∥=j

∑
v0···vj=u

b(q)v0 (

j∏
k=1

a(wk)vk
)⊗ b(q)w

∈
∑

1≤j≤|b(q)u |

℘|b(q)u |−j ⊗ ℘j
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In the last line we used the relation below.

|b(q)v0 (
j∏

k=1

a(wk)vk
)| = |b(q)v0 |+

j∑
k=1

|a(wk)vk
|

= ∥v0∥+
j∑

k=1

(∥vk∥ − 1) = ∥u∥ − j = |b(q)u | − j

Definition 4.2.4
Define the following formal power series.

A(p)(x) :=
∑
u∈WP

a(p)u xu ∀p ∈ P

B(q)(x) :=
∑
u∈W 0

P

b(q)u xu ∀q ∈ Q

Lemma 4.2.5

∆(A(p)(x)) =
∑
u∈WP

A(x)u ⊗ a(p)u ∀p ∈ P

∆(B(q)(x)) =
∑
u∈W 0

P

B(q)(x)A(x)u ⊗ b(q)u ∀q ∈ Q

Proof. The first equation has already been proven in the last section. See
equation (4.1.1).

∆(B(q)(x)) =
∑
∥u∥≥0

∆(b(q)u )xu

=
∑
∥u∥≥0

xu
∑

∥w∥≤∥u∥

∑
v0···v∥w∥=u

b(q)v0 (
∏
k

a(wk)vk
)⊗ b(q)w

=
∑
∥u∥≥0

∑
∥w∥≤∥u∥

∑
v0···v∥w∥=u

b(q)v0 x
v0(
∏
k

a(wk)vk
xvk)⊗ b(q)w

=
∑

∥w∥≥0

(
∑

∥v0∥≥0

b(q)v0 x
v0)(
∏
k

∑
∥vk∥≥1

a(wk)vk
xvk)⊗ b(q)w

=
∑

∥w∥≥0

B(q)(x)A(x)w ⊗ b(q)w
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Notation 4.2.6
Let L be a finite set and let Γ(x) =

∑
u∈WL

xuγu be a power series in some

variables x(i).
By [Γ]u we denote the projection onto the u-th coefficient, so [Γ]u := γu.

Lemma 4.2.7
The coproducts of a

(p)
u and b

(q)
u can be reobtained from A(p) and B(q) resp.

by projecting onto the u-th coefficient.

Proof. We have already shown in the last section that ∆([A(p)]u) = [∆(A(p)(x))]u
(remark (R 4.1.1.i)).∑

∥u∥≥0

xu∆(b(q)u ) = ∆(B(q)(x))

=
∑
∥u∥≥0

xu
∑

∥w∥≤∥u∥

∑
v0···v∥w∥=u

b(q)v0 (
∏
k

a(wk)vk
)⊗ b(q)w ⇒

[∆(B(q)(x)]u =
∑

∥w∥≤∥u∥

∑
v0···v∥w∥=u

b(q)v0 (
∏
k

a(wk)vk
)⊗ b(q)w = ∆([B(q)(x)]u)

Definition 4.2.8
Since we can obtain the whole bialgebra structure of the Dyson Schwinger
algebra ℘ from {A(p)(x)}p∈P and {B(q)(x)}q∈Q, we say that the pair (AP , BQ)
generates the Dyson Schwinger algebra. The elements of AP and BQ are
called generators.

NOTE 10 In general we obtain for a product of power series the following.

∆(Γ1(x) · · ·Γn(x)) =
∑

u1,··· ,un

xu1 · · · xun∆(γ1 · · · γn)

=
∑

u1,··· ,un

xu1 · · · xun∆(γ1) · · ·∆(γn)

= ∆(Γ1(x)) · · ·∆(Γn(x))

Lemma 4.2.9

∆(A(x)u) =
∑

∥w∥≥∥u∥

A(x)w ⊗ [Au]w ∀p ∈ P

∆(B(q)(x)A(x)u) =
∑

∥w∥≥∥u∥

B(q)(x)A(x)w ⊗ [B(q)Au]w ∀q ∈ Q, p ∈ P
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Proof. We will only show the relation for ∆(A(x)u). The other relation can
be obtained analogously.

∆(A(x)u) = ∆(
∏
k

A(uk)(x))

=
∏
k

∆(A(uk)(x)) =
∏
k

∑
∥vk∥≥1

A(x)vk ⊗ [A(uk)]vk

=
∑

∥w∥≥∥u∥

A(x)w ⊗
∑

v1···v∥u∥=w

∏
k

[A(uk)]vk

=
∑

∥w∥≥∥u∥

A(x)w ⊗ [Au]w

We used the following in the last line.

A(x)u =

∥u∥∏
k=1

∑
∥vk∥≥1

xvka(uk)vk

=
∑

∥w∥≥∥u∥

xw
∑

v1···v∥u∥=w

∥u∥∏
k=1

a(uk)vk
⇒

[Au]w =
∑

v1···v∥u∥=w

∥u∥∏
k=1

a(uk)vk

Theorem 4.2.10
Let B be some bialgebra. Let P and Q be two finite sets.

1. Let {H(p)
u }p∈P,u∈WP ,∥u∥≥2 ∪ {H(q)

u }q∈q,u∈WP ∥u∥≥1 be a set of cocycles on
B. Consider the Dyson Schwinger equation (DSE) below.

A(p)(x) = x(p) +
∑

u∈WP ,∥u∥≥2

H(p)
u (A(x)u) ∀p ∈ P

B(q)(x) = 1+
∑

u∈WP ,∥u∥≥1

H(q)
u (A(x)uB(q)(x)) ∀q ∈ Q

The DSE has a unique solution so that

[A(p)]p̃ = δp,p̃1 [B(q)]⊘ = 1

are the only terms proportional to 1 and the solution (AP , BQ) gener-
ates a Dyson Schwinger algebra ℘ ⊆ B. We shall denote this type of
DSE as the standard one.
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2. Let ℘ ⊆ B be a Dyson Schwinger algebra generated by (AP , BQ). There

exists a set of cocycles {H(p)
u }p∈P,u∈WP ,∥u∥≥2 ∪ {H(q)

u }q∈q,u∈WP ∥u∥≥1 so
that AP and BQ satisfy the DSE above.

Proof. Let us start with the first assertion.

1. Note that for any set of power series AP ∪BQ so that

A(p)(x) = x(p) +
∑
∥u∥≥2

a(p)u xu

and
B(q)(x) = 1+

∑
∥u∥≥1

b(q)u xu

one may obtain the following.

A(x)u =
∑

∥w∥≥∥u∥

xw
∑

v1···v∥u∥=w

∥u∥∏
k=1

a(uk)vk
⇒

|[Au]w| = |
∥u∥∏
k=1

a(uk)vk
| =

∥u∥∑
k=1

(∥vk∥ − 1) = ∥w∥ − ∥u∥ < ∥w∥ ∀∥u∥ ≥ 2

A(x)uB(q)(x) =
∑

∥w∥≥∥u∥

xw
∑

v0···v∥u∥=w

∥u∥∏
k=1

b(q)v0 a
(uk)
vk

⇒

|[AuB(q)]w| = |b(q)v0 |+ |
∥u∥∏
k=1

a(uk)vk
| = ∥vo∥+

∥u∥∑
k=1

(∥vk∥ − 1)

= ∥w∥ − ∥u∥ < ∥w∥ ∀∥u∥ ≥ 1

As a result one obtains for the solution of the DSE if it exists, the
following.

A(p)(x) = x(p) +
∑
∥u∥≥2

H(p)
u (A(x)u) = x(p) +

∑
∥u∥≥2

∑
∥w∥≥∥u∥

xwH(p)
u ([Au]w) ⇒

[A(p)]p′ = δp,p′1 [A(p)]w =
∑

2≤∥u∥≤∥w∥

H(p)
u ([Au]w)

B(q)(x) = 1+
∑
∥u∥≥1

H(q)
u (A(x)uB(q)(x)) = 1+

∑
∥u∥≥1

∑
∥w∥≥∥u∥

xwH(q)
u ([AuB(q)]w) ⇒

[B(q)]⊘ = 1 [B(q)]w =
∑

1≤∥u∥≤∥w∥

H(p)
u ([AuB(q)]w)
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So in total we obtain that [A(p)]w and [B(q)]w only depend on terms
which are lower in degree. Thus the DSE has a unique solution. Further
since im(H) ⊆ Ker(ϵ), one can follow that [A(p)]p̃ and [B(q)]⊘ are the
only terms proportional to 1.
We will now show that

∆(A(p)(x)) =
∑
u∈WP

A(x)u ⊗ a(p)u ∀p ∈ P (⋆)

∆(B(q)(x)) =
∑
u∈W 0

P

B(q)(x)A(x)u ⊗ b(q)u ∀q ∈ Q (⋆⋆)

and thus (AP , BQ) generate a Dyson Schwinger algebra.

∆(A(p)(x)) = x(p)1⊗ 1+
∑
∥u∥≥2

∆ ◦H(p)
u (A(x)u)

= x(p)1⊗ 1+
∑
∥u∥≥2

{H(p)
u ⊗ 1+ id⊗H(p)

u ◦∆}(A(x)u)

= {x(p) +
∑
∥u∥≥2

H(p)
u (A(x)u)} ⊗ 1+

∑
∥u∥≥2

id⊗H(p)
u ◦∆(A(x)u)

= A(p)(x)⊗ 1+
∑
∥u∥≥2

id⊗H(p)
u ◦∆(A(x)u)

∆(B(q)(x)) = 1⊗ 1+
∑
∥u∥≥1

∆ ◦H(p)
u (A(x)uB(q)(x))

= 1⊗ 1+
∑
∥u∥≥1

{H(p)
u ⊗ 1+ id⊗H(p)

u ◦∆}(A(x)uB(q)(x))

= {1+
∑
∥u∥≥1

H(p)
u (A(x)uB(q)(x))} ⊗ 1+

∑
∥u∥≥1

id⊗H(p)
u ◦∆(A(x)uB(q)(x))

= B(q)(x)⊗ 1+
∑
∥u∥≥1

id⊗H(p)
u ◦∆(A(x)uB(q)(x))

We will prove the coproduct formulas by showing that (⋆) and (⋆⋆)
solve the ansatz above. We will make use of lemma (4.2.9).

∑
∥u∥≥2

id⊗H(p)
u ◦∆(A(x)u) =

∑
∥u∥≥2

id⊗H(p)
u (

∑
∥w∥≥∥u∥

A(x)w ⊗ [Au]w)

=
∑
∥u∥≥2

∑
∥w∥≥∥u∥

A(x)w ⊗H(p)
u ([Au]w) =

∑
∥w∥≥2

A(x)w ⊗
∑

2≤∥u∥≤∥w∥

H(p)
u ([Au]w)
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=
∑

∥w∥≥2

A(x)w ⊗ [A(p)]w =
∑

∥w∥≥1

A(x)w ⊗ [A(p)]w − A(p)(x)⊗ 1

and∑
∥u∥≥1

id⊗H(q)
u ◦∆(A(x)uB(q)(x))

=
∑
∥u∥≥1

id⊗H(q)
u (

∑
∥w∥≥∥u∥

A(x)wB(q)(x)⊗ [AuB(q)]w)

=
∑
∥u∥≥1

∑
∥w∥≥∥u∥

A(x)wB(q) ⊗H(q)
u ([AuB(q)]w)

=
∑

∥w∥≥1

A(x)wB(q) ⊗
∑

1≤∥u∥≤∥w∥

H(q)
u ([AuB(q)]w)

=
∑

∥w∥≥1

A(x)wB(q)(x)⊗ [B(q)]w =
∑

∥w∥≥0

A(x)wB(q)(x)⊗ [B(q)]w −B(q)(x)⊗ 1

This shows that (AP , BQ) generates a Dyson Schwinger algebra ℘ ⊆ B.

2. Now let ℘ ⊆ B be a Dyson Schwinger algebra generated by (AP , BQ).

Choose linear maps {H(p)
u }p∈P,u∈WP ,∥u∥≥2 ∪ {H(q)

u }q∈q,u∈WP ∥u∥≥1 so that
the following holds.

a(p)w =
∑

2≤∥u∥≤∥w∥

H(p)
u ([Au]w) ∀∥w∥ ≥ 2

b(q)w =
∑

1≤∥u∥≤∥w∥

H(p)
u ([AuB(q)]w) ∀∥w∥ ≥ 1

This can be done by linear extension for example. Since the set of all
Hochschild-1-cocycles is a linear subset of End(B), one can decompose
every linear map into a Hochschild-1-cocycle and an element of the
composite, so forH ∈ End(B) we obtain a decompositionH = Hϵ+H

⊥

with Hϵ ∈ HZ1(B) and H⊥ ∈ (HZ1(B))⊥.∑
2≤∥u∥≤∥w∥

∆ ◦H(p)
u ([Au]w) = ∆(a(p)w ) = a(p) ⊗ 1+

∑
2≤∥v∥≤∥w∥

[Av]w ⊗ a(p)v

=
∑

2≤∥u∥≤∥w∥

H(p)
u ([Au]w)⊗ 1+

∑
2≤∥v∥≤∥w∥

[Av]w ⊗
∑

2≤∥u∥≤∥v∥

H(p)
u ([Au]v)

=
∑

2≤∥u∥≤∥w∥

{H(p)
u ⊗ 1+ id⊗H(p)

u ◦∆}([Au]w)
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We used the following.

∆([Au]w) =
∑

∥v∥≤∥w∥

[Av]w ⊗ [Au]v

So in total we obtain the relation below.∑
2≤∥u∥≤∥w∥

(H(p)
u )⊥([Au]w) = 0 ⇒ a(p)w =

∑
2≤∥u∥≤∥w∥

(H(p)
u )ϵ([A

u]w).

Analogously, one can compute the following.∑
1≤∥u∥≤∥w∥

(H(p)
u )⊥([AuB(q)]w) = 0 ⇒ b(q)w =

∑
1≤∥u∥≤∥w∥

(H(p)
u )ϵ([A

uB(q)]w).

As a result, we obtain the assertion.

A(p)(x) =
∑
1≤∥u∥

a(p)u xu = x(p) +
∑

u∈WP ,∥u∥≥2

(H(p)
u )ϵ(A(x)

u) ∀p ∈ P

B(q)(x) =
∑
0≤∥u∥

b(q)u xu = 1+
∑

u∈WP ,∥u∥≥1

(H(q)
u )ϵ(A(x)

uB(q)(x)) ∀q ∈ Q.

The DSE above and the DSE defined in chapter 2 are still somewhat different
as one can notice by comparing both expressions. In the next section we will
derive that the DSE used above is equivalent to the one defined in chapter
2. Let us anticipate the result of the next section for a moment. The DSE
defined above describes the propagators BQ and invariant charges AP of a
QFT. In the last theorem we saw that the DSE and the coproduct formulas
are equivalent. The coproduct formulas are needed to compute the renormal-
ized values since computing them includes computing the coproduct. Let us
consider a QFT which consists of only one vertex with the coupling constant
g and the invariant charge Q(g). QED would be a good example of a theory
like that. The coproduct of the invariant charge is

∆ (Q(g)) =
∑
b≥1

Q(g)b ⊗ [Q]b.

This leads to the following.

ΦR (Q(g)) = ΦC ⋆ Φ (Q(g)) = Φ
(
Q(ΦC(Q))

)
This result shows the well known fact for a renormalizable QFT that one
obtains the renormalized value of the invariant charge by substituting the
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coupling constant g with the counter term of the invariant charge ΦC(Q)
and then applying the Feynman rules on Q(ΦC(Q)). Since the bare La-
grangian is obtained if one replaces the coupling constants with the counter
terms of the corresponding invariant charges, one is led to the somewhat
imprecise formulation that the invariant charge is the quantum mechanical
generalization of the classical coupling constant. Remember, one needs the
coproduct formulas for renormalization, which is an essential part of QFT.
The DSE shows the explicit dependence on the coupling constant. Thus the
theorem above describes the transition of the interaction from classical to
quantum mechanics. In the next two sections we will analyse this transition.
We will see how quantum mechanics “changes” if we impose linear restric-
tions at the “classical level”. As it will turn out, locality expressed through
the use of cocycles imposes such a strong restriction on quantum mechanics
that the classical structure of a QFT already determines the combinatorics
of the QFT. (In this text we will only analyse linear dependencies among
the coupling constants. But one can show that also non linear dependen-
cies on the classical level like those in gauge theories already determine the
combinatorial structure of the QFT.)

At this point I would like to make an important remark. Since the propa-
gators and invariant charges are power series in the coupling constants, the
elements of the DSA are not single graphs but they are the sum of all graphs
with the corresponding symmetry factors for a given order. For example in
Φ4 theory the first three orders to the propagator would be

b0 = 1 b1 = (
1

2
) b2 = (

1

6
+

1

4
).

and the first two orders to the invariant charge would be

a1 = 1 a2 = (
3

2
− ).

In order to compute the invariant charge in terms of graphs one has to use
equation (3.3.1).

4.3 Diffeomorphisms of generators

In this section we will make the connection between the DSE defined above
and the one defined in chapter 2. As wee will see, the underlying DSAs are
the same and the transition between the two DSEs is just a “change of ba-
sis”. We will clarify this terminology below. In definition (4.2.2) we defined a
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Dyson Schwinger algebra, as a bialgebra which is generated as an algebra by
some elements with certain properties. But since we only required existence
of such elements, we still have the freedom of choosing different elements
to generate the DSA. In the following we will consider new elements which
result from a diffeomorphism of the generators AP and BQ.

Notation 4.3.1
In the remainder of the text we will always denote by AP and BQ the gener-
ators discussed above.

Definition 4.3.2
Let Γ(x) be some power series with coefficients in some bialgebra. The di-
mension of Γ is the dimension of the variable x. Define dim(Γ) to be the
dimension of Γ(x).

Notation 4.3.3
If ΓZ is a set of power series so that dim(Γz1) = dim(Γz2) = n ∀z1, z2 ∈ Z
we just say ΓZ has dimension n or in formula dim(ΓZ) = n.

Definition 4.3.4
Let B be a connected bialgebra, let Z and Z ′ be two finite sets and let ΓZ and
ΓZ

′
be two power series with coefficients in B so that dim(ΓZ) and dim(ΓZ

′
)

are defined. We say ΓZ and ΓZ
′
are diffeomorph if the following conditions

hold.

1. There exists a diffeomorphism F : K×Z → K×Z′
so that F (ΓZ) = ΓZ

′
.

2. [F−1(ΓZ
′
)]w ∈ B

3. dim(ΓZ) = dim(ΓZ
′
)

NOTE 11 If ΓZ and ΓZ
′
are diffeomorph, then |Z| = |Z ′| and [Γz]u =

[(F (−1))(z)(ΓZ
′
)]u

Proposition 4.3.5
Let ℘ be a DSA and let CZ be a set of power series. If CZ is diffeomorph to
AP ∪BQ, then CZ generates ℘.

Proof. Follows from [A(p)(x)]u = [(F−1)(p)(CZ)]u = a
(p)
u and [B(q)(x)]u =

[(F−1)(q)(CZ)]u = b
(q)
u .

Choose an automorphism Ω ∈ Aut(K×P ) and define the following diffeomor-
phism.

F : K×P ×K×Q → K×P ×K×Q

[F (x, y)]P = (Ω.x)P [F (x, y)]Q = yQ

52



Set the following.
DP := (Ω.A)P

where we defined
(Ω.A)(p)(x) =

∑
p̃∈P

ωpp̃A
(p̃)(x).

This leads to a new set of generators (DP , BQ).

NOTE 12 From the definition of DP it follows that only the terms [DP ]P
are proportional to 1 and [D(p)]p̃ = ωpp̃1.

Lemma 4.3.6

∆(D(p)(x)) =
∑
∥u∥≥1

(Ω−1.D)(x)u ⊗ [D(p)]u ∀p ∈ P

∆(B(q)(x)) =
∑
∥u∥≥0

B(q)(x)(Ω−1.D)(x)u ⊗ [B(q)]u ∀q ∈ Q

Proof.

∆(D(p)(x)) = ∆((Ω.A)(p)(x)) =
∑
p̃∈P

ωpp̃∆(A(p̃)(x))

=
∑
p̃∈P

ωpp̃
∑
∥u∥≥1

A(x)u ⊗ [A(p̃)]u =
∑
∥u∥≥1

A(x)u ⊗ [D(p)]u

=
∑
∥u∥≥1

(Ω−1.D)(x)u ⊗ [D(p)]u

∆(B(q)(x)) =
∑
∥u∥≥0

B(q)(x)A(x)u ⊗ [B(q)]u

=
∑
∥u∥≥0

B(q)(x)(Ω−1.D)(x)u ⊗ [B(q)]u

Since (DP , BQ) generates the DSA ℘, we are free to add new generators to
the set. Let T be a finite set and choose some Θ ∈ Hom(K×P ,K×T ). Set
E(t)(x) := (Θ.D)(t)(x) ⇒ (DP , BQ, ET ) generates the DSA ℘.
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Theorem 4.3.7
Let B be some bialgebra. Let Ω ∈ Aut(K×P ) and Θ ∈ Hom(K×P ,K×T ) be
two linear maps, x ∈ K×P

1. Let {H(y)
u }y∈(T∪P∪Q),u∈WP

be a set of cocycles on B. Consider the fol-
lowing DSE.

B(q)(x) = 1+
∑

u∈WP ,∥u∥≥1

H(q)
u

(
D(x)uB(q)(x)

)
∀q ∈ Q

D(p)(x) = (Ω.x)(p) +
∑

u∈WP ,∥u∥≥2

H(p)
u (D(x)u) ∀p ∈ P

E(t)(x) = (Θ.Ω.x)(t) +
∑

u∈WP ,∥u∥≥2

H(t)
u (D(x)u) ∀t ∈ T

The DSE has a unique solution so that only the following terms are
proportional to 1.

[B(q)]⊘ = 1 ∀q ∈ Q

[D(p)]p̃ = ωpp̃1 ∀p, p̃ ∈ P

[E(t)]p̃ = (Θ.Ω)tp̃1 ∀t ∈ T ; p̃ ∈ P

Further, the following coproduct formulas shall hold.

∆
(
B(q)(x)

)
=

∑
u∈WP ,∥u∥≥0

B(q)(x)(Ω−1.D)(x)u ⊗ [B(q)]u ∀q ∈ Q

∆
(
D(p)(x)

)
=

∑
u∈WP ,∥u∥≥1

(Ω−1.D)(x)u ⊗ [D(p)]u ∀p ∈ P (⋆)

E(t)(x) = (Θ.D)(t)(x) ∀t ∈ T.

Thus (DP , BQ, ET ) generates a (|P |, |Q|) dimensional DSA ℘ ∈ B.

2. Let ℘ ⊆ B be a DSA generated by (DP , BQ, ET ) with the following
properties

[B(q)]⊘ = 1 ∀q ∈ Q

[D(p)]p̃ = ωpp̃1 ∀p, p̃ ∈ P

[E(t)]p̃ = (Θ.Ω)tp̃1 ∀t ∈ T ; p̃ ∈ P
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and

∆
(
B(q)(x)

)
=

∑
u∈WP ,∥u∥≥0

B(q)(x)(Ω−1.D)(x)u ⊗ [B(q)]u ∀q ∈ Q

∆
(
D(p)(x)

)
=

∑
u∈WP ,∥u∥≥1

(Ω−1.D)(x)u ⊗ [D(p)]u ∀p ∈ P

E(t)(x) = (Θ.D)(t)(x) ∀t ∈ T.

Then there exists a set of cocycles {H(y)
u }y∈(T∪P∪Q),u∈WP

so that the
generators satisfy the DSE below.

B(q)(x) = 1+
∑

u∈WP ,∥u∥≥1

H(q)
u

(
D(x)uB(q)(x)

)
∀q ∈ Q

D(p)(x) = (Ω.x)(p) +
∑

u∈WP ,∥u∥≥2

H(p)
u (D(x)u) ∀p ∈ P

E(t)(x) = (Θ.Ω.x)(t) +
∑

u∈WP ,∥u∥≥2

H(t)
u (D(x)u) ∀t ∈ T

Proof. The proof is very similar to the prove of theorem (4.2.10). Since ET

only depends on (DP , BQ), we only need to proof existence and uniqueness
for (DP , BQ).

1. Consider:

B(q)(x) = 1+
∑
∥u∥≥1

H(q)
u

(
D(x)uB(q)(x)

)
⇔

[B(q)]⊘ = 1 [B(q)]u =
∑

1≤∥v∥≤∥u∥

H(q)
v ([DvB(q)]u)

D(p)(x) = (Ω.x)(p) +
∑
∥u∥≥2

H(p)
u (D(x)u) ⇔

[D(p)]p̃ = ωpp̃1 [D(p)]u =
∑

2≤∥v∥≤∥u∥

H(p)
v ([Dv]u)

Since im(H) ⊆ Ker(ϵ), the only coefficients which are proportional to
1 are indeed the first order terms. Note that this is also true for ET .
As in the proof of theorem (4.2.10), [B(q)]u and [D(p)]u only depend on
terms which are lower in degree. Thus the DSE has a unique solution.
We will now proof (⋆) by showing that (⋆) solves the following ansatz.

∆
(
D(p)(x)

)
= D(p)(x)⊗ 1+

∑
∥u∥≥2

(id⊗H(p)
u ) ◦∆(D(x)u)
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The other equations can be shown analogously. Note that for ET we
would need to use the identity

ET = (Θ.D)T ⇔ ∆(ET ) =
∑
∥v∥≥1

(Ω−1.D)(x)v ⊗ [E(T )]v

, which follows from the assumption that (⋆) is true and the fact that
only the terms [ET ]P are proportional to 1 with (id⊗ ϵ) ◦∆ = id.

∆ (D(x)u) =
∑

∥v∥≥∥u∥

(Ω−1.D)(x)v ⊗ [Du]v ⇒

∆
(
D(p)(x)

)
= D(p)(x)⊗ 1+

∑
∥u∥≥2

(id⊗H(p)
u )

 ∑
∥v∥≥∥u∥

(Ω−1.D)(x)v ⊗ [Du]v


= D(p)(x)⊗ 1+

∑
∥u∥≥2

∑
∥v∥≥∥u∥

(Ω−1.D)(x)v ⊗H(p)
u ([Du]v)

= D(p)(x)⊗ 1+
∑
∥v∥≥2

(Ω−1.D)(x)v ⊗ [D(p)]v

=
∑
∥v∥≥1

(Ω−1.D)(x)v ⊗ [D(p)]v

We used the following identity in the last line.

D(p)(x) = (Ω.Ω−1.D)(p)(x)

=
∑
p̃∈P

ωpp̃(Ω
−1.D)(p̃)(x) =

∑
p̃∈P

[Dp]p̃(Ω
−1.D)(p̃)(x)

And with the help of lemma (4.3.6) we conclude that (DP , BQ, DT )
generate a (|P |, |Q|) dimensional DSA.

2. Let ℘ ⊆ B be a DSA generated by (DP , BQ, ET ) where the generators
have the properties described in the theorem. Choose linear maps
{H(y)

u }y∈(T∪P∪Q),u∈WP
so that the following holds.

[D(p)]w =
∑

2≤∥v∥≤∥w∥

H(p)
v ([Dv]w) ∀∥w∥ ≥ 2

[B(q)]w =
∑

1≤∥v∥≤∥w∥

H(q)
v ([DvB(q)]w) ∀∥w∥ ≥ 1

[E(t)]w =
∑

2≤∥v∥≤∥w∥

H(t)
v ([Dv]w) ∀∥w∥ ≥ 2.
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As in theorem (4.2.10) one shows that∑
2≤∥v∥≤∥w∥

(H(r)
v )⊥([Dv]w) = 0 ∀r ∈ T ∪ P

∑
1≤∥v∥≤∥w∥

(H(q)
v )⊥([DvB(q)]w) = 0 ∀q ∈ Q

from which the assertion follows.

Consider our standard DSE and transform the variables by an automorphism
Ω ∈ Aut(K×P ).

A(p)(Ω.x) = (Ω.x)(p) +
∑

u∈WP ,∥u∥≥2

H(p)
u (A(Ω.x)u) ∀p ∈ P

B(q)(Ω.x) = 1+
∑

u∈WP ,∥u∥≥1

H(q)
u (A(Ω.x)uB(q)(Ω.x)) ∀q ∈ Q

With the help of theorem (4.3.7) we can conclude that the coefficients of
A(p)(Ω.x) and B(q)(Ω.x) generate a (|P |, |Q|) dimensional DSA ℘Ω ⊆ ℘ so
that

∆((Ω−1.A.Ω)(p)(x)) =
∑

u∈WP ,∥u∥≥1

(Ω−1.A.Ω)(x)u ⊗ [(Ω−1A.Ω)(p)]u

∆((B.Ω)(q)(x)) =
∑

u∈WP ,∥u∥≥0

(B.Ω)(q)(x)(Ω−1.A.Ω)(x)u ⊗ [(B.Ω)(q)]u

and the only terms proportional to 1 are

[(Ω−1.A.Ω)(p)]p̃ = δp,p̃1 [(B.Ω)(q)(x)]⊘ = 1

where we defined the right action by (Γ.Ω)(x) = Γ(Ω.x). This leads to the
following proposition.

Proposition 4.3.8
Every automorphism Ω ∈ Aut(K×P ) induces an automorphism πΩ ∈ Aut(℘)
by

πΩ(B
(q)(x)) = (B.Ω)(q)(x) πΩ(A

(p)(x)) = (Ω−1.A.Ω)(p)(x)

The above expressions are equivalent to

πΩ([B
(q)]u) = [(B.Ω)(q)]u πΩ([A

(p)]u) = [(Ω−1.A.Ω)(p)]u ∀u ∈ WP .
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Proposition 4.3.9
Let G be a Lie group and let ρ be a representation on Aut(K×P ) ⇒
Ψ : G→ Aut(℘) defined by Ψ(g) = πρ(g) is a representation of G on ℘.

Proof. Can be concluded from the following.

πΩ ◦ πΞ
(
A(p)(x)

)
= πΩ

(∑
p′∈P

(Ξ−1)pp′A
(p′)(Ξ.x)

)
=
∑
p′∈P

(Ξ−1)pp′(Ω
−1.A)(p

′)(Ω.Ξ.x)

= (Ξ−1.Ω−1.A)(p)(Ω.Ξ.x) = ((Ω.Ξ)−1.A)(p)(Ω.Ξ.x)

= πΩ.Ξ(A
(p)(x))

Analogously, one may show the relation below.

πΩ ◦ πΞ(B(q)(x)) = πΩ.Ξ(B
(q)(x))

NOTE 13 This is especially true for the Lie group Aut(K×P ).

Let s ∈ R be any number, we want to understand expressions like ∆(B(q)(x)s).

Definition 4.3.10 (generalized binomial coefficient)
Choose some s ∈ R and k ∈ Z. Set

(
s

k

)
=


s(s−1)···(s−(k−1))

k!
k > 0

1 k = 0

0 k < 0

We state without a proof.

Lemma 4.3.11

1. (
a

b

)(
b

c

)
=

(
a

c

)(
a− c

b− c

)
b, c ≥ 0, a ∈ R

2.

(1 + x)s =
∑
b≥0

(
a

b

)
xb |x| < 1
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Definition 4.3.12
Let s be any real number. Let Γ be any power series with coefficients that
are elements of some bialgebra so that Γ(x) = 1+

∑
∥u∥≥1 x

u[Γ]u. Set

Γ(x)s = (1+ Γ̂(x))s :=
∑
k≥0

(
s

k

)
Γ̂(x)k.

Lemma 4.3.13
Let s be any real number. Let Γ be any power series with coefficients that
are elements of some bialgebra so that Γ(x) = 1+

∑
∥u∥≥1 x

u[Γ]u.

⇒ ∆(Γ(x)s) = ∆ (Γ(x))s

Proof.

∆(Γ(x)s) = ∆

(∑
k

(
s

k

)
Γ̂(x)k

)
=
∑
k

(
s

k

)
∆
(
Γ̂(x)

)k
=
(
1⊗ 1+∆

(
Γ̂(x)

))s
= ∆(Γ(x))s

Lemma 4.3.14

∆(B(q)(x)s) =
∑
∥u∥≥0

(
B(q)(x)

)s
A(x)u ⊗ [(B(q))s]u ∀q ∈ Q

Proof. Note the following identities.

B(q)(x)s =
(
1+ B̂(q)(x)

)s
=
∑
l≥0

(
s

l

)
B̂(q)(x)l

=
∑
l≥0

(
s

l

) ∑
∥w∥≥l

xw[(B̂(q))l]w =
∑

∥w∥≥0

xw
∑
l≤∥w∥

(
s

l

)
[(B̂(q))l]w ⇒

[(B(q))s]w =
∑
l≤∥w∥

(
s

l

)
[(B̂(q))l]w ∀s ∈ R

B̂(q)(x)l =

∑
∥u∥≥1

xub(q)u

l

=
∑
∥w∥≥l

xw
∑

u1···ul=w
∥ui∥≥1

∏
1≤m≤l

b(q)um ⇒

[(B̂(q))l]w =
∑

u1···ul=w
∥ui∥≥1

∏
1≤m≤l

b(q)um ∀n ∈ N
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We can now prove the lemma with the help of the above identities and lemma
(4.3.11).

∆
(
B(q)(x)s

)
= ∆

(
B(q)(x)

)s
=

∑
0≤∥u∥

B(q)(x)A(x)u ⊗ b(q)u

s

=

B(q)(x)⊗ 1+
∑
1≤∥u∥

B(q)(x)A(x)u ⊗ b(q)u

s

=

1⊗ 1+ B̂(q)(x)⊗ 1+
∑
1≤∥u∥

B(q)(x)A(x)u ⊗ b(q)u

s

=
∑
k≥0

(
s

k

)B̂(q)(x)⊗ 1+
∑
∥u∥≥1

B(q)(x)A(x)u ⊗ b(q)u

k

=
∑
k≥0

(
s

k

)∑
l≤k

(
k

l

)(
B̂(q)(x)⊗ 1

)k−l
.

∑
∥u∥≥1

B(q)(x)A(x)u ⊗ b(q)u

l

=
∑
k≥0

∑
l≤k

(
s

k

)(
k

l

) ∑
u1,··· ,ul
∥ui∥≥1

(
B̂(q)(x)

)k−l (
B(q)(x)

)l
A(x)u1···ul ⊗

∏
1≤m≤l

b(q)um

=
∑
l≥0

∑
0≤k−l

∑
∥w∥≥l

(
s

l

)(
s− l

k − l

)(
B̂(q)(x)

)k−l (
B(q)(x)

)l
A(x)w ⊗

 ∑
u1···ul=w
∥ui∥≥1

∏
1≤m≤l

b(q)um


︸ ︷︷ ︸

[(B̂(q))l]w

=
∑
l≥0

∑
∥w∥≥l

(
s

l

)(
1+ B̂(q)(x)

)s−l (
B(q)(x)

)l
A(x)w ⊗ [(B̂(q))l]w

=
∑

∥w∥≥0

(
B(q)(x)

)s
A(x)w ⊗

∑
l≤∥w∥

(
s

l

)
[(B̂(q))l]w


︸ ︷︷ ︸

[(B(q))s]w

=
∑

∥w∥≥0

(
B(q)(x)

)s
A(x)w ⊗ [(B(q))s]w
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We will now consider a special diffeomorphism. This will lead us to the con-
nection between Dyson Schwinger algebras and the vertex functions defined
in the last chapter. Choose some real numbers s(p,q) ∈ R ∀p ∈ P ; q ∈ Q,
choose a linear automorphism Ω ∈ Aut(K|P |) and define the following diffeo-
morphism.

F : KP ×KQ → KP ×KQ

F (p)(x, y) := {
∏
q∈Q

(y(q))s(p,q)}(Ω.x)(p) F (q)(x, y) = y(q)

This leads to

F (p)(AP , BQ) = {
∏
q∈Q

(
B(q)(x)

)s(p,q)}(Ω.A(x))(p) F (q)(AP , BQ) = B(q)(x).

For notational convenience we set Λ(p)(x) := {
∏

q∈Q
(
B(q)(x)

)s(p,q)} and C(p)(x) :=

Λ(p)(x)(Ω.A(x))(p).

Lemma 4.3.15
(AP , BQ) and (CP , BQ) are diffeomorph.

Proof. The only thing which remains to be proven is [(F−1)(p)(CP , BQ)]u ∈ ℘.

(F−1)(p)(CP , BQ) =
(
Ω−1.{C.Λ−1}

)(p)
(x) =

∑
p̃∈P

(ω−1)pp̃C
(p̃)(x)(Λ(p̃)(x))−1

⇒ [(F−1)(p)(CP , BQ)]u =
∑
p̃∈P

(ω−1)pp̃[C
(p̃)(Λp̃)−1]u ∈ ℘

The last line follows since the sum on the right hand side only consists of
finitely many terms, which are all elements of ℘ .

Proposition 4.3.16
(CP , BQ) generates the Dyson Schwinger algebra ℘.

Proof. Follows from lemma (4.3.15) together with note (11) since a
(p)
u =

[(F−1)(p)(CP , BQ)]u =
∑

p̃∈P (ω
−1)pp̃[C

(p̃)(Λp̃)−1]u

Notation 4.3.17
In the remainder of the text we will always denote by CP the power series
discussed above.

Lemma 4.3.18

∆
(
C(p)(x)

)
=
∑
∥u∥≥1

Λ(p)(x)A(x)u ⊗ [C(p)]u
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Proof. With the help of lemma (4.3.14) one obtains

∆(Λ(p)(x)) =
∑
∥u∥≥0

Λ(p)(x)A(x)u ⊗ [Λ(p)]u

With the help of the above relation we can derive the coproduct for C(p)(x).

∆
(
C(p)(x)

)
= ∆

(
Λ(p)(x)

)
.{
∑
p̃∈P

ωpp̃∆
(
A(p̃)(x)

)
}

=

 ∑
∥w∥≥0

Λ(p)(x)A(x)w ⊗ [Λ(p)]w

 .

∑
p̃∈P

ωpp̃
∑
∥v∥≥1

A(x)v ⊗ [A(p̃)]v


=

 ∑
∥w∥≥0

Λ(p)(x)A(x)w ⊗ [Λ(p)]w

 .

∑
∥v∥≥1

A(x)v ⊗ [(Ω.A)(p)]v


=
∑
∥u∥≥1

Λ(p)(x)A(x)u ⊗
∑
wv=u

[Λ(p)]w[(Ω.A)
(p)]v =

∑
∥u∥≥1

Λ(p)(x)A(x)u ⊗ [Λ(p)(Ω.A)(p)]u

=
∑
∥u∥≥1

Λ(p)(x)A(x)u ⊗ [C(p)]u

NOTE 14 Since we changed the generators of the DSA, A(p)(x) has to be
interpreted as A(p)(x) = (Ω−1.{C.Λ−1})(p)(x).

Now consider the Dyson Schwinger equation from chapter 2.

B(q)(x) = 1+
∑

u∈WP ,∥u∥≥1

L(q)
u ({C.Λ−1}(x)uB(q)(x)) ∀q ∈ Q

C(p)(x) = x(p) +
∑

u∈WP ,∥u∥≥2

L(p)
u ({C.Λ−1}(x)uΛ(p)(x)) ∀p ∈ P

with
Λ(p)(x) =

∏
q∈Q

B(q)(x)s(q,p)

for some real numbers s(q,p) ∈ R. As in theorem (4.2.10) one can prove that
the above DSE has a unique solution so that

[Bq]⊘ = 1 [C(p)]p̃ = δpp̃1
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are the only terms proportional to 1,

∆(B(q)(x)) =
∑
∥u∥≥0

B(q)(x)(CΛ−1)(x)u ⊗ [B(q)]u

∆(C(p)(x)) =
∑
∥u∥≥1

Λ(p)(x)(CΛ−1)(x)u ⊗ [C(p)]u

and (CP , BQ) generates a (|P |, |Q|) dimensional DSA so that

A(p)(x) = (CΛ−1)(p)(x).

So instead of considering the above DSE we can consider the standard DSE

A(p)(x) = x(p) +
∑

u∈WP ,∥u∥≥2

H(p)
u (A(x)u) ∀p ∈ P

B(q)(x) = 1+
∑

u∈WP ,∥u∥≥1

H(q)
u (A(x)uB(q)(x)) ∀q ∈ Q

with
C(p)(x) = Λ(p)(x)A(p)(x).

This formalism opens the possibility for further investigation. An interesting
question would be, if there exists a diffeomorphism so that the DSA is nothing
else than a Faá di Bruno algebra.

4.4 Conditional Dyson Schwinger algebras

Consider the following SO(2) invariant Lagrangian.

L = (∂ϕ)2 + (∂ψ2) +
g

4!
(ϕ2 + ψ2)2︸ ︷︷ ︸

g(1)

4!
ϕ4+ g(2)

4
ϕ2π2+ g(2)

4!
π4

The only thing which indicates that this Lagrangian is SO(2) invariant is the
relation among the coupling constants. In this section we will investigate the
question how the combinatorics of the QFT changes if we impose relations
like those above to the coupling constants.

Let Γ(x) =
∑

∥u∥≥1 x
u[Γ]u be some kind of power series with x ∈ K×P for

some finite set P and coefficients in some commutative algebra. Let further C
be a linear subspace of K×P . We can then restrict Γ(x) to the linear subspace
C, which we will do the following way. Choose a disjoint decomposition
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P = I ⊎ J so that |I| = dim(C). We can then parametrize C by I, which
leads to a relation between the variables x(.).

x(j) =
∑
i∈I

θjix
(i) = (Θ.x)(j) ∀j ∈ J Θ ∈ Hom(K×I ,K×J)

By C = (x(j) =
∑

i∈I θ
j
ix

(i)| ∀j ∈ J) we will denote the linear subspace C
together with the parametrization defined within the brackets, which we will
call a condition.

Notation 4.4.1
Let C =

(
x(j)(x) =

∑
i∈I θ

j
ix

(i)|∀j ∈ J
)
be a condition. Further, choose a

word u ∈ WP . Define numbers z
(u)
ζ so that

xu|C =
∑
ζ∈WI

z
(u)
ζ xζ .

With the notation above we can follow

Γ(x)|C =
∑
ζ∈WI

xζ
∑
w∈W 0

J

∑
u,v∈W 0

I
uv=ζ

z(w)v [Γ]uw.

NOTE 15 The sum above is finite in every order. Thus we can write

Γ(x)C = Γ(x)|C =
∑
ζ∈WI

xζ [Γ]Cζ

where the coefficients [Γ]CWI
are elements in the same algebra as the [Γ]WP

.

Lemma 4.4.2
Keep the definitions made above. We obtain the coproduct of the coefficient
[Γ]Cζ by imposing the condition C on ∆(Γ(x)) and then projecting on the ζ
th coefficient.

∆([Γ]Cζ ) = [∆(Γ)]Cζ

Proof.

∆(Γ(x))|C =
∑
s∈WP

xs|C∆([Γ]s) =
∑
ζ∈WI

xζ
∑
w∈W 0

J

∑
u,v∈W 0

I
uv=ζ

z(w)v ∆([Γ]uw)

=
∑
ζWI

xζ∆

∑
w∈W 0

J

∑
u,v∈W 0

I
uv=ζ

z(w)v [Γ]uw


=
∑
ζWI

xζ∆([Γ]Cζ ) ⇔ ∆([Γ]Cζ ) = [∆(Γ)]Cζ
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We are now trying to find out what happens if we restrict the generators
of a DSA to a linear subspace. Consider the following DSE with a disjoint
decomposition P = I ⊎ J .

B(q)(x) = 1+
∑
u∈WP

H(q)
u (D(x)uB(q)(x)) ∀q ∈ Q

D(i)(x) = x(i) +
∑

u∈WP ,∥u∥≥2

H(i)
u (D(x)u) ∀i ∈ I

D(j)(x) = x(j) +
∑

u∈WP ,∥u∥≥2

H(j)
u (D(x)u) ∀j ∈ J

If we now impose the condition C = (x(j) = (Θ.x)(j)|Θ ∈ Hom(K×I ,K×J))
and set y(i) = x(i) ⇒ y ∈ K×I for transparency we obtain the conditional
DSE.

B(q)(y) = 1+
∑
u∈WP

H(q)
u (D(y)uB(q)(y)) ∀q ∈ Q

D(i)(y) = y(i) +
∑

u∈WP ,∥u∥≥2

H(i)
u (D(y)u) ∀i ∈ I

D(j)(y) = (Θ.y)(j) +
∑

u∈WP ,∥u∥≥2

H(j)
u (D(y)u) ∀j ∈ J

Proposition 4.4.3
Let P = I ⊎ J be a decomposition into two disjoint sets. Consider the con-
dition C =

(
x(j)(x) =

∑
i∈I θ

j
ix

(i) =
∑

i∈I θ
j
i y

(i)|∀j ∈ J
)
on the linear space

K×P . Let Ω be an automorphism of K×I and let

B(q)(y) = 1+
∑
u∈WP

H(q)
u (D(y)uB(q)(y)) ∀q ∈ Q

D(i)(y) = (Ω.y)(i) +
∑

u∈WP ,∥u∥≥2

H(i)
u (D(y)u) ∀i ∈ I

D(j)(y) = (Θ.Ω.y)(j) +
∑

u∈WP ,∥u∥≥2

H(j)
u (D(y)u) ∀j ∈ J

be a conditional DSE.
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There exist cocycles {H(Q),C
ζ , H

(I),C
ζ , H

(J),C
ζ }ζ∈WI

so that the below holds.

B(q)(y) = 1+
∑
ζ∈WI

H
(q),C
ζ (D(y)ζB(q)(y)) ∀q ∈ Q

D(i)(y) = (Ω.y)(i) +
∑

ζ∈WI ,∥ζ∥≥2

H
(i),C
ζ (D(y)ζ) ∀i ∈ I

D(j)(y) = (Θ.Ω.y)(j) +
∑

ζ∈WI ,∥ζ∥≥2

H
(j),C
ζ (D(y)ζ) ∀j ∈ J

Proof. Define new cocycles

H
(g),C
ζ =

∑
w∈W 0

J

∑
u,v∈W 0

I
uv=ζ

m(w)
v H(g)

uw ∀g ∈ P ∪Q

with numbers m
(w)
v so that

xw =
∏
k

x(wk) =
∏
k

(∑
i∈I

θ
(wk)
i y(i)

)
=
∑
v∈W 0

I

m(w)
v yv ∀w ∈ W 0

J .

Consider the DSE below.

B(q)(y) = 1+
∑
ζ∈WI

H
(q),C
ζ (D(y)ζB(q)(y)) ∀q ∈ Q

D(i)(y) = (Ω.y)(i) +
∑

ζ∈WI ,∥ζ∥≥2

H
(i),C
ζ (D(y)ζ) ∀i ∈ I

D(j)(y) = (Θ.Ω.y)(j) +
∑

ζ∈WI ,∥ζ∥≥2

H
(j),C
ζ (D(y)ζ) ∀j ∈ J

We have already proven in theorem (4.3.7) that this system of equations has
a unique solution so that

(Θ.D)(j)(y) = D(y)(j) ∀j ∈ J.
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So in total we obtain the below.

B(q)(y) = 1+
∑
ζ∈WI

H
(q),C
ζ (D(y)ζB(q)(y))

= 1+
∑
ζ∈WI

∑
w∈W 0

J

∑
u,v∈W 0

I
uv=ζ

m(w)
v H(q)

uw(D(y)ζB(q)(y))

= 1+
∑
ζ∈WI

∑
w∈W 0

J

∑
u,v∈W 0

I
uv=ζ

m(w)
v H(q)

uw(D(y)uD(y)vB(q)(y))

= 1+
∑
w∈W 0

J

∑
u∈W 0

I

H(q)
uw

D(y)u

∑
v∈W 0

I

m(w)
v D(y)v

B(q)(y)


= 1+

∑
w∈W 0

J

∑
u∈W 0

I

H(q)
uw

(
D(y)uD(y)wB(q)(y)

)
= 1+

∑
b∈WP

H
(q)
b

(
D(y)bB(q)(y)

)
All others analogously. This completes the proof since the solution of a DSE
is unique.

NOTE 16 Let C =
(
x(j)(x) =

∑
i∈I θ

j
ix

(i)|∀j ∈ J
)
be a condition. With the

help of theorem (4.2.10) one can conclude that

AC,(j)(x) = (Θ.AC)(j)(x) ∀j ∈ J.

This proves that a linear relation ( x(j) = (Θ.y)(j)) among the coupling con-
stants leads to the same relation among the corresponding invariant charges
(AC,(j)(x) = (Θ.AC)(j)(x)).

Recall the definition (2.1.4) .

Theorem 4.4.4
Let ℘ be a DSA with generators (AP , BQ). Let P = I ⊎ J be a disjoint
decomposition and let C = (x(j) =

∑
i∈I θ

j
ix

(i)|∀j ∈ J) be a condition. Set

IC =< [A(j) −
∑
i∈I

θjiA
(i)]Cζ |ζ ∈ WI j ∈ J >⇒

IC is a coideal of ℘ and thus an ideal of a bialgebra.
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Proof.

∆

(
A(j)(x)−

∑
i∈I

θjiA
(i)(x)

)
=

∑
u∈W 0

I ;v∈W
0
J

A(x)uA(x)v ⊗ [A(j) −
∑
i∈I

θjiA
(i)]uv

=
∑

u∈W 0
I ;v∈W

0
J

A(x)u

 ∏
1≤k≤∥v∥

[(
A(vk)(x)−

∑
i∈I

θ
vk
i A

(i)(x)

)
+
∑
i∈I

θ
vk
i A

(i)(x)

]⊗ · · ·

=
∑

u∈W 0
I ;v∈W

0
J

A(x)u


∑

a,b∈W 0
J

ab=v

[ ∏
1≤α≤a

(
A(aα)(x)−

∑
i∈I

θ
aα
i A

(i)(x)

)][ ∏
1≤β≤b

(∑
i∈I

θ
bβ
i A

(i)(x)

)]⊗ · · ·

= · · ·

{
A(J)(x)−

∑
i∈I

θJi A
(i)(x)

}
· · · ⊗ · · ·︸ ︷︷ ︸

a ̸=⊘

+
∑

u∈W 0
I ;v∈W

0
J

A(x)u
∏

1≤k≤∥v∥

(∑
i∈I

θ
vk
i A

(i)(x)

)
⊗ · · ·

︸ ︷︷ ︸
a=⊘

With the convention ∏
∅

= 1

The a ̸= ⊘ term is, when restricted to C, of the needed form to be an element
of IC .
Consider the term for a = ⊘. Compare the structure of

∏
1≤k≤∥v∥

(∑
i∈I θ

vk
i A

C,(i)(x)
)

with the structures discussed earlier in lemma (4.4.2) for example. Just ex-
change AC(x)v with xv|C !

∑
u∈W 0

I ;v∈W
0
J

AC(x)u
∏

1≤k≤∥v∥

(∑
i∈I

θ
vk
i A

C,(i)(x)

)
⊗ [A(j) −

∑
i∈I

θjiA
(i)]uv

=
∑
ζ∈WI

AC(x)ζ ⊗
∑
w∈W 0

J

∑
u,v∈W 0

I
uv=ζ

z(w)v [A(j) −
∑
i∈I

θjiA
(i)]uv

=
∑
ζ∈WI

AC(x)ζ ⊗ [A(j) −
∑
i∈I

θjiA
(i)]Cζ

So in total one obtains with the help of lemma (4.4.2)

∆

(
[A(j) −

∑
i∈I

θjiA
(i)]Cζ

)
∈ IC ⊗ ℘+ ℘⊗ IC

, which proves the theorem.
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Notation 4.4.5
Let ℘ be a DSA generated by (AP , BQ) and consider a condition C. With
the help of theorem (4.3.7) and proposition (4.4.3) we can conclude that the
coefficients of AP (X)|C and BQ(X)|C generate a (dim(C), |Q|) dimensional
DSA, which we will denote as ℘C ⊆ ℘.

Theorem 4.4.6

℘/IC ∼= ℘C

Proof. Let ℘ be generated by (AP , BQ), let P = I ⊎ J be a decomposition
into two disjoint sets and let C = (x(j) = (Θ.x)(j)|∀j ∈ J) be a condition with
some Θ ∈ Hom(K×I ,K×J). Consider the projection onto the subbialgebra
℘C .

πC : ℘→ ℘C

Note: πC is a morphism of bialgebras. We then obtain an isomorphism
between ℘/Ker(πC) and ℘C . But since πC([A

(j)]Cu − [(Θ.A)(j)]Cu ) = 0 ∀j ∈
J, u ∈ WI , we obtain Ker(πC) = IC . Together with proposition (2.7.5) we
can follow the assertion.

℘/IC ∼= ℘C

Since every (p,q)-dim DSA contains every (u,q)-dim DSA with u < p, one can
conclude that there exists a distinct DSA ℘core which contains every DSA
with q propagators. This DSA ℘core is generated by the QFT which has
vertices with arbitrary high valances. The Hopf algebra of Feynman graphs
generated by this QFT is called the core algebra and was introduced in [10]
and further discussed in [11].

As we saw in this section linear relation among coupling constants translate
into the same relation among the invariant charges and the underlying DSA
changes in such a way that the resulting DSA can be obtained by dividing
the original DSA with the ideal defined above. Compare this result to ex-
ample 9 in the following section. There we use this identity to derive the
Feynman rules for the conditional QFT from the original QFT and we show
the connection to the corresponding Slavnov Taylor identities.

For further analyses of DSE and the corresponding Hopf algebras from a
somewhat different perspective I can recommend [12] and [13].
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4.5 Applications to physics

Example 8 Linear transformation of scalar fields.
Consider the following Lagrangian with two scalar fields.

L = (∂ψ)2 + (∂ϕ)2 +
g

n!m!
ψnϕm (⋆)

We can then carry out a linear transformation on the field ϕ e.g.

ϕ = χ+ v ⇒ L = (∂ψ)2 + (∂χ)2 +
∑

1≤k≤m

g

n!k!

vm−k

(m− k)!
ψnχm(⋆)

Compare this to the general Lagrangian

L = (∂ψ)2 + (∂χ)2 +
∑

1≤k≤m

g(n,k)

n!k!
ψnχk.

This Lagrangian would lead to invariant charges

Q(n,m)({g(n,m)}).

We can reobtain the Lagrangian (⋆) by enforcing the following condition on
the space of coupling constants.

C = (g(n,k) =
vm−k

(m− k)!
g(n,m)|∀1 ≤ k ≤ (m− 1))

So for the QFT generated by the Lagrangian (⋆) we obtain the following
Slavnov Taylor identities.

[Q(n,k) − vm−k

(m− k)!
Q(n,m)]Cu = 0 ∀u ∈ N

The resulting DSA underlying the above QFT is thus (2,1) dimensional.
We conclude that the DSA underlying the QFT before and after the linear
transformation are isomorph. This shows that the underlying DSA before
and after the spontaneous symmetry breaking are isomorph since a spon-
taneous broken QFT can be obtained from the unbroken one by a linear
transformation.

Example 9 SO(2) invariant QFT

Consider the following Lagrangian.
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L = (∂ψ)2 + (∂ϕ)2 +
g(1)

4!
ϕ4 +

g(2)

4
ϕ2π2 +

g(3)

4!
π4(⋆⋆)

We obtain a SO(2) invariant Lagrangian if we set
g(3) = g(1) and g(2) = 1

3
g(1). We will denote this condition with CSO(2). Let Φ

be a Feynman rule defined on the DSA ℘ generated by (⋆⋆). We can obtain
the corresponding Feynman rule on ℘CSO(2)

by projecting onto the sub-DSA.

ΦCSO(2)
:= Φ ◦ πCSO(2)

Since

πCSO(2)
([Q(2) −Q(1)]

CSO(2)
u ) = 0 πCSO(2)

([Q(3) − 1

3
Q(1)]

CSO(2)
u ) = 0

, we obtain the Slavnov Taylor identities below.

ΦCSO(2)
([Q(2) −Q(1)]

CSO(2)
u ) = 0 ΦCSO(2)

([Q(3) − 1

3
Q(1)]

CSO(2)
u ) = 0

Example 10 Counterterm renormalization
If a QFT is renormalizable one can obtain the renormalized Greens functions
by computing the unrenomalized Greens functions of the bare Lagrangian.
For example consider the Lagrangian below.

L = (∂ψ)2 + (∂ϕ)2 +
g

n!m!
ψnϕm

The bare Lagrangian is thus

LBare = ΦC(Xψ(g))(∂ψ)2 + ΦC(Xϕ(g))(∂ϕ)2 +
ΦC(X(v)(g))

n!m!
ψnϕm.

Redefining ϕ→ 1
ΦC(Xϕ(g))1/2

ϕ and ψ → 1
ΦC(Xψ(g))1/2

ψ leads to

LBare = (∂ψ)2 + (∂ϕ)2 +
ΦC(Q(v)(g))

n!m!
ψnϕm

and thus
ΦR(X(v)(g)) = ΦC(Λ(v)(g))Φ

(
X(v)

(
ΦC(Q)

))
.

This is precisely the same result we would obtain with the help of the DSA.
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From lemma (4.3.18) we obtain in general the below.

∆(X(v)(g)) =
∑
∥u∥≥1

Λ(v)(g)Q(g)u ⊗ [X(v)]u ⇒

ΦR(X(v)(g)) = (ΦC ⋆ Φ)(X(v)(g)) =
∑
∥u∥≥1

ΦC(Λ(v)(g)Q(g)u)Φ([X(v)]u)

= ΦC(Λ(v)(g))Φ

∑
∥u∥≥1

ΦC(Q(g))u[X(v)]u


= ΦC(Λ(v)(g))Φ

(
X(v)

(
ΦC(Q)

))
Example 11 Bare Lagrangian
Consider the scalar QFT with the Lagrangian

L = (∂ψ)2 + (∂ϕ)2 +
g(1)

4!
ϕ4 +

g(2)

4
ϕ2π2 +

g(2)

4!
π4.

The bare Lagrangian computes to

LBare = (∂ψ)2+(∂ϕ)2+
ΦC(Q(1)(g))

4!
ϕ4+

ΦC(Q(2)(g))

4
ϕ2π2+

ΦC(Q(3)(g))

4!
π4.

We now impose the condition g(3) = g(1) = q and g(2) = 1
3
g(1) = 1

3
q. This

changes the Lagrangian into the following.

L = (∂ψ)2 + (∂ϕ)2 +
q

4!
(ϕ2 + ψ2)2

If the same relation for the invariant charges were not hold, we would not
be able to absorb the counter term into the Lagrangian and the QFT would
not be renormalizable. But as we have learned the condition imposes the
following conditions on the invariant charges Q(3) = Q(1) = Q and Q(2) =
1
3
Q(1) = 1

3
Q, which leads to the bare Lagrangian below.

L = (∂ψ)2 + (∂ϕ)2 +
ΦC(Q(q))

4!
(ϕ2 + ψ2)2

Thus the QFT considered above is renormalizable.
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Chapter 5

Conclusion

As we saw in chapter 3, DSE leads to local and thus renormalizable QFT.
Thus the results formulated in this text are implications of locality. The
order by order contributions of the propagators and invariant charges of a
QFT form a Hopf subalgebra of the Hopf algebra of Feynman graphs. They
form a DSA to be precise. We learned that a DSE in the form discussed in
the text always leads to a DSA and vice versa, which means that every local
QFT has a corresponding DSA on which we can define Feynman rules and
renormalize the QFT. If we were given the Feynman rules on the DSA, we
would not need to formulate the QFT in terms of Feynman graphs and Feyn-
man rules upon them. This shows that the physical important contributions
to the propagators and invariant charges are not the Feynman graphs but
rather the order by order contributions. Feynman graphs are only needed
to compute the Feynman rules for a given order. In chapter 4 we further
learned that the invariant charges of a QFT are the quantum mechanical
generalization of the coupling constants and we studied the transition be-
tween classical and quantum mechanics in terms of conditional DSAs. We
saw that locality imposes such a strong condition on the QFT that a relation
among coupling constants, which corresponds to the classical level translates
to the same relation among the invariant charges. This is an important re-
sult because it allows us to absorb the counter terms into the Lagrangian if
we have more interaction monomials than coupling constants. In this sense
it is thus legitimate to say that the classical level already determines the
combinatorial structure of a local QFT. We further studied the implications
for the underlying DSA if we restrict the space of coupling constants to a
linear subspace respectively if we preform a linear automorphism of the cou-
pling constants. We learned that a linear automorphism corresponds to an
automorphism of the DSA and a restriction corresponds to a transition to a
quotient, which is isomorph to a sub-DSA. Since a diffeomorphism of fields
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leads to a transformation of coupling constants, we are now in the position
to study the change of Feynman rules under this transformation, at least for
cases which lead to linear relation among the coupling constants. As we saw
in example 9 this leads automatically to the Slavnov Taylor identities of a
QFT.

I would like to thank Dirk Kreimer for giving me the opportunity to write
my thesis in his group and for his support. Moreover, I would like to thank
Erik Panzer for many illuminating discussions.
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