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1. Introduction: Dyson-Schwinger equations as fixed point equations

A quantum field theory(QFT) is characterized by a family of functions known as Green’s functions.
These functions, often denoted by Gr, contain all necessary information needed to compute cross sections,
decay rates and various other quantities of physical interest. The symbol r parametrizes the family and
stands for the external leg structure(or ’amplitude’). For example, let the external leg structure be given
by a single photon and two fermions, then the corresponding QED vertex Green’s function in momentum
space,

(1.1) G (p1, p2, α) =

depends only on two momenta and the coupling parameter α which we may choose to be the fine-structure
constant. Unfortunately, in most physically relevant cases like this one, these functions can only be
approximated by perturbative methods (Gell-Mann-Low formula) with respect the coupling parameter(s).
Moreover, many terms arising in these calculations turn out to be ill-defined due to divergences and
need to be renormalized. If this cures the divergences and only a finite number of amplitudes need
renormalization, we speak of a renormalizable QFT and denote the set of these amplitudes by R. In the
above case, we find that r = ∈ R for QED.

Self-similiarity of Feynman graph series. Ironically, it was perturbation theory that led to non-
perturbative approaches courtesy of the inherent self-similiarity property of ’blob’ Feynman diagrams like
on the rhs of (1.1). This property emerges on account of infinitely repeated radiative corrections as
required by perturbation theory. Let us consider a simple example to make this point clear: the fermion
propagator in Yukawa theory. If we content ourselves with so-called ’rainbow’ corrections only at the
internal fermion line, we get the perturbative series

(1.2) = + + + + ...
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which defines the blob diagram as the series on the rhs (we suppress the fermionic charge arrows). If we
now translate this to Feynman integrals by the prescription

(1.3) 1 = ,

∫
K = , G =

with some integral kernel K and the Green’s function G, we obtain

(1.4) G = 1 +

∫
K +

∫
K

∫
K +

∫
K

∫
K

∫
K + ... = 1 +

∫
K(1 +

∫
K +

∫
K

∫
K + ...).

Since the term in brackets is again the perturbation series for the Green’s function G, we can rewrite this
as the integral equation

(1.5) G = 1 +

∫
K G .

In terms of blob diagrams this reads

(1.6) = + .

In case we can solve the integral equation (1.5) by non-perturbative methods (we may simply guess it),
we would have a non-perturbative solution G! If we denote the integral operator on the rhs of (1.5) by I,
this equation takes the form of a fixed point equation

(1.7) G = I(G).

Fixed point equations for Green’s functions in QFT go under the name of Dyson-Schwinger equa-
tions(DSE).

2. Combinatorial Dyson-Schwinger equations

We shall now change the notation slightly. We rewrite the perturbation series in (1.2) as a formal
power series in a coupling parameter α

(2.1) X(α) = 1 + α + α2 + α3 + ...

and assume that the Feynman rules to yield (1.4) have been altered accordingly, i.e. they are now oblivious
of the coupling parameter. We view the series X(α) as a formal power series in α with Feynman graphs
as coefficients. However, formal power series with all radiative corrections accounted for have in general
coefficients that are, unlike our series in (2.1), formal linear combinations of more than one Feynman
graph. This suggests that the set of Feynman graphs may be endowed with a vector space structure. And
there even more to this: it turns out that this set furnishes additional algebraic structures. In fact, we
shall consider a Hopf algebra H of Feynman graphs. Readers not familiar with this notion find a concise
introduction to this subject in the Appendix and are recommended to digest it before continuing.

Insertion operator. If we define the linear insertion operator

(2.2) B+ (1) := , B+ (γ) := γ

inserting the graph

(2.3) γ ∈

{
, , , ...

}
into the fermion line, we can write the DSE in (1.6) in the form

(2.4) X(α) = 1 + αB+ (X(α)) .

This is a fixed point equation in the space of formal power series H[[α]] with solution (2.1). We shall
refer to equations of this type as combinatorial Dyson-Schwinger equations(cDSE) or simply Dyson-
Schwinger equations(DSE) to distinguish them from analytical Dyson-Schwinger equations(aDSE) which
are formulated in terms of integral operators as in (1.5). Depending on the power in which the series
X(α) appears in the argument of the insertion operator B+ on the rhs, cDSEs fall into two categories:
linear and nonlinear DSEs. (2.4) is obviously of the linear type, whereas

(2.5) X(α) = 1 + αBγ+(X(α)3) .



DYSON-SCHWINGER EQUATIONS 3

in some other context with a ’skeleton’ graph γ is not. As so often, nature is in many senses highly
nonlinear. Therefore, physically relevant DSE are never linear. Non-linearity confronts the insertion
operator B+ with products of graphs and, on top of that, there is, unlike in (2.2), more than one
insertion place for the subgraph γ. However, let’s consider a real world example: the DSEs of QED take
the intimidating form

X (α) = 1 + αBγ1

+ (X (α)Q(α)) + α2Bγ2

+ (X (α)Q(α)2) + ...

X (α) = 1− αB+ (X (α)Q(α))

X (α) = 1− αB+ (X (α)Q(α)),

(2.6)

where

(2.7) Q(α) =
(X (α))2

X (α)(X (α))2

is a formal series called invariant charge and

(2.8) γ1 = , γ2 = , ...

are the vertex primitives. Inverses of propagator series are to be understood as formal geometric series,
i.e.

(2.9)
1

X
=

1

1− X̄
= 1 + X̄ + (X̄ )2 + ...

where X̄ := 1 − X . The insertion operator can then insert several graphs at different insertion
places at the same time. It vanishes if it is offered more graphs than it can insert. Note that if the
coupling parameter counts the number of vertices, and not, as in our case (fine-structure constant) the
loop number, the formal series in denominator and numerator of the invariant charge in (2.7) may have
fractional exponents. This is to be understood in terms of the binomial series

(2.10) (Xr)ρ =
∑
n≥0

(
ρ

n

)
(Xr − I)n ρ ∈ R.

We remind the reader of the definition of the binomial coefficient given by

(2.11)

(
ρ

n

)
=
ρ(ρ− 1)...(ρ− 1 + n)

n!
.

Note that this expression does not vanish for n > ρ if ρ /∈ N which implies that in this case the series
in (2.10) is not a finite sum. Why do we only consider 3 amplitudes in QED? The reason why only 3
amplitudes are considered is that for QED, the set of amplitudes that need renormalization is

(2.12) R = { , , }.

Their self-similiarity equations need no extra amplitudes which is why the DSE system (2.6) is of particular
interest.

Hopf subalgebras. The solution of a cDSE for an amplitude r has the general form

(2.13) Xr(α) = 1 + sgn(sr)
∑
j≥1

αjcrj

with coefficients crj ∈ H, in general linear combinations of Feynman graphs. For propagator series, the
signum is sgn(sr) = −1, whereas for vertex series sgn(sr) = 1. Miraculously, the set of these coefficients
up to a fixed loop order N , i.e. {crj : j = 1, ..., N} generate a Hopf subalgebra. Surely, it would be
no surprise that one can formally generate an algebra which is a subalgebra of H were it not for their
coproduct which is of the form

(2.14) ∆(crj) =

j∑
k=0

Polk({crl })⊗ crj−k,

where Polk({crl }) is a homogeneous polynomial of degree k in the crl ’s as variables for l = 1, ..., j.
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3. Rooted trees

The Hopf algebra of rooted trees H is particularly suited to study cDSE. We quickly review the basic
ingredients of this topic and introduce the corresponding notation.

Rooted trees. A rooted tree T is a connected, simply connected and non-planar graph given by edges
and vertices with one distinguished vertex named root. All edges are oriented away from the root. We
follow the convention of drawing the root as the topmost vertex, here is an example:

(3.1) T = = .

Note that the second equality would not hold for planar rooted trees. We denote the set of trees by T .
The cardinality of a tree T , denoted as |T | is given by the number of its vertices. The empty tree I has
no vertices |I| = 0. Let Tn be the set of all trees with n vertices, i.e.

(3.2) T0 = { I }, T1 = { • }, T2 = { }, T3 = { , }, ... ,

and so on. By m we denote the associative and commutative product H ⊗H → H, which for two trees
leads to a juxtaposition,

(3.3) m( ⊗ ) = = .

Products of trees are called forests, where a tree is also seen as a forest, albeit of only a single tree. The
empty tree or empty forest I is the neutral element. Let F be the set of all forests and Fn the set of all
forests with n vertices, regardless of how many trees it contains, i.e.

(3.4) F0 = { I }, F1 = { • }, F2 = { ••, }, F3 = { • • •, • , , }, ... , etc.

Taking the Q-linear span Hn := spanQ{Fn} of each such set defines a sequence of vector spaces which
establishes a grading

(3.5) H =
⊕
j≥0

Hj

on the algebra H of rooted trees. The product then has the grading property

(3.6) m(Hn ⊗Hm) ⊂ Hn+m,

and hence the spaces Hn are not subalgebras! The algebra H is a connected algebra because its grading
starts with H0 = QI. By slight abuse of notation, we denote the unit map Q → QI, λ 7→ λI by I. The
subspace

(3.7) Aug =
⊕
j≥1

Hj = H1 ⊕H2 ⊕H3 ⊕ ...

is called augmentation ideal. It is indeed an ideal due to m(H⊗Aug) ⊂ Aug. The linear and multiplicative
map e : H → Q defined by e(Aug) = 0 and e(I) = 1 is called counit. The coproduct ∆ : H → H ⊗H is
defined as follows. First ∆(I) := I ⊗ I. Let now T be a non-empty tree. A cut c of T is a subset of its
edge set. If we remove these edges from the tree T , we obtain a forest in which one tree is still connected
to the (former) root. We denote this tree by Rc(T ). The other trees comprise a forest which we write as
P c(T ). A cut c is called admissible if the following holds true: starting from any vertex, the unique path
towards the root(given by edges) crosses the edges of c no more than once. Then, if we denote the set of
all admissible cuts of a tree T by C(T ), the coproduct is

(3.8) ∆(T ) = I⊗ T + T ⊗ I +
∑

c∈C(T )

P c(T )⊗Rc(T ).

Mostly, we will use a variant of Sweedler’s notation for the coproduct, i.e.

(3.9) ∆(T ) = I⊗ T + T ⊗ I +
∑
(T )

T ′ ⊗ T ′′
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or simply ∆(T ) = T ′ ⊗ T ′′ with or without the summation sign as long as there is no potential for
confusion. The reduced coproduct ∆′ is given by

(3.10) ∆′(T ) := ∆(T )− I⊗ T − T ⊗ I

which vanishes only on primitive elements. Let us consider the tree T = , for example. If we let
eL and eR be the left-hand and right-hand side edge, respectively, the admissible cuts are c1 = {eL},
c2 = {eR}, and c3 = {eL, eR} and hence the coproduct yields

(3.11) ∆( ) = ⊗ I + I⊗ + 2 ⊗ + ⊗ .

Linear maps f, g : H → H on the Hopf algebra H can be subjected to a bilinear operation

(3.12) f ∗ g := m(f ⊗ g)∆.

called convolution product(∗-product). Those maps preserving unity, i.e. f(I) = I can be shown to have
an inverse with respect to the ∗-product, where the neutral element is the composition of unit map and
counit: e = I ◦ e. The antipode S : H → H is the ∗-inverse of the identiy map id on H, i.e.

(3.13) S ∗ id = id ∗ S = e.

This implies S(I) = I and

(3.14) S(T ) = −T −
∑
(T )

S(T ′)T ′′

for a tree T . This follows from (S ∗ id)(T ) = e(T ) = 0 and m(S ⊗ id)(I⊗ T ) = S(I)T = T .

Grafting operator. The grafting operator B+ is a linear map H → spanQ{T } into the span of all trees
defined by B+(I) = and for a forest of trees T1, ..., Tn

(3.15) B+(T1 ... Tn) :=

T1 Tn

...

T2

mapping any forest to a single tree by attaching the roots to a single new node which then becomes the
new root. A concrete example is

(3.16) B+( ) = .

Note that the product of trees is commutative, which would cause us trouble at this point if the trees
were planar. Thanks to their non-planarity, there is a unique forest X for every tree T ∈ T such that
T = B+(X), a fact which is somewhat obvious from the definition of the operator B+. One can show
that it obeys

(3.17) ∆B+ = B+ ⊗ I + (id⊗B+)∆,

where B+ ⊗ I is to be understood as the map T 7→ B+(T ) ⊗ I and that this identiy qualifies B+ as a
non-trivial one-cocycle in a Hochschild cohomology.

Ladder trees. Ladders, denoted λk and defined by λ0 := I and λk+1 := B+(λk), take the form

(3.18) λk =
k-times

.

Their coproduct is ∆(λk) =
∑k
j=0 λj⊗λk−j . They therefore give rise to a Hopf subalgebra H` ⊂ H. The

solution of the linear cDSE

(3.19) X(α) = 1 + αB+(X(α))
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in fact lies in H`[[α]] ⊂ H[[α]] and is given by X(α) = 1+
∑
j≥1 α

jλj , which the reader is invited to check.

cDSE and their solutions in H[[α]] have been classified by Loic Foissy[Foi]. An interesting question is
which classes may describe relevant physics.

4. Ward identity in QED

We view Feynman rules as characterized by a linear and multiplicative map φ : H → A taking a
Feynman graph to an element of some target algebra A of, say, smooth functions depending on external
momenta, etc. A map evaluating Feynman graphs in this fashion is referred to as a character. In the case
of regularized Feynman rules in dimensional or analytical regularization, a Feynman graph is evaluated
to a Laurent series in the regulator with smooth momentum dependent functions as coefficients. Consider
the QED 2-loop graph

(4.1) Γ1 = .

To renormalize it, one needs two subtractions:

(4.2) ( )R = + + + ,

where the second and third terms cure the vertex subdivergence given by the subgraph

(4.3) γ =

and the last term deals with the overall divergence. Within the framework of Hopf-algebraic renormal-
ization, this reads in terms of characters

(4.4) φR( ) = φ( ) + 2 SφR( )φ( ) + SφR( )

where the character SφR is called counterterm. If we apply it to the series Xr we essentially obtain what
is known in quantum field theory as the renormalization Z-factor Zr. We identify

(4.5) 2 SφR( )φ( ) = + , SφR( ) = .

In the first expresssion, the counterterm may put the photon momentum to zero and evaluate all fermion
momenta at the renormalization point µ which yields the momentum independent coefficient for the
subdivergence subtraction. On the 2-loop level in perturbation theory, we have the two additional graphs

(4.6) Γ2 = , Γ3 = .

We treat them in one go and get

φR( + ) = φ( + ) + 2SφR( )φ( )

+ SφR( + )
(4.7)

Putting all graphs together, we find

φR( + + )

= φ( + + ) + SφR( + + )

+ 2

{
SφR( ) + SφR( )

}
φ( )

(4.8)

Thanks to what is known as Ward identity, we can choose a renormalization scheme in which the term
in curly brackets vanishes:

(4.9) SφR( ) + SφR( ) = 0.

This simplyfies the renormalization procedure significantly: the sum of the three graphs need only one
subtraction for the overall divergence, it behaves like a primitive element(i.e. a divergent graph void of
subdivergences). Although the individual counterterms are needed for curing the subdivergences, their
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service becomes obsolete when we take the sum of the three graphs. Moreover, it is possible to achieve
this for every loop order for these two amplitudes:

(4.10) SφR(X (α)) = SφR(X (α)),

which follows from SφR(cj ) = −SφR(cj ) for every j ≥ 1, where the minus sign is a feature of the propagator
series. (4.10) is very well known in physics and is usually written in terms of the renormalization Z-factors
Z1(α) = Z2(α), (see [ItZu80] section 7.1.3). This allows us to identify the two series and establish an
equivalence relation on the Hopf algebra H of QED Feynman graphs [Sui06] where

(4.11) cj + cj ∼ 0

for the coefficients of the two series X (α) and X (α). In this sense, we may, by virtue of (4.10), write

(4.12)
X

X
= 1

since, as we have seen, the denominator is the natural place for a propagator series. The identity (4.10)
can be used to rewrite the DSEs and decouple the DSE of the photon series

(4.13) X (α) = 1−
∑
j≥1

αjcj

from the other two equations in (2.6). In Quantum Chromodynamics(QCD), things are much more
involved and the corresponding identifications are

(4.14)
X

X
=
X

X
=
X

X
=

X

X

which originate in what is known as Slavnov-Taylor identities. However, we should be more precise at this
point. To understand what is going on here, we come back to the graph Γ1 in (4.1). The Hopf-algebraic
machinery that leads to the renormalized value of the graph in (4.4) works as follows. Two linear maps
ψ, ζ from the Hopf algebra H of Feynman graphs to some target algebra A of interest can be combined
to yield another linear map by a bilinear operation known as convolution product:

(4.15) (ψ ∗ ζ)(Γ) = mA(ψ ⊗ ζ)∆(Γ) = ψ(I)ζ(Γ) + ψ(Γ)ζ(I) +
∑
(Γ)

ψ(Γ′)ζ(Γ′′)

where Γ is some connected Feynman graph. Now here is how the renormalized Feynman rules φR, the

counterterm SφR and the unrenormalized Feynman rules φ are related:

(4.16) φR(Γ) = (SφR ∗ φ)(Γ) = mA(SφR ⊗ φ)∆(Γ) = φ(Γ) + SφR(Γ) +
∑
(Γ)

SφR(Γ′)φ(Γ′′),

where SφR(I) = 1 and φ(I) = 1 has been used. The coproduct takes Γ, tailors it to pieces and thereby

prepares the ground for the maps SφR and φ to do their job: in our example, the coproduct gives

(4.17) ∆( ) = ⊗ I + I⊗ + 2 ⊗ ,

where the subdivergences are ejected to the lhs of the tensor sign for the counterterm SφR to act on. In
physics, (4.16) is known as forest formula. The coproduct of the sum of all 2-loop graphs is

∆( + + )

= ( + + )⊗ I + I⊗ ( + + )

+ 2( + )⊗

(4.18)

Because the counterterm maps the sum

(4.19) c1 + c1 = +

of the two 1-loop contributions to zero, we might as well declare them to be equivalent to zero when
they appear on the lhs of the tensor sign, i.e. when they play the role of subdivergences cut out for the
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purpose of renormalization. As a result, the coproduct ∆∼ knowing about the equivalence of (4.19) to
zero simplifies to

∆∼( + + )

= ( + + )⊗ I + I⊗ ( + + )
(4.20)

5. Slavnov-Taylor identities and Quantum Gravity

We come across this cancellation of counterterms in a similiar manner in QCD, where the Slavnov-
Taylor identities can be employed in much the same way. Let us consider the 1-loop contributions to the
gluon propagator

(5.1) c1 =
1

2
+ ︸ ︷︷ ︸

fermion loop

+ ︸ ︷︷ ︸
ghost loop

,

where we ignore self-loops for the moment and suppress charge flow arrows. However, the coefficient
in (5.1) is primitive and needs only one subtraction. On the 2-loop level, we encounter the first minor
combinatorial explosion:

c2 =
1

4
+

1

6
+

1

4
+

1

4

+
1

2
+ +

+ + +

+ + +

+ + + + .

(5.2)

Now, by means of the Slavnov-Taylor identities (4.14), the coproduct of this coefficient reads

(5.3) ∆(c2 ) = c2 ⊗ I + I⊗ c2 + (
∑
rc
r
1)⊗ c1 ,

where the sum is over the 1-loop coefficients of the appropriate amplitudes. This is what happens here:
the elements ejected to the lhs of the tensor sign by the action of the coproduct cancel in such a way that
c1 factors out, just like in QED due to the Ward identity(see also [Krei08]).

Quantum Gravity. The problem with quantum gravity is that the number of amplitudes crying for
renormalization is infinite, i.e. quantum gravity is hence by definition non-renormalizable. However,
suppose we have found a renormalization scheme in which the counterterm map gave rise to an infinite
sequence of Slavnov-Taylor type identities of the form

(5.4)
Xn+2

Xn+1
=
Xn+1

Xn
n = 2, 3, 4, ...,

where the superscript counts the number of external graviton legs. This equivalence relation in the Hopf
algebra of quantum gravity Feynman graphs would then render the number of amplitudes in need of
renormalization finite (you get all the others for free) and quantum gravity would hence be renormalizable
[Krei08a]. However, the existence of a renormalization scheme and the underlying symmetry giving rise
to (5.4) remains an open question.

6. Symmetries and Hopf Ideals

We shall now introduce the Hopf algebra HD of decorated rooted trees. Let D be a countable set. A
decorated rooted tree is a pair (T, d) consisting of a rooted tree T and a map d : T [0] → D assigning an
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element of D to each vertex, where T [0] denotes the set of vertices of the tree T . For each decoration
a ∈ D, we define a grafting operator Ba+(I) = •a and for a forest of decorated trees (T1, d1), ..., (Tn, dn)

(6.1) Ba+(T1 ... Tn) :=

(T1, d1) (Tn, dn)
...

(T2, d2)

a

just as in section 3 with the subtle difference that Ba+ attaches a root decorated by a. If D = {a, b, c} is
the decoration set, then an example of a decorated rooted tree and how we draw it is given by

(6.2) (T, d) =
a

b

c

a

,

where the decoration map d assigns the symbol a to the root, c to the roots child, and so on. This tree
can be generated by the 3 grafting operators Ba+, B

b
+ and Bc+:

(6.3) Ba+(Bc+(Ba+(I)Bb+(I))) = Ba+(Bc+(•a•b)) = Ba+(
b

c

a
) =

a

b

c

a

.

The Hopf algebra HD is the Hopf algebra generated by these decorated trees. Note that (T, d) 6= (T, d′)
if the decoration maps d and d′ differ. The coproduct acts on the generators of this Hopf algebra in the
same way as it does in the case of the Hopf algebra of (undecorated) rooted trees H.

Let now D = {a, b, c, d} be the decoration set(the decoration map will be implicit henceforth). Consider
a system of DSEs for 3 series in HD[[α]] given by

X1 = I + αBa+(X1X3) + αBb+(X2
2 )

X2 = I + αBc+(X2
2 )

X3 = I + αBd+(X2
3 ),

(6.4)

where we have suppressed the parameter α in some places. The last two equations are decoupled from
the first and can be solved iteratively. Moreover, the series X2(α) and X3(α) have coefficients with
homogeneously decorated forests, i.e. the coefficients X2(α) are all decorated by c and those of X3(α)
by d. In contrast to that, the first series X1(α) has coefficients decorated with all elements in D. Let us
compute the first few coefficients of X2 and X3. If we write our ansatz as

(6.5) Xj(α) = I + cj,1α+ cj,2α
2 + cj,3α

3 + ...

for j = 2, 3, then

(6.6) Xj(α)2 = I + 2cj,1α+ (2cj,2 + c2j,1)α2 + (2cj,3 + 2cj,1cj,2)α3 + ...

Plugging this into the two DSEs for X2 and X3 in (6.4) yields for j = 2

X2 = I + αBc+(I + 2c2,1α+ (2c2,2 + c22,1)α2 + ...)

= I + αBc+(I) + 2Bc+(c2,1)α2 +Bc+(2c2,2 + c22,1)α3 + ...

= I + •c α+ 2Bc+(c2,1)α2 + [2Bc+(c2,2) +Bc+(c22,1)]α3 + ...

(6.7)

which implies c2,1 = •c and thus

(6.8) c2,2 = 2Bc+(c2,1) = 2
c

c

and consequently

(6.9) c2,3 = 2Bc+(c2,2) +Bc+(c22,1) = 4
c

c

c +
c

c

c

.

Notice that we would not get the tree with side branchings like in the second term if the DSE for X2 was
linear. However, it is not, and the general recursion formula reads

(6.10) c2,j+1 =

j∑
l=0

Bc+(c2,lc2,j−l).

This is obtained by inserting

(6.11) X2
2 = (

∑
j≥0

c2,jα
j)2 =

∑
j≥0

(

j∑
l=0

c2,lc2,j−l)α
j = I + 2 •c α+ (•c •c +4

c

c
)α2 + ...
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into the DSE for X2 in (6.4), where c2,0 := I. For the coefficients of X3 we just have to replace the
decoration c by d, and then the same recursion applies. We may now go on to tackle X1 and take the
view that we have solved the two DSEs for X2 and X3, the solutions given recursively by (6.10). To this
end, we have to insert (6.11) and

(6.12) X1X3 =
∑
j≥0

(

j∑
l=0

c1,lc3,j−l)α
j = I + (c1,1 + •d)α+ (

d

d
+ c1,1 •d +c1,2)α2 + ...

into (6.4). This yields

(6.13) X1(α) = I + (•a + •b)α+ (
a

a
+

a

b
+

a

d
+ 2

b

c
)α2 + ...

If we take the coproduct of the second coefficient c1,2 we get

(6.14) ∆′(c1,2) = (•a + •b + •d)⊗ •a + 2 •c ⊗•b = (c1,1 + c3,1)⊗ •a + 2c2,1 ⊗ •b
for the reduced part. For the coefficients c2,2 and c3,2 it yields

(6.15) ∆′(c2,2) = 2 •c ⊗•c = 2c2,1 ⊗ c2,1, and ∆′(c3,2) = 2 •d ⊗•d = 2c3,1 ⊗ c3,1,
where in fact, one can show by virtue of the recursion (6.10) and

(6.16) ∆Br+ = Br+ ⊗ I + (id⊗Br+)∆

for r = c, d that each series’ coefficients c2,l and c3,l generate their own Hopf subalgebras in HD, respec-
tively. We can actually put them together to make one joint Hopf subalgebra. For the coefficients of
X1 this is obviously not the case, (6.14) being testimony to this: neither •a nor •b are by themselves
coefficients of any of the involved series. If we could, for some reason, view c1,1 + c3,1 as equivalent to
2c2,1 and therefore equate them in a quotient Hopf algebra, we would get

(6.17) ∆′(c1,2) = (c1,1 + c3,1)⊗ •a + 2c2,1 ⊗ •b = 2c2,1 ⊗ (•a + •b) = 2c2,1 ⊗ c1,1.
Equating these two guys surely does not solve the problem that we have in trying to establish a Hopf
subalgebra generated by the coefficients of all three series in the DSE system (6.4). However, there is
a systematic way of achieving our goal. The equivalence c1,1 + c3,1 ∼ 2c2,1 is the equivalence of the
coefficients in (6.11) and (6.12) up to first order in α. If we set

(6.18) X1X3 = X2
2 ,

having this equality to all orders, then one can prove that all coefficients of the three series generate a
Hopf subalgebra. This equality means for the so-called invariant charges Qa and Qb defined by

(6.19) Qa := X3 and Qb :=
X2

2

X1

that they are equal: Qa = Qb. The indices a, b refer to the two grafting operators in the first line
of the DSE system in (6.4). These charges, their name inspired by physics, play the following role.
We reformulate our DSE system by associating an invariant charge to each equation and their grafting
operators: the DSE system reads in terms of these charges

X1 = I + αBa+(QaX1) + αBb+(QbX1)

X2 = I + αBc+(QcX2)

X3 = I + αBd+(QdX3),

(6.20)

where Qd = X3 = Qa. The reader is asked to figure out the (notional) logic behind these definitions.

Hopf ideal. The equivalence relation Qa = Qb, understood as an equivalence of coefficients order by
order, enables us to generate more than just a Hopf subalgebra. Consider, prior to establishing this
equivalence relation, the ideal I ⊂ H generated by the coefficients of the series Qa −Qb, or, equivalently
by those of X1X3 −X2

2 . Readers not familiar with ideals are advised at this point to take some time to
get aquainted with this concept by reading Appendix section C. One can show that

(6.21) ∆(I) = H ⊗ I + I ⊗H
which defines a coideal in H. Since for the antipode S, one has S(I) ⊂ I, the subspace I is not just
an ideal and a coideal but in fact also a Hopf ideal. Feynman rules are implemented on HD as Hopf
characters, that is, multiplicative and linear maps φ : HD → A with some target algebra A. When we
apply the equivalence relation, we obtain the quotient Hopf algebra H/I. As the ideal I will shrink to zero
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in H/I, only characters with φ(I) = 0 have well-defined representatives on H/I. This may for example
be true for the counterterm in a specific renormalization scheme, courtesy, say, of a gauge symmetry like
in QED giving rise to the Ward-Takahashi identity(section 4, see also [Sui06]). The Hopf ideal I may
actually be defined by the property kerφ = I. Those characters not vanishing on I do not have induced
maps on H/I. However, this poses no problem whatsoever. We can easily define appropriate characters
on the quotient Hopf algebra that serve our purposes as we please. Now here is the essential message of
this section: symmetries correspond Hopf ideals(see also [KrSui09]).

7. Insertion Operators as Hochschild One-Cocycles

Our next goal is to define an insertion operator Bγ+ : H → H for a Feynman graph γ such that it is a
Hochschild one-cocycle, i.e.

(7.1) ∆Bγ+ = Bγ+ ⊗ I + (id⊗Bγ+)∆

on some subspace of H. This property is necessary to ensure what is known as locality of the counterterms
of the corresponding quantum field theory. We first note that it implies for γ to be a primitive graph: if
we plug in the empty graph I, we see that

(7.2) ∆Bγ+(I) = Bγ+(I)⊗ I + (id⊗Bγ+)∆(I) = γ ⊗ I + I⊗ γ,
where Bγ+(I) := γ is mandatory, since, inserting nothing(= I) must yield the graph γ. Consider a simple
QED example: what is the graph

(7.3) Γ = B+ ( ) ?

If we apply the coproduct and use (7.1), we find

∆(Γ) = ∆B+ ( ) = B+ ( )⊗ I + (id⊗B+ )∆( )

= B+ ( )⊗ I + ⊗B+ (I) + I⊗B+ ( )

= Γ⊗ I + I⊗ Γ + ⊗ .

(7.4)

If we compare this to the coproduct of the graph , we see that

(7.5) ∆( ) = ⊗ I + I⊗ + 2 ⊗

and, dividing this by 2, we find

(7.6) Γ = B+ ( ) =
1

2

and conclude that prefactors do matter. Moreover, we need to define the insertion operator also on a
product of graphs. To tackle the general case, we need some definitions. In what follows, we restrict
ourselves to Quantum Chromodynamics(QCD). Because the Feynman graphs of QED and φ4-theory can
combinatorially be seen as special cases of QCD graphs, all assertions of this section also hold for these
two simpler theories.

Residues. First, the residue of a graph Γ is the graph res(Γ) obtained from Γ by shrinking all internal
edges to a single point. Instead of residue, we shall also speak of the external leg structure. Examples are

(7.7) res( ) = res( ) = , res( ) = res( ) =

and

(7.8) res( ) = res( ) = , res( ) = res( ) = .

By R we denote the set of such residues of interest1 for a given renormalizable theory. It is generally
finite (by definition of renormalizability). In the case of QED, it has only 3 elements, simply the vertex

and the two edges , for the photon and the fermion, respectively. The case of QCD is a bit richer
where

(7.9) R = { , , , , , , }

1It is ’of interest’ if the corresponding amplitude needs renormalization.
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is the residue set. We split this set into two subsets: the set of vertex residues RV and that of the edge
residues RE , i.e.

(7.10) RV = { , , } and RE = { , , },
where is the gauge boson’s line, that of the ghost and the fermion’s line, i.e. for a quark.
These sets contain the edge and vertex types that characterize the elementary building blocks of QCD’s
Feynman graphs.

Insertion places. If we want to insert one graph into another we have to specify where and how. An
insertion place of a graph Γ is a vertex or an internal edge. These vertices and edges will be replaced
by the connected graph to be inserted. In order for this graph to fit in, it needs to have the appropriate
external leg structure, i.e. the proper residue. Let γ =

∏
j γj be a product of graphs. We denote

the number of possible insertions of γ into Γ by (Γ|γ). Consider the graph Γ = . Let us write
V ( ) = {vL, vR} for the vertex set(left and right vertex) and E( ) = {et, eb} for the set of
internal edges(top and bottom edge). Then, we have, for example

(7.11) ( | ) = |{{vL}, {vR}}| = 2, ( | ) = |{{vL, vR}}| = 1

and

(7.12) ( | ) = |∅| = 0.

This latter example illustrates one reason why an insertion operator can only obey (7.1) on a subspace
of the Hopf algebra: there is no way to incorporate 3 vertex graphs into Γ = which has only 2
vertices. This problem, however, does not arise with propagator graphs:

(7.13) ( | ) = 1,

the reason being that we can put an arbitrary number of photon self-energy graphs arranged in a series
into the photon line. The other reason why (7.1) may be violated is that the insertion operator vanishes
if the superscript graph γ has no insertion place for the graph in the argument. However, there is a
very simple way to compute the number of insertions. To this end, we assign a variable ae to each edge
e ∈ E(Γ) of a connected graph Γ and identify ae = ae′ if e and e′ are of the same edge type in RE . Then,
given RE = { , , }, we can have at most |RE | = 3 edge variables for Γ. Let nγ,s be the number
of connected components γj in γ =

∏
j γj with residue res(γj) = s and mΓ,s be the number of edges or

vertices in E(Γ) and V (Γ) of type s ∈ R. Then, the coefficients of the series

(7.14)
1

(1− ae)mΓ,e
=
∑
n≥0

dna
n
e

for an edge e ∈ E(Γ) tell us how many insertion places there are in Γ for a product of propagator
graphs with external leg structure e. More precisely, there are dn possibilities for n propagator graphs
with residue e to be inserted into the edges of Γ of type e, regardless of the order within one insertion
place(edge). The number of insertions is given by

(7.15) (Γ|γ) =
∏
v∈RV

(
mΓ,s

nγ,s

) ∏
e∈RE

1

nγ,e!
∂nγ,ee

1

(1− ae)mΓ,e

∣∣∣∣
a=0

,

where a = 0 is shorthand for setting all edge variables to zero and

(7.16) ∂e :=
∂

∂ae
.

Note that we set

(7.17)

(
mΓ,s

nγ,s

)
= 0

if mΓ,s < nγ,s for a vertex type s, i.e. if there are more vertex graphs of external leg structure s in γ
than there are vertices of this type in Γ. The reader is invited to check the validity of (7.15) for some
examples and maybe ponder over it for a while. Next, we take a graph γ and consider all graphs that we
obtain upon permuting the external edges and define |γ|∨ to be the number of these graphs. An example
is the graph

(7.18) 1

2

3
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with external edges 1,2 and 3. By permuting the external edges we get the two other graphs

(7.19) 2

1

3
, 3

2

1
.

All 3! = 6 permutations yield only 3 different graphs. For example, interchanging legs 2 and 3 in (7.18)
does not change the graph, the corresponding two momenta p2 and p3 still ’share’ the same vertex. The
number we get is thus

(7.20) | |∨ = 3.

Another example is

(7.21) | |∨ = 3.

Insertion bijections. Inserting a graph γ1 (or a product of graphs) into another graph γ2 corresponds
to glueing the external edges of γ2 to those of the insertion place p ∈ E(γ1)∪ V (γ1) in γ1. These glueing
instructions can be viewed as a bijection: every external leg of γ2 is assigned a leg of the insertion place to
which it is glued. Let topp(γ1, γ2,Γ) be the number of such bijections for one insertion place p such that
Γ results from inserting γ2 into γ1(at p). However, this number does not depend on the insertion place
but rather on the type of insertion place which is already sufficiently characterized by the external leg
structure res(γ2). We can therefore drop the index p. If we define the ramification index ram(γ1, γ2,Γ)
as the number of insertion places for γ2 into γ1 so as to obtain Γ, we get the total number of insertion
bijections for this given by

(7.22) bij(γ1, γ2,Γ) = top(γ1, γ2,Γ)ram(γ1, γ2,Γ).

To get a feel for this, the reader may peek into [Krei08] to find some illustrative examples.

Symmetry factor. Let H(Γ) be the set of internal half-edges of a graph Γ. We choose h ∈ H(Γ) and
denote the vertex it is attached to by v(h) ∈ V (Γ). The edge it partakes of is denoted by e(h) ∈ E(Γ).
An edge and vertex preserving bijection is a bijection σ : H(Γ)→ H(Γ) such that

(7.23) e(h) = e(h′)⇔ e(σ(h)) = e(σ(h′)) and v(h) = v(h′)⇔ v(σ(h)) = v(σ(h′))

for all h, h′ ∈ H(Γ). We call such bijections automorphisms of Γ. They are a group Aut(Γ) with respect
to the composition ◦ as group operation. The bijections σ1 = id and σ2 given by

(7.24) σ1(

1 2

43

) =

1 2

43

, σ2(

1 2

43

) =

3 4

21

are edge and vertex preserving, whereas

(7.25) σ3(

1 2

43

) =

1 3

42

, σ4(

1 2

43

) =

2 1

43

are not. The symmetry factor Sym(Γ) := |Aut(Γ)| of a graph Γ is the number of edge and vertex
preserving bijections on the set H(Γ) of half-edges, i.e. the rank of the automorphism group Aut(Γ).

Insertion operators. Let γ be a primitive connected graph with res(γ) = r ∈ R and X be a graph for
which (γ|X) > 0, i.e. X can be inserted into γ. We define a linear insertion operator for γ by Bγ+(I) = γ
and for X by

(7.26) Bγ+(X) =
1

(γ|X)|X|∨

∑
Γ∈G

bij(γ,X,Γ)

maxf(Γ)
Γ,

where G is the set of divergent connected 1PI graphs, i.e. the canonical generator set of the Hopf algebra
H and maxf(Γ) is the number of subgraphs γ ( Γ such that the cograph Γ/γ is primitive. For the next
theorem, we denote the set of primitive elements in H by Prim(H) and recall the Slavnov-Taylor identities

(7.27)
X

X
=
X

X
=
X

X
=

X

X
.

Let for a fixed loop number k > 0 and an amplitude r ∈ R the set of all graphs Γ ∈ G with res(Γ) = r
and loop number |Γ| = k be denoted by Mr

k . Then, we are ready to state the next
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Theorem 7.1. If we define linear operators

(7.28) Bk;r
+ :=

∑
γ∈Mr

k∩Prim(H)

1

Sym(γ)
Bγ+

and implement the Slavnov-Taylor identities (7.27), the series Xr(α) = I + sgn(sr)
∑
j≥1 c

r
jα

j with coef-
ficients in H given by

(7.29) crj =
∑

Γ∈Mr
j

1

Sym(Γ)
Γ

solve the DSE system

(7.30) Xr = I + sgn(sr)
∑
k≥1

αkBr;k+ (XrQk), r ∈ R

where Q =
∏
j∈R(Xj)sj is the invariant charge. Finally, we have

(7.31) ∆Bk;r
+ (XrQk) = Bk;r

+ (XrQk)⊗ I + (id⊗Bk;r
+ )∆(XrQk).

Proof. - �

What (7.31) tells us is this: the coefficients of the series

(7.32) Xr(α)Q(α)k =
∑
j≥0

τ rk,jα
j = I +

∑
j≥1

τ rk,jα
j

span a subspace 〈τ rk,j ∈ H : j ≥ 0〉Q on which the linear operator Bk;r
+ satisfies the Hochschild one-cocycle

property (7.1) we started this section with. The point is, however, for QCD and hence also for QED,
we need in general a linear combination of insertion operators Bγ+ with primitive superscript ’skeleton’
graph γ to obtain a Hochschild one-cocycle on a suitable subspace.

Locality. To see how (7.31) garantees locality in the sense of renormalization in momentum scheme,
we introduce the necessary notions quickly. Let Γ be a propagator graph with external euclidean four-
momentum q ∈ R4. In dimensional regularization, the corresponding regularized Feynman rules are given
by a character : an algebra morphism φz(·, q) : H → A which evaluates the graph Γ to a Laurent series

(7.33) φz(Γ, q) =
∑
j∈Z

uj(Lq)z
j

with a finite number of poles and coefficients in the set C[Lq], i.e. polynomials uj(Lq) in the momentum
variable Lq = ln(q2/µ2), where µ > 0 is the renormalization point. The target algebra is therefore given
by A = C[Lq][z

−1, z]]. The renormalized and pole-free value of the graph Γ can be written as a sum

(7.34) φR,z(Γ, q) = φ̄z(Γ, q) + SφR,z(Γ, q),

where the second term is the counterterm. It accounts for the last renormalization subtraction needed to
yield a finite value of φR,z(Γ, q) for the limit z → 0. The character φ̄z(·, q) is called Bogolubov map and
provides the value of Γ purged of all subdivergences and is related to the counterterm by

(7.35) SφR,z(Γ, q) = −Rφ̄z(Γ, q),

R : A → C[z−1, z]] being the linear evaluation map setting q2 = µ2(or Lq = 0). For the graph Γ this
yields

(7.36) SφR,z(Γ) = −Rφ̄z(Γ, q) = −
∑
j∈Z

vj(0)zj ,

if we let φ̄z(Γ, q) =
∑
j∈Z vj(Lq)z

j be the value of the Bogolubov map for Γ. The renormalized value
then reads

(7.37) φR,z(Γ, q) = (id−R)φ̄z(Γ, q) =
∑
j∈Z

[vj(Lq)− vj(0)]zj ,

which, in order to be pole-free, requires vj(Lq) = vj(0) for j < 0. Hence: the pole-term coefficients must
be constants and are not allowed to be dependent on Lq in which case we refer to the pole as local, i.e. if
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its Laurent series coefficient is constant. Furthermore, we say that the Bogolubov map is local for Γ, if
all of its poles are local, i.e. if the limit

(7.38) lim
z→0

∂

∂Lq
φ̄z(Γ, q) = v′0(Lq)

exists. Now let us see how locality is related to the Hochschild cohomology property of the insertion oper-

ators Bk;r
+ . We assume for simplicity that all graphs are single-scale in the sense that their renormalized

value depends only on one momentum. Then, for a connected Feynman graph γ, one can write

(7.39) φz(Γ, q) = φz(B
γ
+(W ), q) =

∫
d4p Kγ

z (q, p)φz(W,p)

where W ∈ H such that Γ = Bγ(W ) and Kγ
z (q, ·) is the corresponding integral kernel of the regularized

Feynman integral for γ given by

(7.40) φz(γ, q) = φz(B
γ
+(I), q) =

∫
d4p Kγ

z (q, p)φz(I, p)︸ ︷︷ ︸
=1

=

∫
d4p Kγ

z (q, p).

Then (7.28) suggests that we may define the integral kernel

(7.41) Kk;r
z (q, p) :=

∑
γ∈Mr

k∩Prim(H)

1

Sym(γ)
Kγ
z (q, p)

for which, by linearity of φz(·, q), we get

(7.42) φz(B
k;r
+ (·), q) =

∫
d4p Kk;r

z (q, p)φz(·, p).

To prove locality of the Bogolubov map, we will use

(7.43) φz = SφR,z ∗ φzP,

where P : H → Aug projects onto the augmentation ideal Aug ⊂ H. In simple terms, P is the projection
operator on H with one-dimensional kernel kerP = QI (this defines Aug). Let now W ∈ H be such that

(7.44) ∆Bk,r+ (W ) = Bk,r+ (W )⊗ I + (id⊗Bk,r+ )∆(W ) = Bk,r+ (W )⊗ I +W ′ ⊗Bk,r+ (W ′′)

where ∆(W ) = W ′ ⊗W ′′ is a shorthand for the corresponding sum. Then, we have

φz(B
k,r
+ (W ), q) = (SφR,z ∗ φzP )(Bk,r+ (W ), q) = (SφR,z ⊗ φzP )(∆Bk,r+ (W ), q)

= (SφR,z ⊗ φzP )(Bk,r+ (W )⊗ I +W ′ ⊗Bk,r+ (W ′′), q)

= SφR,z(B
k,r
+ (W ))φzP (I, q) + SφR,z(W

′)φzP (Bk,r+ (W ′′), q)

= SφR,z(W
′)φz(B

k,r
+ (W ′′), q) = SφR,z(W

′)

∫
d4p Kk;r

z (q, p)φz(W
′′, p).

(7.45)

Because the counterterm does not depend on any momentum and only of the renormalization point µ,
we can push it inside the integral and get

(7.46) φz(B
k,r
+ (W ), q) =

∫
d4p Kk;r

z (q, p)SφR,z(W
′)φz(W

′′, p) =

∫
d4p Kk;r

z (q, p)φR,z(W,p)

where we have used φR,z = SφR,z∗φz. Now, taking the derivative with respect to the momentum parameter
Lq,

(7.47)
∂

∂Lq
φz(B

k,r
+ (W ), q) = q2 ∂

∂q2
φz(B

k,r
+ (W ), q) =

∫
d4p q2 ∂

∂q2
Kk;r
z (q, p)φR,z(W,p)

we see that locality demands

(7.48) lim
z→0

∫
d4p |q2 ∂

∂q2
Kk;r
z (q, p)φR,z(W,p)| <∞.

This is satisfied in particular if

(7.49)

∫
d4p |∂q2Kk;r

0 (q, p)| <∞.
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The reason is that φR,0(W,p) yields a polynomial in Lp = ln(p2/µ2) which does not alter the convergence

behaviour of the integral
∫
d4p ∂q2Kk;r

0 (q, p). Suppose this integral converges (which it does), then we
see that the Bogolubov map is local on the coefficients of the perturbation series

(7.50) Xr = I + sgn(sr)
∑
k≥0

crkα
k = I + sgn(sr)

∑
k≥1

αkBr;k+ (XrQk),

if we employ (7.46) with W = XrQk, that is,

(7.51) φz(X
r, q) = 1 + sgn(sr)

∑
k≥1

αk
∫
d4p Kk;r

z (q, p)φR,z(X
rQk, p)

is local in every order of α.

8. Radiative corrections in Yukawa theory

In this section, we consider an example of a linear DSE for the vertex series in massless Yukawa theory,
which is given by the Lagrangian

(8.1) L =
1

2
∂µϕ∂

µϕ+ iψ/∂ψ − gϕψψ

describing interacting massless spin 1/2 fermions and scalar mesons represented by the spinor field ψ and
the scalar field ϕ, respectively. The Feynman rules in momentum space are

(8.2) = −ig , p =
i

/p+ iε
, p =

i

p2 + iε

accompanied with the corresponding integration directives and terms for external incoming and outgoing
particles.

8.1. Vertex series. The first two terms of the 1PI perturbation series for the vertex are

(8.3)

q

q

0 +

q

q

0 + ... = −ig
(

1 + (−ig)2

∫
d4k

(2π)4

i

/k + iε

i

(k − q)2 + iε

i

/k + iε
+ ...

)
where we have set the external boson’s momentum to zero for simplicity. To evaluate the integral, we
first perform what is known as a Wick rotation: the k0-integration contour is rotated counterclockwise
in the complex plane by π/2, then parametrized by k0 = ik4, whereas the zeroth component q0 of the
external momentum is rotated clockwise by this angle to yield q4 = −iq0, i.e.

(8.4) (k− q)2 = (k0− q0)2− (k−q)2 = (ik4− iq4)2− (k−q)2 = −[(k4− q4)2 + (k−q)2] = −(kE − qE)2

is what happens to the Minkowski product in the process. The index ’E’ stands for Euclidean. Then
follows

(8.5) (−ig)2

∫
d4k

(2π)4

i

/k + iε

i

(k − q)2 + iε

i

/k + iε
= −g2

∫
d4kE
(2π)4

1

k2
E(kE − qE)2

for the integral, where the Feynman prescription ’iε’ has been dropped. This Euclidean integral is
logarithmically divergent and needs to be regularized. To this end, we introduce the convergence factor

(8.6) (k2
E)−ρ

with regulator ρ ∈ C and use

(8.7)

∫
d4kE
(2π)4

1

(k2
E)r((kE − qE)2)s

= (q2
E)−(r+s−2) 1

(4π)2

Γ(r + s− 2)Γ(2− r)Γ(2− s)
Γ(r)Γ(s)Γ(4− r − s)

.

We obtain

(8.8)

∫
d4kE
(2π)4

(k2
E)−ρ

k2
E(kE − qE)2

= (q2
E)−ρ

1

(4π)2

Γ(ρ)Γ(1− ρ)

Γ(1 + ρ)Γ(2− ρ)
= (q2

E)−ρ
1

(4π)2

1

ρ(1− ρ)
,

where we have employed the identity xΓ(x) = Γ(1 + x) twice. We call

(8.9) F1(ρ) := −(4π)2

∫
d4kE
(2π)4

(k2
E)−ρ

k2
E(kE − q̂E)2

= − 1

ρ(1− ρ)
,
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the Mellin transform of first vertex primitive, where q̂E = qE/|qE | is a unit vector. One can nicely
see that the Mellin tranform it is invariant under the Möbius transformation ρ → 1 − ρ, often called
conformal transformation. It is convenient to define a := g2/(4π)2 as the new coupling parameter. The
renormalized value of the 1-loop vertex then is

(8.10) (

q

q

0 )R = lim
ρ→0

a[(q2
E)−ρ − (µ2)−ρ]F1(ρ) = aL

where L = ln(q2
E/µ

2) is the Euclidean momentum parameter. Wick rotating back yields

(8.11) (

q

q

0 +

q

q

0 + ...)R = −ig[1 +
g2

(4π)2
log(−q2/µ2) + ...]

Notice that the new coupling’s power counts the number of loops whereas g counts the vertices.

Ladder approximation. We can do much better than computing the first loop order contribution: it
is in fact very easy to calculate the 1PI ’ladder’ series

(8.12)

q

q

0 +

q

q

0 +

q

q

0 +

q

q

0 + ...

which satisfies the linear Dyson-Schwinger equation

(8.13) X(a) = 1 + aBu+(X(a)),

where u = is the first connected 1-loop primitive of the vertex. In terms of blob diagrams, this reads

(8.14)

q

q

0 =

q

q

0 +

q

q

0 .

The linear DSE in (8.13) is combinatorially equivalent to (3.19) and we may again employ ladder trees
to describe the terms in our ladder series (8.12). However, let us for a change consider another, and in
fact very elegant way of writing the series.

Shuffle algebra of words. Given a set A called alphabet with elements a1, a2, ... named letters, one
can generate a non-commutative polynomial algebra Q〈A〉, where an object of the form w = aj1 ...ajn is
called word and e is the empty word, that is, the neutral element of the multiplication, i.e. we = ew = w
for any word w ∈ Q〈A〉. As a formal vector space, it is the words that provide a canonical basis. Note
that ajak 6= akaj if k 6= j. The elements in Q〈A〉 are generally linear combinations of words. In addition
to this product called ’concatenation product’, we introduce the shuffle product by

(8.15) w� e = e� w = w, ajw1 � akw2 = aj(w1 � akw2) + ak(ajw1 � w2)

for any words w,w1, w2 ∈ Q〈A〉. The reader may prove that the shuffle powers of a single letter aj ∈ A
fulfill

(8.16) a�nj = n!anj = n! ajaj ...aj︸ ︷︷ ︸
n-times

.

Using the shuffle product, one also defines a shuffle exponential of an element x ∈ Q〈A〉 by

(8.17) exp
�

(x) :=
∑
n≥0

x�n

n!
.

The pair (Q〈A〉,�) is what we call the shuffle algebra (of words). With all this, we may agree to write
the ladder series in terms of the single letter alphabet A = {u} such that it takes the form of a simple
geometric series

(8.18) X(a) = 1 + au+ a2uu+ a3uuu+ ... = 1 + (au)2 + (au)3 + ... =
1

1− au
,

where

(8.19) 1 =

q

q

0 , u =

q

q

0 , uu =

q

q

0 , uuu =

q

q

0 ,
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and so on and so forth. This means Bu+(uk) = uk+1 for the insertion operator. In fact, one can also write
the series as

(8.20) X(a) = exp
�

(au)

which relates the shuffle exponential to the geometric series in an interesting way, albeit only for a single
letter. What this tells us is that all the information for the perturbation series of ladders is contained
in the single letter u, corresponding to the single primitive 1-loop vertex graph plus some set of rules
represented by the shuffle exponential. Therefore, the hope is, we may only be required to compute this
single graph and then apply some easy rule to evaluate the Green’s function given by

(8.21) Gv(a, L) := φR(X(a), L) = φR(1 + au+ a2uu+ a3uuu+ ..., L) = φR(exp
�

(au), L).

Before we see that this is indeed true, we first define both a deconcatenation coproduct ∆ on the shuffle
algebra Q〈A〉 by

(8.22) ∆(aj1 ...ajn) = aj1 ...ajn ⊗ e+ e⊗ aj1 ...ajn +

n−1∑
l=1

aj1 ...ajl ⊗ ajl+1
...ajn

and a counit e by e(e) = 1 and vanishing on any non-empty word. The antipode S is then recursively
defined as usual. In fact, with these extra ingredients, the shuffle algebra is a Hopf algebra (see Appendix
D), where the product is given by the shuffle product. This means in particular that the deconcatenation
coproduct respects the shuffle product, i.e.

(8.23) ∆(x� y) = ∆(x)�∆(y)

and therefore that ∆(exp
�

(p)) = exp
�

(p) ⊗ exp
�

(p) for a primitive element p ∈ Q〈A〉 by a brief
calculation:

∆(exp
�

(p)) = exp
�

(∆(p)) = exp
�

(p⊗ e+ e⊗ p) = exp
�

(p⊗ e)� exp
�

(e⊗ p)
= [exp

�
(p)⊗ e]� [e⊗ exp

�
(p)] = [exp

�
(p)� e]⊗ [e� exp

�
(p)]

= exp
�

(p)⊗ exp
�

(p).

(8.24)

Since our graph u is indeed primitive, we find

(8.25) ∆(X(a)) = ∆(exp
�

(au)) = exp
�

(au)⊗ exp
�

(au) = X(a)⊗X(a)

and hence that the ladder series is grouplike. This implies for the renormalized Feynman rules

(8.26) φR,ρ(X(a), L) = (SφR,ρ ∗ φρ)(X(a), L) = SφR,ρ(X(a))φρ(X(a), L)

with regulator ρ ∈ C and regularized Feynman rules φρ given by

(8.27) φρ(u, L) = φρ(B
u
+(1), L) =

∫
d4kE Ku

ρ (qE , kE)φρ(1, ln(k2
E/µ

2)) =

∫
d4kE Ku

ρ (qE , kE),

with regularized integral kernel

(8.28) Ku
ρ (qE , kE) = − 1

π2

(k2
E)−ρ

k2
E(kE − qE)2

which the reader may compare with (8.3) and its Euclidean version in (8.5). The Mellin transform is can
now be written as

(8.29) F1(ρ) =

∫
d4kE Ku

ρ (q̂E , kE) =

∫
d4kE Ku

0 (q̂E , kE)(k2
E)−ρ.

If we apply these regularized Feynman rules φρ to the cDSE (8.13), we find

(8.30) φρ(X(a), L) = 1 + aφρ(B
u
+(X(a)), L) = 1 + a

∫
d4kE Ku

ρ (qE , kE)φρ(X(a), ln(k2
E/µ

2))

which is our analytical DSE. We can use this equation for the rhs of (8.26) and obtain

(8.31) φR,ρ(X(a), L) = Zρ(a) + a

∫
d4kE Ku

ρ (qE , kE)φR,ρ(X(a), ln(k2
E/µ

2)),

where Zρ(a) := SφR,ρ(X(a)) is the renormalization Z-factor. It serves as the counterterm to renormalize
the skeletal integration and is thus given by

(8.32) Zρ(a) = 1− a
∫
d4kE Ku

ρ (qE , kE)φR,ρ(X(a), ln(k2
E/µ

2))
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with Euclidean momentum qE such that q2
E = µ2. Eq.(8.31) is the analytical DSE for the Green’s function

Gv(a, L) which may also be written in the form

(8.33) Gv(a, L) = 1 + a

∫
d4kE Ku

R(qE , kE)Gv(a, ln(k2
E/µ

2)),

where the limit ρ→ 0 has produced a perfectly convergent renormalized kernel

(8.34) Ku
R(qE , kE) := Ku

0 (qE , kE)−Ku
0 (qE , kE)

Let us next have a look at the exact solution of (8.33).

Proposition 8.1. The vertex DSE in (8.33) is solved by the scaling solution

(8.35) Gv(a, L) = exp(−γv(a)L) =

(
q2
E

µ2

)−γv(a)

= exp
{
−γv(a) log(−q2/µ2)

}
with γv(a) = 1

2 (1−
√

1 + 4a).

Proof. First, the reader may check that the regularized integral measure scales according to

(8.36) d4(λkE) Ku
ρ (λqE , λkE) = λ−2ρd4kE Ku

ρ (qE , kE).

This means is particular

(8.37)

∫
d4kE Ku

ρ (qE , kE) = (q2
E)−ρ

∫
d4kE Ku

ρ (|qE |q̂E , kE)(|qE |−1)−2ρ = (q2
E)−ρF1(ρ)

which we will use next when we plug the scaling ansatz into the integral on the rhs of the DSE (8.33):

∫
d4kE Ku

R(qE , kE)

(
q2
E

µ2

)−γv(a)

=

∫
d4kE [Ku

0 (qE , kE)

(
k2
E

µ2

)−γv(a)

− Ku
0 (qE , kE)

(
k2
E

µ2

)−γv(a)

]

=

(
q2
E

µ2

)−γv(a)

F1(γv(a))−
(
q2
E

µ2

)−γv(a)

F1(γv(a))

= [

(
q2
E

µ2

)−γv(a)

− 1]F1(γv(a))

(8.38)

where we recall that q2
E = µ2 for the reference momentum qE . Finally, the DSE in (8.33) takes the form

(8.39)

(
q2
E

µ2

)−γv(a)

= 1 + a[

(
q2
E

µ2

)−γv(a)

− 1]F1(γv(a))

which entails

(8.40) 1 = aF1(γv(a)) =
−a

γv(a)[1− γv(a)]

and thus γv(a)2 − γv(a) − a = 0. We require γv(0) = 0 on the grounds that we want Gv(0, L) = 1 and
therefore get the solution. �

This solution is similiar to the one of the propagator ’rainbow’ DSE in (1.6) which we shall have a
look at below (see also [Krei06]).

Next-to-ladder approximation. One can do even better than the ladder approximation: if we also
take the primitive

(8.41) v =

into account, the DSE reads

(8.42)

q

q

0 =

q

q

0 +

q

q

0 +

q

q

0 .

or, in ’words’

(8.43) X(a) = 1 + aBu+(X(a)) + a2Bv+(X(a)),
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where Bu+(x) = xu and Bv+(x) = xv for any word x ∈ Q〈u, v〉. This means that as we read a word from
left to right, we ascend from its deepest subdivergence all the way up to its skeleton graph, e.g.

(8.44) Bu+(Bv+(u)) = uvu = , Bv+(Bu+(u)) = uuv = .

This has been worked out in [BierKW] with the following results. Firstly, they find

(8.45) X(a) = exp
�

(au+ a2v) = 1 + au+ a2(v + uu) + a3(uuu+ uv + vu) + ...

and thus ∆(X(a)) = X(a)⊗X(a) for the deconcatenation coproduct. The Mellin tranform for v is

(8.46) F2(ρ) =

∫
d4k

∫
d4l Kv

ρ (q̂, k, l)

with Minkowksi space kernel

(8.47) Kv
ρ (q̂, k, l) = − 1

π4

/k(/l + /k)[(k + l)2]−ρ

k2(q̂ − k)2(k + l)2l2(l + q̂)2
.

Secondly, it turns out that, again, a scaling ansatz GR(a, L) = exp(−γG(a)L) (in their notation) proves
to be the right strategy in solving the renormalized DSE

GR(a, log(−q2/µ2)) = 1− a
∫
d4k Ku

R(q, k)GR(a, log(−k2/µ2)

+ a2

∫
d4k

∫
d4l Kv

R(q, k, l)GR(a, log(−(k + l)2/µ2)

(8.48)

with γG(a) such that

(8.49) 1 = aF1(γG(a)) + a2F2(γG(a)).

Although γG(a) remains to be given only implicitly, the Green’s function can be represented as follows.
Let P(u, v) be the set of all primitive elements in the Hopf algebra of words Q〈u, v〉. Then, the Green’s
function is

(8.50) GR(a, L) = φR(X(a), L) = exp

 ∑
p∈P(u,v)

a|p|φR(p, L)

 ,

where φR(·, L) are the renormalized Feynman rules and |p| the number of letters of any term in p ∈ P(u, v)
(primitives are homogeneous). For more see [BierKW] and references therein.

8.2. Propagator series: rainbows and beyond. We come back to the cDSE (2.4)

(8.51) X(a) = 1 + aB+ (X(a)) .

or, in blobs

(8.52) = + .

whose solution

(8.53) = + + + + ...

is the so-called rainbow approximation for the Yukawa fermion propagator. Just like the ladder approx-
imation in (8.12), this equation has a scaling solution. We start by computing the skeleton graph in
(8.52), by employing the Feynman rules (8.2) and obtain

(8.54) = (−ig)2

∫
d4k

(2π)4

i

/k + iε

i

(q − k)2 + iε
.

A suitably regularized version of this integral must depend on the external Minkowksi momentum q and
should be a Lorentz-invariant linear combination of Dirac γ-matrices (because the integrand is), i.e.

(8.55) (−ig)2

∫
d4k

(2π)4

i

/k + iε

i

(q − k)2 + iε
= /qA(−q2).
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is a first possible ansatz, where A(·) is what is called form factor or sometimes also structure function.
The perturbation series starts like

(8.56) + + ... =
i

/q
+
i

/q
/qA(−q2)

i

/q
+ ... =

i

/q
(1 + iA(−q2) + ...),

where the expression in brackets stands for the form factor of the whole series. When we apply the
Feynman rules to the cDSE in (8.51), we get this very form factor. Let us quickly calculate the function
A(·). To this end, we multiply both sides of (8.55) by the matrix /q and taking the trace we obtain

(8.57) g2

∫
d4k

(2π)4

kq

k2 + iε

1

(q − k)2 + iε
= q2A(−q2).

A Wick rotation yields

(8.58) ig2

∫
d4kE
(2π)4

kEqE
k2
E(qE − kE)2

= q2
EA(q2

E)

and finally using the rule

(8.59)

∫
d4kE
(k2
E)r

=

∫
d4kE

((qE − kE)2)s
= 0

for all r, s ∈ R and 2kEqE = −(qE − kE)2 + k2
E + q2

E , we arrive at

(8.60) A(q2
E) = ia

∫
d4kE
2π2

1

k2
E(qE − kE)2

.

If we again introduce the convergence factor (8.6) and use the ’master integral formula’ (8.7), we find

(8.61) Aρ(q
2
E) = ia

∫
d4kE
2π2

(k2
E)−ρ

k2
E(qE − kE)2

=: −ia
∫
d4kE Kp

ρ (qE , kE),

where Kp
ρ (qE , kE) is the regularized kernel for the skeleton diagram

(8.62) p = .

Notice that this is essentially the same function as the kernel for the vertex skeleton

(8.63) u =

q

q

0

in (8.28). The result for the regularized form factor can now be read off from (8.8) and gives

(8.64) iAρ(q
2
E) = (q2

E)−ρ
a

2ρ(ρ− 1)
=: a (q2

E)−ρFp(ρ),

where Fp(ρ) is the Mellin transform of the skeleton p. The renormalized value of this diagram is

(8.65) φR( , L) = lim
ρ→0

a[(q2
E)−ρ − (µ2)−ρ]Fp(ρ) =

a

2
L.

However, we are interested in the solution of the DSE

(8.66) Gp(a, L) = 1 + a

∫
d4kE Kp

R(qE , kE)Gp(a, ln(k2
E/µ

2)),

with renormalized kernel

(8.67) Kp
R(qE , kE) := Kp

0 (qE , kE)−Kp
0 (qE , kE)

for the renormalization point q2
E = µ2, which is the renormalized analytical version of (8.51). As promised,

the solution is again rather simple (see also [Krei06]) as shown in

Proposition 8.2. The DSE in (8.66) is solved by the scaling solution

(8.68) Gp(a, L) = exp(−γp(a)L) =

(
q2
E

µ2

)−γp(a)

= exp
{
−γp(a) log(−q2/µ2)

}
with γp(a) = 1

2 (1−
√

1 + 2a).
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Proof. We apply the same procedure as in Prop.8.1 and find

(8.69) 1 = aFp(γp(a)) =
a

2γp(a)[γp(a)− 1]
,

which is solved by γ±p (a) = 1
2 (1±

√
1 + 2a). Choosing γ−p (a) on account of γ−p (0) = 0 yields the result. �

Question: What is the meaning of the peculiar construction

(8.70)
1

2−Gp(a, L)
=

1

2− exp {−γp(a) log(−q2/µ2)}

and why does it make no sense at all for the vertex Green’s function in (8.35)? Next, we will see that the
DSE quickly gets highly nontrivial when we try to go beyond the rainbow approximation by considering
the cDSE

(8.71) X(α) = 1− αB+ (1/X(α)) .

In this approximation, only fermion line corrections are accounted for, i.e. vertex and boson line correc-
tions are omitted. The blob diagram version of this DSE is rather awkward to say the least:

(8.72) =
∑
n≥1

1 n

,

where the blob does not start with the bare but the 1-loop propagator:

(8.73) (a) = a + a2 + a3( + )+ ...,

which corresponds to the series X(a)− 1. The reader may check as an exercise that the analytic renor-
malized version of the DSE (8.71) is given by

(8.74) G(a, L) = 1− a
∫
d4kE

Kp
R(qE , kE)

G(a, ln(k2
E/µ

2))

and cannot be solved by a scaling ansatz as it leads to a contradiction. So far, no non-perturbative
ansatz is known for this equation except for a method leading to an implicit equation involving the
complementary error function which can be found in [BroK01]. However, one can do the following. For
a start, the reader should check that

(8.75) lim
ρ↓0

1

G(a,−∂ρ)

(
k2
E

µ2

)−ρ
=

1

G(a, ln(k2
E/µ

2))

for the ansatz G(a, L) = 1−
∑
j≥1 γj(a)Lj . Once this has been verified, we see that (8.74) can be written

in the form

(8.76) G(a, L) = 1− a lim
ρ↓0

1

G(a,−∂ρ)

∫
d4kE Kp

R(qE , kE)

(
k2
E

µ2

)−ρ
.

The integral on the rhs can be expressed in terms of the Mellin transform for the skeleton p such that we
finally get

(8.77) G(a, L) = 1− a lim
ρ↓0

1

G(a,−∂ρ)
(e−ρL − 1)Fp(ρ),

where we have made use of
∫
d4kE Kp

ρ (qE , kE) = (q2
E)−ρFp(ρ) just like we did in (8.38). We can now

take the DSE in (8.76) and find a DSE for each log-coefficient function by differentiating both sides with
respect to L and then setting L = 0 giving

(8.78) n!γn(a) = (−1)n
a

2
lim
ρ↓0

1

G(a,−∂ρ)
ρn−1

ρ− 1
,

for all n ≥ 1. This is in fact a coupled system for these functions: for γ1(a) this yields

(8.79) γ1(a) =
a

2
[1 +

∑
1≤n≤j

(−1)jj!
∑

j1+...jn=j

γj1(a)...γjn(a)].
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Replacing all log-coefficient functions by their perturbation series γk(a) =
∑
j≥k γj,ka

j yields a set of
recursion formulae which can then be solved by a computer. The first few terms are

(8.80) γ1(a) =
a

2
[1 + (−1)γ1(a) + (−1)22!{γ1(a)2 + γ2(a)}+ ...]

and yield for γ1(a):

(8.81) γ1,1 =
1

2
, γ1,2 =

1

2
γ1,1 =

(
1

2

)2

γ1,3 =
1

2
γ1,2 − (γ2

1,1 + γ2,2) = −
(

1

2

)3

− γ2,2.

To carry on, we need the DSEs for the higher log-order functions. It is noteworthy that the first two are
related by

(8.82) γ1(a) + 2γ2(a) =
a

2

which implies γ1,l+2γ2,l = 0 for l ≥ 2. Then γ1,3 = 0 follows. The rest remains to be done by a computer.
This example is discussed in [KrY06] and the coefficients of γ1(a) have been calculated by a computer up
to a staggering 500 loops using a different method in [BroK01]. For the sake of completeness, we mention
that the log-coefficient functions are also related by the recursion

(8.83) (n+ 1)γn+1(a) = γ1(a)(2a∂a − 1)γn(a),

see [KrY06] for more. Together with (8.82), this formula implies a non-linear ODE

(8.84) γ1(a) + γ1(a)(2a∂a − 1)γ1(a) =
a

2
.

We can employ a computer algebra software to find that the solution satisfies

(8.85)

√
a

π
e−Z(a)2

= 1 + erf(Z(a))

with Z(a) = (γ(a)− 1)/
√
a. We remind the reader of the both error functions:

(8.86) erf(x) =
2√
π

∫ x

0

dt e−t
2

, erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

dt e−t
2

.

Question: Does the result γ1,1 = 1/2 contradict the rainbow solution in Prop. 8.2 where

(8.87) γp(a) = −a/2 +O(a2) ?

Hint: Ponder over eq.(8.70) again!

9. Field Diffeomorphisms and Perturbation Theory

Let F (x) ∈ R[[x]] be a formal power series with F (0) = 0 and F ′(0) = 1. Objects of this kind are
also referred to as formal diffeomorphisms. We use F (x) to transform a free scalar quantum field ϕ of a
massless Klein-Gordon particle into the field φ according to

(9.1) ϕ = F (φ) =
∑
k≥0

akφ
k+1

and thereby change the Lagrangian L (ϕ, ∂ϕ) = 1
2 (∂ϕ)2 into

(9.2) LF (φ, ∂φ) := L (F (φ), ∂F (φ)) = L (F (φ), F ′(φ)∂φ) =
1

2
F ′(φ)2(∂φ)2.

This yields explicitly

(9.3) LF (φ, ∂φ) =
1

2
(∂φ)2 +

1

2
(∂φ)2

∑
n≥1

dn
n!
φn,

where dn = n!
∑n
j=0(j + 1)(n − j + 1)ajan−j are the coefficients of what now seem to be interaction

terms. A transformation of ’field variables’ which does not involve time derivatives like our example is in
physics called point transformation. These transformations do not change the equations of motion and
hence leave the physics untouched. We shall quickly check this. The functional derivative of L with
respect to ϕ = F (φ) reads

(9.4)
δL

δϕ
=

δL

δF (φ)
= −∂µ∂µF (φ) = −F ′′(φ)(∂φ)2 − F ′(φ)∂µ∂

µφ,
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where

(9.5)
δL

δϕ
:=

∂L

∂ϕ
− ∂µ

∂L

∂(∂µϕ)
.

The functional derivative of LF is

(9.6)
δLF

δφ
= F ′(φ)F ′′(φ)(∂φ)2 − ∂µ(F ′(φ)2∂µφ) = ... = −F ′(φ)[F ′′(φ)(∂φ)2 + F ′(φ)∂µ∂

µφ]

and thus we have

(9.7)
δLF

δφ
= F ′(φ)

δL

δϕ
.

Therefore, the equation of motion for the field φ is satisfied if that for the original field ϕ is. Next, we
read off the Feynman rules from the Lagrangian:

(9.8)
k

=
i

k2
,

k3

k1 k2

= i
d1

2
[k2

1 + k2
2 + k2

3],

k1k1

k3k4

k2

= i
d2

2
[k2

1 + k2
2 + k2

3 + k2
4]

and

(9.9)

k1

kn

k4

k3

k2

= i
dn−2

2
[k2

1 + ...+ k2
n]

for a general vertex of valence n. With these Feynman rules, the power counting for a graph Γ yields

(9.10) ω4(Γ) = −2(|Γ|+ 1),

which says that all amplitudes are superficially divergent and the degree of divergence gets worse with
increasing number of loops no matter how many external legs are involved. This is similiar to the situation
in quantum gravity [Krei07]. Let us now see what the Dyson-Schwinger equations look like when we
restrict ourselves to 1-loop primitives. The 1-loop primitives for the two-leg amplitude of the theory are

(9.11) and .

To dress these skeletons, we need 3 series: the propagator, the 3-point and the 4-point amplitude. For
the sake of convenience, we introduce the notation

(9.12) Xn(α) :=

1 3

n

2

for the 1PI n-point amplitude. The DSE for the propagator series X2(α) is

(9.13) X2 = I− αB+ (X4X
−1
2 )− αB+ (X2

3X
−2
2 ).

This requires us to write down those DSEs of X3(α) and X4(α). That of X3(α) is

(9.14) X3 = I + αB+ (X3
3X
−3
2 ) + αB+ (X4X3X

−2
2 ) + αB+ (X5X

−1
2 ),

where the operator B+ consists of 3 terms:

(9.15) B+ =

3∑
j=1

B
j

+ ,
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one for each possibility of a leg to be the singled out one. The last term tells us that we additionally
need the 5-point amplitude. In general, if we aim to formulate the DSE for the n-point amplitude, it is
the animal

(9.16)
1 2 n

which necessitates the (n+ 2)-point amplitude to be taken into account. This procedure goes on and on
and there is no finite number of independent DSEs unless we find a symmetry like

(9.17) Xn+1Xn−1 = X2
n

such that the corresponding replacements lead to a decoupled system of DSEs. Once this system is solved,
(9.17) will then deliver all other amplitudes. This is in fact what we expect for our seemingly interacting
field theory with Lagrangian LF in (9.3): we expect all n-point amplitudes to vanish for n ≥ 3 as our field
theory is a free theory disguised as an interacting theory. Before we come to this very important point,
let us reformulate our DSEs in (9.13) and (9.14) using an a particularly useful definition of invariant
charges. For every vertex amplitude Xn, n ≥ 3, we define a charge

(9.18) Qn := XnX
−n2
2 .

This is a series with everything needed to dress an n-valent vertex with all possible vertex corrections
and its attached half-edges with half a full propagator. Dressing every vertex with its charge will then
provide for all radiative corrections needed for vertices and internal edges. The only problem is that
external propagators will also be dressed. To account for that, we have to multiply the charges by the
corresponding half-propagators such that

(9.19) X
`(γ)

2
2

∏
v∈V (γ)

Q|v|

is the series that contains everything needed to dress the skeleton graph γ with `(γ) external legs and
vertex set V (γ). |v| denotes the valence of the vertex v ∈ V (γ). The above DSEs then take the form

(9.20) X2 = I− αB+ (Q4X2)− αB+ (Q2
3X2)

and

(9.21) X3 = I + αB+ (Q3
3X

3/2
2 ) + αB+ (Q4Q3X

3/2
2 ) + αB+ (Q5X

3/2
2 ).

If Mn is the set of all 1PI 1-loop primitives with n external legs, then the system of all amplitudes in
this theory can now be written in the form

(9.22) Xn = I± α
∑
γ∈Mn

Bγ+(X
`(γ)/2
2

∏
v∈V (γ)

Q|v|),

where there is a plus sign for all series except for the propagator series with n = 2.
However, let us see what the tree-level amplitudes are and whether they vanish on-shell which they

should for the very reason that our theory is a free theory in disguise. It is easy to see that the 3-point
amplitude vanishes on-shell, just set k2

j = 0. More interesting is the 4-point amplitude. First note that
the full 4-point amplitude consists of two parts:

(9.23)

1

42

3

C =

1

42

3

+
∑
σ∈P

σ(1)

σ(4)

σ(3)

σ(2)

where

(9.24) P =

{(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
1 3 2 4

)
,

(
1 2 3 4
1 4 3 2

)}
is the set of admissible external leg permutations. The blobs on the rhs are all 1PI and the blob labelled
’C’ includes all connected parts, that is, also one-particle reducible diagrams. The tree-level contributions
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are

(9.25)

1

42

3

C

∣∣∣∣∣∣∣∣∣∣∣
tree

= + + + ,

where we have now expressed the leg permutations in a graphical way, without labels. The first term is
vanishes on-shell since

(9.26) = i
dn−2

2
[p2

1 + ...+ p2
4]

∣∣∣∣
on-shell

= 0

when p2
j = 0 for j = 1, 2, 3, 4. The second term yields

= i
d1

2
[p2

1 + p2
2 + (p1 + p2)2]

i

(p1 + p2)2
i
d1

2
[p2

3 + p2
4 + (p3 + p4)2]

∣∣∣∣
on-shell

= −id
2
1

2
p1 · p2

(9.27)

which does not vanish on-shell. The third term and fourth terms are

= i
d1

2
[p2

1 + p2
3 + (p1 + p3)2]

i

(p1 + p3)2
i
d1

2
[p2

2 + p2
4 + (p2 + p4)2]

∣∣∣∣
on-shell

= −id
2
1

2
p2 · p4

(9.28)

and

= i
d1

2
[p2

1 + p2
4 + (p1 + p4)2]

i

(p1 + p3)2
i
d1

2
[p2

2 + p2
3 + (p2 + p3)2]

∣∣∣∣
on-shell

= −id
2
1

2
p2 · p3.

(9.29)

Neither of them vanishes on-shell individually but their sum does:

(9.30) − id
2
1

2
p2 · [p1 + p3 + p4] = i

d2
1

2
p2 · p2 = 0,

and hence we have the result

(9.31)

1

42

3

C

∣∣∣∣∣∣∣∣∣∣∣
tree, on-shell

= 0.

These two results can be used to prove (9.31) for all higher number of external legs.

Proposition 9.1. All tree-level amplitudes of the above theory with more than 2 external legs vanish
on-shell.

Proof. See [VelKrei13] . �

Moreover, by arguments akin to those in the proof for the optical theorem (see [PesSchr]), one can
prove this assertion for all 1-loop contributions. However, as already mentioned, by acknowledging that
our theory is a disguised free theory, all vertex functions should vanish and hence all loop orders, even
though it is not clear how to prove it.

Regarding loop diagrams, there is a subtle issue. Because individual diagrams evaluate by the Feynman
rules to divergent integrals, one has to choose a renormalization scheme. It turns out that the minimal
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subtraction scheme (MS) is a bad choice for which the assertion about the vanishing of amplitudes at
all loop orders is not true. Considering the ’unphysicalness’ of this scheme, this need not worry us: a
(physically reasonable) renormalized theory is not sufficiently characterized by its Lagrangian but rather
by its renormalized Lagrangian. Therefore, a choice about the renormalization scheme is to be made. A
formal diffeomorphism transforming one theory into another must also make sure the renormalization
scheme is ’co-transformed’. [VelKrei13] discuss a few requirements a reasonable transformation of a
renormalized QFT needs to meet. Among them: ’cut-reconstructability’.

This property refers to the fact that one can reconstruct a non-analytic function with a branch cut in
the complex plane from its behaviour along this cut by means of its dispersion relation. Renormalized
values of loop diagrams in momentum scheme do for example fulfill this requirement with respect to their
momentum dependence whereas those obtained through the MS scheme do not. This scheme notoriously
yields constant terms which are trivially entire functions and hence void of branch cuts.

However, the reason why we have discussed this model is that it bears some resemblance to quantum
gravity : the power counting for pure gravity diagrams (without matter fields) is similiar and entails
non-renormalizability. Yet the free theory it stems from is renormalizable. It owes its apparent non-
renormalizability to the ’awkward formulation’ brought about by the field diffeomorphism (the point
transformation). Who knows whether quantum gravity is only seemingly non-renormalizable due to the
awkward form of its currently known Lagrangian?

10. The Core Hopf algebra

Given a graph Γ, we recall that its (superficial) degree of divergence is given by the general formula

(10.1) ωD(Γ) =
∑

e∈E(Γ)

ω(e) +
∑

v∈V (Γ)

ω(v)−D|Γ|,

where ω : E(Γ) ∪ V (Γ) → Z is the weight function. From this definition, it is clear that any graph is
divergent if only the dimension D is high enough. Because the coproduct cuts out a proper subgraph
only if it is divergent, we find that there is a Hopf algebra of Feynman graphs HD for every dimension.
We denote its coproduct by ∆D. As we increase the dimension of spacetime, we have to include more
and more graphs and get a tower of Hopf algebras

(10.2) H0 ⊂ H2 ⊂ H4 ⊂ H6 ⊂ ...

and finally the core Hopf algebra H∞ defined by

(10.3) H∞ :=

∞⋃
D=0

HD.

Containing graphs with any number of external legs, this Hopf algebra is the combinatorial Hopf algebra
for theories which feature a power counting like that of quantum gravity. Each Hopf algebra in the tower
has a clearly defined coproduct, but what, if existent, is the coproduct ∆∞ of the core Hopf algebra?
This is easy to understand: it operates exactly like all the others with the exception that it treats every
proper subgraph with at least one loop as divergent. For example, the scalar graph

(10.4)

has the proper subgraph with degree of divergence ωD( ) = 8 − D. Therefore, the coproduct

yields

(10.5) ∆D( ) = ⊗ I + I⊗

for D ≤ 6 but

(10.6) ∆D( ) = ⊗ I + I⊗ + ⊗

for D ≥ 8. What is a primitive graph in H0, ...,H6 is not primitive in HD for D ≥ 8. This implies for
the two extremes H0 and H∞ that in the former all graphs are primitive whereas in the latter, a graph
must have precisely one loop to be primitive.
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Grading. The loop number defines a natural grading on H∞. Another possible grading is what is known
as the multi-grading : let Vn(Γ) be the number of vertices of valence n of a graph Γ, then we define

(10.7) kn(Γ) := Vn(Γ)− δn,`(Γ),

where the Kronecker delta vanishes unless Γ has n external legs, i.e. when `(Γ) = n. The multivertex-
degree of Γ is then given by the sequence

(10.8) k(Γ) = (k3(Γ), k4(Γ), ...).

This does indeed provide for a grading: if γ ⊗ Γ/γ is a term produced by the ’core’ coproduct, one finds

(10.9) k(Γ) = (k3(Γ), k4(Γ), ...) = (k3(γ) + k3(Γ/γ), k4(γ) + k3(Γ/γ), ...) = k(γ) + k(Γ/γ),

which the reader is encouraged to check for the coproduct in (10.6). The Hopf algebra tower can be
understood as a sequence of subalgebras, where HD is a subalgebra of HD+n. As their coproducts differ,
it is not a Hopf subalgebra of HD+n. However, it can be viewed as a quotient Hopf algebra as follows.
Let G be the set of all Feynman graphs. In HD+n we take the ideal

(10.10) 〈 Γ ∈ G : ωD(Γ) > 0, ωD+n(Γ) ≤ 0 〉Q
generated by all graphs found in HD+n but not in HD. The conditions ωD(Γ) > 0 and ωD+n(Γ) ≤ 0
imply that Γ /∈ HD and Γ ∈ HD+n, respectively. Then, for the quotient of HD+n with respect to this
ideal, we have

(10.11) HD ' HD+n/ 〈 Γ ∈ G : ωD(Γ) > 0, ωD(Γ) ≤ 0 〉Q ,
in the sense of Hopf algebras.
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Appendix A. Hopf algebra: a concise introduction

In the following, we assume all vector spaces to be vector spaces over the field K, either R or C. In
some cases Q or even simpler fields are sufficient. A Hopf algebra is a set equipped with unusually many
algebraic structures. The reader is asked for patience during the course of the following passages.

A.1. Tensor space. Let A,B be vector spaces and {ai : i ∈ I} a basis in A, {bj : j ∈ J} a basis in
B with index sets I, J ⊂ N, not necessarily finite. The tensor space A ⊗ B is the vector space over Q
spanned by pairs of the form ejk = aj ⊗ bk with the following properties:

λaj ⊗ bk = aj ⊗ λbk ∀λ ∈ K,
aj ⊗ bk + ai ⊗ bk = (aj + ai)⊗ bk, aj ⊗ bi + aj ⊗ bk = aj ⊗ (bi + bk).

(A.1)

This implies A ∼= K⊗A ∼= A⊗K since for example λ⊗ a = 1⊗ λa for any a ∈ A and any λ ∈ K, i.e. the
basis in K is simply given by 1. We will always write λ⊗ a = λa and identify such objects if they arise.
For two linear maps f : A→ A and g : B → B we can define a linear map f ⊗ g on A⊗B by setting

(A.2) (f ⊗ g)(a⊗ b) := f(a)⊗ g(b).

If A = K, then (f ⊗ g)(λ⊗ b) = f(λ)g(b) = λf(1)g(b) = f(1)g(λb) = g(λf(1)b) by linearity of f and g.

A.2. Algebra. We define an algebra A as a vector space with an associative product, distributive with
respect to the addition and containing a neutral element 1A called unit. We view the product as a linear
map m : A⊗A→ A and write the product of two elements x, y ∈ A as

(A.3) m(x⊗ y) = xy,

i.e. as a simple juxtaposition. Then we have 1Aa = a1A = a for the unit. Associativity can then be
expressed in the form m(m⊗ id) = m(id⊗m) because of

(A.4) m(m(x⊗ y)⊗ z) = m(xy ⊗ z) = (xy)z = x(yz) = m(x⊗ yz) = m(x⊗m(y ⊗ z)).

The tensor algebra of two algebras A and B is the tensor space A⊗B with associative product

(A.5) (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

The reader may check that the associativity is inherited. We often need the so-called unit map u : K→ A
which simply takes a scalar λ to λ1A. Then, more formally, an algebra is the triple (A,m, u). Examples
are polynomials K[X] in a variable X, continuous functions C0(K) and matrices Kn×n. This should be
familiar to the reader. The only perhaps new aspect is the linearity of the product m : A⊗A→ A, which
is easily illustrated by

(A.6) m(a⊗ b+ c⊗ d) = m(a⊗ b) +m(c⊗ d) = ab+ cd

for a, b, c, d ∈ A.

A.3. Coalgebra. Given an algebra A, we may be interested in the dual vector space A∗ of linear func-
tionals A → K, also known as covectors. Let f ∈ A∗. We write f(a) = 〈f, a〉 for its action on a vector
a ∈ A. What is the map dual to the product m? If we denote it by ∆, it has to satify

(A.7) 〈f,m(a⊗ b)〉 = 〈∆(f), a⊗ b〉,

and surely map A∗ to A∗⊗A∗ ' (A⊗A)∗, where 〈f ⊗ g, a⊗ b〉 := 〈f, a〉〈g, b〉. A quick calculation shows
that associativity of the product requires

(A.8) (id⊗∆)∆ = (∆⊗ id)∆

to hold on A∗. The reader is recommended to prove this property which is known as coassociativity. This
linear map ∆ is called coproduct. The unit map u : A → K does also have a dual which we denote by e
and refer to as counit. Because of

(A.9) 〈f, 1A〉 = 〈f, u(1)〉 = 〈e(f), 1〉 = e(f)1 = e(f)

it must map A∗ to K. Additionally, by

(A.10) 〈f, a〉 = 〈f, 1Aa〉 = 〈f, u(1)a〉 = 〈f,m(u(1)⊗ a)〉 = 〈∆(f), u(1)⊗ a〉 = 〈(e⊗ id)∆(f), 1⊗ a〉

and the same for a = a1A = au(1) it is required to fulfil

(A.11) (id⊗ e)∆ = (e⊗ id)∆ = id
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In general, without having to be characterized as a dual, a vector space C equipped with a coproduct ∆
and counit e such that (A.11) is called coalgebra. An example is the vector space K[X] of polynomials:

(A.12) ∆(Xn) :=

n∑
j=0

(
n

j

)
Xj ⊗Xn−j (n ∈ N)

which defines ∆ uniquely. The counit is given by e(Xn) = 0 for n ≥ 1 and e(1) = 1. It is a nice exercise
to prove that these so defined linear maps really do establish a coalgebra structure on K[X] and also
to find that the binomial coefficient in (A.12) can be dropped with no harm. Another example is the
vector space R[∂x] of polynomials, where ∂x is the usual differential operator acting on smooth functions
R→ R. The structures ∆ and e are defined in the same way as for the variable X. The reader may try
to prove the identity

(A.13) ∂nx (f(x)g(x)) = ∆(∂nx )(f(x)⊗ g(x)).

for any smooth f, g ∈ C∞(R).

A.4. Bialgebra. We are now very close to a Hopf algebra. Consider again the space of polynomials K[X].
We can clearly multiply polynomials and have a neutral element with respect to this operation. Therefore,
K[X] is an algebra. We have seen that on the other hand, it can be equipped with a coalgebra structure.
All structures together, i.e. the product m, unit u, coproduct ∆ and counit e are the ingredients of what
is known as a bialgebra B if two conditions are fulfilled:

(A.14) ∆(ab) = ∆(a)∆(b), e(ab) = e(a)e(b),

in words: the both coalgebra structures ∆ and e must respect the algebra structures, i.e. they both are
required to be multiplicative and linear. It is revealing to see that in the case B = K[X], the coproduct,
as defined in (A.12), cannot be multiplicative if the binomial factor is omitted. In summary, a bialgebra
is a quintuple (B,m, u,∆, e) with the corresponding properties specified above.

A.5. Hopf algebra. Suppose H is a bialgebra, i.e. given by the quadruple (H,m, u,∆, e). With these
structures, we can now establish an associative bilinear operation on the space L(H) of linear maps from
H to itself by setting

(A.15) f ∗ g := m(f ⊗ g)∆,

which means (f ∗ g)(x) = m(f ⊗ g)∆(x) = m(f ⊗ g)(
∑

(x) x
′ ⊗ x′′) =

∑
(x) f(x′)g(x′′) ∈ H if we use a

variant of Sweedler’s notation for the coproduct given by ∆(x) =
∑

(x) x
′ ⊗ x′′. This operation is called

convolution product. Note that f ∗ g : H → H is again linear and the composition e = u ◦ e turns out to
be the neutral element of the convolution:

(A.16) (f ∗ e)(x) =
∑
(x)

f(x′)e(x′′) =
∑
(x)

f(x′)e(x′′)1H =
∑
(x)

f(x′e(x′′)) = f(
∑
(x)

x′e(x′′)) = f(x)

where (id ⊗ e)∆ = id is a property of the coalgebra. (e ∗ f)(x) = f(x) goes along the same lines. We
now ask whether there is an inverse of a map f ∈ L(H) with respect to the convolution product. In
particular, for f = id. If it exists, we call it the antipode(or coinverse) S and write its defining property
as

(A.17) S ∗ id = id ∗ S = e.

Now, there we are. A bialgebra H that has the luxury of an antipode is called Hopf algebra. In the
example H = K[X], the antipode is recursively given by

(A.18) S(Xn) = −Xn −
n−1∑
j=1

(
n

j

)
S(Xj)Xn−j = −Xn −

n−1∑
j=1

(
n

j

)
XjS(Xn−j)

for a monomial Xn with n ≥ 1 which follows from (id ∗ S)(Xn) = (S ∗ id)(Xn) = e(Xn) = 0. Because
of e(1) = 1, the antipode preserves the unit S(1) = 1 by ∆(1) = 1⊗ 1 which follows from (A.12) and its
defining property in (A.17).
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Appendix B. Hopf algebra of Feynman graphs

One can endow the set of Feynman graphs with a Hopf algebra structure as follows. Consider the set of
all connected and superficially divergent 1PI Feynman graphs in some theory(1PI means the graph stays
connected upon removal of any chosen edge). Now we take the polynomial algebra in which these graphs
are the variables, where the unit I, i.e. the neutral element of the product, is given by the empty graph.
Tree diagrams do not participate or, if you will, are considered as empty graphs, hence indentified with
the unit I. Let Γ 6= I be one such Feynman graph. The coproduct is defined as a linear and multiplicative
map given by ∆(I) = I⊗ I and

(B.1) ∆(Γ) = I⊗ Γ + Γ⊗ I +
∑
γ

γ ⊗ Γ/γ,

where the sum is over all subdivergences γ ( Γ of the form γ =
∏
j γj such that γj is a proper divergent

1PI subgraph. The graph Γ/γ is called cograph, obtained by shrinking the subgraph γ to a single point
in Γ. An example is

(B.2) / = .

In some cases, depending on whether we have self-loop and tadpol graphs in our Hopf algebra, we use
an altered definition of the coproduct. The counit e is given by e(I) = 1 and vanishing on all non-empty
graphs. The antipode is then again given recursively by its defining property in (A.17).

Appendix C. Ideals

Ideals. Let A be an algebra over a field K. A subspace I ⊂ A is called left ideal if AI ⊂ I, and right ideal
IA ⊂ I, i.e. if ax ∈ I for a left and xa ∈ I for a right ideal whenever x ∈ I and a ∈ A. If both conditions
are satisfied, then I is called (two-sided) ideal. Note that, trivially, (left/right) ideals are subalgebras by
definition and, of course, if the product is commutative, both right and left ideals coincide. Here is a
simple example. Take the set of polynomials A = K[X] in one variable. Let c ∈ K be any number. The
set of polynomials defined by

(C.1) Ic := {p ∈ K[X] | p(c) = 0}

clearly form a subspace and, surely, a subalgebra. Multiplication and linear combination are the only
operations we allow for and we find they do not carry us out of Ic. It is also an ideal, since q(c)p(c) = 0
even if q(c) 6= 0 for q /∈ Ic. We can in fact choose any polynomial q ∈ A and generate an ideal

(C.2) (q) := {aq | a ∈ A},

known as principle ideal(German Hauptideal). This really is an ideal since any r ∈ (q) is of the form
r = aq and we can multiply it with anything w ∈ A and find wr = waq ∈ (q) since wa ∈ A.

Hopf ideals. A less trivial question is whether an ideal I ⊂ H is also a so-called coideal of a Hopf
algebra H, i.e. if

(C.3) ∆(I) ⊂ I ⊗H +H ⊗ I.

Furthermore, we may ask whether the antipode respects it: S(I) ⊂ I. If these two conditions are satisfied,
I is referred to as Hopf ideal. Let us see what the answer is in the case of the Hopf algebra H = K[X] of
polynomials with I being the ideal of polynomials vanishing at some fixed number c ∈ K. Then clearly
p(X) = X − c ∈ Ic. The coproduct gives

(C.4) ∆(p(X)) = X ⊗ 1 + 1⊗X − c1⊗ 1 = (X − c)⊗ 1 + 1⊗X.

Only for c = 0 is this an element in H ⊗ I + I ⊗ H. We choose c = 0. The coproduct of a monomial
Xn ∈ I0 for n 6= 0 is

(C.5) ∆(Xn) =

n∑
j=0

(
n

k

)
Xj ⊗Xn−j = 1⊗X +X ⊗ 1 +

n−1∑
j=1

(
n

k

)
Xj ⊗Xn−j

where 1⊗X +X ⊗ 1 ∈ H ⊗ I + I ⊗H and the reduced part is actually in I ⊗ I ⊂ I ⊗H +H ⊗ I. Since
this holds for all monomials, we have for any polynomial p ∈ I0
(C.6) ∆(p(X)) ⊂ H ⊗ I + I ⊗H
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since p(X) must be a linear combination of monomials Xn, n 6= 0. Therefore I0 ⊂ H = K[X] is indeed a
coideal. One can show that S(I0) ⊂ I0 by the antipode’s multiplicativity:

(C.7) S(Xn) = S(X)n = (−X)n = (−1)nXn ∈ I0,

where S(X) = −X follows from 0 = (S ∗ id)(X) = m(S ⊗ id)∆(X) = S(X)1 + S(1)X and S(1) = 1. We
conclude: the ideal Ic is a Hopf ideal iff c = 0 (the double ff being no typo).

Appendix D. The Hopf Algebra of Words

Let A be a countable set called alphabet with elements a ∈ A named letters. We let this set be the
generator set of the non-commutative algebra W := Q〈A〉. A product of letters is called word. By |w|
we denote the number of letters in w. This endows W with a vector space grading W =

⊕
n≥0Wn. Let

e ∈W denote the empty word, i.e. xe = ex = x for any x ∈W . We introduce a bilinear operation on W
by

(D.1) w� e = e� w = w, aw� bv = a(w� bv) + b(aw� v)

for any words w, v ∈W and and call it the shuffle product.

Proposition D.1. The pair (W,�) is a commutative algebra, i.e. the shuffle product is both associative
and commutative.

Proof. We proceed by induction. First commutativity. Let a, b ∈ A be two letters, then

(D.2) a� b = a(e� b) + b(a� e) = ab+ ba.

Assume we have proved it for a shuffle product giving an n-letter word. Let w, v ∈W be words such that
|w|+ |v| = n− 1. Then,

(D.3) aw� bv = a(w� bv) + b(aw� v) = a(bv� w) + b(v� aw) = bv� aw.

Now associativity. It is trivial for shuffle products resulting in words in Wn, n ≤ 4. Let now a, b, c ∈ A
be letters and w, v, t ∈W be words such that |w|+ |v|+ |t| = n− 2. Then,

aw� (bv� ct) = aw� [b(v� ct) + c(bv� t)]

= a{w� b(v� ct) + c(bv� t)}+ b{aw� (v� ct)}+ c{aw� (bv� t)}
= a{w� (bv� ct)}+ b{aw� (v� ct)}+ c{aw� (bv� t)}

(D.4)

and

(aw� bv)� ct = [a(w� bv) + b(aw� v)]� ct

= a{(w� bv)� ct}+ b{(aw� v)� ct}+ c{[a(w� bv) + b(aw� v)]� t}
= a{(w� bv)� ct}+ b{(aw� v)� ct}+ c{(aw� bv)� t}

(D.5)

are equal by associativity of the shuffles in the curly brackets {...}. �

Next, we introduce the coproduct. It is given by

(D.6) ∆(aj1 ...ajn) = aj1 ...ajn ⊗ e+ e⊗ aj1 ...ajn +

n−1∑
l=1

aj1 ...ajl ⊗ ajl+1
...ajn .

We write ∆(x) = x′ ⊗ x′′ as a convenient shorthand notation. The counit ē is given by ē(e) = 1 and
ē(a) = 0 for any x ∈W \ {e}. Coassociativity can be most easily proved inductively. The induction start
for e and a single letter word are trivial. Assume it holds for n-letter words. We take a word w ∈ Wn

and a letter a ∈ A and compute

(D.7) (∆⊗ id)∆(aw) = ∆(e)⊗ aw + ∆(aw′)⊗ w′′ = e⊗ e⊗ aw + e⊗ aw′ ⊗ w′′ + a(w′)′ ⊗ (w′)′′ ⊗ w′′

as well as

(D.8) (id⊗∆)∆(aw) = e⊗∆(aw) + aw′ ⊗∆(w′′) = e⊗ e⊗ aw + e⊗ aw′ ⊗w′′ + aw′ ⊗ (w′′)′ ⊗ (w′′)′′.

On the grounds that the coproduct is coassociative for w, the last two terms are equal and hence ∆
is coassociative on W . Due to the next assertion, W is a bialgebra. Since the antipode is uniquely
determined recursively, it is moreover a Hopf algebra, i.e. the Hopf algebra of words.

Proposition D.2. The coproduct respects the shuffle product, i.e. ∆(x�y) = ∆(x)�∆(y) for x, y ∈W .
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Proof. By induction. First let a, b ∈ X. Then,

∆(a� b) = ∆(ab+ ba) = ab⊗ e+ e⊗ ab+ a⊗ b+ ba⊗ e+ e⊗ ba+ b⊗ a
= (a� b)⊗ e+ e⊗ (a� b) + a⊗ b+ b⊗ a
= (a� b)⊗ e+ e⊗ (a� b) + (a⊗ e)� (e⊗ b) + (b⊗ e)� (e⊗ a)

= (a⊗ e)� (b⊗ e) + (e⊗ a)� (e⊗ b) + (a⊗ e)� (e⊗ b) + (b⊗ e)� (e⊗ a)

= (a⊗ e)� [b⊗ e+ e⊗ b] + (e⊗ a)� [e⊗ b+ b⊗ e]
= [a⊗ e+ e⊗ a]� [b⊗ e+ e⊗ b] = ∆(a)�∆(b).

(D.9)

Now let it be true for a shuffle of words in Wn. Let now w, v ∈W be words such that |w|+ |v| = n− 1.
First compute

∆(aw� bv) = ∆(a(w� bv)) + ∆(b(aw� v))

= e⊗ (aw� bv) + a(w� bv)′ ⊗ (w� bv)′′ + b(aw� v)′ ⊗ (aw� v)′′

= e⊗ (aw� bv) + a(w′ � (bv)′)⊗ (w′′ � (bv)′′) + b((aw)′ � v′)⊗ ((aw)′′ � v′′)

(D.10)

The last two terms are

a(w′ � (bv)′)⊗ (w′′ � (bv)′′) = a(w′ � e)⊗ (w′′ � bv) + a(w′ � bv′)⊗ (w′′ � v′′)

= aw′ ⊗ (w′′ � bv) + a(w′ � bv′)⊗ (w′′ � v′′)
(D.11)

and

b((aw)′ � v′)⊗ ((aw)′′ � v′′) = b(e� v′)⊗ (aw� v′′) + b(aw′ � v′)⊗ (w′′ � v′′)

= bv′ ⊗ (aw� v′′) + b(aw′ � v′)⊗ (w′′ � v′′).
(D.12)

Their sum is

(aw′ ⊗ w′′)� (e⊗ bv) + (e⊗ aw)� (bv′ ⊗ v′′) + (aw′ � bv′)⊗ (w′′ � v′′),(D.13)

and, together with ’e⊗ (aw� bv)’, they equal

∆(aw)�∆(bv) = (e⊗ aw + aw′ ⊗ w′′)� (e⊗ bv + bv′ ⊗ v′′) = e⊗ (aw� bv)

+ (e⊗ aw)� (bv′ ⊗ v′′) + (aw′ ⊗ w′′)� (e⊗ bv) + (aw′ ⊗ w′′)� (bv′ ⊗ v′′).
(D.14)

�
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