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Abstract. This paper draws connections between the double shuffle equations

and structure of associators; universal mixed elliptic motives as defined by Hain
and Matsumoto; and the Rankin-Selberg method for modular forms for SL2(Z).

We write down explicit formulae for zeta elements σ2n−1 (generators of the Tan-

naka Lie algebra of the category of mixed Tate motives over Z) in depths up to
four, give applications to the Broadhurst-Kreimer conjecture, and completely solve

the double shuffle equations for multiple zeta values in depths two and three.

1. Introduction

The theme of this paper is that certain constructions relating to the motivic fun-
damental group of the projective line minus 3 points, which are inherently ambiguous,
can be explicitly determined, and simplified, by passing to genus one.

The main result can be viewed on the following three different levels.

1.1. The fundamental group of P1\{0, 1,∞}. The de Rham fundamental group

1Π1 = πdR1 (P1\{0, 1,∞},
→
11)

of P1\{0, 1,∞} with tangential base point the unit tangent vector at 1 is a prounipotent
affine group scheme over Q. Its graded Lie algebra is the free Lie algebra L(x0, x1) on
two generators x0, x1 corresponding to loops around 0 and 1. Since 1Π1 is a (pro) object
in the category of mixed Tate motives over Z, it admits an action of the Tannakian
fundamental group GdRMT (Z). Denote the graded Lie algebra of the latter by

(1.1) gm = L〈σ3, σ5, . . .〉 .
It is the free graded Lie algebra generated by non-canonical elements σ2n+1 in degree
−2n− 1 for n ≥ 1. We obtain a morphism of Lie algebras

(1.2) i0 : gm −→ Der1 L(x0, x1)

where Der1 L(x0, x1) denotes the set of derivations which send x1 to 0. Furthermore,
we know that (1.2) factors through a morphism

i : gm −→ L(x0, x1)

and (1.2) maps σ ∈ gm to the derivation which sends x0 7→ [i(σ), x0] and x1 to 0. The
main result of [3] states that i is injective, and therefore enables us to expand elements
σ ∈ gm in ‘coordinates’ x0 and x1. It is an important problem to characterise the image
of the map i and to describe the i(σ2n−1) as explicitly as possible. It is known by the
work of Racinet that the image of i is contained in the Lie algebra dmr0 of solutions to
the double shuffle equations. It is also contained in the space of solutions to Drinfeld’s
associator equations, which by a result of Furusho [21], are contained in dmr0.

It is well-known that

(1.3) i(σ2n+1) = ad(x0)2nx1 + terms of degree ≥ 2 in x1 ,
1
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This can be seen as follows. The Drinfeld associator is the formal power series which
is the generating series of shuffle-regularised multiple zeta values,

Z =
∑

w∈{x0,x1}×
ζ(w)w ∈ R〈〈x0, x1〉〉 ;

and is easily computed explicitly to first order in x1:

Z ≡
∑
n≥2

ζ(n) ad(x0)n−1x1 (mod terms of degree ≥ 2 in x1) .

The coefficients of the odd zeta values in degree 2n+ 1 are congruent to i(σ2n+1), but
very little is known in general about the coefficients of i(σ2n+1) of higher degrees ≥ 3
in the x1. In this paper, we show:

Theorem 1.1. (1) That there is a choice of generators σc2n+1 ∈ gm which is given
by an explicit formula (1.9) modulo terms of degree ≥ 5 in x1.

(2) That there is a rational associator τ which is given by an explicit formula
modulo terms of degree ≥ 4 in x1. It computes the coefficients of the even zeta
values (powers of π) in Z in this range.

Statement (1) is surprising because the choice of generators σ2n+1 are a priori only
well-defined up to addition of higher order commutators of σ2m+1. The key point is
that by passing to genus 1, we find canonical coordinates on gm which enable us to fix
the commutators [σ2a+1, [σ2b+1, σ2c+1]] uniquely. A similar story holds for (2).

In so doing, we discover that it is more convenient to consider a different normalisa-
tion for the σ2n+1 from the canonical normalisation (1.3), which we call the heretical
normalisation

(1.4) σ2n+1 =
B2n

(2n)!
ad(x0)2nx1 + terms of degree ≥ 2 in x1 ,

where B2n is the 2nth Bernoulli number. Objects which are normalised according to
the heretical normalisation will be underscored.

1.2. The fundamental group of the first-order Tate curve. Let E×∂/∂q denote
the fiber of the universal elliptic curve M1,2 → M1,1 over the tangential base point
∂
∂q onM1,1, whereMg,n denotes the moduli space of curves of genus g with n marked
points. In a future paper with Hain, we shall show (as suggested in [27]) that its de
Rham fundamental group

(1.5) P = πdR1 (E×∂/∂q,
→
11)

where
→
11 is the tangent vector of length 1 with respect to the canonical holomorphic

coordinate w on E×∂/∂q, is the de Rham realisation of a pro-object in the category
of mixed Tate motives over Z. Its associated bigraded Lie algebra (bigraded for the
weight W and relative monodromy-weight M filtrations) is the free Lie algebra on
certain canonical generators a, b. Correspondingly1, one obtains a morphism of Lie
algebras

(1.6) i1 : gm −→ DerΘ L(a, b)

where DerΘ denotes the set of derivations δ such that δ(Θ) = 0, where Θ = [a, b]. We
shall show as a consequence of [3] that (1.6) is injective.

1If one thinks of gm as being bigraded for M and W , with W = M , then the map i1 respects the
M -grading, but not the W -grading, see [27].
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On the other hand, there are distinguished derivations ε∨2n ∈ DerΘ L(a, b) whose
action on a are given by

ε∨2na = ad(a)2nb for n ≥ 1 .

They were first studied by Nakamura [36] in a slightly different context and rediscovered
in [11, 32]. The action of ε∨2n on b is determined by the condition ε∨2nΘ = 0 together
with the fact that it is homogeneous of degree 2n in a, b. The derivations ε∨2n are
‘geometric’ in the sense that the relative completion of SL2(Z) = π1(M1,1, ∂/∂q) (or
universal monodromy) acts on L(a, b) via the Lie algebra generated by the ε∨2n and
their images ad(ε∨0 )kε∨2n under the adjoint action of

ε∨0 ∈ DerΘ L(a, b) , ε∨0 (a) = b ε∨0 (b) = 0 .

Denote the Lie subalgebra generated by the ε∨2n, for all n ≥ 0, by

ugeom ⊂ DerΘL(a, b) .

It is the bigraded image of the universal monodromy [26]. The elements ε∨2n satisfy
many relations which were studied by Pollack [37]. The image of gm in DerΘ L(a, b)
under (1.6) is by no means contained in ugeom, but in low degrees with respect to b, the
ε∨2n give canonical ‘coordinates’ in which to write down the initial terms of elements
i1(σ2n+1). The motivic version of a formula due to Nakamura in the `-adic setting, is

i1(σ2n+1) ≡ ε∨2n+2 (mod W−2n−3)

for all n ≥ 1. A more precise result can be obtained using the elements σc2n+1.

Theorem 1.2. Let n ≥ 2. The elements σc2n+1 satisfy

(1.7) i1(σc2n+1) ≡ ε∨2n+2 +
∑

a+b=n

1
2b
{ε∨2a+2, {ε∨2b+2, ε

∨
0 }} (mod W−2n−5) .

where the ε∨2n are the heretical normalisations (3.4) of the ε∨2n.

This theorem is equivalent to an explicit formula for the i0(σc2n+1) ∈ L(x0, x1)
modulo terms of degree ≥ 5 in x1, which is how it is proved here. This uses an
explicit morphism from the de Rham fundamental group of P1\{0, 1,∞} to that of E×

which was written down by Hain. Since i0 and i1 are compatible with this morphism,
the expansions of σc2n+1 under i0 and i1 can be related to each other explicitly.

1.3. Rankin-Selberg method. The third way of understanding the elements σc2n+1,
and the starting point for this paper, came from the theory of iterated integrals of
holomorphic modular forms for SL2(Z). The coefficients in equation (1.7) come from
the computation [7] of the imaginary part of an iterated integral of two Eisenstein series
using the Rankin-Selberg method. They turn out to be the coefficients of ζ(2n − 1)
in the convolution of two Eisenstein series of different weights, which are products
of Bernoulli numbers. Equivalently, they are proportional to the coefficients in the
odd period polynomials of Eisenstein series. This is the motivation for the heretical
normalisations (1.4) and the source of the formula (1.7).

1.4. Further remarks. We discuss the methods used in this paper, and applications
to the double shuffle equations and Broadhurst-Kreimer conjecture.
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1.4.1. Commutative power series and anatomy of associators. One tool which we use
extensively is the method of commutative power series and is closely related to Ecalle’s
theory of moulds [17, 18]. Let L(u, v) be the free graded Lie algebra generated by two
elements u, v. It is graded for the degree in v. Elements of v-degree r ≥ 1 in the tensor
algebra T (u, v) can be encoded by commutative polynomials

ρ : grrv T (u, v) ↪−→ Q[x1, . . . , xr] r ≥ 1(1.8)

ui0vui1 . . . vuir 7→ xi11 . . . xirr

We apply this construction to (u, v) = (x0, x1) and (u, v) = (a, b), and their derivation
algebras. In certain contexts, we shall explain that it is natural to rescale the morphism
ρ by introducing polynomial denominators. In this manner, elements of Der1 L(x0, x1)
and DerΘ L(a, b) are encoded by sequences of rational functions in x1, . . . , xr. The
double shuffle equations (defining equations for the Lie algebra dmr0) can be translated
into functional equations for commutative power series via the map ρ. A surprising
discovery is that there exist canonical solutions if one allows poles:

Theorem 1.3. [2] There exist explicit solutions to the double shuffle equations in the
space of rational functions in all weights and all depths.

There is a particular family of solutions we denote by ξ(r)
2n+1 ∈ Q(x1, . . . , xr) in weight

2n+ 1 ≥ 3. Their components in depths r = 1, 2 are polynomials, but they have poles
in depths r ≥ 3. Furthermore, a new element emerges in weight −1 which we denote
by ξ(r)

−1 ∈ Q(x1, . . . , xr). The idea of [2] is to expand the polynomial representation of
Drinfeld elements ρ(i(σ2n−1)) in terms of the ξ2n+1. This ‘anatomy’ can be computed
explicitly in low degrees:

Theorem 1.4. If { , } denotes the Ihara bracket, extended to the setting of rational
functions, then the canonical Drinfeld elements up to depth 4 are given, in the heretical
normalisation, by the simple formula:

(1.9) ρ(i(σc2n+1)) ≡ ξ
2n+1

+
∑

a+b=n

1
2b
{ξ

2a+1
, {ξ

2b+1
, ξ−1

}} (mod depths ≥ 5) .

If one were to write this formula in the canonical, as opposed to heretical normalisa-
tions, one would find coefficients given by products of Bernoulli numbers in the sum in
the right-hand side. These coefficients are essentially the coefficients in the odd period
polynomial of Eisenstein series, a fact which emerges from §9.

Theorem 1.9 is proved by combinatorial methods, and uses Goncharov’s theorem
that the solutions to the double shuffle equations in depth 3 are motivic. It makes no
reference to the first-order Tate curve. It is more illuminating, however, to interpret
this theorem by passing to genus 1. Via the Hain morphism 3.3, it turns out that the
elements ξ2n+1 correspond in low depths to the derivations ε∨2n+2, and this proves that
theorems 1.4 and 1.2 are equivalent.

1.4.2. Double shuffle equations. Our elements σc2n+1 are explicit solutions to the double
shuffle equations in depths ≤ 4 and odd weights. We also construct, in §7.1, an explicit
solution τ in depths ≤ 3 and all even weights. Using a theorem due to Goncharov
computing the dimension of the space of solutions to linearised double shuffle equations
in depth 3 we deduce the

Theorem 1.5. Every solution to the regularised double shuffle equations in depths ≤ 4
(odd weight) and depths ≤ 3 (even weight) can be expressed using the explicit elements
σc2n+1 and the rational associator τ .
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This theorem can be applied to the semi-numerical algorithm described in [5] to
decompose motivic multiple zeta values into a chosen basis using the motivic coaction.
It involved a numerical computation of a regulator at each step. One application of
the elements σc2n+1 and τ is to remove this transcendental step, leading to an exact
and effective algorithm for proving motivic relations between multiple zeta values in
low depths, and any weight. It replaces the need to store tables of multiple zeta values
in this range of depths [10].

A further manifestation of the double shuffle equations occurs in genus 1. As men-
tioned above, we encode elements of DerΘ L(a, b) by rational functions, by composing
the morphism δ 7→ δ(a) : DerΘ L(a, b) −→ L(a, b) ⊂ T (a, b) with the linear map

grrb T (a, b) −→ Q(x1, . . . , xr)(1.10)

ai0bai1b . . . bair 7→ xi11 . . . xirr
x1(x1 − x2) . . . (xr−1 − xr)xr

.

In [2], we defined a bigraded Lie algebra pls to be the space of solutions to the linearised
double shuffle equations with poles at worst of the above form. We show that:

Proposition 1.6. The Lie algebra of geometric derivations is contained, via (1.10),
in the space solutions to the linearised double shuffle equations: ugeom ⊂ pls

Thus the linearised double shuffle equations occur naturally in the elliptic setting.
It is natural to ask if ugeom = pls, and easy to show [2] that this holds in depths ≤ 3.
It follows from the previous proposition that the stuffle equations enable us to detect
non-geometric derivations, i.e., elements in the quotient

(DerΘ L(a, b))/ugeom .

1.4.3. Depth 4 generators in the Broadhurst-Kreimer conjecture. A further application
of the canonical elements σc2n+1 is to the Broadhurst-Kreimer conjecture.

It is well-known since Ihara and Takao [30] that there exist quadratic relations

(1.11)
∑
i,j

λi,j{σ2i+1, σ2j+1} ≡ 0 (mod terms of degree ≥ 4 in x1)

where λi,j ∈ Q are coefficients of period polynomials P of even, cuspidal SL2(Z)-
cocycles. In [6], we reformulated the Broadhurst-Kreimer conjecture, which describes
the dimensions of the space of multiple zeta values graded by the depth, in terms of the
spectral sequence induced on gm by the depth filtration D. Using the elements σc2n+1

we can compute the first non-trivial differential (conjecturally, the only non-trivial
differential) in this spectral sequence. A motivic version of the Broadhurst-Kreimer
conjecture can thus be formulated by saying that grDgm has the following presenta-
tion: it is generated by the classes [σ2n+1] ∈ gr1

Dgm for all n ≥ 1, and certain elements
c(P ) ∈ gr4

Dgm, where c can be expressed in terms of the canonical elements σc2n+1,
and it is subject only to the relations (1.11). For a precise statement, see §8. This
formulation of the Broadhurst-Kreimer conjecture can be transposed to the elliptic
setting and describes a presentation for a certain Lie subalgebra of ugeom.

Acknowledgements. This paper was written during a stay at the IAS, partial sup-
ported by NSF grant DMS-1128155 and ERC grant 257638. Its origin was an attempt
to interpret the algebraic structures in the notes [2] geometrically. This paper owes
a great deal to Richard Hain, who kindly explained his recent papers [26], [27] to me
during inumerable discussions, and made many important suggestions. Several of the
topics touched upon here will be expanded in a future joint work. Many thanks also
to Ding Ma for corrections.
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2. Reminders on the projective line minus 3 points

Background material can be found in [15], [38], [6].

2.1. Depth. Let L(x0, x1) denote the free graded Lie algebra over Q on two generators
x0, x1, where x0 and x1 have degree 1. The depth filtration DnL(x0, x1) is the decreasing
filtration such that D0 = L(x0, x1) and

D1L(x0, x1) = ker(L(x0, x1) −→ L(x0))

where the map on the right sends x1 to 0 and x0 to x0. It is defined by Dn = [D1, Dn−1]
for all n ≥ 2. It is the decreasing filtration associated to the D-degree, for which x0

has D-degree 0 and x1 has D-degree 1. Therefore DnL(x0, x1) consists of Q-linear
combinations of Lie brackets of x0 and x1 with at least n x1’s.

The universal enveloping algebra of L(x0, x1) is the graded tensor algebra T (x0, x1)
on Qx0 ⊕ Qx1. The D-degree is defined in the same manner on T (x0, x1) and defines
a decreasing filtration DnT (x0, x1) spanned by words in ≥ n x1’s. We shall embed
L(x0, x1) ⊂ T (x0, x1); the embedding is compatible with the filtrations D.

2.2. Ihara bracket. The de Rham fundamental groupoid [15]

0Π1 = πdR1 (P1\{0, 1,∞},
→
10,−

→
11)

is the de Rham realisation of a mixed Tate motive over Z, and admits an action of the
de Rham motivic Galois group GdR. The action on the trivial de Rham path 011 from
the tangential base point 1 at 0 to the tangential base point −1 at 1 gives a morphism

(2.1) g 7→ g.011 : GdR −→ 0Π1

of schemes. It becomes a morphism of groups if one equips 0Π1 with the Ihara group
law, which is denoted by ◦. If R is a commutative unitary algebra, the set of R-points
of 0Π1 is the set of invertible group-like (with respect to the completed coproduct
for which x0, x1 are primitive) formal power series R〈〈x0, x1〉〉 in two non-commuting
variables. The Ihara group law is then given by the formula

◦ : 0Π1 × 0Π1 −→ 0Π1(2.2)
F ◦G = G(x0, F x1F

−1)F .

The expression on the right-hand side is also equal to

F ◦G = FG(F−1x0F, x1) .

Likewise, the de Rham fundamental group with tangential base point −1 at 1

1Π1 = πdR1 (P1\{0, 1,∞},−
→
11)

admits an action of GdR, which can be shown to factorise through the composition of
the map (2.1) with the left-action

◦1 : 0Π1 × 1Π1 −→ 1Π1(2.3)
F ◦1 H = H(F−1x0F, x1) .

Now pass to graded Lie algebras. The graded Lie algebras of both 0Π1 and 1Π1 can
be identified with L(x0, x1). Let gm = Liegr UdR, where UdR is the unipotent radical
of GdR = UdR o Gm. Equation (2.1) gives a morphism

(2.4) i : gm −→ (L(x0, x1), {, })
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where { , } is the Ihara bracket, for which we give a formula below. Let Der1 L(x0, x1)
denote the Lie subalgebra of derivations δ ∈ Der L(x0, x1) which satisfy δ(x1) = 0. The
left action (2.3) is given on the level of graded Lie algebras by

(L(x0, x1), { , }) −→ Der1 L(x0, x1)(2.5)

σ 7→

{
x0 7→ [x0, σ]
x1 7→ 0

.

Theorem 2.1. [3] The morphism (2.4) is injective.

Because of this theorem, we can identify gm with its image in L(x0, x1) via i. The
graded Lie algebra gm is freely generated by elements σ2n+1 in degree −2n− 1, for all
n ≥ 1. Their images in L(x0, x1) are known as Drinfeld elements

(2.6) i(σ2n+1) = ad(x0)2nx1 + terms of depth ≥ 2 .

They are not a priori canonical for n ≥ 5. However, the Hoffman-Lyndon basis for
motivic multiple zeta values allows one to define canonical choices σHL2n+1 for the
σ2n+1 [4]. Very little is known about these elements, except for the coefficients of
(x0x1)ax0(x0x1)b in σ2a+2b+1 (which are independent of the choice of σ2n+1), which
follows from [3] and [41].

2.3. Linearized Ihara action and depth. In [6], we considered the following lin-
earised version of the Ihara action. For any word a ∈ {x0, x1}×, let

(a1 . . . an)∗ = (−1)nan . . . a1 .

Definition 2.2. Define a Q-bilinear map

◦ : T (x0, x1)⊗Q T (x0, x1)→ T (x0, x1)

inductively as follows. For any words a,w in x0, x1, and for any integer n ≥ 0, let

(2.7) a ◦ (xn0 x1w) = xn0ax1w + xn0 x1a
∗w + xn0 x1(a ◦w)

with the initial condition a ◦ xn0 = xn0 a.

The antisymmetrization of the map ◦ restricts to the Ihara bracket on L(x0, x1):

{f, g} = f ◦ g − g ◦ f for all f, g ∈ L(x0, x1) .(2.8)

It follows from this formula that the Ihara bracket is homogeneous for the D-degree
(the fact that it respects the depth filtration follows from the geometric interpretation
of the depth filtration using the embedding P1\{0, 1,∞} ⊂ P1\{0,∞} [15]). If we
embed gm ↪→ L(x0, x1) via (2.4) we can define the depth filtration Dgm on gm to be
the decreasing filtration induced by the depth filtration on L(x0, x1).

For later use, remark that if A(a, b, c) = a ◦ (b ◦ c)− (a ◦ b) ◦ c, then

(2.9) A(a, b, c) = A(b, a, c)

for any a, b, c ∈ T (x0, x1), which follows from the definitions, and implies that the
linearised Ihara bracket satisfies the Jacobi identity.

2.4. Double shuffle equations. The double shuffle equations are a family of equa-
tions satisfied by multiple zeta values which are well-adapted to the depth filtration.
In his thesis [38], Racinet defined a subspace

dmr0 ⊂ L(x0, x1) ,

called the regularised double shuffle Lie algebra, which encodes these relations in terms
of two Hopf algebra structures. The Lie algebra version of Racinet’s theorem is:
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Theorem 2.3. [38] The space dmr0 is closed under the Ihara bracket { , }.

Since the regularised double shuffle equations hold for actual multiple zeta values,
and are stable under the Ihara bracket, it follows that they are motivic. Combined
with theorem 2.1 we deduce that there is an inclusion of Lie algebras

gm ⊂ dmr0 ⊂ L(x0, x1) .

Therefore we can study elements σ2n+1 by attempting to solve the defining equations
of dmr0 in low depths. This will be achieved below using the language of commutative
power series (§4).

2.5. Depth-graded motivic Lie algebra. The depth filtration induces a decreasing
filtration D• on GdR and hence gm via the maps (2.1) and (2.4). Let

(2.10) d = gr•Dgm

denote the associated graded Lie algebra. It is bigraded for weight and depth. The
component of d of depth d and weight n will be denoted by ddn. Let dd =

⊕
n ddn,

denote the (infinite-dimensional) component in depth d, and let dn =
⊕

d ddn denote
the (finite-dimensional) component in weight n.

The linearised double shuffle equations are a family of equations which were intro-
duced in [22] and further studied in [6]. It follows from a variant of Racinet’s theorem
that their set of solutions, denoted by ls ⊂ gr•DL(x0, x1), is a bigraded Lie algebra for
the Ihara bracket { , }, and a corollary of theorem 2.1 and Racinet’s theorem is

Theorem 2.4. ([6], §5) d ⊂ ls.

The following theorem was first proved by Tsumura. See [6], §6.4 for a short proof.

Theorem 2.5. (Depth-Parity theorem for double shuffle equations). We have

lsdn = 0 if n ≡ d+ 1 (mod 2) .

Combining the previous two theorems gives the

Corollary 2.6. (Depth-Parity theorem). If n ≡ d+ 1 (mod 2), then ddn = 0.

3. The fundamental Lie algebra of the first-order Tate curve

The material in this section is an abridged account of results extracted from the
papers [26], [25] and [27].

3.1. Background. Let E×∂/∂q denote the first order Tate curve, which is the fiber of
the universal elliptic curve over M1,1 with respect to the tangential base point ∂/∂q.
Its de Rham fundamental group

(3.1) P = πdR1 (E×∂/∂q,
→
11)

where
→
11 is the tangent vector of length 1 with respect to the canonical holomorphic

coordinate w on E×∂/∂q, is the de Rham realisation of a pro-object in the category of
mixed Tate motives over Z. Since its mixed Hodge structure is the limiting mixed
Hodge structure of a variation, its relative monodromy weight filtration is denoted by
M , and it comes equipped with a geometric weight filtration W . This data defines a
universal mixed elliptic motive according to Hain and Matsumoto [27]. The associated
M,W bigraded Lie algebra is the free Lie algebra L(HdR) where

HdR = (H1
dR(E×∂/∂q; Q))∨ = Qa⊕Qb (= Q(1)⊕Q(0))
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which has two canonical de Rham generators a and b. It will be denoted by L(a, b).
The generators a and b have (M,W ) bidegrees (−2,−1) and (0,−1), respectively. The
geometric weight filtration W coincides with the lower central series filtration on P.

Since P is the de Rham realisation of a mixed Tate motive over Z, it admits an action
of the de Rham motivic Galois group GdR of MT (Z) by the Tannakian formalism.
Passing to Lie algebras gives a morphism

(3.2) i1 : gm −→ DerΘ L(a, b)

where Θ = [a, b] and

DerΘ L(a, b) = {δ ∈ Der L(a, b) : δ(Θ) = 0} .
This is because Θ = [a, b] corresponds to the de Rham path which winds once around
the puncture in E×∂/∂q, and generates a copy of Q(1), which is fixed by UdR.

3.2. Derivations. We only need to consider the subspace B0 DerΘ L(a, b) of deriva-
tions δ (see §3.4 for the definition of the B-filtration) such that

δ(b) ∈ B1L(a, b) := ker(L(a, b)→ L(a))

where the map on the right sends b to zero (it is the composition of the natural map
L(HdR) → L(HdR)ab = HdR followed by the projection HdR → HdR/F

0HdR = Qa).
Such a derivation is uniquely determined by its value δ(a) since [δ(a), b] + [a, δ(b)] = 0,
and the commutator of a is aQ. Thus δ 7→ δ(a) gives an embedding B0 DerΘ L(a, b)→
L(a, b).

For each n ≥ −1, one shows that there exist elements

ε∨2n+2 ∈ B0 DerΘ L(a, b) ⊂ DerΘ L(a, b)

which are uniquely determined by the property

ε∨2n+2(a) = ad(a)2n+2(b) .

The elements ε∨2n+2 were first defined by Nakamura in 1999 in the profinite setting.
The element ε∨2 is central in DerΘ L(a, b) and plays no role here. Let us define

(3.3) ugeom ⊂ DerΘ L(a, b)

to be the Lie subalgebra spanned by the ε∨2n+2, for n ≥ −1. One shows that the relative
Malčev completion of π1(M1,1, ∂/∂q) = SL2(Z) (relative to SL2(Z) → SL2(Q)) acts
on L(a, b) via ugeom [26]. Quadratic relations between the elements ε∨2n predicted by
Hain and Matsumoto were studied by Pollack in his thesis [37].

We define heretical normalisations of these derivations as follows. Let

(3.4) ε∨0 =
1
12
ε∨0 and ε∨2n+2 =

B2n

(2n)!
ε∨2n+2 for n ≥ 1

where Bk denotes the kth Bernoulli number.

3.3. The Hain morphism. There is a morphism of fundamental groups [25], §16-18:

(3.5) π1(P1\{0, 1,∞},
→
11) −→ π1(E×∂/∂q, ∂/∂w) .

Using the work of Levin and Racinet, Hain has computed this map in the de Rham
realisation [25], (18.1). On de Rham Lie algebras it is the continuous morphism

φ : L(x0, x1)∧ −→ L(a, b)∧(3.6)

x0 7→ ad(b)
ead(b) − 1

a = a− 1
2

[b, a] +
1
12

[b, [b, a]] + . . .

x1 7→ [a, b]
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where ∧ denotes completion with respect to the lower central series.
Let Der1L(x0, x1)∧, DerΘ L(a, b)∧ denote the continuous derivations of completed

Lie algebras which send, respectively, x1 to 0 or [a, b] to 0. We say that an element
σ ∈ Der1L(x0, x1)∧ lifts to a derivation σ̃ ∈ DerΘ L(a, b)∧ (and conversely, σ̃ descends
to the derivation σ) if

(3.7) σ̃ ◦ φ = φ ◦ σ .
which is equivalent to the equation σ̃φ(x0) = φσ(x0). An element of DerΘ L(a, b)∧

descends to an element of Der1L(x0, x1)∧ if and only if it preserves the subspace
φ(L(x0, x1)∧) in L(a, b)∧. Since (3.6) is injective, σ and σ̃ determine each other
uniquely. Furthermore, lifting derivations preserves composition: if σ1, σ2 ∈ Der1 L(x0, x1)∧

admit lifts σ̃1, σ̃2 ∈ DerΘ L(a, b)∧, then [σ1, σ2] admits the lift [σ̃1, σ̃2].
Since (3.5) is geometric, it is compatible with the actions of GdR on the de Rham

fundamental groups (the case of the Hodge realisation is [25], Theorem 15.1). Thus
φ commutes with the action of gm, and the morphism (3.2) is the lift of the map
i0 : gm → Der1 L(x0, x1). In particular,

(3.8) i1(σ)
(
φ(x0)

)
= φ(i0(σ)(x0)) for all σ ∈ gm ,

where i0 was defined in (2.4). The injectivity of i [3] and φ implies the

Theorem 3.1. The map i1 : gm → DerΘ L(a, b) is injective.

3.4. B-filtration. One possible way to cut out the depth filtration on the image of
gm inside DerΘ L(a, b) is via the B-filtration on P. As pointed out by Hain, it can
be defined as the convolution of the Hodge filtration F and the lower central series
filtration L:

Br = (F ? L)r =
∑
a+b=r

F a ∩ Lb .

This induces a decreasing filtration on the Lie algebra of P. Note that Lb = W−b,
where W denotes the weight filtration. Since the filtrations F,W, and M can be split
simultaneously [25], B induces a filtration on L(H) = grW grMLie P, and

BrL(H) = {w ∈ L(a, b) : degb w ≥ r} ,
is the filtration associated to the B-degree, where we define the B-degree on L(a, b)
to be the degree in b. To see this, note that BrgrnLL(HdR) = Fn−rgrnLL(HdR). Since
grnLL(HdR) consists of words of length n in a and b, and since

Qa⊕Qb = F−1HdR ⊃ F 0HdR = Qb ,
Fn−rgrnLL(HdR) is spanned by words with at least r letter b’s. Note also that

2 degb +2 degW = degM .

The B-filtration also induces a decreasing filtration B• on DerΘ L(a, b), such that
DerΘ L(a, b) = B−1DerΘ L(a, b). It is the decreasing filtration associated to the grading
induced by the B-degree. The subspace B0 DerΘ L(a, b) is the space of derivations δ
such that δ(b) ⊂ B1 L(a, b), i.e., such that the coefficient of a in δ(b) is zero.

Lemma 3.2. The B-filtration on P is motivic, i.e., it is stable under the image of the
de Rham motivic Galois group i1(gm).

Proof. We must verify that i1(gm) ⊂ B0 DerΘ L(a, b). Since the group GdR acts on
L(a, b)ab = HdR through its quotient Gm, and because HdR = Q ⊕ Q(1) is a direct
sum of pure Tate motives, the graded Lie algebra of its pro-unipotent radical gm acts
trivially on L(HdR)ab. Therefore i1(gm)(b) ⊂ [L(HdR),L(HdR)] ⊂ B1L(HdR). �
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Lemma 3.3. Let α ∈ L(x0, x1)∧. Then α ∈ Dr if and only if φ(α) ∈ Br.

Proof. The fact that φDr ⊂ Br is clear from the definition (3.6). The converse follows
from the fact that the associated graded morphism

φ0 : gr•DL(x0, x1) −→ gr•BL(a, b)

given by φ0(x0) = a and φ0(x1) = [a, b], is injective. �

Observe that if δ ∈ Der1 L(x0, x1) then δ ∈ Dr if and only if δ(x0) ∈ Dr.

Lemma 3.4. Let δ ∈ B0 DerΘ L(a, b). The following are equivalent

(1) δ ∈ Br DerΘ L(a, b)
(2) δ(a) ∈ Br L(a, b)
(3) δ(φ(x0)) ∈ Br L(a, b) .

Proof. Clearly (1) implies (2) and (3). Now suppose that (2) holds. We have

0 = δ[a, b] = [a, δ(b)] + [δ(a), b]

which implies that [a, δ(b)] ∈ Br+1 L(a, b). Since the coefficient of a in δ(b) vanishes,
this implies that δ(b) ∈ Br+1L(a, b). Together with δ(a) ∈ Br this implies (1).

Now suppose (3) holds. Write φ(x0) = a+ w where w ∈ B1L(a, b), and by (3),

δ(a) + δ(w) ∈ Br .

If we have shown that δ(a) ∈ Bi, then by (2) ⇒ (1), we have δ ∈ Bi and hence
δ(w) ∈ Bi+1. The previous equation then implies δ(a) ∈ Bmin(i+1,r). Starting with
i = 0, repeat this argument to deduce that δ ∈ Br which proves (3)⇒ (1). �

Proposition 3.5. Let σ ∈ Der1L(x0, x1) which lifts to an element σ̃ ∈ B0 DerΘ L(a, b).
Then σ ∈ Dr if and only if σ̃ ∈ Br.

Proof. We have φ(σ(x0)) = σ̃(φ(x0)). Now apply the previous two lemmas to deduce
that σ ∈ Dr if and only if σ̃ ∈ Br. �

Corollary 3.6. The B-filtration cuts out the depth filtration on the image of gm:

(3.9) Br ∩ i1(gm) = i1(Drgm) .

Proof. Apply lemma 3.2, the previous proposition, and i1φ = φ i0 (3.8). �

By considering the symmetry t 7→ 1− t on P1\{0, 1,∞}, one knows that an element
σ ∈ gm of degree −m is uniquely determined by its image in D1/Db

m
2 cL(x0, x1) (duality

relation). It follows from the injectivity of φ and i that:

Corollary 3.7. An element σ ∈ gm of degree −m is uniquely determined by the image
of i1(σ) in B1/Bb

m
2 cL(a, b) .

Remark 3.8. Thus the ‘tails’ of the elements i1(σ) in the B-filtration, which may be
infinitely long, are uniquely determined from their ‘heads’ i1(σ) (mod Bb

m
2 c). Fur-

thermore, one can show (for instance, using the description [7], §9 of the group of
automorphisms of a semi-direct product) that, modulo Bm, i1(σ) is equivalent to an
element of ugeom, so can be expressed (non-uniquely) in terms of the geometric deriva-
tions ε∨2n+2 for n ≥ −1. For instance, a choice of Drinfeld element of degree −2n − 1
admits an expansion

i1(σ2n+1) ≡
∑

a1,...,ar∈2N
λ(2n+1)
a1,...,ar

{ε∨a1
, {ε∨a2

, {. . . , {ε∨ar−1
, ε∨ar
} · · · } (mod B2n+1)
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where λ(2n+1)
a1,...,ar ∈ Q. The non-uniqueness of this expansion corresponds to the fact

that there exist relations between the generators ε∨2n+2 in ugeom [37]. Nonetheless,
this geometric expansion or ‘anatomy’ of the elements i1(σc2n+1), for n ≥ 2, will be
determined explicitly modulo B4 below.

4. Commutative power series

We discuss commutative power series representations for the Lie algebras L(x0, x1),
L(a, b) and describe the composition laws for their derivation algebras.

4.1. Commutative power series. The method of commutative power series is based
on the observation that there is an isomorphism of Q-vector spaces, for r ≥ 0

ρ : grrDT (x0, x1) ∼−→ Q[y0, . . . , yr](4.1)

xi00 x1x
i1
0 . . . x1x

ir
0 7→ yi00 . . . yirr

Let us denote by
P =

⊕
r≥0

Q[y0, . . . , yr] .

Since L(x0, x1) is D-graded, (4.1) induces a map ρ : L(x0, x1)→ P . One checks that

(4.2) ρ(ad(x0)2n(x1)) = (y0 − y1)2n .

Furthermore, one shows ([6], lemma 6.2) that the image of grrDL(x0, x1), for r ≥ 1, is
contained in the subspace of polynomials which are translation invariant:

f(y0, . . . , yr) = f(y0 + λ, . . . , yr + λ) for all λ ∈ Q .

Such a polynomial f is uniquely determined by its image in

Q[y0, . . . , yr] −→ Q[x1, . . . , xr](4.3)

f(y0, . . . , yr) 7→ f(x1, . . . , xr) = f(0, x1, . . . , xr) .

We sometimes call this the reduced representation of a translation-invariant polyno-
mial, and it applies equally well to translation-invariant rational functions. In this way,
since L(x0, x1) ∼= gr•DL(x0, x1) is graded with respect to the D-degree, every element of
D1L(x0, x1) can be uniquely written

ρ : D1L(x0, x1) −→
⊕
r≥1

Q[x1, . . . , xr](4.4)

σ 7→
∑
r≥1

σ(r)

where σ(r) denotes the polynomial representation of the component in depth r of σ.
The Drinfeld elements satisfy σ(1)

2n+1 = x2n
1 , for all n ≥ 1 by (4.2).

4.2. Concatenation products. The concatenation of words in the alphabet x0, x1

defines a non-commutative multiplication law f, g 7→ f · g:

grrDL(x0, x1)× grsDL(x0, x1) −→ grr+sD L(x0, x1) .

On the level of commutative power series, it is the operation

Q[y0, . . . , yr]⊗Q[y0, . . . , yr+s] −→ Q[y0, . . . , yr+s](4.5)
f(y0, . . . , yr) · g(y0, . . . , yr+s) = f(y0, . . . , yr)g(yr, . . . , yr+s)

It follows from the definition of the linearized Ihara action (2.7) that

f ◦ (g · h) = (f ◦ g) · h+ g · (f ◦h)− g · f · h .(4.6)
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Note that equation (4.6) is equivalent to the condition that the linear map

w 7→ f ◦w − w · f
is a derivation with respect to ·. There is another concatenation product, denoted by · ,
which comes from the stuffle Hopf algebra [2]. It will only be used once in this paper,
so will not be discussed.

4.3. Linearized Ihara action. The operator ◦ : T (x0, x1) ⊗Q T (x0, x1) → T (x0, x1)
is homogeneous for the D-degree, and therefore defines a map

◦ : Q[y0, . . . , yr]⊗Q Q[y0, . . . , ys] −→ Q[y0, . . . , yr+s](4.7)
f(y0, . . . , yr)⊗ g(y0, . . . , ys) 7→ f ◦ g (y0, . . . , yr+s)

whose r, s component is given explicitly by the formula

(4.8) f ◦ g (y0, . . . , yr+s) =
s∑
i=0

f(yi, yi+1, . . . , yi+r)g(y0, . . . , yi, yi+r+1, . . . , yr+s)+

(−1)deg f+r
s∑
i=1

f(yi+r, . . . , yi+1, yi)g(y0, . . . , yi−1, yi+r, . . . , yr+s) .

This can be read off from equation (2.7). Antisymmetrizing gives a pairing

{f, g} = f ◦ g − g ◦ b
which coincides with the Ihara bracket on the image of L(x0, x1). Clearly, if f, g are
both translation invariant, then so too are f ◦ g and {f, g}.

Example 4.1. When r = s = 1 and f, g ∈ Q[y0, y1] are translation-invariant, one
verifies that the image of {f, g} ∈ Q[y0, y1, y2] in Q[x1, x2] is given by

f(x1)g(x2)− g(x1)f(x2) + f(x2 − x1)(g(x1)− g(x2)) + (f(x2)− f(x1))g(x2 − x1) .

The Ihara action (4.8) extends to rational functions by the identical formula.

4.4. Derivations on L(x0, x1) and power series. Consider the isomorphism

L(x0, x1) ∼−→ Der1 L(x0, x1)(4.9)
w 7→ δw

where δw denotes the derivation δw(x0) = w, δw(x1) = 0. This isomorphism respects
the D-grading on both sides. Let

P ′ =
⊕
r≥1

Q[y0, . . . , yr]
1

y0 − yr
.

Using (4.1), define a linear map

ρ′ : D1Der1 L(x0, x1) −→ P ′(4.10)

δw 7→
∑
r≥1

ρr(w)
1

y0 − yr
.

Proposition 4.2. The following diagram commutes:

D1Der1L(x0, x1) × L(x0, x1) −→ L(x0, x1)
↓ρ′ ↓ρ ↓ρ

� : P ′ × P −→ P

where for f ∈ P ′ and g ∈ P ,

(4.11) f � g = f ◦ g − f · g .
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Furthermore, the composition of derivations is given by the linearised Ihara bracket:

(4.12) ρ′([δw, δv]) = {ρ′(δw), ρ′(δv)} .

Thus ρ′ : D1Der1L(x0, x1)→ (P ′, {, }) is a morphism of Lie algebras.

Proof. The shuffle distributivity law (4.6), and the remark which follows, implies that
� is a derivation: f � (g · h) = (f � g) · h + g · (f � h), for all f ∈ P ′, g, h ∈ P . It
therefore suffices to show that for all w ∈ L(x0, x1), and i = 0, 1, we have

ρ′(δw)� ρ(xi) = ρ(δw(xi)) .

Without loss of generality, assume that w is of D-degree r ≥ 1, and write f = ρ′(w).
Since w ∈ L(x0, x1), we have w + w∗ = 0 and hence

f(y0, . . . , yr) + (−1)deg f+rf(yr, . . . , y0) = 0 .

We check that ρ(x0) = y0 ∈ Q[y0] and ρ(x1) = 1 ∈ Q[y0, y1], and verify that

f(y0, . . . , yr) ◦ y0 = y0f(y0, . . . , yr)
f(y0, . . . , yr) ◦ 1 = f(y0, . . . , yr)

directly from the definition (4.8), applied in the cases s = 0, g = y0 and s = 1, g = 1
respectively. Via (4.11), these equations imply that f � y0 = (y0− yr)f and f � 1 = 0.
This proves that ρ′(δw) � ρ(x0) = ρ(w) and ρ′(δw) � ρ(x1) = 0 as required. For the
last part, use the fact that Der1L(x0, x1) acts faithfully on L(x0, x1) and the identity

f � (g � h)− g � (f � h) = {f, g} � h
which follows from (4.11), (4.6) and (2.9). �

The following corollary is not required for the remainder of this paper.

Corollary 4.3. Let w ∈ L(x0, x1) of D-degree r, and write f = ρr(w). Then

(4.13) ρ(r+1)(δx1w) = {fx−1
r , x−1

1 }xr+1 ∈ Q[x1, . . . , xr+1]

Proof. Use (4.9) and (4.10). Apply (4.12) to [δx1 , δw] = δδx1w
to give

ρ′(δδx1w
) = {ρ′(δx1), ρ′(δw)} .

The left-hand side is ρ(r+1)(δx1w)

(y0−yr+1) , the right-hand side is { 1
y0−y1 ,

ρ(r)(w)
y0−yr

}. Then pass to
the reduced representation (y0, y1, . . . , yr) 7→ (0, x1, . . . , xr). �

4.5. Derivations on L(a, b) and power series. Define

DΘ = DerΘ(L(a, [a, b]), B1L(a, b))

to be the vector space of linear maps δ : L(a, [a, b]) → B1L(a, b) satisfying δ[p, q] =
[δ(p), q] + [p, δ(q)] and δ([a, b]) = 0. Such a δ ∈ DΘ is uniquely determined by the
element δ(a) ∈ B1L(a, b). Furthermore, there is an injective map

B1DerΘ(L(a, b)) −→ DΘ

obtained by restricting to the Lie subalgebra L(a, [a, b]) ⊂ L(a, b).
Denote also by ρ the linear map

ρ(r) : grrB T (a, b) ∼−→ Q[y0, . . . , yr](4.14)

ai0bai1 . . . bair 7→ yi00 . . . yirr .

Let `0 = 1 and for r ≥ 1, set

(4.15) `r = (y0 − y1)(y1 − y2) . . . (yr−1 − yr) .
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Define a graded vector space

Q =
⊕
r≥0

`−1
r Q[y0, . . . , yr]

and a linear map

` : L(a, b) −→ Q(4.16)

w 7→
∑
r

`−1
r ρ(r)(w)

Since `r · `s = `r+s, Q is an algebra for the shuffle concatenation (4.5). Define

Q′ =
⊕
r≥1

Qr
1

y0 − yr

and setting cr = `r(y0 − yr) (c for ‘cyclic’) consider the linear map

`′ : DΘ −→ Q′(4.17)

δ 7→
∑
r≥1

c−1
r ρ(r)δ(a) .

It is injective, since δ(a) uniquely determines δ ∈ DΘ.

Proposition 4.4. The following diagram commutes:

DΘ × L(a, [a, b]) −→ L(a, b)
↓`′ ↓` ↓`

~ : Q′ × Q −→ Q

where, as in (4.11), we have

(4.18) f ~ g = f ◦ g − f · g .

Restricting to the subspace B1DerΘL(a, b) ⊂ DΘ we obtain a commutative diagram

B1DerΘL(a, b) × L(a, b) −→ L(a, b)
↓`′ ↓` ↓`

~ : Q′ × Q −→ Q

Furthermore, we have the identity for all δ1, δ2 ∈ B1DerΘL(a, b):

(4.19) `′([δ1, δ2]) = {`′(δ1), `′(δ2)} .

Thus `′ : B1DerΘL(a, b)→ (Q′, {, }) is a Lie algebra homomorphism.

Proof. The proof is similar to the proof of proposition 4.2, except that we must check
that `′(δ) ~ `([a, b]) = 0 and `′(δ) ~ `(a) = `(δ(a)). But `([a, b]) = y0−y1

y0−y1 = 1 and
`(a) = y0, so this calculation is formally identical to the one in proposition 4.2. �

4.6. Double shuffle equations. The equations defining dmr0 can be spelt out ex-
plicitly and translated via (4.1) into the language of commutative power series [2]. We
shall only require their restriction to depths ≤ 3 and work with translation-invariant
representations (4.3). Let

(f (1), f (2), f (3)) ∈ Q[x1]⊕Q[x1, x2]⊕Q[x1, x2, x3]

Writing xij for xi+xj and xijk for xi+xj +xk, the shuffle equations modulo products
in depths 2 and 3 are given by

f (2)(x1, x12) + f (2)(x2, x12) = 0(4.20)

f (3)(x1, x12, x123) + f (3)(x2, x12, x123) + f (3)(x2, x23, x123) = 0 .
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The solutions to the shuffle equations modulo products correspond, via (4.1), to the
image of L(x0, x1) inside T (x0, x1). The stuffle equations modulo products, in depths
2 and 3, correspond to the (regularised versions of) the equations (a, b, c ∈ N):

ζ(a, b) + ζ(b, a) + ζ(a+ b) ≡ 0 (mod products)

ζ(a, b, c) + ζ(b, a, c) + ζ(b, c, a) + ζ(a+ b, c) + ζ(a, b+ c) ≡ 0 (mod products) .

By considering the series Z(r) =
∑
n1,...,nr≥0 ζ∗(n1, . . . , nr)xn1−1

1 . . . xnr−1
r , where the

subscript ∗ denotes the stuffle regularisation, the previous equations translate into

(4.21) f (2)(x1, x2) + f (2)(x2, x1) =
f (1)(x1)− f (1)(x2)

x2 − x1

f (3)(x1, x2, x3) + f (3)(x2, x1, x3) + f (3)(x2, x3, x1) =

f (2)(x2, x1)− f (2)(x2, x3)
x3 − x1

+
f (2)(x1, x3)− f (2)(x2, x3)

x2 − x1

Note that the right-hand sides of the equations are in fact polynomials. These equations
extend to an infinite family of equations in every depth [2]. The Lie algebra dmr0 is
defined to be the sets of solutions to both shuffle and stuffle equations.

The linearised double shuffle equations [6] are the same sets of equations in which
the right-hand sides are zero. The linearised shuffle equations are identical to the
ordinary shuffle equations, but the linearised stuffle equations are:

f (1)(x1) + f (1)(−x1) = 0(4.22)

f (2)(x1, x2) + f (2)(x2, x1) = 0

f (3)(x1, x2, x3) + f (3)(x2, x1, x3) + f (3)(x2, x3, x1) = 0

The linearised double shuffle equations are also closed under the Ihara bracket, by a
(simpler) version of Racinet’s theorem.

4.7. Geometric derivations and linearised double shuffle equations with poles.
The Lie algebra ugeom ⊂ B1DerΘL(a, b) of geometric derivations was defined in (3.3).
The definition of the linearised double shuffle equations (4.20) and (4.22) can be ex-
tended in the obvious way to rational functions.

Definition 4.5. Define pls ⊂ Q′ to be the subspace of Q′ satisfying the linearised
double shuffle equations. It is bigraded by weight and depth.

By a version of Racinet’s theorem, pls is also a Lie subalgebra of Q′ for the linearised
Ihara bracket { , }. The notation stands for ‘polar linearised double shuffle’ solutions.
It is a bigraded Lie algebra in the category of sl2-representations over Q.

Proposition 4.6. The geometric derivations, in their reduced rational function rep-
resentation (4.17), satisfy the linearised double shuffle equations:

`′(ugeom) ⊂ pls .

Proof. The images of the generators `′(ε∨2n+2) = x2n
1 by (4.2) for n ≥ −1. They are

even and hence solutions to the linearised double shuffle equations. It follows from
(4.19), that `′ is a morphism of Lie algebras since pls is closed under { , }. �

A natural question to ask is whether pls = ugeom. It is true in depths ≤ 3 and in
certain limits [2].
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The previous proposition implies that the stuffle equations define maps from the
space of non-geometric derivations

DerΘ L(a, b)/ugeom

to spaces of rational functions. We shall show in remark 5.8 that this map is non-zero
and provides a tool to prove that certain derivations are not geometric. This can in
particular be applied to the image of i1(gm) in DerΘ L(a, b)/ugeom.

5. Drinfeld elements in depth 3 via anatomical construction

We wish to write down elements

σc2n+1 ∈ D1L(x0, x1)/D4L(x0, x1)

by exhibiting explicit polynomials

(σ(1)
2n+1, σ

(2)
2n+1, σ

(3)
2n+1) ∈ Q[x1]⊕Q[x1, x2]⊕Q[x1, x2, x3]

which are solutions to the equations (4.20) and (4.21).

5.1. Polar solutions. The shape of the equations (4.21) suggests searching for solu-
tions amongst the space of rational functions in xi with Q-coefficients. Let

(5.1) s(1) =
1

2x1
and s(2) =

1
12

( 1
x1x2

+
1

x2(x1 − x2)

)
.

It is easy to verify that (s(1), s(2)) is a solution to the double shuffle equations (4.20)
and (4.21) in depths one and two.

Definition 5.1. For n ≥ −1, define rational functions in x1, x2, x3 by

ξ
(1)
2n+1 = x2n

1(5.2)

ξ
(2)
2n+1 = {s(1), x2n

1 }

ξ
(3)
2n+1 = {s(2), x2n

1 }+
1
2
{s(1), {s(1), x2n

1 }}

where curly brackets denote the linearised Ihara bracket. Explicitly, we have

(5.3) ξ
(2)
2n+1 =

x2n
2 − (x2 − x1)2n

x1
+
x2n

1 − x2n
2

x2 − x1
+

(x2 − x1)2n − x2n
1

x2

which defines a polynomial in Q[x1, x2] whenever n ≥ 0. On the other hand, ξ(3)
2n+1

is a rational function in x1, x2, x3 with non-trivial poles. When n ≥ 0 it has at most
simple poles along x1 = 0, x3 = 0, x1 = x2 and x2 = x3.

One checks that the case n = 0 is trivial: ξ(1)
1 = 1 and ξ

(2)
1 = ξ

(3)
1 = 0.

Proposition 5.2. Let n ≥ −1. The elements

ξ2n+1 = (ξ(1)
2n+1, ξ

(2)
2n+1, ξ

(3)
2n+1)

satisfy the double shuffle equations modulo products (4.20) and (4.21) in depths 2, 3.

Proof. This is a finite computation and only uses the fact that x2n
1 is an even function.

It also follows from the fact that (s(1), s(2)), and x2n
1 are solutions to the double shuffle

equations via a version of Racinet’s theorem for rational functions. �
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Remark 5.3. The elements ξ2n+1 can be extended to all higher depths by the equation

ξ2n+1 = exp(ad(s))x2n
1

to define solutions to the full set of double shuffle equations with poles, where s is one
of (many possible) solutions to the polar double shuffle equations in weight 0. This is
discussed in [2], and implies the previous proposition. The component of s in depth
3 is unique by an extension of the depth-parity theorem for double shuffle equations
(theorem 2.5) to the case of rational functions and given by s(3) = 1

2{s
(1), s(2)} .

5.2. Definition of canonical elements. It is convenient to define heretical normal-
isations of the elements ξ as follows. Let

(5.4) ξ−1
=

1
12
ξ−1 and ξ

2n+1
=

B2n

(2n)!
ξ2n+1 for n ≥ 0

where B2n is the 2nth Bernoulli number. Set

(5.5) b(x) =
1

ex − 1
+

1
2

Recall the well-known functional identity

(5.6) b(x1)b(x2)− b(x1)b(x2 − x1) + b(x2)b(x2 − x1) =
1
4
.

Definition 5.4. Let n ≥ 2. Define elements σc2n+1 ∈ L(x0, x1)/D4L(x0, x1) by

(5.7) ρ(σc2n+1) = ξ
2n+1

+
∑

a+b=n

1
2b
{ξ

2a+1
, {ξ

2b+1
, ξ−1

}} (mod D4)

where the sum is over a, b ≥ 1. Definition (5.7) makes sense, since we shall prove in
the next paragraph that the right-hand side has no poles. Define

σc2n+1 =
(2n)!
B2n

σc2n+1 for n ≥ 2

to be the canonical normalisations, and set σc3 = [x0, [x0, x1]] + [x1, [x0, x1]].

Since by Racinet’s theorem, the space of solutions to the double shuffle equations
is closed under the Ihara bracket, this means that for n ≥ 2 the elements σc2n+1 are
solutions to the double shuffle equations in depths ≤ 3.

Remark 5.5. The σc2n+1 have the canonical normalisation. For n ≥ 1,

(σc2n+1)(1) = ξ
(1)
2n+1 = x2n

1 and (σc2n+1)(2) = ξ
(2)
2n+1

is given by (5.3). We have (σc3)(3) = 0 and for n ≥ 2,

(5.8) (σc2n+1)(3) = ξ
(3)
2n+1 +

∑
a+b=n

B2aB2b

B2n

(
2n
2a

)
1

24 b
{x2a

1 , {x2b
1 , x

−2
1 }} .

Due to the obvious symmetry in a and b, the previous expression can also be written
in terms of lowest weight vectors for the action [2] of sl2, namely:

1
2b
{x2a

1 , {x2b
1 , x

−2
1 }}+

1
2a
{x2b

1 , {x2a
1 , x−2

1 }} .

On the other hand, compare the odd part of the period polynomial [31] for the Eisen-
stein series of weight 2n, which is proportional to:∑

a+b=n,a,b≥1

(
2n
2a

)
B2aB2bX

2a−1Y 2b−1 ∈ Q[X,Y ] .

This is no accident, and follows from the computations in §5.3 as well as §9.
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5.3. Cancellation of poles. We show that (5.8) has no poles. We need the following
notation. Given two even functions f, g of one variable, define a new function

(f ? g)(x1, x2) = f(x1)g(x2)− f(x2−x1)g(x2) + f(x2−x1)g(x1)− f(x2)g(x1) .

In the notation of [2] it is f ? g = f ◦ g − g · f .

Lemma 5.6. For all n, a, b ≥ 1,

Resx3=0

(
ξ

(3)
2n+1

)
=

1
12
x2n

1 ? x−1
1(5.9)

Resx3=0

(
{x2a

1 , {x2b
1 , x

−2
1 }}

)
= 2b x2a

1 ? x2b−1
1 .

Proof. This is a straightforward computation and follows from the definitions. See also
[2] for a generalisation of the second equation. �

Proposition 5.7. The elements (σc2n+1)(3) have no poles, for all n ≥ 2.

Proof. Since pls (definition 4.5) is a Lie algebra for the Ihara bracket and is contained
in Q′, the element {x2a

1 , {x2b
1 , x

−2
1 } is in pls has at most simple poles along x1 =

0, x2 = x1, x3 = x2 and x3 = 0, whenever a, b ≥ −1. We first check that the residue of
(σc2n+1)(3) along x3 = 0 vanishes for n ≥ 2. It is given via (5.8) by

B2n

(2n)!
Resx3=0

(
ξ

(3)
2n+1

)
+

1
12

∑
a+b=n

B2a

(2a)!
B2b

(2b)!
1
2b

Resx3=0

(
{x2a

1 , {x2b
1 , x

−2
1 }}

)
.

Pass to generating series and substitute (5.9) into the previous expression to give

12
∑
n≥1

Resx3=0 σ
(3)
2n+1 = (xb(x)− 1) ? x−1 + (xb(x)− 1) ? (b(x)− x−1)

= (xb(x)− 1) ? b(x) ,

where b(x) was defined in (5.5). To compute this quantity, observe that 1 ? f = 0 and

(xf ? f)(x1, x2) = (x1 − x2)
(
f(x1)f(x2)− f(x1)f(x2−x1) + f(x2)f(x2−x1)

)
.

for any even function f . Substituting for f = b(x) and using (5.6), we deduce that
(xb(x)− 1) ? b(x) = 1

4 (x1 − x2). Now let n ≥ 2. The above argument proves that the
(σc2n+1)(3) have no poles along x3 = 0. Now we use the fact that σc2n+1 satisfies the
double shuffle equations modulo products in depths two and three. Since (σc2n+1)(i)

has no poles for i = 1, 2, the stuffle equation (4.21) implies that

(5.10) (σc2n+1)(3)(x1, x2, x3)− (σc2n+1)(3)(x3, x2, x1) ∈ Q[x1, x2, x3] .

It follows that its residue at x1 = 0 also vanishes. The shuffle equation is

(σc2n+1)(3)(x1, x12, x123) + (σc2n+1)(3)(x2, x12, x123) + (σc2n+1)(3)(x2, x23, x123) = 0 .

By taking the residue of this expression at x2 = 0, we deduce that (σc2n+1)(3) has no
pole along x2 = x1. Finally by (5.10), this implies that it has no pole along x2 = x3

either. �

The last part of this argument is completely general and follows from the dihedral
symmetry structure of the linearised double shuffle equations [6], §6.3.

Remark 5.8. The element (σc3)(3) does have poles. It is equal to 3z3, where

z3 =
4
3

+
x1

x3 − x2
+

x3

x1 − x2
+
x3 − x2

x1
+
x1 − x2

x3
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and corresponds to a lift to DerΘ L(a, b) of the ‘arithmetic image’ of the element i1(σ3)
in (DerΘ L(a, b))/ugeom. The corresponding derivation was written down in [37]. Com-
puting the stuffle equation (4.22) gives

z3(x1, x2, x3) + z3(x2, x1, x3) + z3(x2, x3, x1) = 4

which is non-zero, and proves, by proposition 4.6, that z3 is non-geometric, i.e., not an
element of ugeom.

5.4. Drinfeld elements in depth three.

Theorem 5.9. The elements σc2n+1 are in the image of the map

i0 : gm/D4gm −→ L(x0, x1)/D4L(x0, x1) .

Proof. The elements σc2n+1 satisfy the double shuffle equations so lie in D1/D4dmr0.
The theorem follows immediately from the fact that

i : D1/D4gm −→ D1/D4dmr0

is an isomorphism. This is equivalent to the statement that i induces an isomorphism
on each depth-graded piece

i : dd ∼= lsd for d ≤ 3 .

This is trivial for d = 1, and follows from a computation of the dimensions of lsdn
obtained by Zagier [40] for d = 2, and by Goncharov ([24], theorem 1.5) for d = 3. �

Remark 5.10. It follows from the depth-parity theorem that the elements σc2n+1 are
uniquely determined in depth 4 also (but not in depth 5). A closed formula for these
elements can be deduced from remark 5.3.

6. Drinfeld elements in depth 3 via geometric derivations

Recall the notations from §3.

Theorem 6.1. For all n ≥ 2, we have an explicit expansion

i1(σc2n+1) ≡ ε∨2n+2 +
∑

a+b=n

1
2b
{ε∨2a+2, {ε∨2b+2, ε

∨
0 }} (mod B4)

For n = 1, we have i1(σc3) = ε∨4 + z3 (mod B4), where z3 is defined below.

In terms of the standard normalisations, the previous equation is equivalent to

i1(σc2n+1) ≡ ε∨2n+2 +
∑

a+b=n

B2aB2b

B2n

(
2n
2a

)
1

24b
{ε∨2a+2, {ε∨2b+2, ε

∨
0 }} (mod B4)

One can also write the right-hand side symmetrically using elements

lwa,b =
1
2b
{ε∨2a+2, {ε∨2b+2, ε

∨
0 }}+

1
2a
{ε∨2b+2, {ε∨2a+2, ε

∨
0 }} .

These are lowest weight vectors for the action of sl2, i.e., ε0lwa,b = 0, where ε0 is the
derivation on L(a, b) such that ε0(a) = 0 and ε(b) = a. This yields a direct comparison
with the period polynomials of Eisenstein series.

The strategy for the proof is as follows. The elements ε∨2n+2 do not preserve the
image of Der1 L(x0, x1)∧ under (3.6) and do not descend to derivations on L(x0, x1)∧.
However, if we pass to commutative power series representations via §4.1 and enlarge
them by introducing poles, then the elements ε∨2n+2, considered modulo B4, descend
to the elements ξ2n+1 defined in the previous section. Theorem 6.1 is then equivalent
to theorem 5.9 via definition 5.4.
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The proof of theorem 6.1 given here is from the ‘bottom up’: i.e. by lifting the
analogous theorem on P1\{0, 1,∞}. A different way to prove theorem 5.9 from the
‘top down’ via M1,1, is sketched in the final section of the paper.

6.1. Hain homomorphism in low depth. Throughout this paragraph, we apply
the method of commutative power series §4.1, §4.5 to both L(x0, x1) and L(a, b).

We wish to consider the depth r components of the Hain morphism §3.3:

φr : gr•D T (x0, x1) −→ gr•+rB T (a, b) .

Translating into rational functions §4, and using the fact that ρ : gr•DT (x0, x1) ∼= P is
an isomorphism, we obtain a commutative diagram

(6.1)
gr•D T (x0, x1)

φr

−→ gr•+rB T (a, b)
↓ρ ↓`
P

φr−→ Q .

The map along the top is denoted by a superscript, the one along the bottom by a
subscript. The map φ0 is simply the associated graded of (3.6):

φ0 = grφ :

{
x0 7→ a

x1 7→ [a, b]
(6.2)

and via T (x0, x1) = grDT (x0, x1) and T (a, b) = grBT (a, b), we have φ =
∑
r≥0 φ

r. The
idea of the following discussion is to factorise the map φ as a composition

L(x0, x1)
φ0

−→ L(a, [a, b])
p−→ L(a, b)∧

where p : L(a, [a, b]) → L(a, b)∧ is a continuous map which satisfies p([a, b]) = 0, and
to express p, in low degrees, via its rational function representation.

Lemma 6.2. The map φ0 : P → Q is the inclusion P ⊂ Q.

Proof. We show that φ0 : Q[y0, y1, . . . , yr] → Q[y0, y1, . . . , yr] is multiplication by the
element `r of (4.15). To see this, (6.2) is the map x0 → a, x1 → b, followed by the
composition of r maps, where the kth map, for 1 ≤ k ≤ r, replaces the kth occurrence
of the letter b in ai0bai1b . . . air−1bair with ab−ba. On commutative power series (4.14),
this is multiplication by yk−1 − yk. �

We next determine φr for r = 1, 2. In degree r = 1, it follows from the definition
(3.6) of φ(x0) = a+ 1

2 [a, b]+. . . that it is a composition of φ0 (6.2), whose image consists
of words in a, [a, b], followed by the derivation in DΘ (§4.5) which sends a 7→ 1

2 [a, b]
and [a, b] to zero. Note that the latter does not extend to an element of DerΘ L(a, b).
It is nonetheless represented, via proposition 4.4, by

−s(1) =
1
2
`′([a, b]) =

1
2(y0 − y1)

∈ Q′ ,

whose reduced representation is minus (5.1). Therefore if f ∈ P , we have

(6.3) φ1(f) = −s(1) ~ φ0(f) .

Similarly, in degree r = 2, we have for f ∈ P ,

(6.4) φ2(f) =
1
2
s(1) ~ (s(1) ~ φ0(f))− s(2) ~ φ0(f) ,

where
−s(2) =

1
12
`′([b, [b, a]]) =

1
12

y0 − 2y1 + y2

(y0 − y1)(y1 − y2)(y0 − y2)
∈ Q′ .



22 FRANCIS BROWN

This holds from the definition of φ, since φ2− 1
2φ

1φ1 is the composition of φ0 followed
by the derivation L(a, [a, b]) → L(a, b) which sends a 7→ 1

12 [b, [b, a]] and [a, b] to zero.
By proposition 4.4 the latter corresponds to the action of s(2).

Remark 6.3. Because elements of Q′ act trivially on `([a, b]) = −s(1) ~ y0, we have

(6.5) s(1) ~ (f ~ y0) = {s(1), f}~ y0 , for all f ∈ Q′ .

This can also be read off corollary 4.3 upon writing φ1 = 1
2φ

0 ◦ ∂x1 .

6.2. Proof of theorem 6.1. Recall that an element σ ∈ Der1L(x0, x1) lifts to σ̃ ∈
Der1L(a, b) if and only if the following equation holds in L(a, b):

σ̃φ(x0) = φσ(x0)

Finding an element σ ∈ Der1L(x0, x1) whose lift is ε∨2n+2, is equivalent via (3.6), modulo
terms of B-degree ≥ 4, to the following equation

ε∨2n+2

(
a+

1
2

[a, b] +
1
12

[b, [b, a]]
)
≡ φ(σ(x0)) (mod B4) .

It is easy to verify that it has no solution σ ∈ Der1 L(x0, x1). Note that ε∨2n+2([a, b]) = 0
so the middle term on the left-hand side can be dropped. We can pass to rational
function representations via propositions 4.2 and 4.4, and view the previous equation
in Q. Since `′(ε∨2n+2) = (y1 − y0)2n, and ρ(a) = y0, ρ(x0) = y0, it is equivalent to

(6.6) (y1 − y0)2n ~
((

1− s(2)
)
~ y0

)
≡ φ(ρ′(σ)� y0) (mod B4)

It has no solutions ρ′(σ) ∈ P ′. Now observe that

φ0(ρ′(σ)� y0) = φ0(ρ′(σ))~ y0

since the formulae for � and ~ (propositions 4.2 and 4.4) are formally identical and
φ0 is the identity. Let us write χ instead of φ0(ρ′(σ)) and try to solve (6.6) for χ ∈ Q′.
By (6.3), (6.4), the right-hand side of (6.6) is equal, after expanding φ ≡ φ0 + φ1 + φ2

mod B4 and applying (6.5), to

χ~ y0 − {s(1), χ}~ y0 +
1
2
{s(1), {s(1), χ}}~ y0 − s(2) ~

(
χ~ y0

)
(mod B4) .

Using the fact (proposition 4.4) that the Lie bracket { , } is the antisymmetrization
of ~, and that the action of Q′ on y0 ∈ Q is faithful, we deduce that the components
of equation (6.6) in degrees 1, 2, 3 are the equations:

(y1 − y0)2n = χ(1)

0 = χ(2) − {s(1), χ(1)}

−(y1 − y0)2n ~ s(2) = χ(3) − {s(1), χ(2)}+
1
2
{s(1), {s(1), χ(1)}} − s(2) ~ χ(1) .

These three equations are equivalent to the definition of the elements χ2n+1 after
passing to reduced versions (y0, y1, y2) 7→ (0, x1, x2) and using definition (4.18).

7. Explicit rational associator in depths ≤ 3

In section §5 we wrote down explicit solutions to the double shuffle equations modulo
products, in odd weights and depths ≤ 3. The goal of this paragraph is to discuss
solutions to the full double shuffle equations with even weights in the same range.
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7.1. Double shuffle equations. The full double shuffle equations in depth two are
given by the pair of equations:

f (2)(x1, x1 + x2) + f (2)(x2, x1 + x2) = f (1)(x1)f (1)(x2)

f
(2)
? (x1, x2) + f

(2)
? (x2, x1) =

f
(1)
? (x1)− f (1)

? (x2)
x2 − x1

+ f
(1)
? (x1)f (1)

? (x2)(7.1)

where f (1), f
(1)
? ∈ Q[[x1]] and f (2), f

(2)
? ∈ Q[[x1, x2]] are formal power series in commut-

ing variables. A power series f without a subscript will denote its shuffle-regularised
version; a subscript ? will denote its stuffle-regularised version. They differ by a factor
which is well-understood [38]. Our normalisations will be such that

f
(1)
? = f (1) and f

(2)
? = f (2) +

1
48

One can easily convince oneself that the second equation of (7.1) is the direct transla-
tion of the stuffle product formula

ζ(m,n) + ζ(n,m) + ζ(m+ n) = ζ(m)ζ(n) .

Note that, in contrast to the double shuffle equations modulo products, the right-hand
term in the previous equation means that we must consider all weights simultaneously.
The shuffle equation in depth three takes the form

f (3)(x1, x12, x123) + f (3)(x2, x12, x123) + f (3)(x2, x23, x123) = f (1)(x1)f (2)(x2, x23)

and the stuffle equation takes the form

f
(3)
? (x1, x2, x3) + f

(3)
? (x2, x1, x3) + f

(3)
? (x2, x3, x1) =

f
(2)
? (x2, x1)− f (2)

? (x2, x3)
x3 − x1

+
f

(2)
? (x1, x3)− f (2)

? (x2, x3)
x2 − x1

+ f
(1)
? (x1)f (2)

? (x2, x3) .

where in this case the comparison between the two regularisations is given by

f (3)(x1, x2, x3) = f
(3)
? (x1, x2, x3) +

1
96

(b(x1)− 1
x1

)

The general principle [2] of constructing solutions to these equations with poles
and correcting with counter terms also holds in this situation. The full double shuffle
equations are inhomogeneous in two different ways: there are several linear terms of
lower depths and a single term consisting of products of elements of lower depth. The
strategy is to construct solutions γ to the equations in which lower depth terms are
omitted, but with all product terms retained, and to use the element (5.1) to convert
these solutions into polar solutions to the full equations. The polar parts are then
subtracted using counterterms involving the elements ξ2n+1 constructed before.

7.2. Polar solutions. Recall that b1(x) = b(x) (5.5) is a generating series for Bernoulli
numbers whose Laurent series is x−1 + O(x). Thinking of b1(x) as a deformation of
the rational function x−1, leads us to introduce, following (5.1), the function

b2(x1, x2) =
1
3
(
b1(x1)b1(x2) + b1(x2)b1(x1 − x2)

)
.

With these definitions, set

2γ(1) = −b1
4γ(2) = −b2 + 1

2b1 ◦ b1
8γ(3) = −b2 ◦ b1 + 1

6b1 ◦ (b1 ◦ b1)
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The element γ(2), for example, solves the semi-homogeneous equations

γ(2)(x1, x1 + x2) + γ(2)(x2, x1 + x2) = γ(1)(x1)γ(1)(x2)(7.2)

γ
(2)
∗ (x1, x2) + γ

(2)
∗ (x2, x1) = γ(1)(x1)γ(1)(x2)

where γ(2)
∗ = γ(2) + 1

48 , and γ(3) satisfies the equations

γ(3)(x1, x12, x123) + γ(3)(x2, x12, x123) + γ(3)(x2, x23, x123) = γ(1)(x1)γ(2)(x2, x23)

γ
(3)
∗ (x1, x2, x3) + γ

(3)
∗ (x2, x1, x3) + γ

(3)
∗ (x2, x3, x1) = γ(1)(x1)γ(2)

∗ (x2, x3)

where γ(3)
∗ (x1, x2, x3) = γ(3)(x1, x2, x3) + 1

48γ
(1)(x1). This follows easily from (5.6).

New series Θ are now defined by twisting on the left by the elements (5.1):

Θ(1) = γ(1)

Θ(2) = γ(2) + s(1) ◦ γ(1)

Θ(3) = γ(3) + s(1) ◦ γ(2) + s(2) ◦ γ(1) + 1
2s

(1) ◦ (s(1) ◦ γ(1))

They have poles in xi. More precisely, the element drΘ(r) can be viewed as a formal
power series in Q[[x1, . . . , xr]], where dr = x1 . . . xr

∏
i<j(xi − xj), for 1 ≤ r ≤ 3.

For 1 ≤ r ≤ 3, we can write

Θ(r) = pr + Φ(r) ,

where pr is a homogeneous rational function in x1, . . . , xr of degree −r, and Φ(r) is
a power series in homogeneous rational functions of degrees > 1 − r. With these
definitions, one verifies that the truncated elements Φ(r) are polar solutions to the full
double shuffle equations §7.1 with

Φ(2)
∗ = Φ(2) +

1
48

and Φ(3)
∗ = Φ(3) +

1
48

Φ(1)(x1) .

It remains to remove the poles from the Φ(r) to obtain bona fide polynomial solutions
to the double shuffle equations with no polar terms.

7.3. Subtraction of counterterms. Let us define a formal power series by

(7.3) C =
∑
n≥1

1
2n
{ξ−1

, ξ
2n+1
}

where the elements ξ
2n+1

were defined in §5.1. Its definition was only given in depths
1, 2, 3. Using this element to provide counter terms, we can finally write down a
canonical element τ in depths 1, 2, 3 as follows:

τ (1) = Φ(1)

τ (2) = Φ(2) + C(2)

τ (3) = Φ(3) + C(2) ◦Φ(1) + C(3)

A straightforward residue computation along the lines of §5.3 suffices to show that the
elements τ (i), where i = 1, 2, 3 have no poles, and therefore lie in Q[[x1, . . . , xi]]. We
omit the details. Note that by the depth-parity theorem, the element τ (3) is uniquely
determined from τ (2). By a version of §4.1, the coefficients of τ (i) correspond to words
in x0, x1, and taking the limit defines a unique element

τ ∈ Q〈〈x0, x1〉〉/D4Q〈〈e0, e1〉〉 .

Theorem 7.1. The element τ is an explicit (shuffle-regularized) solution to the full
double shuffle equations in depths ≤ 3.
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A similar construction holds in depth four, but there is a priori no canonical way to
cancel the poles: one must subtract counter-terms consisting of quadruple brackets in
the ξ2n+1’s, which involves some choices because of quadratic relations amongst them
(see §8.2). It is an interesting question to ask if the element τ defined above can in
fact be extended to an explicit associator in higher depths.

Since the solutions to the full double shuffle equations is a torsor under the left
action of the prounipotent algebraic group DMR0 whose Lie algebra is dmr0, we can
twist the elements τ (i) on the left with our canonical elements exp◦ σc2n+1 to obtain all
other rational solutions to the double shuffle equations in depths ≤ 3.

Corollary 7.2. Every rational solution s to the full double shuffle equations in depths
≤ 3 can be written explicitly in the form

s ≡ exp◦(g) ◦ τ (mod D4)

where g ∈ (gm/D4gm)∧ is an (infinite) linear combination of commutators in the
canonical elements σc2n+1 of length ≤ 3.

Note that the element g in the corollary is not unique because of quadratic relations
§8.2 in gm/D4gm.

7.4. Remarks. The elements τ (i) for i ≤ 3 define a homomorphism from motivic
multiple zeta values in depths ≤ 3 and even weight to rational numbers, given by

(7.4) τ (r)ζm(n1, . . . , nr) = coeff. of xn1−1
1 . . . xnr−1

r in τ (r) .

They respect all the relations between motivic multiple zeta values and satisfy

τ (1)ζm(2n) = ζ(2n)/(2πi)2n ∈ Q .

Likewise, the canonical elements σc2n+1 ∈ gm/D4gm define a map from motivic multiple
zeta values in depth ≤ 4 and odd weight to rational numbers given by

(7.5) σ
(r)
2n+1ζ

m(n1, . . . , nr) = coeff. of xn1−1
1 . . . xnr−1

r in σ(r)

where 2n+ 1 = n1 + . . .+nr. The maps (7.5) annihilate products, respect all relations
between motivic multiple zeta values (modulo products) and satisfy

σ
(1)
2n+1ζ

m(2n+ 1) = 1 .

In [5], a method was described to decompose any motivic multiple zeta value (and
hence, by taking the period, any actual multiple zeta value) into a chosen basis of
motivic multiple zeta values using the motivic coaction. The method is not an algo-
rithm because it requires a transcendental computation at each step using the period
map. However, the maps (7.4) and (7.5) can be used as a substitute for the period
map. Thus we obtain as a corollary an exact algorithm to decompose any multiple
zeta value of depth ≤ 3 (and depth ≤ 4 in the case of odd weight) into a chosen basis
of multiple zeta values of the same or smaller depth.

8. Cuspidal elements and the Broadhurst-Kreimer conjecture

We can recast the version of the Broadhurst-Kreimer conjecture stated in [6] using
the σc2n+1, first in grD Der1 L(x0, x1) and then in the elliptic setting in grB DerΘ L(a, b).

We seek a conjectural presentation for d. The first set of obvious generators are the
images of the Drinfeld elements σ2n+1 ∈ D1gm in the associated graded d• = gr•Dgm:

(8.1) σ2n+1 ∈ d1
2n+1 for all n ≥ 1 .

They are well-defined (independent of the choice of σ2n+1). They satisfy quadratic
relations which can be described in terms of period polynomials.
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8.1. Reminders on period polynomials. Let n ≥ 0 and let Vn =
⊕

i+j=n Qxi1x
j
2

denote the vector space of homogeneous polynomials of degree n. It is equipped with
the right action of Γ = SL2(Z) given by the formula

P (x1, x2)|γ = P (ax1 + bx2, cx1 + dx2) if γ =
(
a b
c d

)
∈ Γ , P ∈ Vn .

Let V ′n ⊂ Vn denote the subspace of polynomials which vanish at x1 = 0 and x2 = 0.
It is naturally isomorphic to the vector space quotient Vn/(Qxn1 ⊕Qxn2 ).

Definition 8.1. Let n ≥ 1 and let S2n ⊂ V ′2n denote the vector space of homogeneous
polynomials P (x1, x2) of degree 2n satisfying P (x1, 0) = P (0, x2) = 0 and

P (x1, x2) + P (x2, x1) = 0 , P (x1, x2) + P (x1 − x2, x1) + P (−x2, x1 − x2) = 0 .

The subspace S+
2n ⊂ S2n consisting of polynomials which are of even degree in both x1

and x2 is called the space of even (cuspidal) period polynomials.

Remark 8.2. Denote the standard elements S =
(

0 −1
1 0

)
and T = ( 1 1

0 1 ) in Γ. Consider
the following linear map from right Γ group cochains ([7], §2.3) to polynomials

(8.2) f 7→ π(f(S)) : Z1
cusp(Γ;V2n) −→ V ′2n

where Z1
cusp(Γ;Vn) ⊂ Z1(Γ;Vn) is the subgroup of cochains f such that f(T ) = 0, and

π : Vn → V ′n is the projection. It is well-known that this induces an isomorphism

H1
cusp(Γ;V2n) ∼−→ S2n

where H1
cusp(Γ;V2n) = ker(H1(Γ;V2n) → H1(Γ∞;V2n)), and Γ∞ ≤ Γ is the subgroup

generated by −1, T . This in turn induces an isomorphism

(8.3) H1
cusp(Γ;V2n)+ ∼−→ S+

2n

where the + on the left-hand factor denotes invariants with respect to the action of
the real Frobenius involution ([7] §5.4, §7.4). The Eichler-Shimura theorem states in
particular that the integration maps gives an isomorphism:

S2n(Γ) ∼−→ H1
cusp(Γ;V2n+2)+ ⊗ R

where S2n denotes the space of cuspidal modular forms of weight 2n.

8.2. Quadratic relations. Define a vector space K

K = ker({ , } : d1 ∧ d1 → d2)

to be the kernel of the Ihara bracket. It is weight-graded in even degrees K =
⊕

nK2n.
Since gm ⊂ D1gm is generated in depth 1, D1 ∧ D1 → D2 is surjective, and hence
d1 ∧ d1 → d2 is surjective, i.e.,

0 −→ K −→ d1 ∧ d1 { , }−→ d2 −→ 0

is an exact sequence. Now embed gm in L(x0, x1) via (2.4), and therefore d = grDgm is
also embedded in L(x0, x1) since the latter is graded for the D-degree. By passing to
reduced polynomial representations §4.1, we have a canonical isomorphism

d1 = x2
1Q[x2

1]
σ2n+1 7→ x2n

1 for n ≥ 1.

We can thus identify d1 ⊗ d1 = x2
1Q[x2

1] ⊗ x2
1Q[x2

1] ∼= x2
1x

2
2Q[x2

1, x
2
2], and hence view

elements of d1 ∧ d1 ⊂ d1 ⊗ d1 as antisymmetric polynomials in x2
1, x

2
2.

Lemma 8.3. The polynomial representation gives an isomorphism

(8.4) K2n
∼→ S+

2n .
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Proof. This is immediate from the formula for ◦ given in §2.3 (example 4.1)

{x2a
1 , x2b

1 } = P (x1, x2) + P (x2 − x1, x1) + P (−x2, x1 − x2)

where P (x1, x2) = x2a
1 x2b

2 − x2a
2 x2b

1 and a, b ∈ N. �

These quadratic relations appear in several contexts:

Corollary 8.4. The elements ε∨2n+2, ξ2n+1, σ2n+1 and x2n
1 all satisfy the same qua-

dratic relations in K2n.

Proof. The polynomial representations of ε∨2n+2 and σ2n+1 via propositions 4.2 and
4.4 are both x2n

1 , and the Lie brackets correspond to the Ihara bracket {, }. Therefore
they satisfy the identical quadratic relations. For the elements ξ2n+1, this follows from
their definition, because they are obtained from the x2n

1 via the Ihara bracket, or from
the computations of §6 relating them to the ε∨2n+2. �

The existence of such quadratic relations was first observed by Ihara-Takao and has
been reproved in many ways since. The smallest example of a period polynomial is the
element x2

1x
2
2(x2

1−x2
2)3 = x8

1x
2
2−3x6

1x
4
2 +3x4

1x
6
2−x2

1x
8
2. It corresponds to the relations

{x2
1, x

8
1} − 3{x4

1, x
6
1} = 0 , {σ3, σ9} − 3{σ5, σ7} = 0 .

{ε∨4 , ε∨10} − 3{ε∨6 , ε∨8 } = 0 , {ξ3, ξ9} − 3{ξ5, ξ7} = 0 .

8.3. Cuspidal generators in depth 4. As explained in [6], the depth filtration on
gm gives rise to a spectral sequence and in particular a differential

d : H2(d) −→ H1(d) .

Since H2(d) = ker(∧2d → d)/ ∧3 d, there is a natural map K → H2(d). It is in fact
injective since the image of ∧3d is in depth ≥ 3. Composing with this map gives a
linear map d : K → (d4)ab as we explain presently, and the canonical Drinfeld elements
defined in §5 give a means to compute it explicitly. To see this, the elements σc2n+1

can be interpreted as a linear map

σc : d1 −→ D1gm/D4gm

σ2n+1 7→ σc2n+1

which splits the natural map D1/D4gm → D1/D2gm = d1. Consider

(8.5) d1 ∧ d1 σc∧σc

−→ D1/D4gm ∧D1/D4gm { , }−→ D2/D5gm .

The subspace K maps into D3/D5gm, since its image in D2/D3 = d2 is zero. Since K
has even weights, the depth-parity theorem 2.6 implies that D3/D4gm = d3 vanishes
in even weights, and the restriction of (8.5) to K gives a linear map

(8.6) c : K −→ D4/D5gm = d4 .

The letter c was chosen to stand for ‘cuspidal’, for the following reason. Its weight-
graded components by c2n can be viewed, via (8.4), as linear maps

c2n : H1
cusp(Γ, V2n)+ −→ d4

2n .

Theorem 8.5. Let P (x1, x2) =
∑
i,j λi,jx

2i
1 x

2j
2 be in K, where λi,j = −λj,i. It gives

rise to a relation of the form∑
i<j

λi,j{σ2i+1, σ2j+1} = 0 in d2 .
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Then the image of the element c(P ) ∈ d4 in Q[x1, x2, x3, x4] is

ρ(4)(c(P )) =
∑
i,a,b

λi,a+b
B2aB2b

B2a+2b

(
2a+ 2b

2a

)
1

24b
{x2i

1 , {x2a
1 , {x2b

1 , x
−2
1 }}}(8.7)

− 3
∑
i

λi,2{x2i
1 , z3}

where z3 was defined in remark 5.8.

Proof. The element c(P ) is by definition

c(P ) =
∑
i<j

λi,j {σc2i+1, σ
c
2j+1} (mod D5)

Now substitute the expressions (5.8) for σc2j+1 in terms of the polar elements ξ2a+1

(work in Q(x1, . . . , x4)). By corollary 8.4, the ξ2a+1 satisfy the relations(∑
i<j

λi,j {ξ2i+1, ξ2j+1}
)(r)

= 0

for 1 ≤ r ≤ 3, where a superscript (r) denotes the depth r component. The theorem
follows from formula (5.8), together with the definition of the element z3 = − 1

3ξ
(3)
3 . �

If one believes the Broadhurst-Kreimer conjecture, one is led to the following

Conjecture 1. (Broadhurst-Kreimer: compare with [6], §9)

H1(d; Q) ∼=
⊕
n≥1

σ2n+1Q⊕ c(K)(8.8)

H2(d; Q) ∼= K

Hi(d; Q) = 0 for all i ≥ 3 .

Thus d admits the following conjectural presentation. It has generators the σ2n+1 in
depth 1 for n ≥ 1 together with cuspidal elements c(K) in depth 4. The only relations
are the quadratic relations of §8.2.

Remark 8.6. As noted in [20], H3(d; Q) = 0 implies that Hi(d; Q) = 0 for all i ≥ 3. In
fact, for any pro-nilpotent Lie algebra g over a field k of characteristic zero, Hi(g, k) = 0
implies that Hn(g, k) = 0 for all n ≥ i. To see this, note that since g is a projective limit
of finite-dimensional nilpotent Lie algebras, and (co)homology commutes with limits,
we can assume g nilpotent and Hi(g, k) = 0. Every finite-dimensional g-module M
has an increasing filtration by submodules Mm ⊂ M such that the associated graded
is a trivial module. By the long exact cohomology sequence and induction on m,
Hi(g;M) = 0 for all such M . Now interpret Hn(g;M) as the Ext group Extn(k,M) in
the category of Ug-modules, and use the well-known fact that if Exti(k,M) vanishes
for all M then it also vanishes for all n ≥ i.

The conjecture given in [6] involved certain exceptional generators denoted ef , for
f ∈ P , in the depth 4 component of the larger Lie algebra gr4

Ddmr of double shuffle
equations. It is not known if they are in the image of d4. Thus the formulation (8.10)
eliminates part of the conjecture given in [6].
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8.4. Remarks on the role of z3. The element z3 is the first of a sequence z2n+1 of
derivations in DerΘ L(a, b) which are sl2-invariant and well-defined modulo (ugeom)sl2 .
It follows from theorem 10.1 in [7] that their action on the derivations ε∨2k+2 are known
explicitly modulo Lie brackets involving at least three ε∨2n+2, with n ≥ 0. It is possible
that this computation can be extended to the next order, which in particular would
give a formula for {z3, x

2n
1 } for all n ≥ 1.

Remark 8.7. In [6] we defined an injective linear map

e : P −→ ls4

from the space P of even period polynomials to the space of solutions ls4 to the lin-
earised double shuffle equations in depth 4. It only depends on the functional equations
satisfied by elements of P . It is natural to extend this linear map to the polynomials
x2n

1 − x2n
2 ∈ V2n, which correspond to coboundaries under the morphism (8.2). Since

they satisfy the same functional equations as elements of P , they define elements of
pls4 which have poles. One easily verifies from the definitions that:

(8.9) e(x2n
1 − x2n

2 ) + {z3, x
2n−2
1 } = 0 .

This gives a different interpretation of the role of z3 in formula (8.7).

8.5. Elliptic interpretation of the Broadhurst-Kreimer conjecture. We can
transpose the previous conjecture into the Lie algebra DerΘ L(a, b) as follows. Recall
that the map i1 : gm → DerΘ L(a, b) (3.2) is injective. Since B cuts out the depth
filtration on the image i1(gm) (corollary 3.6) we obtain an injective morphism

i1 : d→ grB DerΘ L(a, b) .

We wish to describe the conjectural generators in B-degrees 1 and 4. For simplicity,
we shall use the heretical normalisations ε2n to simplify the statement. This has the
side-effect of rescaling the period polynomial relations.

More precisely, consider linear map

Q[x2
1, x

2
2] −→ Q[x2

1, x
2
2]

x2n
i 7→ (2n)!

B2n
x2n
i for n ≥ 1

and let K denote the image of K. Lemma 8.3 and corollary 8.4 imply that P =∑
i,j λi,jx

2i
1 x

2j
2 ∈ K where λi,j + λj,i = 0, if and only if∑

i<j

λi,j{ε∨2i+2, ε
∨
2j+2} = 0 .

Define, for all P ∈ K, elements

c(P ) =
∑
i<j

λi,j{σc2i+1, σ
c
2j+1} ∈ gr4

B DerΘ L(a, b) ,

and let z3 ∈ gr3
BDerΘ L(a, b) denote the derivation such that `′(z3) is the element (5.8).

Theorem 8.8. For any P ∈ K,

c(P ) =
∑
j

λ2,j{z3, ε
∨
2j+2}+

∑
i,a,b

λi,a+b
1
2b
{ε∨2i+2, {ε∨2a+2, {ε∨2b+2, ε

∨
0 }}} .

The Broadhurst-Kreimer conjecture suggests the following:
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Conjecture 2. (Elliptic (geometric) Broadhurst-Kreimer conjecture)

H1(d,Q) ∼=
⊕
n≥1

ε∨2n+2Q⊕ c(K)(8.10)

H2(d,Q) ∼= K

Hi(d,Q) = 0 for all i ≥ 3 .

Note that K in the above is interpreted as the space of quadratic relations between
the ε∨2n+2, for n ≥ 1. This conjecture is equivalent to conjecture (1) by §6.

8.6. Some related problems.
(1) Show that the map c(P ) : K → (d4)ab is injective.
(2) Relate the elements c(P ) to the exceptional elements ef defined in [6].
(3) Construct a basis of the space of motivic periods of MT (Z) of motivic depth

2 and even weight out of motivic multiple zeta values of depth ≤ 4, using the
formula for the σc2n+1 modulo depth 4.

9. Some motivation from the relative completion of SL2(Z)

I shall very briefly sketch how I arrived at formula (1.9) and (1.7) by considering
double integrals of Eisenstein series. This explains why the coefficients for the explicit
formula for the σc2n+1 involve the odd period polynomials of Eisenstein series.

9.1. Denote the Hecke-normalised Eisenstein series of weight 2k ≥ 4 by

E2k(q) = −B2k

4k
+
∑
n≥0

σ2k−1(n)qn ,

where σk(n) denotes the divisor function. For any modular form f(τ) of weight 2k ≥ 4
for SL2(Z) we shall write (see [7] for further details):

(9.1) f(τ) = (2πi)2k−1f(τ)(X − τY )2k−2dτ

where q = exp(2iπτ). It is to be viewed as a global section of V2k−2 ⊗ Ω1
H over the

upper-half plane H. In [7], §5, we defined regularised iterated integrals of Eisenstein
series between cusps. Consider the double integrals:

(9.2)
∫ ∞

0

E2m+2(τ)E2n+2(τ) ∈ V2m ⊗ V2n ⊗ C

along the geodesic path from 0 to ∞ (suitably interpreted as the path S from
→
1∞, the

unit tangential base point at the cusp to itself). For each k ≥ 0, there is a canonical
morphism of SL2-representations ([7], §2.4)

∂k : V2m ⊗ V2n −→ V2m+2n−2k .

In this way the imaginary part of the image of (9.2) under ∂1 defines a homogeneous
polynomial in R[X,Y ] of degree 2m + 2n − 2 whose coefficients can be described
explicitly. The method described in [7], §11, computes this polynomial as the Petersen
inner product of two (real analytic) modular forms. The part we are interested, by the
unfolding method, corresponds to the convolution of two Eisenstein series, and yields
a certain multiple of an odd zeta value. One knows that the ratios of these coefficients
are the odd period polynomials of Eisenstein series.

First of all, we give the precise technical statement about the periods of double
Eisenstein series, and then explain how this relates to the image of gm in DerΘ L(a, b).
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9.2. Precise statement. All the notation in this section is borrowed from [7], §11.
Let k ≥ 1 be odd, a, b ≥ 2, and w = 2a+ 2b− 2k − 2. Set

(9.3) Ĩk2a,2b = Ik2a,2b + δ0∂k(v2a ∪ b2b − b2a ∪ v2b)

where δ0 is the boundary for 0-cochains, and for all k ≥ 2,

v2k = (2πi)2k−1v2k

where v2k was defined in [7], (10.7). Then I claim that Ĩk2a,2b is cocycle for SL2(Z)
which vanishes on T ∈ SL2(Z). Then it satisfies

(9.4) {i Ĩk2a,2b, e0
w} = 6(2πi)−w−1Cka,b ζ(k + 1)ζ(2a− k − 1)ζ(2b− k − 1) ζ(k + w)

where e0
w the rational Eisenstein cocycle defined in [7] §7.3 and

Cka,b = k!(2a− 2)!(2b− 2)!(k + w − 1)!.

The equation (9.4) can be written, using Euler’s formula, in terms of a product of
three bernoulli numbers and a single odd zeta value. Note that we only require the
case k = 1 here. The proof is essentially the same as in [7] with modifications to
account for divergences.

9.3. Putting the pieces together. We sketch the main ingredients. Let Grel
B denote

the completion of SL2(Z) relative to its inclusion into SL2(Q). It acts on P (3.1)
through a quotient, called the ‘Eisenstein quotient’ Geis

B by Hain and Matsumoto [26,
27]. Let us suppose for simplicity2 that its affine ring is an ind-object of the category
of mixed Tate motives over Z. There is a natural map

SL2(Z)→ Grel
B (Q)→ Geis

B (Q)

and hence a morphism, for any γ ∈ SL2(Z),

IsomMT (Z)(ωdR, ωB) −→ Geis
dR(9.5)

φ 7→ φ(γ)

where Geis
dR denotes the Q-affine group scheme underlying Geis

B (C) which coincides with
the Q-de Rham structure of[25]. The map (9.5) defines a canonical homomorphism
SL2(Z) → Geis

dR(Pm) where Pm = O(IsomMT (Z)(ωdR, ωB)) is the ring of motivic peri-
ods of MT (Z). Now Hain and Matsumoto show [27] that there is a splitting

(9.6) Geis
dR
∼= U eis

dR o SL2

so the composition SL2(Z)→ Geis
dR(Pm)→ U eis

dR(Pm) defines a cocycle

Cm ∈ Z1(SL2(Z), U eis
dR(Pm)) .

Its period per(Cm) ∈ Z1(SL2(Z), U eis
dR(C)) is the image of the ‘canonical cocycle’ C

defined in [7] in the group U eis(C). Its coefficients are given by certain linear combi-
nations of regularised iterated integrals of Eisenstein series.

There is a canonical isomorphism Q(n)dR
∼→ Q(n)B given by the comparison iso-

morphism compB,dR scaled by a suitable power of 2πi. Since O(SL2) is a direct sum of
pure Tate motives, we have in particular an isomorphism M0O(SL2)dR

∼→M0O(SL2)B
of Q-vector spaces, where M is the weight filtration. Now consider the map

O(Geis
dR)→M0O(Geis

dR) = M0(O(SL2))dR ∼= M0(O(SL2))B → O(Geis
B )

where the first map is the natural map to O(Geis
dR)/F 1, and the second follows from

(9.6), Dually, this defines a linear map O(Geis
B )∨ → O(Geis

dR)∨, and hence a map
SL2(Z) → O(Geis

dR)∨. One verifies that the element STS−1 ∈ SL2(Z), being lower

2This is not strictly required for the following argument
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triangular, maps to the element STS−1 ∈ O(SL2)∨dR ⊂ O(Geis
dR)∨. By applying this

construction to the coefficients of Cm
STS−1 , and sending U eis

dR → Aut(P) we obtain an
element

CdRSTS−1 ∈ Aut(P)(O(GdR))

in the O(GdR)-points of Aut(P). On the other hand, the structure of mixed Tate
motive over Z on P defines a morphism

I1 : GdR −→ Aut(P) .

Unravelling all the definitions, one verifies that CdRSTS−1 = ISTS
−1

1 I−1
1 . Taking a log-

arithm and applying the Baker-Campbell-Hausdorff formula gives a relation between
i1 and CdRSTS−1 . The latter is determined from CdRS and CdRT by the cocycle relations.
From this, and knowledge of CT , one can read off the first few coefficients in the ex-
pansion of i1(σ2n+1), for n ≥ 2 from the coefficients of ζdR(2n + 1) in CdRS . This is
the mechanism by which information about the map i1 can be computed from double
Eisenstein integrals. A different approach would be via a motivic version of the ana-
lytic arguments of [19], which give a relation between the Drinfeld associator and the
image of CSTS−1 in U eis

dR. Further details will be given in a joint work with Hain.
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