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0.1 The Lorenz gauge
In the Lorenz gauge, the constraint on the connection fields is

fa(~Aµ) = 0 = ∂µAa
µ

For every group index a, there is one such equation, so there are three constraints overall. For a
gauge variantion θ, the transformation is

U(~θ) = 1 + i~θ(x) ·
~τ

2
+O(θ2)

The connection field components are given by

Aa
µ
θ(x) = Aa

µ(x) + εabcθbAc
µ−

1
g
∂µθ

a(x)

The transformed gauge constraints are therefore

fa(~Aθµ) = fa(~Aµ) +∂µ
{
εabcθbAc

µ−
1
g
∂µθ

a(x)
}

which we will write as

fa(~At
µheta) = fa(~Aµ) +

∫
d4y

(
M f (x,y)abθ

b(y)
)
δ(4)(x− y)

where a,b are the group indices.
In the Lorenz gauge, the gauge fixing and Faddeev-Popov-ghost terms in the action are

Sg f = −
1
2ξ

∫
d4x

(
∂µ ~Aµ(x)

)2

SFPGh =
1
g

∫
d4x

∑
a,b

c†a(x)∂µ
{
δab∂µ−gεabcAc

µ

}
cb(x)

The term in the Fadeev-Popov-ghost line which is in parentheses basically be viewed as a co-
variant derivative. In the Lagrangian, this produces , among others, the monomial c†Aµc, a
ghost-ghost-connection field vertex. Similar as in QED, there is, once again, a spin one gauge
boson.

1 Feynman Rules for QCD
The indices a,b, . . . denote the group indices. Let us call them ”color indices”. Moreover, call
the gauge boson ”gluon”.
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• The gluon propagator depends on Lorentz indices as well as color indices. For the mass-
less gluon, the Feynman rule for the propagator is

b
k

a

νµ
→ i(−δab)

{
gµν−

kµkν
k2

}
1

k2 + iε

This is the term which comes from the quadratic terms in the A fields.

• The quadratic terms in the c fields gives the ghost propagator. The ghost is a very strange
particle, because in the Lagrangian, it looks like a fermion, but its propagator is similar
to that for bosons. Moreover, there are no external ghosts. It only exists for virtual lines.

→ i(−δab)
1

k2 + iε

Even though there is no mass term in the propagator, one cannot for sure call the ghost
massless, because it is neither boson nor fermion.

• We have already stated that the three-gluon vertex must depend on the momenta k, the
Lorentz indices µ and the color indices a.

3

21

k1 aµ1 1

→ igεa1a2a3
{
gµ1µ2(k1− k2)µ3 + gµ2µ3(k2− k3)µ1 + gµ3µ1(k3− k1)µ2

}

• Next comes the Feynman rule for the four-gluon vertex. In the Lagrangian term FµνFµν,
there appears a term with four connection fields, because of the non-vanishing commuta-
tor

[
Aµ,Aν

]
in a non-abelian gauge theory.

2 4

1

3

→ g2εa1a2cεa3a4c
{
gµ1µ3gµ2µ4 −gµ1µ4gµ2µ3

}
+εa1a3cεa2a4c

{
gµ1µ2gµ3µ4 −gµ1µ4gµ2µ3

}
+εa1a4cεa3a2c

{
gµ1µ3gµ2µ4 −gµ1µ2gµ3µ4

}
• The Feynman rule for the gluon-ghost vertex is a bit strange because it is not symmetric

in the ghost momenta.

−(k +k )

a

a

ak

k

1 2

1

2

1

2

3 µ
→ igεa1a2a3k1µ

It is important to notice that only the monentum of the incoming ghost particle, that is
the line directed towards the vertex, contributes, with the Lorentz index of the vertex.
However, since the ghost only apears internally, the sum over all graphs still works out,
even though this Feynman rule look counterintuitive.

• The Feynman rule for the fermion of the theory looks as usual, besides the fact that there
is a contraction of color indices.

a b → iδab
1

/k−m + iε
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• Finally, the Feynman rule for the gluon-fermion-vertex is

a

µc

b

→ ig(T c)abγ
µ

where T c can be any representation we choose, it just needs to be specified with which
representation one is working.

Of course, we have already thought about the ghost particle, what it is good for, why it is
actually there at all, and whether or not the whole ghost formalism makes sense at all. To gain
some more information, let us look into analyticity of the S -matrix and Cutkosky rules again.

1.1 Cutkosky in QCD
The S matrix is unitary: S S † = I. If we write the S matrix as S = I+ iT , we get (in a rather
symbolic notation)

=(Ti f ) =

∫∑
n

TinTn f
†δ(4)(pin− pout)

Now, let us assume that a fermion antifermion pair interacts somehow, where a virtual connec-
tion field pair is produces, which again decays in some way into a fermion antifermion pair.
According t Cutkosky,

=

 f

f

_ _
f

f

A

A

 =

∫∑∣∣∣∣∣∣∣∣∣ f
f
_

k

k2

1

A

A

∣∣∣∣∣∣∣∣∣
2

1.1.1 Imaginary parts of propagators

Analyze the imaginary part of a gauge propagator with Lorentz indices µν and color indices ab:

∆ab
µν = δab(−gµν)

1
k2 + iε

= δab(−gµν)
(
P

( 1
k2

)
+ iπδ(k2)

)
⇒ =(∆ab

µν) = πδab(gµν)δ(k2)θ(ωk)

In the third line, P denotes the Cauchy principal value.
Consequently, the imaginary part of the ghost propagator is

=( ) = πδabδ(k2)θ(ωk).

1.1.2 Forward scattering

In the absolute square of the matrix element from above,∣∣∣∣∣∣∣∣∣ f
f
_

k

k2

1

A

A

∣∣∣∣∣∣∣∣∣
2
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there is a phase space integrad in it which indicates forward scattering.∫
dρ2

[
1
2

T ab
µνT ab

µ′ν′
∗
gµµ

′

gνν
′

−S abS ab∗
]

T ab
µν is the T matrix element for f f̄ → AA scattering. S ab represents f f̄ → cc̄ scattering. The

entire integral has an unphysical part, whose imaginary part is of interest.
If we compare the right-hand side and left-hand side of

=

 f

f

_ _
f

f

A

A

 =

∫∑∣∣∣∣∣∣∣∣∣ f
f
_

k

k2

1

A

A

∣∣∣∣∣∣∣∣∣
2

,

then this expression should be identical to

1
2

∫
dρ2 T ab

µνT ab
µ′ν′P

µµ′(k1)Pνν
′

(k2)

which is entirely physical. The two integrals should be the same.
These are all the contributions to Cutkosky cuts of the process:

The curly line denotes the gluon fields, the solid lide denotes the fermion fields, and the dashed
line denotes the ghost field. Moreover, the dashed lines from top to bottom suggest the Cutkosky
cuts. Since there is no external ghost particle in existence, the contribution to forward scattering
consists of ∣∣∣∣∣∣∣∣ + +

∣∣∣∣∣∣∣∣
2

We are able to obtain a consistent result if we can show that

kµ1T ab
µν = −iS abk2ν

T ab
µνkν2 = −iS abk1µ

If we contract the entire expression with k1
µk2

ν, we should get zero, because k2 = 0 on the mass
shell (gluons are massless). Therefore, kµ1Tkν2 = 0.
As it turns out, once again, this whole integrals simply makes no sense without the ghost loop.
This is the reason for its introduction.
There is a more systematic way to derive the introduction of the ghost loop, but it is too long
for this class.
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2 Optical Theorem and Renormalizability
The optical theorem and renormalizability to not trivially or automatically both hold. Still, there
is quite a systematic approach to it.
Let us work in φ3

6 theory here. The two-loop 1PI graphs for the propagator are

1
2

+
1
2

To get the imaginary part, we look at Cutkosky cuts:

→ + + + +

+
1
2

X
1

+
1
2

X
1

+
1
2

X
1

+
1
2 X

1

→ + +

Of course, counterterms can be cut, too. For each of the cuts, we get branch cut ambiguities.
For the graphs with two cut lines, like , it starts at 2m2, for three cut lines, line , it starts
at 3m2, and so on.
The forward scattering is given by, for example,

→ →

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

→ →

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

There are also short-distance singularities:

A

+
1
2

X
1

B

A + B : one-loop renormalized

C

+
1
2 D

1
X

C + D : one-loop renormalized

⇒ Only if we allow counterterms, there can be renormalization and Cutkosky at the same time.
⇒ The optical theorem is meaningful even for short-distance singularities.
Showing that the optical theorem also holds for unrenormalized amplitudes is not so easy. One
would need to regulate, and for that, the gauge bosons have to be massless, which is not gen-
erally the case. If the gauge bosons were massive, then there would be no gauge-invariant
regulator.
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3 Slavnov Taylor Identities
Back to gauge theories: Let us derive Slavnov Taylor identities. Write down the Lagrangian for
a fermion and boson field:

L = −
1
4

FµνaFµνa
+ ψ̄i /Dψ−mψ̄ψ

where

/D = γµDµ

Dµψ =
(
∂µ− igAaµT a

)
ψ

Fµνa = ∂µAνa−∂νAµa + gεabcAµbAνc

If we transform the fermionic field, it depends on the representation we use:

δψ = −iT aθaψ

The transformation of the connection field is

δAa
µ = εabcθbAc

µ−
1
g
∂µθ

a

The Lagrangian for the gauge fixing is

Lg f = −
1
2ξ

(
∂µAa

µ

)2

and for the Faddeev Popov ghost

LFPGh = ic†a∂
µ
(
δab∂µ−gεabcAc

µ

)
cb

Now, we write the ghost field in terms of complex fermion fields.

ca =
1
√

2
(ρa + iσa)

c†a =
1
√

2
(ρa− iσa)

That allows us to decompose the ghost fields c and c† in real and imaginary fermionic fields ρ
and σ. The Faddeev Popov ghost Lagrangian becomes

⇒ LFPGh = −i∂µρaDµσa

with

Dµσa = ∂µσa−gεabcσbAc
µ

This looks nice! Our gauge condition is the real part times the covariant derivative of the
imaginary part.
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We introduce a variable ω as infinitesimal Grassmann variable. It anticommutes with any other
Grassmann variable and commutes with any scalar field. Infinitesimal transformations are

δAµa = ωDµσ
a

δψ = igω
(
T aσa)ψ

δρa = −
i
ξ
ω∂µAa

µ

δσa = −gωεabcσ
bσc

2

U(~θ) = exp

i
∑

a
θa(x)

τa

2


θa(x) = −gωσa(x)

The last two lines are the formal transformation laws of the fixed Lagrangian L.
Let us consider the full Lagrangian L+LFPGh +Lg f . Is it invariant? L is certainly invari-
ant, LFPGh and Lg f are certainly not invariant. We claim, without proof (it should be in any
textbook), that the sum LFPGh +Lg f is invariant.

4 Ward Identities
If we take a look at the couplings,

→ g

→ g

→ g

→ g2
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there has got to be a Ward identity! Imagine the couplings were different for each vertex.

→ g1

→ g2

→ g3

→ g4

Then there would be different g’s in different monomials in the Lagrangian, like ψ̄ /Aψ and
1
4 FµνFµν. This would result in a total loss of gauge invariance, which would destroy all for-
mal proofs.
The Ward identity, which holds not only for the Z factors, but also for the complete Green’s
functions, is

Z
Z

=
Z
Z

=
Z
Z

=
Z

Z

The last two terms can be interpreted graphically:

Z
Z

=
Z

Z
⇔ Z

1
Z

Z = Z

↔
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