
CHAPTER 6

Renormalization Group

6.1. Formal power series and Green functions

Let Γ ∈ HFG be a Feynman graph. The residue of Γ is the graph res(Γ) obtained from Γ by shrinking
all internal edges to a single point. Instead of residue, we shall also speak of the external leg structure.
Examples are

(6.1) res( ) = res( ) = , res( ) = res( ) =

and

(6.2) res( ) = res( ) = , res( ) = res( ) = .

By R we denote a set of such residues of interest for a given renormalizable theory. It is generally finite.
The valence val(r) of the residue r = res(Γ) is defined as the number of external legs of the corresponding
graph Γ.

We consider formal power series in one variable α with coefficients in HFG for example of the form

(6.3) Γr(α) = I±
�

res(Γ)=r

α|Γ|

Sym(Γ)
Γ

where the sum is over all 1PI graphs with external leg structure r and Sym(Γ) is a symmetry factor
associated to the graph Γ. If val(r) = 2, then there is a minus sign in (6.3), and a plus sign in all other
cases. We formally apply a character representing some given Feynman rules and get a perturbative
expansion

(6.4) Gr(α, L, θ) := φ(Γr(α)){L, θ} = 1±
�

res(Γ)=r

α|Γ|

Sym(Γ)
φ(Γ){L, θ} ,

of what is known as a Green function Gr(α, L, θ) in which L and θ are external scale and angle parameters
or collections of such, respectively. If val(r) = 2, we refer to Gr as two-point function and if val(r) ≥ 3
as vertex function. Strictly speaking, this Green function is the corresponding structure function for the
amplitude r ∈ R. The textbook Green function is then given by multiplication of Gr with a form factor
such as p2 or /p = pµγ

µ for an incoming momentum p ∈ R4, well-known to readers acquainted with QFT.

6.2. Combinatorial Dyson-Schwinger equations

The formal series X(α) =
�

k≥0 α
kλk ∈ H�[[α]] with coefficients in the ladder Hopf subalgebra

satisfies the equation

(6.5) X(α) = I+ αB+(X(α)) ,

which can be easily checked since B+(λk) = λk+1 for all k ∈ N. This equation is a simple example of a
Dyson-Schwinger equation. Such equations do also exist for series with cofficients in the Feynman graph
Hopf algebra HFG like in (6.3). They are systems of equations of the form

(6.6) Γr(α) = I+ sgn(sr)B
r
+(Γ

r(α), Q(α)) , r ∈ R ,

where Q(α) is the so-called invariant charge given by

(6.7) Q(α) =
�

r∈R
(Γr(α))sr
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52 6. RENORMALIZATION GROUP

with integers sr. If val(r) = 2 one has sr < 0 and sr > 0 otherwise. This ensures a minus sign in (6.6)
for a propagator series. The operator Br

+(·, ·) is defined as

(6.8) Br
+(Γ

r(α), Q(α)) =
�

k≥1

αkBk;r
+ (Γr(α)Q(α)k)

with one-cocycles Bk;r
+ which themselves are defined by

(6.9) Bk;r
+ =

�

res(γ)=r,|γ|=k,prim.

1

Sym(γ)
Bγ

+

with one-cocyles Bγ
+. The sum extends over all 1PI primitive graphs γ with external leg structure r and

loop number k. Recall that a graph γ is called primitive if Δ(γ) = γ ⊗ I+ I⊗ γ. Notice that, in general,
there are infinitely many primitive graphs and hence the sum in (6.8) is not finite. An example for the
invariant charge Q(α) in QED is

(6.10) Q(α) =
Γ (α)2

Γ (α)Γ (α)2
.

However cryptic these expressions may look, the product Γr(α)Q(α)k of formal power series has coef-
ficients in HFG which are exactly what one can glue into a 1PI primitive graph γ with k loops and
external leg structure r. This glueing corresponds to what is known as vertex or propagator corrections
in standard QFT where our formal series are generally depicted by graphs with blobs: for QED they take
the form

(6.11) Γ = ,
1

Γ
= ,

1

Γ
= .

The Dyson-Schwinger equation for the QED vertex reads in this notation

(6.12) = + + + ...

where the tree-level graph = I is what we count as an empty graph. To understand the action of the
one-cocycles, consider the second term on the rhs of (6.12): it can be written as

(6.13) B1;
+ ( Q) = B+ ( Q) =

and has the following meaning: the growth operator B+ uses the vertex series Γ = to provide for all
radiative corrections at one vertex, say the leftmost one of the superscript skeleton graph γ = . Then,
it takes the invariant charge Q to glue in additional graphs so as to guarantee that every propagator is
fully dressed and the remaining vertices are fully corrected. For the higher loop primitives, higher powers
of Q are needed to dress all propagators and vertices which come with additional loops.

However, we come back to the general case and rewrite (6.6) into

(6.14) Γr(α) = I+ sgn(sr)
�

k≥1

αkBk;r
+ (Γr(α)Q(α)) , r ∈ R

whose solution exists and may be written in the form

(6.15) Γr(α) = I+ sgn(sr)

∞�

k=1

αkcrk , r ∈ R ,

where crk ∈ HFG is a linear combination of 1PI graphs with k loops and external leg structure r. These
coefficients generate a Hopf subalgebra with coproduct

(6.16) Δ(crk) =

k�

j=0

P r
k,j ⊗ crk−j ,
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where P r
k,j is a polynomial in these generators(see also [KrY06]). For example, in QED one has

(6.17) c0 = I , c1 =

and

(6.18) c2 = + + + + + + .

The reduced coproduct of the latter is

(6.19) �Δ(c2 ) = (2 + 3 + )⊗

which is, in terms of the generators,

(6.20) �Δ(c2 ) = (2 c1 + 3 c1 + c1 )⊗ c1 = P2,1 ⊗ c1 .

The other polynomials are P2,0 = I and P2,2 = c2 for the trivial part of the coproduct.

6.3. The structure of Green functions

If we apply the renormalized Feynman rules φR to (6.15) as in (6.4), the corresponding Green function
reads

(6.21) Gr
R(α, L, θ) = φR(Γ

r(α)){L, θ} = 1 + sgn(sr)
∞�

k=1

αkφR(c
r
k){L, θ} .

The individual coefficients φR(c
r
k) are polynomials in the external scale parameter L which is why we can

rewrite (6.21) to obtain

(6.22) Gr
R(α, L, θ) = 1 +

�

j

γr
j (α, θ)L

j ,

where j may be a multi-index and γr
j (α, θ) is a function of the loop parameter α and the angle parameter

θ. In a very simple linear case, where Q(α) = I and the operators in (6.9) are simplified significantly to
yield the analogon of (6.5) for HFG[[α]], the two-point Green function in (6.22) takes the form

(6.23) G(α, L) = 1 +
∞�

j=1

(−1)j

j!
γ(α)jLj = exp(−γ(α)L) ,

i.e. γj(α) = (−1)jγ(α)j/j!, where γ(α) is known as the anomalous dimension.
The Dyson-Schwinger equations in (6.6) for the Hopf algebra of Feynman graphs HFG, henceforth

abbreviated by DSE, correspond to a system of integral equations for the Green functions in the target
algebra A of the Feynman rules. This is on account of the universal property of graded Hopf algebras
with Hochschild one-cocycles according to which the operators Bγ

+ in (6.9) translate to integral operators
on the target algebra of the Feynman rules. This may take the form

(6.24) (φ ◦Bγ
+)(X){q} =

�
dγ(k, q) φ(X){k, q}

for a graph X with some integration measure dγ(k, q) associated to the graph γ. The renormalized version
of (6.24) is

(6.25) (φR ◦Bγ
+)(X){q} =

�
dγ(k, q) (φ(X){k, q}− φ(X){k, q0})

where q0 is an external momentum such that q20 = µ2, with µ being the renormalization point. To
distinguish between these two different types of DSE we refer to the system of integral equations as
analytic DSE and those in (6.6) as combinatorial DSE.
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Infinitesimal characters. There is an interesting way to obtain the coefficient functions γr
j (α) in

(6.22), where we suppress the angle-dependence in the notation for the moment. First we define a linear
map Y −1 : HFG → HFG by Y −1(I) = 0 and

(6.26) Y −1(γ) =
1

|γ|γ

for a product of Feynman graphs γ =
�

j γj , where |γ| :=
�

j |γj | counts the loops. This choice of

notation is justified as Y −1 really is the inverse of the grading operator Y on the augmentation ideal
Aug. Next, we introduce a family of linear maps σn : HFG → C by

(6.27) σ1 := ∂LφRY
−1(S ∗ Y )|L=0

and

(6.28) σn :=
1

n!
σ∗n
1 :=

1

n!
σ1 ∗ ... ∗ σ1� �� �
n−times

=
1

n!
mn−1σ⊗n

1 Δn−1

for n ≥ 2, where m is the usual multiplication in C and ∗ is the convolution product

(6.29) σ1 ∗ σ1 = m(σ1 ⊗ σ1)Δ .

Note that the map σ1 is a so-called infinitesimal character on HFG which means

(6.30) σ1(xy) = σ1(x)Î(y) + Î(x)σ1(y)

for all x, y ∈ HFG. This implies σ1(I) = 0 and that it vanishes on nontrivial products, i.e.

(6.31) σ1(h) = 0

if h = h1h2 with h1, h2 ∈ Aug.

Lemma 6.3.1. S ∗ Y is an infinitesimal character.

Proof. Let x, y ∈ Aug. Then

(S ∗ Y )(xy) =
�

(x)

�

(y)

S(x�y�)Y (x��y��)

=
�

(x)

�

(y)

[S(x�)S(y�)Y (x��)y�� + S(x�)S(y�)x��Y (y��)]

=
�

(x)

S(x�)Y (x��)
�

(y)

S(y�)y�� +
�

(x)

S(x�)x�� �

(y)

S(y�)Y (y��) = 0

(6.32)

on account of
�

(x) S(x
�)x�� = (id ∗ S)(x) = (S ∗ id)(x) = 0 which holds by definition of the antipode

S. �

The next assertion makes clear why these maps are of particular interest to us.

Proposition 6.3.2. The linear map σn evaluates a graph Γ to its n-th order coefficient of φR(Γ) with
respect to the variable L, i.e.

(6.33) σn(Γ) =
1

n!

∂n

∂Ln
φR(Γ){L}

����
L=0

.

Proof. We have to use the fact that the set g of infinitesimal characters is the Lie algebra generating
the Lie group of characters G on HFG in the sense that G = exp∗(g), i.e. for every character φ, there
exists an infinitesimal character σ ∈ g such that

(6.34) φ = exp∗(σ) :=
∞�

n=0

σ∗n

n!

and vice versa with σ∗0
1 := Î being the neutral element of the convolution product ∗. The inverse map of

exp∗ is given by

(6.35) log∗(φ) = −
∞�

n=1

1

n
(Î− φ)∗n = σ .
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For more on this, see Appendix section A.3 or [Man06]. This is but a small step away from realizing
that exp∗(Lg) for a variable L is the character group with target algebra C[L], i.e. for our character φR

we have

(6.36) φR = exp∗(LσR)

with some generator σR(see Appendix A.3). Then, clearly, we find

(6.37) ∂LφR = σR ∗ φR ⇒ ∂LφR|L=0 = σR .

To prove (6.33) it suffices to show that σR = σ1. To this end, we take a Feynman graph Γ and first
calculate

φRY
−1(S ∗ Y )(Γ) =

�
Î+ LσR +

L2

2!
(σR ∗ σR) + ...

�
Y −1(S ∗ Y )(Γ)

= LσRY
−1(S ∗ Y )(Γ) +O(L2) =

L

|Γ|σR


�

j

S(Γ�
j)Y (Γ��

j )


+O(L2)

=
L

|Γ|σR(S(I)Y (Γ)) +O(L2) = LσR(Γ) +O(L2) .

(6.38)

�

A nice consequence is the following

Corollary 6.3.3. The coefficient functions of the Green function Gr are given by

(6.39) γr
j (α) = σj(Γ

r(α)) and Gr
R(α, L) = exp∗(Lσ1)(Γ

r(α)) ,

where the ∗-exponential is defined as in (6.34).

6.4. Renormalization Group Equation

The coefficient functions γr
k of the Green function Gr satisfy

(6.40) γr
k(α) =

1

k

�
γr
1(α) +

�

u∈R
suγ

u
1 (α)α∂α

�
γr
k−1(α) , r ∈ R ,

which is a consequence of

(6.41) (Plin ⊗ Plin)Δ(Γr(α)) = PlinΓ
r(α)⊗ PlinΓ

r(α) + PlinQ(α)⊗ α∂αPlinΓ
r(α) ,

where Plin is the projector onto the linear span of the Hopf algebra’s generators, i.e. the Feynman graphs,
but excluding I. It is a fairly easy exercise to derive the so-called renormalization group equation

(6.42)

�
− ∂

∂L
+ αβ(α)

∂

∂α
+ γr

1(α)

�
Gr(α, L) = 0

from (6.40) with Gr(α, L) = 1 +
�∞

k=1 γ
r
k(α)L

k and the function

(6.43) β(α) := ∂LφR(Q(α))|L=0 = ... =
�

u∈R
suγ

u
1 (α)

known as β-function of the corresponding theory. A proof of both (6.40) and (6.42) can be found in
Appendix section A.5, where the reader will also be introduced to a slightly stronger version of (6.41)
and see how to fill the void ... in (6.43). Further relevant references are [KrSui06] and [Y11].

Example: a scalar 3-loop graph. Consider the graph

(6.44) Γ =
q1

q2

q3

q4

with reduced coproduct

(6.45) �Δ( ) = 2 ⊗ + ⊗ .

Say, the physical limit of some renormalized Feynman rules φR is

(6.46) φR( ) = c1L+ c2L
2 + c3L

3 ,
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where L = ln(q2/µ2) with q := q1 + q2 = q3 + q4, by momentum conservation. Given that we have

(6.47) φR(X){L} =

cor(X)�

j=1

σj(X)Lj =

cor(X)�

j=1

1

j!
σ∗j
1 (X)Lj

for a Feynman graph X and the infinitesimal characters σj : HFG → C introduced in the previous section,
we want to see how the coefficients c1, c2 and c3 relate to those of its subgraphs. The coradical degree of
a graph X is defined by

(6.48) cor(X) = min{ n | P(n+1)
lin (X) = 0 } ,

with P(n+1)
lin := P⊗n+1

lin Δn, analogous to the definitions for the coradical filtration of the Hopf algebra of
rooted trees H in section 3.5. Let now for the subgraphs

φR( ) = e1L+ e2L
2 , φR( ) = d1L , φR( ) = d21L

2(6.49)

be the case. The infinitesimal character Y −1(S ∗ Y ) yields

(6.50) Y −1(S ∗ Y )( ) = − 2

3
+

2

3
( )3 − 2

3

which evaluates to

(6.51) φR(Y
−1(S ∗ Y )( )) = c1L+

1

3
(3c2 − 2e1d1)L

2 +
1

3
(3c3 − 2e2d1)L

3 .

Not surprisingly, the map σ1 picks out the term

(6.52) σ1( ) = c1 .

The next map σ2 = (σ1 ∗ σ1)/2! yields

(6.53) σ2( ) =
2

2!
σ1( )σ1( ) +

1

2!
σ1( )σ1( )

� �� �
=0

= e1d1 .

For the third coefficient we have

(6.54) σ3( ) =
2

3!
σ1( )σ1( )σ1( ) =

1

3
d31

since

(6.55) P
(3)
lin ( ) = P⊗3

lin (Δ⊗ id)Δ( ) = 2 ⊗ ⊗ .

All higher σn for n ≥ 4 evaluate to zero, which is no suprise as the coradical degree of Γ is

(6.56) cor( ) = 3 .

We conclude that the leading log coefficient c3 = d31/3 and the next-to-leading log coefficient c2 = e1d1
of φR(Γ) are determined by the value of σ1 on the subgraphs of Γ. This is not surprising if we write φR

as ∗-exponential

(6.57) φR = exp∗(Lσ1) = Î+ Lσ1 +
L2

2!
σ1 ∗ σ1 +

L3

3!
σ1 ∗ σ1 ∗ σ1 + ...

with infinitesimal character σ1: all terms of higher order than k = 1 contain only values of σ1 on proper
subgraphs and cographs of Γ since the trivial part of the coproduct of Γ evaluates to zero on account of
σ1(I) = 0:

(6.58) (σ1 ⊗ σ1)(I⊗ Γ+ Γ⊗ I) = σ1(I)σ1(Γ) + σ1(Γ)σ1(I) = 0 .
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6.5. Renormalization Group Flow

We define be a family of derivations {θt}t≥0 on HFG by setting θt(Γ) := e|Γ|tΓ for a Feynman graph
Γ, which is related to the grading operator Y according to

(6.59) Y (Γ) =
d

dt
θt(Γ)

����
t=0

.

Both Y and θ can also be defined as maps acting on linear maps ψ : HFG → C through

(6.60) (Y ψ)(Γ) := ψ(Y (Γ)) , (θtψ)(Γ) := ψ(θt(Γ)) .

Recall that regularized Feynman rules φ yield parameter-dependent functions φ(Γ){z, µ}, where z ∈ C
and µ > 0 are the regulator and the renormalization scale parameter, respectively. In the following, we
consider Feynman rules φ on HFG such that

(6.61) θtzφ(Γ){z, µ} = φ(Γ){z, µet} .

This is for example the case if the graph Γ is mapped to terms proportional to factors like

(6.62)

�
q2

µ2

�−z|Γ|/2
= e−z|Γ|L/2 .

Each choice of µ > 0 corresponds to a fixed renormalization scheme. Continuously changing it by t �→ µet

amounts to ’flowing’ through this set of renormalization schemes. We are interested in the map

(6.63) t �→ Sφ
R ∗ θtz(Sφ

R)
∗−1

and, in particular, in the limit

(6.64) Ft = lim
z→0

Sφ
R ∗ θtz(Sφ

R)
∗−1 .

It can be shown to exist and moreover, Ft+s = Ft ∗Fs establishes a semi-group structure[CoKr01]. The
map

(6.65) β = ∂tFt|t=0

turns out to be the β-function (of the corresponding theory) in physics(see next section). Now, note that
infinitesimal characters ψ : HFG → C define a Lie algebra g with bracket

(6.66) [ψ,ψ�]∗ = ψ ∗ ψ� − ψ� ∗ ψ ψ,ψ� ∈ g .

Let Z0 ∈ g be a map of this type defined by

(6.67) [Z0,ψ]∗ = Y ψ

for all ψ ∈ g. Then we have the interesting ’scattering’ formula[CoKr01]

(6.68) Sφ
R = lim

t→∞
exp∗(−t(β/z + Z0)) exp∗(tZ0) ,

where we remind the reader that exp∗ is the ∗-convolution exponential1 given by

(6.69) exp∗(σ) =
∞�

k=0

σ∗n

n!
,

for an infinitesimal character σ ∈ g, where σ∗0 = Î. This exponential always evaluates to a finite sum on
any element in HFG, on account of σ(I) = 0 and the coradical filtration.

1Some authors omit the ∗-sign altogether, as it is generally clear from the context.




