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To explain the fundamental difference between classical and quantum mechanics, we consider
the distinguishability of particles. In classical mechanics, any particle is assigned its path and
therefore it is always possible to follow a particle’s path back in order to discern it from other
particles. In quantum mechanics, this is not the case. We use a Fock space as a notation of
indistinguishability.
Consider a (bosonic) ”two-particle state”, that is, a state in a two-quantum Hibert space. Let
|Ψ(1, 2; t)〉 be a state of particles 1 and 2 which evolves in time and therefore satisfies some
Schrödinger equation (SE). Then |Ψ(2, 1; t)〉, where the two particles are swapped, satifies the
same SE, and so do all superpositions of these two states. Then,{

exp
(
i
(
~k1~x1 + ~k2~x2

) )}
, exp

(
i
(
~k2~x1 + ~k1~x2

) )}
are used to describe Ψ.

1 Hilbert spaces
We now consider a two-dimensional one-particle Hilbert spaceH with an operator A : H → H ,
which has two eigenstates |a〉 and |b〉. We write |a(1)〉 to describe that particle 1 is in state |a〉.
For a two-particle system, we get the following possible states:{

|a(1)〉 |a(2)〉 , |a(1)〉 |b(2)〉 , |b(1)〉 |a(2)〉 , |b(1)〉 |b(2)〉
}

Without further assumptions made, all states are equiprobable. In quantum mechanics, however,
this is not what we observe. Instead, we get three bosonic and one fermionic state.

|a(1)〉 |a(2)〉
|b(1)〉 |b(2)〉

|a(1)〉 |b(2)〉 + |b(1)〉 |a(2)〉

 bosonic states

|a(1)〉 |b(2)〉 − |b(1)〉 |a(2)〉 fermionic state

The bosonic states are symmetrical whereas the ferminic state is antisymmetrical (→ Pauli
principle).
Next, we focus our attention on creators (Erzeuger) and annihilators (Vernichter) acting on
bosonic and fermionic states. In the space of quanta that can just be aggravated, so they can be
counted, but not distinguished, we observe various types of quanta.

1.1 One-particle states
Starting with ”one quantum” physics, states are considered as rays in a Hilbert space H1. We
make the assumption thatH1 has a discrete basis. Furthermore, we consider an observable Â(1).
Let Â(1) have eigenvectors |a1〉 , . . . , |an〉, n ∈ N, with eigenvalues ai. By writing |ai〉 we mean
that one particle occupies the ith state.

|a1〉 ' |1, 0, . . . , 0〉A
|a2〉 ' |0, 1, . . . , 0〉A
. . .

The subscript A indicates that the states are in the eigenbasis of Â(1).
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1.2 Two-particle states
Let’s move on to ”two quantum” Hilbert space: InH2 we should have

|2, 0, . . . , 0〉A
|1, 1, 0, . . . , 0〉A
|1, 0, 1, 0, . . . , 0〉A
|0, 1, 1, 0, . . . , 0〉A
. . .

Obviously, H2 , H1 ⊗ H1! If this were the case, we would be able to distinguish quanta.
Instead,H2 is isomorphic toH1 ⊗S H1, where ⊗S is the symmtetric tensor product

h1 ⊗S h2 = h1 ⊗ h2 + h2 ⊗ h1.

In general, there is some kth state nk for which all higher states are zero. In our notiation we
omit all states beyond nk.

| n1, . . . , nk︸     ︷︷     ︸
Fock basis

, 0, . . . , 0〉A

|0, 0, . . . , 0〉A ≡ |0〉A

The vacuum state |0〉A is independent of the choice of Â(1).
For any two states

∣∣∣~n〉 and
∣∣∣~n′〉 for which ~n , ~n′,

∣∣∣~n〉 ⊥ ∣∣∣~n′〉.
Experimentally, this means that we are able to measure the number of quanta in every state (that
is, before other interactions), if they are free particles (outside the reach of an interaction).

2 Fock space
For bosonic Fock space, the ith state can be occupied by any number of particles, including zero.
For fermionic Fock space, each state can either be occupied by one or by no particle.

ni ∈ N≥0 (bosons)
ni ∈ {0, 1} (fermions)

We define the number operator N̂(A)
i which counts the number of quanta in the ith eigenstate of

Â. N̂(A)
i is supposed to have real eigenvalues ni ∈ N ⊂ R.

N̂(A)
i |n1, . . . , ni, . . . , nk〉A = ni |n1, . . . , ni, . . . , nk〉

ni is the occupation number (Besetzungszahl) with respect to a fixed observable Â.
For fixed Â, the N̂(A)

i form a maximal commuting set of operators on

H = H0 ⊕H1 ⊕H2 ⊕H3 ⊕ . . .

WhereasH is a Fock space,H1 is a single quantum Hilbert space,H2 is a two-quantum Hilbert
space isomorphic toH1 ⊗S H1, and so on.
We can write an observable as Â =

∑
aiN̂

(A)
i . Considering superpositions of

∣∣∣~n〉 and
∣∣∣~n′〉, we see

that they are certainly no eigenstates of N̂(A)
i .
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2.1 Creators and annihilators
Let us assume that N̂(A)

i can be written using a creator âi
† and an annihilator âi. Then

N̂(A)
i = âi

†âi âi
†, âi not self-adjoint!

2.1.1 Annihilator

Definition: The annihilator acting on the vacuum state will erase that state. The vacuum state
is denoted by |0〉 and carries no particles whatsoever. If the annihilator acts on a non-vacuum
state, the occupation number will be decreased by one.

âi |. . . , ni, . . .〉 = c(ni) |. . . , ni − 1, . . .〉 if n1 > 0 âi |. . . , ni, . . .〉 = 0 if n1 = 0

To determine the action of âi
†, we consider âi

† |. . . , ni, . . .〉 and keep in mind that in a scalar
product with an operator acting on the ket vektor, we get the same result if we instead let the
adjoint operator act on the bra vector.

〈. . . , ni
′, . . .| âi

† |. . . , ni, . . .〉 = 〈. . . , ni, . . .| âi |. . . , ni
′, . . .〉∗

=


0 if n′i = 0
c∗(n′i) 〈. . . , ni, . . . | . . . , ni

′ − 1, . . .〉︸                              ︷︷                              ︸
∝δni ,ni′−1

if ni
′ , 0

Of course, the scalar product of two states is zero for different states and only non-zero for two
identical states (if ni = ni

′ − 1). We therefore get

âi
† |. . . , ni, . . .〉 = c∗(ni + 1) |. . . , ni + 1, . . .〉

and now take into account the previous definition of N̂(A)
i ,

N̂(A)
i

!
= âi

†âi

⇒ c ∗ (ni)c(ni) = ni

⇒ c(ni) = ω(ni)
√

ni

ω(ni) is a general complex phase. But since we work in a real Hilbert space, we can choose this
phase once. We do that by setting ω(ni) ≡ 1 which gives us c(ni) = c∗(ni) =

√
ni.

âi |. . . , ni, . . .〉 =
√

ni |. . . , ni − 1, . . .〉
âi
† |. . . , ni, . . .〉 =

√
ni + 1 |. . . , ni + 1, . . .〉

}
N̂(A)

i ≡ âi
†âi

2.1.2 Commutator relations

The commutator relations for the creators and annihilators are as follows:[
âi, â j

†
]

= δi jÎ[
âi, â j

]
= 0 =

[
âi
†, â j

†
]

Î denotes the unit operator in Hilbert space.
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• Assume i = j.

〈. . . , ni
′, . . .|

(
âiâi

† − âi
†âi

)
|. . . , ni, . . .〉

= 〈. . . , ni
′, . . .| âiâi

† |. . . , ni, . . .〉 − 〈. . . , ni
′, . . .| âi

†âi |. . . , ni, . . .〉

= 1 · 〈. . . , ni
′, . . . | . . . , ni, . . .〉

=

1 ni
′ = ni ⇒

[
âi, âi

†
]

= Î

0 ni
′ , ni

• Assume i , j.〈
. . . , ni

′, . . . , n j
′, . . .

∣∣∣ âiâ j
†
∣∣∣. . . , ni, . . . , n j, . . .

〉
−

〈
. . . , ni

′, . . . , n j
′, . . .

∣∣∣ â j
†âi

∣∣∣. . . , ni, . . . , n j, . . .
〉

=
( √

(ni)(n j + 1) −
√

(n j + 1)(ni)
)
·
〈
. . . , ni

′, . . . , n j
′, . . . | . . . , ni, . . . , n j, . . .

〉
= 0 ⇒

[
âi, â j

†
]

= 0 ∀i , j

2.1.3 Fermionic case

For fermions, we still require that N̂(A)
i

!
= âi

†âi, but we also need
(
âi
†
)2 !

= 0 to maintain the Pauli
principle.

âi |. . . , 1i, . . .〉 = c(1) |. . . , 0i, . . .〉

âi |. . . , 0i, . . .〉 = 0

Since c∗(1)c(1) = 1 we know that c is a pure phase. The actual value of c depends on the con-
tent. The creator of the ith state gives zero if that state is already occupied.

∣∣∣∣∣∣âi
† |0, . . . , 1i, 0, . . .〉

∣∣∣∣∣∣2 > 0

2.1.4 Anticommutator relations

For fermions, we get anticommutator relations.[
âi, â j

†
]
+

= δi jÎ[
âi, â j

]
+

= 0 =
[
âi
†, â j

†
]
+

• Assume i , j and consider b̂S
† B 1

√
2

{
âi
† |0〉 + â j

† |0〉
}
. Note that since b̂S

† is a linear
combination of one-quantum states it is therefore itself a one-quantum state. Of course,(
b̂S
†
)2

= 0.

(
b̂S
†
)2

=
1
2

(
âi
† + â j

†
) (

âi
† + â j

†
)

= 0

=
1
2

(
âi
†âi
†︸︷︷︸

=0

+ â j
†â j
†︸︷︷︸

=0

+ âi
†â j
† + â j

†âi
†︸           ︷︷           ︸

=

[
âi
†,â j

†

]
+

)

• Assume i = j. Considering all states
[
âi, âi

†
]
+

can act on, the result follows immediately.
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2.2 Notation of states
To denote that the ith (bosonic) state is occupied by ni particles, the creator acts ni-times on the
vacuum state to creator the ni particles in the ith state.

|. . . , ni, . . .〉 =
1
√

ni!

(
âi

)ni
|. . . , 0i, . . .〉

⇒ |n1, . . . , ni, . . . nk〉 =

k∏
j=1

1√
n j!

(
â j

)n j
|01, . . . , 0k〉

For fermions, each occupied state is denoted by the action of the creator on the vacuum state.

|1, . . . , 1k, . . .〉 = â1
† . . . âk

† |0〉
âi
† |. . . , 0i, . . .〉 = ± |. . . , 1i, . . .〉

with the plus sign if the number of occupied states before the ith slot is even and the minus sign
if it is odd.
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From Fock Space to the Klein Gordon
Equation

26.10.2011

Repitition: Fock space states are denoted by |. . . , ni, . . . 〉which for bosons equals
∏

i
1
√

ni
(. . . âi

† . . . ) |0〉
where |0〉 denotes the vacuum state. For fermions, âi

† |. . . , 0i, . . . 〉 = ± |. . . , 1i, . . . 〉 with plus
sign is the number of occupied states before the ith state

(∑i−1
k=1 nk

)
is even and minus sign if that

number is odd.
We only need a few simple assumptions to derive the Klein Gordon equation (KGE) without
any further knowledge of classial field theory.

3 Change of Basis
Change of basis in Fock space:

|. . . , ni, . . . 〉A
?
−→ |. . . , ni, . . . 〉B

To see that the change of basis in Fock space is given by a transition matrix, we expand an
arbitrary state vector |bi〉 from the B-basis in terms of vectors

∣∣∣a j

〉
from the A-basis (inH1).

|bi〉 =
∑

j

∣∣∣a j

〉 〈
a j | bi

〉
=

∑
j

c ji

∣∣∣a j

〉
b̂i
† |0〉 =

∑
j

c jiâ j
† |0〉

b̂i
† and b̂i have similar commutator relations to those of âi

† and âi. To show an example, let’s
look for [

b̂i, b̂i′
†
]
±

=
∑

j

∑
j′

c ji
∗c j′i′

[
âi, âi

†
]
±︸   ︷︷   ︸

=δ j j′

=
∑

j

c ji
∗c ji′︸︷︷︸

c∗c=I

= δii′

Up until this point, we have always assumed that the Hilbert space bases are discrete so they
give us a discrete set of eigenvectors. This is not generally the case in physics, therefore we
need to replace the

∑
with an

∫
in case of free field theory.

3.1 Labels
Let’s assume the continuous labels:

{|k〉} ”momentum basis” k, p, q, . . .
{|x〉} ”position basis” x, y, z, . . .

and assign a ”field” to every point in space time:

Ψ̂†(~x) =

∫
d3k̃

〈
~k | ~x

〉︸︷︷︸
=̃ei~k·~x

âk(k)

︸                  ︷︷                  ︸
corresponds to Fourier expansion

The assumption we make when we write down a quantum field like this is that we have the
ability to detect momenta of quanta and count the number of quanta in the different momentum
states n~k, n~k′ , and so on.
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3.2 Measure
Let us now take a closer look at the measure. In the non-relativistic case, we set

d3k̃ =
d3~k

(2π)
3
2

but this is not a Lorentz covariant measure, therefore we include a dispersion funktion ω(~k),

d3k̃ =
d3~k

(2π)
3
2ω(~k)

ω2(~k) = ~k2 + m2

ω(~k) =

∣∣∣∣∣∣
√
~k2 + m2

∣∣∣∣∣∣
This measure is indeed Lorentz covariant, even though it is still dependent on the three-vector
~k.

4 Relativistic notion
We define the momentum operator P̂ with eigenvectors

∣∣∣∣~k〉 and eigenvalues ~k:

P̂
∣∣∣∣~k〉 = ~k

∣∣∣∣~k〉
and also consider the resolution of identity:

I =

∫
d3~k =

∣∣∣∣~k〉 〈
~k
∣∣∣∣

To get a relativistic formulation, we combine energy and momentum into a four-vector. If
energy and momentum should form a four-vector, the Hamiltonian squared minus

∣∣∣~p∣∣∣2 should
transform as a Lorentz scalar and is therefore constant along the orbits of a Poincaré group.

H2 −
∣∣∣~p∣∣∣2︸    ︷︷    ︸

relativistic invariant notion?

= const.
∣∣∣∣
Poincaré

To determine the relation between H and
∣∣∣~p∣∣∣2, we regard the three vectors

∣∣∣∣~k〉 and
∣∣∣∣~k′〉 with the

Lorentz transformation
∣∣∣∣~k〉 = Λ̂

∣∣∣∣~k′〉 between them. We also keep in mind that we know how the

Hamiltonian should act on the labeled momenta because we know how
∣∣∣~p∣∣∣2 acts and we know

that H2 −
∣∣∣~p∣∣∣2 is a constant. there is one more assumption to be made.

Requirement: We demand that H
∣∣∣∣~k〉 !

=
(
~k2 + µ2

) 1
2
∣∣∣∣~k〉. Thus the energy is not free, but deter-

mined by ~k, so the three-momenta are essential for any calculations.

4.1 Unitary transformations
We are looking for a unitary operator in the form of

U(gh) = U(g)U(h)
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and a translation that looks like

∆aΨ(x) = Ψ(x − a)

and therefore

U(∆) |Ψ〉 ≡ |∆aΨ〉 .

An example for a unitary transformation like this is the time evolution operator, which deter-
mines the time dependency of the Hamiltonian given by

e−iHt |Ψ(x)〉 =
∣∣∣Ψ(x0 + t, ~x)

〉
.

Applying U(∆a) to
∣∣∣∣~k〉 will then give

U(∆a)
∣∣∣∣~k〉 = eia·p̂

∣∣∣∣~k〉 = eia·k
∣∣∣∣~k〉

with

a · k = a0k0 − ~a~k

k0 =

√
~k2 + µ2

where µ is from the representation scheme of the Poincaré group.

• µ = 0 propagates on the light cone.

• µ , 0 propagates inside the light cone.

We call k2 = k2
0 −

~k2 = µ2 the ”mass hyperboloid”.

4.2 Lorentz-invariant measure
Definition: Heaviside step function

Θ(t) B

0 if t < 0
1 if t > 0

We define the Lorentz-invariant measure dλ(k) by writing

dλ(k) B d4kδ(k2 − µ2)Θ(k0)

The term δ(k2 − µ2) puts everyting on the mass shell whereas the term Θ(k0) forbids negative
energies. Since a Lorentz transformation never changes the sign of the 0th component, this
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measure is indeed Lorentz-invariant. Definition: Delta function

δ
(

f (x)
)

=
∑

{ k| f (k)=0}

⇒ δ(k2 − µ2)Θ(k0) =
1

2ω(~k)

{
δ(k0 − ω(~k))Θ(k0) + δ(k0 + ω(~k))Θ(k0)

}
=

1

2ω(~k)
δ(k0 − ω(~k))Θ(k0)

⇒

∫
dλ(k) =

∫
dk0

1
δ(k0 − ω(~k))Θ(k0)

=

∫
d3~k

2ω(~k)
f
(
ω(~k),~k

)
⇒ dλ(k) =

d3~k

2ω(~k)
; k0 = ω(~k)

Apparently, the energies are given once the momenta are given. The expression also gives a
scaling of the momentum states and implies the connection between three-momentum states
and four-momentum states:

|k〉 =

√
2ω(~k)(2π)

3
2

∣∣∣∣~k〉
where the squareroots are conventional. To see the normalization, we take the scalar produkt of
two states k and k′.

〈k | k′〉 = 2ω(~k)(2π)3δ3(~k − ~k′)

⇒ I =

∫
d3~k

2ω(~k)(2π)3
|k〉 〈k|

which gives the resolution of I for four-momenta.

4.3 Unitary transformations
We take a unitary transformation :

U(Λ) |k〉 = |Λk〉

This is a unitary representation of the Lorentz group. Taking unitarity and the resolution of I
gives

U(Λ)U†(Λ) !
= I =

∫
d3~k

2ω(~k)(2π)3
U(Λ) |k〉 〈k|U†(Λ)

=

∫
d3~k

2ω(~k)(2π)3
|Λk〉 〈Λk|

= I

Obviously, the measure is relativistically invariant.
⇒ It makes sense to construct Fock space states created out of the vacuum.
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5 Free QFT
Taking a perturbative expansion of all possible free vacuum expectation values into account
gives a quantum field theory.

â†(~k) |0〉 =
∣∣∣∣~k〉

α̂†(k) = (2π)
3
2
(
2ω(~k)

) 1
2 â(k)

∣∣∣∣~k〉
⇒ α̂†(k) |0〉 = |k〉

k0 = ω(~k)
U(Λ)α̂†U†(Λ) = α̂†(Λk)

So far, there is no rule how to change between the momentum basis and the position basis. In
the relativistic covariant fashion, there is no localization of states by position, but each position
has a label, therefore we label states in a quantum field with their momenta.
The transition from one initial state |i〉 to some final state | f 〉 is given by

〈 f | φ(x) |i〉

where φ(x) is a function of space time. It can be suggested that this expectation value transforms
like

〈 f |U†(Λ)φ(x)U(Λ) |i〉 = 〈 f | φ(Λ−1x) |i〉

5.1 Axioms for a free quantum field theory
1. φ†(x) = φ(x)

Monomials to compute real, measurable numbers

2. U†(∆a)φ(x)U(∆a) = φ(x − a)
(translation)

3. U†(Λ)φ(x)U(Λ) = φ(Λ−1x)
(boost)

4. Causality: For space-like distances |x − y|2 < 0 ⇒
[
φ(x), φ(y)

]
= 0. The quantum

fields commute.

Theorem: There exists a unique solution φ to axioms 1-3 which is linear in creation and annihi-
lation operators â†, â, which then also funfills axiom 4.
The solution is:

φ(x) =

∫
d3~k

2ω(~k)(2π)3

{
eik·xα̂†(k) + e−ik·xα̂(k)

}
or with a instead of α:

φ(x) =

∫
d3~k√

2ω(~k)(2π)3

{
eik·xâ†(~k) + e−ik·xâ(~k)

}
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Proof: We take the ansatz

φ(x) =

∫
d3~k

2ω(~k)(2π)3

{
f+(x, k)α̂†(k) + f−(x, k)α̂(k)

}
Where f±(x, k) are general coefficients of x and k and the entire expression is linear in α̂†(k) and
α̂(k). We now insert

φ(x) = eix·P̂φ(0)e−ix·P̂ =

=

∫
d3~k

2ω(~k)(2π)3

{
f+(0, k)eixkα̂†(k) + f−(0, k)e−ixkα̂(k)

}
Next, we use axiom 3: φ(0) = U†(Λ)φ(0)U(Λ)

φ(x) =

∫
d3~k

2ω(~k)(2π)3

{
f+(0, k)α̂†(Λ−1k) + f−(0, k)α̂(Λ−1k)

}
But this is translation invariant, therefore we can write

φ(x) =

∫
d3~k

2ω(~k)(2π)3

{
f+(0,Λk)α̂†(k) + f−(0,Λk)α̂(k)

}
The result is a linear combination of plane waves. We compare coefficients and get

f±(0, k) = f±(0, λk)

Determining f± in the rest frame, where k = (µ,~0), we get

f ∗+ = f−

which is exactly the desired decomposition of free field theory. f±(0, k) fulfills the Klein-Gordon
equation:

[
� + µ2

]
φ = 0.
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From Free Fields to Propagators
31.10.2011

Reminder: Four axioms of a free field theory

1. φ†(x) = φ(x) (the field is a real field)

2. U†(∆a)φ(x)U(∆a) = φ(x − a) (translation is a unitary transformation)

3. U†(Λ)φ(x)U(Λ) = φ(Λ−1x) (unitary field transform is given by Lorentz transform of the
coordinate)

4. Causality: For space-like distances, |x − y|2 < 0 ⇒
[
φ(x), φ(y)

]
= 0. Fields of space-like

distances commute.

To find a field that fulfills axioms (1) - (3) and that is linear in creators and annihilators, we take
the most general ansatz

φ(x) =

∫
d3~k

(2π)32ω(~k)

{
eixkα̂†(k) + e−ixkα̂(k)

}
(1)

=

∫
d3~k

(2π)
3
2

√
2ω(~k)

{
eixkâ†(k) + e−ixkâ(k)

}
The free field is made up of creators and annihilators of vacuum.

Corollary The ansatz (1) fulfils causality.

6 Causality
Now let’s have a look at the commutator of fields of space-like distances in order to show
causality.[

φ(x), φ(y)
]

=

[∫
dλ(p)

(
eixpα̂†(p) + e−ixpα̂(p)

)
,

∫
dλ(q)

(
eiyqα̂†(q) + e−iyqα̂(q)

)]
=

"
dλ(p) dλ(q)

(
eixpeiyq

[
α̂†(p), α̂†(q)

]
+ eixpe−iyq

[
α̂†(p), α̂(q)

]
+

+ e−ixpeiyq
[
α̂(p), α̂†(q)

]
+ e−ixpe−iyq [

α̂(p), α̂(q)
] )

=

"
dλ(p) dλ(q)

(
e−i(x−y)p − e−i(y−x)p

)
= ∆+(x − y) − ∆+(y − x) ≡ ∆(x − y)

Of course, this is a Lorentz-invariant term because the measure and the scalar products in the
integrand are Lorentz-invariant.
If ∆+(z) is Lorentz-invariant, assume a space-like separation z, |z|2 < 0. Then ∃Λ with Λz = −z.

⇒ ∆+(z) = ∆+(−z) ⇒
[
φ(x), φ(y)

]
= ∆(x − y) ≡ 0

φ(x) fulfills the Klein Gordon equation:
(
� + µ2

)
φ = 0 with � B ∂x2

0−
∑3

i=1 ∂x2
i = ∂µ∂

µ = ∂µ∂µ.
The KGE is a relativistically covariant wave equation, but it is quadratic in time which is unusual
for field theories.

12



7 Propagators
Let’s reformulate the commutator

[
φ(x), φ(y)

]
= i∆(x− y). In ordner to do that, we must be sure

that the fields always commute for equal time.[
φ(x), φ(y)

] ∣∣∣∣
x0=y0

= 0[
φ(x), ∂0φ(y)

] ∣∣∣∣
x0=y0

= iδ(3)(~x − ~y)

Before we continue, let’s introduce the time ordering operator T .

T
(
A(x)B(y)

)
B

A(x)B(y) x0 > y0 (y0 happens before x0)

B(y)A(x) x0 < y0 (x0 happens before y0)

We use the time ordering operator in order to make sure that any product of fields is generated
in the right order of time. We can then look at the matrix element fn two time ordered fields and
the vacuum states, the vacuum expectation value or transition amplitude:

〈0|Tφ(x)φ(y) |0〉 = lim
ε→0+

∫
d4k

(2π)4

−iei(x−y)k

k2 − µ2 + iε

We call this expression the (Feynman) propagator. The physical interpretation of the Feynman
propagator is that a quantum is created at spacetime point y, it then travels to spacetime point x
and vanishes there. For antiparticles, the relation is vice versa: The antiparticle is created at x
and annihilated at y.
→ field: from y→ x
→ antifield: from x→ y.
In quantum field theory, anything that can happen is a sum of subprocesses and can be written
down using propagators and drawn using the respective Feynman graphs.

8 Lagrangian Density
The action S is defined using the Lagrangian density L:

S =

∫
d4x L(x)

S is bosonic, hermitian, and Poincaré invariant. The Lagrangian density of a field and the partial
derivatives of a field depends on the field points x, not on the actual fields themselves: We have
a local Lagrangian density.

L
[
φi(x), ∂µφi(x)

]
≡ L(x)

L contains no second derivatives, and is at most quadratic in first derivatives. L has no constant
term, and also no linear term. This can be shown, among other methods, using the path integral
formalism. The terms quadratic in φi and ∂µφi are called free Lagrangian. Higher orders of φi

and ∂µφi contribute to the interacting Lagrangian:

φn n > 2
gnφ

n

c2,Lφ
2∂µφ∂µφ c2,L : ”coupling constant”

φ∂µφ (would violate Poincaré invariance)

13



A short remark: The coupling ”constant” c2,L is actually not a constant, but dependent on x. For
now, we will however use it as a constant.

8.1 Variation principle
The variation of the action has to be zero, therefore we can derive the Euler-Lagrange equations
from the definition of the action.

0 = δS =

∫
d4δL

=

∫
d4

δφi
∂L

∂φi
+ δ

(
∂µφi

) ∂L

∂
(
∂µφi

)
=
∂L

∂φi
− ∂µ

∂L

∂
(
∂µφi

) ≡ 0

Euler-Lagrange equation

In the second line, we make the assumption that δ∂µφi = ∂µδφi.

8.2 Canonical coordinates and momenta
As we know from classical Lagrangian mechanics, a Hamiltonian density can be defined us-
ing canocinal coordinates and canonical momenta. The φi work as canocial coordinates, the
canocial momenta are defined as usual.

πi =
∂

∂
(
∂0φi

)L
πi ist linear in in ∂0φi, therefore

∂0φi = Φ
(
φ j, ∂sφ j, φ j

)
, s ∈ {1, 2, 3}

And once again the commutators for equal time are given by[
φi(x), φ j(y)

} ∣∣∣∣
x0=y0

= 0[
πi(x), π j(y)

} ∣∣∣∣
x0=y0

= 0[
πi(x), φ j(y)

} ∣∣∣∣
x0=y0

= iδi jδ
(3)(~x − ~y)

8.3 Hamiltonian density
The canonical coordinates and momenta given, we can easily define the Hamiltonian densityH
as

H B
∑

i

∂0φiπi − L(x)

H =

∫
d3~x H

14



From ETCR (equal time commutator relations) and the Euler-Lagrange equation, we derive the
following commutator relations: [

iH , φ j

]
= ∂0φ j[

iH , π j

]
= ∂0π j

Here, i of course denotes the imaginary unit, i =
√
−1, and is not an index.

In general, the Hamiltonian and the Hamiltonian density are known as soon as L is known. We
will now write H in terms of α̂† and α̂:

H =

∫
d3~x

1
2

[
π2(x) + ~∇φ · ~∇φ + µ2φ

]
= . . .

=
1
2

∫
d3~kω~k

(
â†(k)â(k) + â(k)â†(k)

)
=

1
2

∫
d3~k ω~k â†(k)â(k)︸                      ︷︷                      ︸

like harmonic oscillator

+
1
2

∫
d3~k ω~k δ

(3)(~0)︸                  ︷︷                  ︸
ill-defined!

To finish, define normal ordering, : (·) :, so that all annihilators in (·) are right of all creators.

H =

∫
d3~x

1
2

:
(
π2(x) + ~∇φ · ~∇φ + µ2φ

)
:

=

∫
d3~x ω(~k) â†â

15



Propagators
07.11.2011

Reminder: In the last lecture, we defined the Hamiltonian using the creation and annihilation
operators. One term showed up that made no sense because it included a δ-function of zero
- this term will be disregarded by normal ordering. Normal ordering, once again, means that
all creation operators will be left of all annihilation operators. Normal ordering is denoted by
colons left and right of the expression it is supposed to act on.
The derived formula for the Hamiltonian was

H B
∫

d3~kω(~k)â†(~k)â(~k) +
1
2

∫
d3~kω(~k)δ(3)(0)

This lecture’s project will be to collect all relevant formulas for propagators.

9 The free field
A free field φ(t, ~x) is a function of space and time. It can be written using a Fourier transform,
the Lorentz covariant measure, and the creation and annihilation operators.

φ(t, ~x) =

∫
d3~p√

2ω~p(2π)3

{
eixpâ†(~p) + e−ixpâ(~p)

}
With ω~p, we denote that which we formerly called ω(~p), which is the same expression in two
different notations.
Having a close look at the integrand, we realize that it can be read in a different way. Taking into
account the creator, it seems to create a particle with momentum ~p at some point in space-time,
whereas the annihilator apparently deletes a particle with momentum ~p. A propagator describes
the creation of a quantum in one space-time point and the annihilation in a generally different
point in space-time. Usually, this is denoted by the product of two fields.
For t1 > t2, that means t1 happens after t2 (is later than t2), we get

φ(t1, ~x1) · φ(t2, ~x2) =

∫
d3~p

2ω~p(2π)6 e−ip(x1−x2)

Comparing this result with that for t2 > t1 and sorting it into odd and even pieces of ~x2 − ~x1, we
find that

φ(t1, ~x1) · φ(t2, ~x2) = −i∆F(t1 − t2, ~x1 − ~x2)

Here, ∆F is the Feynman propagator defined by

∆F(t, ~x) B i
∫

e−iω~p |t|+i~·p~x

2ω~p

d3~p
(2π)3

Careful: Sometimes, ∆F denotes the Feynman propagator, but in other cases the scalar product
of ∆F between bra and ket vacuum states, 〈0|∆F |0〉, is called Feynman propagator. It will be
clear from the context “which Feynman propagator” is meant.
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9.1 Properties of the Feynman Propagator

1. By construction, it fulfills (� + m2)∆F = δx where � = ∂2
t −

~∇x · ~∇x. This yealds that ∆F

is the Green’s funtion to the Klein-Gordon equation: It solves Lx = δ if L is an operator
and δ is a δ-distribution.

2. In momentum space,

∆̂F(ω~p, ~p) = lim
ε→0+

1

−ω2 +
∣∣∣~p∣∣∣2 + iε

= lim
ε→0+

1
−p2 + m2 − iε

In the second limit, we used p2 = p2
0− ~p

2. All limits are in the weak topology of tempered
distributions.

3. ∆F is invariant under the full Lorentz group.

4. ∆F is a C∞ function away from the light cone, supported in R4: It is nicely differentiable
anywhere but on the light cone.

To show (1.), it is equivalent to show that g(t) B ie−iω~p |t| satisfies(
∂2

t +
∣∣∣~p∣∣∣2 + m2

)
g(t) = 2ω~pδ(t)

⇒ ∂tg(t) = ω~psgn(t)e−iω~p |t|

∂2
t g(t) = 2ω~pδ(t)e−iω~p |t| − iω2

~pe−iω~p |t|

=

(
2ω~pδ(t) − (

∣∣∣~p∣∣∣2 + m2)
)

g(t) �

We will also take into account the tempered distribution on R4 with Fourier transform:

F~x(∆F)(t, ~p) =
ie−iω~p |t|

2ω~p

Let ε < 0, ~p ∈ R, and letU(ε, ~p) be the root of the denominator, +iε −
∣∣∣~p∣∣∣2 − m2, with positive

real part.

1

−ω2 +
∣∣∣~p∣∣∣2 + m2 − iε

= −
1

2U

[
1

U + iω
+

1
U − iω

]

= −
1

2U


∞∫

0

e−(U+iω)t dt +

0∫
−∞

e−(U−iω)t dt


As a function of ω,

(
−ω2 +

∣∣∣~p∣∣∣2 + m2 − iε
)−1

is Ft

(
− 1

2Ue−U|t|
)
. Computing

lim
ε→0
U = i

√∣∣∣~p∣∣∣2 + m2 = iω~p

−
1

2U
e−U|t| →

i
2ω~p

e−iω~p |t|
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then (2.) and (3.) are obvious.
One representation of the Feynman propagator is

∆F =
im

4π2
√∣∣∣~x∣∣∣2 − t2

K1

(
m

√∣∣∣~x∣∣∣2 − t2

)

on R4 \
{
(t, ~x) : |t| =

∣∣∣~x∣∣∣ }. K1 is the modified Bessel function of ordner one, ∆F is defined
everywhere in space-time besides on the light cone. Then, (4.) follows from documented
properties of the Bessel function.

−

(
1

p2 − m2 + iε

)
=̂ ′′Feynman propagator′′

10 More propagators
The Klein-Gordon equation (� + m2)φ(x) = 0 is not only solved by one propagator. In fact,
there are quite a few propagators fulfilling this equation.

1.

∆(x,m2) ≡
−i

(2π)3

∫
d4 p

p0

|p0|
δ(p2 − m2)e−ipx

The δ-function puts everything on the mass shell.

2.

∆(1)(x,m2) ≡
1

(2π)3

∫
d4 pδ(p2 − m2)e−ipx

Those two are called the ”invariant δ-functions”. ∆ is odd under xµ → −xµ, ∆(1) is even under
that same transformation. ∆ = 0 for spacelike arguments, that is if x2 < 0.

10.1 Properties of invariant δ-functions
• (� + m2)∆(x,m2) = 0

• ∆(x,m2)
∣∣∣∣∣
x0=0

= 0

• ∂0∆(x,m2)
∣∣∣∣∣
x0=0

= −δ(~x)

∆ and ∆(1) are Bessel functions of first order followed by terms including Θ-functions (Heaviside
step functions) and δ-functions.
We will now examine how ∆ and ∆(1) behave near x2 = 0.

∆(x,m2) = −
1

2π
x0

|x0|

{
δ(x2) + m2

(
−

1
4

+ O(x2)
)
Θ(x2)

}
∆(1) = −

1
2π2

{
P

1
x2 −

m2

4
log (m2)

∣∣∣~x2
∣∣∣ + O(1)

}
Here, P denotes the Cauchy principal value. As a reminder, note that

1
x + iε

∣∣∣∣∣
ε�1

= P
1
x

+ iδ(x)

where the principal value gives the real part.
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10.2 Important propagators in physics
Physicists usually define two more propagators, ∆(±), as ”positive frequency δ-functions”. They
are defined in the following way:

∆(±)(x,m2) B ∓(2πi)3
∫

d4 pΘ(±p0)δ(p2 − m2)e−ipx

And with that definition, we immediately see

i∆ = ∆(+) + ∆(−)

∆(1) = ∆(+) − ∆(−)

∆(+)(−x,m2) = −∆(−)(x,m2)

Again, these propagators are Green functions G to the Klein Gordon equation:

(� + m2)G = δ(4)(x)

and we define the propagators

∆̄(x,m2) B −
1
2

x0

|x0|
∆(x,m2)

∆R(x,m2) B −Θ(x0)∆(x,m2)

∆A(x,m2) B Θ(−x0)∆(x,m2)

The R in the index of the second propagator stands for ”retarded”. ∆R is the retarded Feynman
propagator: It propagates a delay. Analogously, A stands for ”advanced” since ∆A refers to later
events.
Finally, we can write the Feynman propagator as a linear combination of the above:

∆F(x,m2) ≡ ∆̄ +
i
2

∆(1)

= Θ(x0)∆(+) − Θ(−x0)∆(−)

10.3 The role of the retarded and advanced propagator
Taking into account that

Ft

(
−

1
2U

e−U|t|
)

=
1

−ω2 +
∣∣∣~p∣∣∣2 + m2 − iε

,

we get for the retarded and advanced propagators

∆R = −(2π)−4
∫

d4 p
e−ipx

p2 − m2 + iεp0

∆A = −(2π)−4
∫

d4 p
e−ipx

p2 − m2 − iεp0

∆F = i(2π)−4
∫

d4 p
e−ipx

p2 − m2 + iε

To get from the advanced to the retarted operator, one has to change the sign before the imagi-
nary term in the demoninator. This can be regarded as a sign flip in energy and can later on be
associated with ghost and antighost particles.
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10.3.1 Limit: m→ 0

In the massless limit, that is the propagation of a massless particle such as the photon, the
propagators become

∆→ D = (2π)−1 x0
|x0 |
δ(x2)

∆(1) → D(1) = −(2π2)−1P 1
x2

}
⇒

DR = (2π)−1Θ(x0)δ(x2)
DA = (2π)−1Θ(−x0)δ(x2)
DF = −(2π)−2 1

x2−iε

DF is the massless Feynman propagator.

10.4 Transistion amplitudes between states
We have regarded 〈0|∆F |0〉 as the creation of one particle somewhere in vacuum and its anni-
hilation elsewhere. But how do we compute the probability for this process?
In order to understand that, let us focus on the creation of one particle, say, in the presence of
one other particle. We then have an initial one-particle state and a final two-particle state. What
is the probability for the creation of a second quantum at spacetime point y with free propaga-
tion afterwards?

x y
z

z

1

2

If we assume that this process can happen with a probability g < 1 at any point in spacetime, g
must be constant over R4.
But if we only know the initial and final states and have no means of measurement that can
tell us exactly what happens at the interaction, we must not only consider the simplest transis-
tion, but also all kinds of interactions that can leed to the desired final state. Quantum physics
demands a sum over all possibilities in order to compute the correct transition amplitude and
therefore the propability for the process of one particle decaying into two.

10.4.1 The simplest case

If we consider only one interaction, namely the creation of one particle in one point in space-
time, then the transistion amplitude must look something like

g
∫

d4y ∆F(x − y)∆F(y − z1)∆F(y − z2)

and this will give us a nice, convergent answer. The factor g denotes the one vertex and quanti-
fies the strength of the interaction. The Feynman propagators denote the motion of the respec-
tive particles in spacetime. The integration is carried out over all free variables, and since x, z1

and z2 are fixed, there is just y left to integrate over.

10.4.2 The next order

To go to the successing interaction process, we add a creation of a third particle and its annihi-
lation.
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x y
z

z

1

2

y

y

1

2

3

Then the transition amplitude becomes

g3
∫

d4y1 d4y2 d4y3 ∆F(x − y1)∆F(y1 − y2)∆F(y2 − y3)∆F(y3 − y1)∆F(y2 − z1)∆F(y3 − z2)

This graph also contributes to the transition amplitude of the entire process, but since g < 1, g3

is even smaller so it won’t play as big a role.
Taking into account that ∆F(x− y1) ∼ δ(x− y1) and so forth, the subsequent integrations lead to
an ill-defined expression:

∆F(y1 − y2)∆F(y2 − y3)︸                       ︷︷                       ︸
⇒δ(y1−y3)

∆F(y3 − y1)︸       ︷︷       ︸
⇒δ(y3−y1)

∼ δ(y1 − y3)δ(y3 − y1)

Two δ distributions which support the same argument: That’s an ill-defined expression! Here’s
our first Feynman propagator calculation that diverges, even though the process itself seems
highly possible. A physically sensible result would give a result whose square of the absolute
value gives a number in between 0 and 1.

10.4.3 Possible solution

Mathematically, it is possible to define everything on configuration space and leave out the
diagonals, then the problem does not exist and the expression becomes well-defined.
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Noether’s Theorem
14.11.2011

Reminder: In the last lecture, we found different Green’s functions to the Klein-Gordon equa-
tion, each with a slightly different purpose. We also considered the massless limit.

∆R = −
1

(2π)4

∫
d4 p

eipx

p2 − m2 + iε+ p0
m→ 0 DR =

1
2π

Θ(x0)δ(x2)

∆A = −
1

(2π)4

∫
d4 p

eipx

p2 − m2 − iε+ p0
m→ 0 DA =

1
2π

Θ(−x0)δ(x2)

∆F =
i

(2π)4

∫
d4 p

eipx

p2 − m2 + iε+

m→ 0 DR = −
1

2π2

1
x2 − iε+

The question, now, is: What constrains Feynman rules? How are diagrams calculated using
propagators, what are the underlying standards? Generally, we can assume that vertices affect
the calculation in some way, so do free propagators and free fields. Fields in general carry
representations of groups. Those are:

• Transformations in spacetime, most importantly rotations, boosts, translations, but also
dilatations and special conformal transformations.

• Local internal symmetries: These are the local symmetries that imply gauge freedom.

• Global internal symmetries: These have to do with aspects of the theory such as flavor,
so they play an important role in particle physics.

11 Neother’s Theorem (for classical fields)

Let {φA} be a set of scalar fields. We can define a Lagrangian density: L = L
(
{φ}, {∂µφ}

)
. Let us

examine the variation of φA:

φA → φ′A = φA + δφA

L → L′ = L + δL

δL =
∂L

∂φA
δφA +

∂L

∂
(
∂µφA

)∂µδφA (2)

In the last line, we have assumed that δ∂µφA = ∂µδφA, that the variation of the derivative equals
the derivative of the variation. This comes from the simple fact that all fields are supposed to
disappear in infinite space, therefore there are no boundary terms which would make a calcula-
tion difficult, like in classical mechanics.
Now we will take the action into account: The action S is defined as the integral of the La-
grangian density over spacetime, S =

∫
dx L. Variation of S gives eventually

δS

δφA
=
∂L

∂φA
− ∂µ

∂L

∂(∂µφA)

and this equation is equal to zero for equations of motion. Since we are considering a more
general case here, we will leave it as it is for the moment, instead of setting it equal to zero right
now. We will rather rewrite (2) using

∂L

∂φA
= ∂µ

∂L

∂(∂µφA)
+
δS

δφA
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and this plugged into (2), the variation of L, gives

δL = ∂µ

{
∂L

∂(∂µφA)
δφA

}
︸            ︷︷            ︸

C jµ

+
δS

δφA
δφA

Here we defined the Noether current jµ = ∂L
∂(∂µφA)δφA which, if it is conserved, gives rise to

equations of motion.

∂µ jµ = δL −
δS

δφA
δφA ≡ 0 for equations of motion

Writing out the four-derivative of the Noether current, we find that we have a charge density
and a current density:

δµ jµ = 0 ⇔
∂

∂t
j0 + ~∇ · ~j(x) = 0

j0 : charge density

~j(x) : current density

Noether’s theorem now states that if the Lagrangian is not invariant under a transforma-
tion, the four-current-density will not be conserved. In other words, a symmetry of the
Lagrangian implies a conserved four-current.

11.1 Invariance under rotation
As an example, let us work with the Lagrangian

L = −∂µφ
†∂µφ − m2φ†φ +

1
4
λ
(
φ†φ

)2

and check that it is invariant under rotation:

φ → φ′ = e−iαφ

φ† → φ′† = eiαφ′†

Here, we have assumed that the field φ and its hermitian conjugate φ† are independent. We could
also use a different notation in which we regard the real and the imaginary parts of the field φ
as our basis. The two notations are linear combinations of each other and therefore equivalent.

φ =
1
√

2
(φ1 + iφ2)

L = −
1
2
∂µφ1∂µφ1 −

1
2
∂µφ2∂µφ2 −

1
2

m2
(
φ2

1 + φ2
2

)
−

1
16

(
φ2

1 + φ2
2

)2

The transformation is consequently given by(
φ1

φ2

)
→

(
φ′1
φ′2

)
=

(
cosα sinα
− sinα cosα

) (
φ1

φ2

)
The infinitesimal rotation, where α � 1 and therefore eiα ≈ 1 + iα, is then given by

φ → φ′ = φ −iαφ︸︷︷︸
=δφ

φ† → φ′† = φ† +iαφ†︸︷︷︸
=δφ†
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11.2 Noether’s current
Let’s go back to the Noether current and rewrite it for both the field and its hermitian con-
jugate. As a convention, we write α jµ with α as the constant parameter for the gobal phase
transformation.

α jµ =
∂L

∂(∂µφ)
δφ +

∂L

∂(∂µφ†)
δφ† → jµ = α=

(
φ†

↔

∂µ φ
)

where = denotes the imaginary part and
↔

∂µ means that the derivative acts to its left and to its
right in a way such that

A
↔

∂µ B B A∂µB − (∂µA)B

11.2.1 Charge

We define a charge by the space integral over the charge density:

Q B
∫

d3~x j0(x)

If we assume that the current density vanishes in ”space-infinity” (that is, if the current density
is finite), then charge is conserved.
Using the definitions for φ and φ†, we can define charge using creation and annihilation opera-
tors:

φ(x) =
∫

d3~k√
2ω~k

(
â(~k)eikx + b̂†(~k)e−ikx

)
φ†(x) =

∫
d3~k√

2ω~k

(
b̂(~k)eikx + â†(~k)e−ikx

)
 Q =

∫
d3~k√
2ω~k

(
â†â(~k) − b̂†b̂(~k)

)

11.3 From global to local symmetries
We have seen that the Lagrangian in invariant under global phase transformations, in which
the phase α is not dependent on the spacetime point x and therefore the rotation is merely a
multiplication with a constant. Now we are going to make α a function of x and see how this
changes the Lagrangian. We will, once again, work with the specific Lagrangian

L = −∂µφ†∂µφ − m2φ†φ +
1
4
λ
(
φ†φ

)2

which, as we have seen, has a global symmetry. We will now make the transformation

φ → φ′ = e−iα(x)φ

act on the fields, which is a local phase transformation. This produces an extra term in the
Lagrangian, namely e−iα(x)

(
∂µα(x)

)
. If we tranform φ, we must also transform transform φ†:

φ† → φ′† = φ†eiα(x)

The Lagrangian is not invariant, but dependent on α(x). But we can use this dependence and
add Maxwell’s field tensor, 1

4

(
∂µAν − ∂νAµ

)
(∂µAν − ∂νAµ) = 1

2 FµνFµν, and a coupling to a gauge
field in the form of a covariant derivative, ∂µ → Dµ = ∂µ − iAµ. This will make the Lagrangian
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invariant under local phase transformations if we transform the vector field A in accordance:
Aµ → A′µ = Aµ + i∂µα(x).
Experimentally, we know that all interactions ever observed are interactions between matter and
gauge bosons. This is exactly what the transformed Lagrangian describes.
(This fact will eventually lead to requiring a Higgs boson, a spin 0 scalar field whose coupling
to other fields is responsible for the masses of particles, since some gauge bosons are massive.
The simple addition of a mass term would break the symmetry in the Lagrangian. Experience,
however, tells us that all particles have a high amount of symmetry. Therefore, the theory cannot
be complete without the Higgs boson.)

11.4 Noether and spacetime symmetries
One of the rather simple transformations mentioned above is a spatial translation. We denote
this by

xν → xν − εν

φA(x) → φA(x) + εν∂νφA(x)
L(x) → L(x) + εν∂νL(x)

( jµ)ν =
∂L

∂(∂µφA)
∂νφA − δ

µ
νL ≡ T µ

ν

In the last line, the energy momentum tensor T µ
ν was introduced using the Noether current. The

Noether current is conserved if and only if ∂µT µ
ν = 0.

12 Lorentz Transformation
Before the next lecture, we will finish with a short outlook on Lorentz transformations. A
Lorentz transformation is the tranformation between two intertial systems in relativity. We
denote an infinitesimal Lorentz transformation (LT) by

Λµ
ν = δµν + ωµ

ν

ωµ
ν is antisymmetric.

Scalar fields transform like

φ(x) → φ′(x) = φ
(
Λ−1x

)
= φ (xµ − ωµ

νxν) = φ (xµ) − ωµ
νxν∂µφ(x)

δφ = −ωµ
νxν∂µφ

δL = −∂µω
µ
νxνL

⇒ jµ = −ωρ
ν

(
∂L

∂(∂µφ)
xν∂ρφ − δµρxνL

)
= −ωρ

νT µ
ρxν
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Since ωρ
ν is antisymmetric, there are six independent values to be found. These are associated

with charge.

( jµ)ρσ = xρT µσ − xσT µρ

Qi j =

∫
d3~x

(
xiT 0 j − x jT 0i

)
Q0i =

∫
d3~x

(
x0T 0i − xiT 00

)
0 =

dQ0i

dt
=

∫
d3~x T 0i + t

∫
d3~x

∂T 0i

∂t
−

d
dt

∫
d3~x xiT 00

= Pi +
dPi

dt︸︷︷︸
=0

−
d
dt

∫
d3~x xiT 00
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The Lorentz Group
21.11.2011

13 Introduction to Lorentz groups
We saw that transformations in timespace can be described using Lorentz transformations.
These Lorentz transformations have a group structure, namely that of the Lorentz group. We
denote by O(1, 3) the group of linear transformations of R4 that preserve A ∈ O(1, 3) . In other
words, the scalar product of two four-vectors is invariant under Lorentz transformations:

(Ax)µ(Ay)µ = xµyµ = x2 = x2
0 − x2

1 − x2
2 − x2

3 is invariant.

We denote this invariance by using the metric, g, which is usually g = diag(1,−1,−1,−1),
sometimes with reversed sign, which would not change the physics, but in order to be consistent
in notation one has to choose one of the two metrics. We are only going to work with g =

diag(1,−1,−1,−1) because this is more common in most textbooks.
The invariance is given by

A†gA = g ≡ gµν (= ηµν) µ, ν ∈ {0, 1, 2, 3}

where A denotes any element in O(1, 3), A ∈ O(1, 3). The indices µ and ν start with a zero to
point out that the first component (the ”zeroth” component) is the time component, whereas
the other three are the known spatial components, usually denoted with 1-3. If the metric is
g′i j = diag(+1), i, j ∈ {1, 2, 3, 4}, we have Euclidean space and the transformation laws are a bit
different. We will focus on the given Minkowsky metric, g = diag(1,−1,−1,−1).
O(1, 3) can be decomposed into four connected components, given by the determinant and the
sign of the 00-component of an arbitrary transformation A. The Lorentz group then splits into
four subspaces, which we can denote in the following way:

det A = +1 ⇒ SO(1, 3)
sgn

(
A0

0

)
= +1 ⇒ O↑(1, 3)

O↑(1, 3) preserves time as there is no Lorentz transformation that reverses the sign of the time
component, t → −t, within O↑(1, 3). The subspace we are mainly going to deal with is called the
proper orthochronous Lorentz group, it contains the identical transformation (and is therefore a
group) and is given by

SO↑(1, 3) = SO(1, 3) ∩ O↑(1, 3)

This gives way to

SO(3) = O(3) ∩ SO↑(1, 3)

14 Lie groups and Lie algebras

14.1 Lie groups
We will now continue with Lie groups which lead to Lie algebras. Lie groups are denoted by
so(1, 3) and give way to commutator relations: X†g + gX = 0 (antisymmetry of the generators).
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We now define a matrix eµν as a 4x4-matrix, which has entry 1 at µ, ν, and 0 elsewhere, that
means that its only non-vanishing entry is where the two indices point at, for example,

e32 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


Note that the columns and rows’ enumerations start with a zero, not with a one.
We now define the generators of the Lie group by

X jk = ek j − e jk for spatial components
Xk0 = −X0k = ek0 + e0k for mixed components
Xµν = −Xνµ for µ < ν, Xµν is a basis for so(1, 3).

In the second line, care must be taken: Xk0 is defined by ek0 + e0k, and X0k is not derived
by reversing indices, but is −Xk0. Even though ek0 + e0k is symmetric in 0 and k, Xk0 is per
definition antisymmetric in k and 0.

14.2 Lie algebras
Lie algebras are generated by a commutator. In so(1, 3),[

Xµν, Xρσ

]
= 0

if{µ, ν} = {ρ, σ}
or{µ, ν} ∩ {ρ, σ} = ∅

Obviously, the commutator is non-zero if and only if exactly one index of the two generators
agree! [

Xµν, Xνρ

]
= gννXµρ

14.2.1 Remarks

• exp (sX jk) is a rotation around the l-axis with rotation angle s; respectively ( j, k, l)-axes
cyclically.

• exp (sX0k) is a boost along the k-axis with boost parameter s.

• By group action, we mean the action of matrices on vectors on the respective vector space,
that is Λµ

νxν = xµ. O(1, 3) acts by A, or A†−1 (action in TM by A→ action T*M by A†−1)

14.2.2 Examples

X30 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


X12 =


0 0 0 0
0 0 −1 0
0 +1 0 0
0 0 0 0


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15 Physics and the Lorentz group

15.1 Lorentz transformations
As stated above, the Lorentz groups splits into subspaces. We can make a difference between
objects on the mass shell (that is, if p2 = m2) and objects on the negative mass shell (p2 = −m2).
The latter are mostly neglected by physicists, for obvious reason.

X+
m =

{
p; p2 = m2, p0 > 0

}
X−m =

{
p; p2 = m2, p0 < 0

}
Ym =

{
p; p2 = −m2

}
X+

m and X−m define the Lorentz group we work with: All four-vectors with the same mass, which
is the invariant square, as we remember. The two groups differ in sign of the time component.
In the special case that m = 0, the two mass shells become the light cone, X+

0 forms the forward,
X−0 the backward light cone.
In general, a vector that is on the mass shell is denoted by

p =


p0 = ω~p

p1

p2

p3


15.1.1 Examples

• Lorentz transformation with det A = −1, sgn
(
A0

0

)
= +1: Space or Parity transformation

+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


• Lorentz transformation with det A = −1, sgn

(
A0

0
)

= −1: Time transformation or time
reversal 

−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1


Both examples are not in connected components of O(1, 3) and neither is in O↑(1, 3).
Since the Lorentz transformations form a group, to every Lorentz transformation there is an
inverse Lorentz transformation. If Λµ

ν is such a Lorentz transformation and Λµ
νxν = xµ, then

(Λ−1)ρν = Λν
ρ is the inverse Lorentz transformation.

15.2 Unitary transformations
Now we assign to each Lorentz transformation Λ a unitary transformation U(Λ): Each Λ ∈

SO↑(1, 3) gives rise to a unitary operator U(Λ) such that U(Λ′Λ) = U(Λ′)U(Λ). To consider

29



only infinitesimal transformations, one writes

U
(
I4x4 + δωµν

)
= I +

i
2~
δωµνMµν

where Mµν are hermitian, antisymmetric operators:

Mµν = −Mνµ

M are the infinitesimal generators of the Lorentz transformation, δω are the coefficients of the
respective M. For example, if M dictates a rotation around a set axis, δω will determine the
magnitude of the rotation.
For transformations of transformations we write

U(Λ−1)U(Λ̃)U(Λ) = U
(
Λ−1Λ̃Λ

)
and we expand the infinitesimal transformation Λ̃ = I + δω̃:

U−1(Λ)MµνU(Λ) = Λµ
νΛ

ν
σMρσ

U−1(Λ)pµU(Λ) = Λµ
νpν

[Mµν,Mρσ] = i~
(
gµρMµσ − gµνMµσ − gνρMνσ

)
similar to Xµν, Mµν describe boosts and rotations.

• Rotations ~J:

Ji =
1
2
εi jkM jk

• Boosts ~K:

Ki = Mi0

They fulfill the commutator relations:

[Ja, Jb] = i~εabcJc

[Ja,Kb] = i~εabcKc

[Ka,Kb] = −i~εabcJc

These are the Lie algebra generators of the Poincaré group (Lorentz group together with trans-
lations). With the Lorentz group, these lead to unitary transformations. The commutators have
the form

[Pµ,Mρσ] = i~
(
gµσPρ − gµρPσ

)
[Pµ, Pν] = 0

Translations then have the explicit form:

T−1(α)φ(x)T (α) = φ(x − α)

T (α) = e−
i
~ pµaµ

U−1(Λ)φ(x)U(Λ) = φ(Λ−1x)

U−1(Λ)∂µφ(x)U(Λ) = Λµ
ρ∂̄

ρφ(Λ−1x)

Where ∂̄ denotes the derivative by the transformed parameter:

∂̄ρ B
∂

∂(Λ−1x)ρ
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16 Connection between SO↑(1, 3) and SL(2,C)

Before we can get into SO↑(1, 3) and SL(2,C) in particular, let us specify the names of groups.

• With GL(n,F) we denote a general linear group of degree n over a field F.

• SL(n,F) denotes that the determinant equals one (“special linear group”).

• In SL(2,F), there are 2x2-matrices with complex entries. As a basis, we can choose the
Pauli matrices σ j and the 2x2 unitary matrix.

– Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
– Rotations and boosts:

Ji ≡
1
2
σi Ki ≡

i
2
σi

J1 =

(
0 1

2
1
2 0

)
J2 =

(
0 − i

2
i
2 0

)
J3 =

( 1
2 0
0 −1

2

)
K1 =

(
0 i

2
i
2 0

)
K2 =

(
0 1

2
−1

2 0

)
K3 =

( i
2 0
0 − i

2

)
Rotations and boosts fulfill the commutator relations:

[Ja, Jb] = iεabcJc

[Ka,Kb] = iεabcKc

And therefore we have the same Lie algebra as so.
The general representation of the Lorentz group in SL(2,C) is

W = exp
{
− i

3∑
j=1

(
α jJ j + β jk j

)}
with uni-modular W: |W | = 1.
Since K j is a non-hermitian generator, SL(2,C) is not a unitary group.

Set K j C iS j. We use Ji ≡
1
2σi and Ki ≡

i
2σi and get

W = exp
{
−

i
2

(
ζ1σ1 + ζ2σ2 + ζ3σ3

)}
with

ζ j = α j + iβ j ∈ C

Remark: Since the Pauli matrices are in 2 × 2C, we can express the same term in SO(1, 3)
which uses 4 × 4R matrices, but we won’t go into this here.
We define an X that will be a complex 2 × 2-matrix.

X B x0I2x2 + x1σ1 + x2σ2 + x3σ3 =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
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The determinant of X gives (x0)2
− (x1)2

− (x2)2
− (x3)2. This is the invariant scalar product

of the Lorentz four-vectors in Minkowsky space. Lorentz transformations of the form

x→ Λx ⇒ xµ → Λµ
ρxρ

correspond to unitary transformations

X → WXW†

which leave the determinant invariant, and therefore the scalar product. Each Lorentz
transformation can be represented by ±W.
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Representation Theory of the Lorentz group
23.11.2011

Reminder: The Lorentz group splits into four parts, we are working in the subspace SO↑(1, 3)
that contains identity. We have seen the Lorentz transformation of a scalar field:

φ(x) → φ′(x) = U−1(Λ)φ(x)U(Λ) = φ(Λ−1x)

Λµ
ρ∂̄

ρ
φ(Λ−1x) = U−1(Λ)∂µφ(x)U(Λ)

with

∂̄
ρ
B

∂

∂(Λ−1x)ρ

17 Lorentz transformation of vector and tensor fields
For vector and tensor fields, the Lorentz transformations are as follows:

U−1(Λ)AµU(Λ) = Λµ
ρAρ(Λ−1x)

U−1(Λ)BµνU(Λ) = Λµ
ρΛ

ν
σBρσ(Λ−1x)

To contract a field, we assign to every x a second order tensor Bµν and contract with the metric
tensor.

gµνBµν = T (x)
gµνΛµ

ρΛ
ν
σ = gρσ

U−1(Λ)T (x)U(Λ) = T (Λ−1x)

B can be split into an antisymmetric part A, a traceless symmetric part S and a contracted tensor
T .

Bµν(x) = Aµν(x) + S µν(x) +
1
4

gµνT (x)

18 Lorentz transformation of a field
We will now write the Lorentz transformation of a field φA in a more general way, namely that
it tranforms into a different field φB using finite dimensional matrices LB

A:

U−1(Λ)φA(x)U(Λ) = LB
A(Λ)φB(Λ−1x)

We see that φB has transformed coordinates as above. Rules for L are

LB
A(Λ′)LC

B(Λ) = LC
A(Λ′Λ) (3)
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18.1 Infinitesimal Lorentz transformation
If we consider only infinitesimal Lorentz transformations, we look at transformations close
to identity. We denote these infinitesimal Lorentz transformations with identity I and a small
parameter δω.

U(Λ)→ U(I + δω) = I +
i
2
δωµνMµν

where M fulfills the commutator relation[
Mµν,Mρσ

]
= i

(
gµρMνσ − gνρMµσ − gµσMνρ + gνσMµρ

)
(4)

= i
((

gµρMνσ − (µ↔ ν)
)
−

(
ρ↔ σ

))
Now we expand LB

A, the matrices that describe the (infinitesimal) Lorentz transformation.

LA
B(1 + δω) = δA

B +
i
2
δωµν

(
S µν

)
A

B

From (3) we derive that the commutator of the field φA with the tensor Mµν is exactly[
φA(x),Mµν] = LµνφA(x) +

(
S µν

)
A

B
φB(x)

Lµν = −i (xµ∂ν − xν∂µ)

We also note that [Lµν,Lρσ] and [S µν, S ρσ] both represent the same Lie algebra.

18.2 Representations of transformation matrices
Now we are trying to find representations for these matrices. As a reminder, we will con-
sider non-relativistic quantum mechanics where the angular momentum Ji is (2 j + i) × (2 j + 1)
dimensional, since Ji = J†i can be diagonalized along one carthesian axis. For convenience
reasons, one almost always uses the third component axis (z-axis). Ji has eigenvalues J3 ∈

{− j,− j + 1, . . . ,+ j}. j is half integer.
Now, in relativistic quantum mechanics, or quantum field theory, we have sort of two copies of
non-relativistic situations, one for rotations, one for boosts, and we denote them now by N.

N j =
1
2

(
J j − iK j

)
N†j =

1
2

(
J j + iK j

)
with commutator relations derived from those of Ji and Ki:

[Na,Nb] = iεabcNc[
N†a ,N

†

b

]
= iεabcN†c[

Na,N
†

b

]
= 0

The first two commutator relations show that we have two copies of SU(2), connected by hermi-
tian conjugation. From the third commutator we see that the two quantities are not interacting.
The simplest representation is given by a set two numbers, (n, n′):
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(0, 0) representative of a ”singlett” or ”scalar field”(
1
2 , 0

)
representation of a left-handed spinor(

0, 1
2

)
representation of a right-handed spinor(

1
2 ,

1
2

)
representation of a vector

Remark: The number of components of n and n′ is is (2n + 1)(2n′ + 1).
We can now write the angular momentum J j as a linear combination of N j and N†j :

J j = N j + N†j

J has eigenvalues from |n − n′| , |n − n′| + 1, . . . , n + n′. For n = 1
2 = n′ we get the two

eigenvalues j = 1
2 −

1
2 = 0 and j = 1

2 + 1
2 = 1.

19 Local coordinates

19.1 Left-handed spinor field
Since in physics, it is often useful to use local coordinates, we will now take a closer look
at van der Werden’s transformation rules. We consider a representation of a two component
left-handed spinor, ψ ∈

(
1
2 , 0

)
, and transform it as usual.

U−1(Λ)ψa(x)U(Λ) = Lb
a(Λ)ψb(Λ−1x) , ψ ∈

(
1
2
, 0

)
and La

b(Λ′)Lb
c(Λ) = La

c(Λ′Λ)

We associate a with the spin direction which can be either up or down, for an arbitrary spatial
axis. We denote the spin direction with arrows, a ∈ {↑, ↓}.

19.2 Infinitesimal representation

We are looking for antisymmetric 2 × 2 matrices
(
S µν

L

)
a

b
which fulfill (4). Therefore the com-

mutator relation must be [
ψa,Mµν] = Lµνψa(x) +

(
S µν

L

)
a

b
ψb(x)

Setting x ≡ 0 will make ψa(x)→ ψa(0) a constant. Then the spatial part of the matrix M will be
the total antisymmetric epsilon tensor times the angular momentum

M jk = ε jklJl

with commutator relation

ε jkl [ψa(x), Jl
]

=
(
S jk

L

)
a

b
ψb(0)

The matrix S jk can be assiciated with the Pauli matrices since these matrices fulfill all the
requirements.
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19.2.1 Representation for S jk: The Pauli matrices

The Pauli matrices, together with the unity matrix, are a basis of (2×2) complex matrices. They
are given by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
We can now express S jk with the Pauli matrices in the following way:

S jk
L =

1
2
ε jklσl

With angular momentum J j and momentum K j given by

J j = N j + N†j K j = i
(
N j − N†j

)
we denote S in general by

(
S k0

L

)
=

1
2
ασk with α =

i for rotations
1 for boosts

19.3 Right-handed spinor fields

In the right-handed notation,
(
0, 1

2

)
, we add a dot to all indices. These dots are merely there

to point out the difference between left-handed and right-handed representations and do not
indicate something like time derivatives at all.

U−1(Λ)ψ†ȧU(Λ) = Rȧ
ḃ(Λ)ψ†

ḃ
(Λ−1x)(

S µν
R

)
= −S µν

L
∗

So what we want to do now is take fields ψa and ψḃ and try to find bilinears for the Lagrangian,
so that we can finally find an equation of motion, such as the Dirac equation.

20 A Lagrangian for
(

1
2, 0

)
and

(
0, 1

2

)
fields

First of all, we define

ψψ B εabψbψa εab = −εba

Then we can try to find iψ†σ̄µ∂µψ where we set

σµ =
(
I2×2, σ1, σ2, σ3

)T

σ̄µ =
(
I2×2,−σ1,−σ2,−σ3

)T
=


I2×2

−σ1

−σ2

−σ3


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so we get (
iψ†σ̄µ∂µψ

)†
=

(
iψ†ȧσ̄

µȧc∂µψc

)†
= −i∂µψ

†

ċ

(
σ̄µaċ

)∗
ψa

= −i∂µψ
†

ċσ̄
µċaψa

= −iψ†ċσ̄
µċa∂µψa − i∂µ

(
ψ†ċσ̄

µċaψa

)
= −iψ†σ̄µ∂µψ − i∂µ

(
ψ′σ̄µψ

)
Now we can write the Lagrangian density as

⇒ L = −iψ†σ̄µ∂µψ −
1
2

m
(
ψψ + ψ†ψ†

)
and use the variation principle to derive

δS
δψ†

= 0 ⇒ 0 = −iσ̄µ∂µψ + mψ†

δS
δψ

= 0 ⇒ 0 = −iσ̄µ∂µψ
† + mψ

Now we define the γ matrices:

γµ B

(
0 σµ

σµ 0

)
They fulfill the Cifford algebra: {

γµ, γν
}

= 2gµν

Next, we set ψ to have four components whose first two components are those of the left-handed
spinor representation, whereas the last two components are in right-handed spinor representa-
tion. This is still a spinor or Majorana field, not a vector field.

ψ =

(
ψc

ψ†c

)
ψ describes spin 1

2 particles and fulfills(
−iγµ∂µ + m

)
ψ = 0

which is the Dirac equation.

20.1 Derivation of the Dirac equation from representation theory

Let us take two Dirac fields ψ1 and ψ2 in the left-handed spinor representation,
(

1
2 , 0

)
, and set

χ B
1
√

2
(ψ1 + iψ2)

ζ B
1
√

2
(ψ1 − iψ2)
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so we can set

ψ =

(
χc

ζ†ċ

)
ψ† =

(
χ†ȧ
ζa

)
Now we define

β B

(
0 δȧ

ċ

δa
c 0

)
which is, in fact, equal to γ0, the zeroth γ matrix.
With β, ζ and χ defined, we write ψ̄ as

ψ̄ B ψ†β =
(
ζa, χ†ȧ

)
⇒ ψ̄ψ = ζaχa + χ†ȧζ

†ȧ

ψ̄/∂ψ = ζσµ∂µζ
† + χ†σ̄µ∂µχ

with /∂ B γµ∂mu.
The Lagrangian density for Dirac fields is then

L = iψ̄/∂ψ − mψ̄ψ

20.2 Anticommutator relations
Since the Dirac equation describes fermions instead of bosons, we have to take anticommutator
relations into account, instead of commutator relations. Among the most important are{

ψα(t, ~x), ψβ(t, ~y)
}

= 0

(The equal time anticommutator vanishes.){
ψα(t, ~x), ψ̄β(t, ~y)

}
=

(
γ0

)
αβ
δ(3)(~x − ~y)

With

∂L

∂∂0ψ
= iψ̄γ0

and (
γ0

)2
= I

we get (
i/∂ + m

)
ψ = 0

whose solutions give a plane wave expansion.
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LSZ Formalism
28.11.2011

The discussion on the LSZ formalism is going to be an introduction to interacting field theory.
Today’s derivation will not be a proper, rigorous mathematical derivation, we will rather make
some assumptions that may be sensible from a physical point of view, but have no mathematical
hold. We need these assumptions in order to derive a quite useful formula for calculations.

21 Assumptions
• We assume that there is such a thing as a one-particle state, labeled with a 3-momentum

vector ~k.

• We assume that there is such a thing as a vacuum state.

• We assume that there is a Fock space with a creation operator acting on that vacuum in a
way that it will produce a state with momentum ~k

|k〉 = â†(~k) |0〉

â†(~k) ∼
∫

d3~x eikx
↔

∂0 φ(x) (5)

Further on, we demand that the annihilator will delete the vacuum and give a zero

â(~k) |0〉 = 0

Then, we want the vacuum and all other Fock space states to be normalized.

〈0 | 0〉 = 1

〈k | k′〉 = (2π)3ω~kδ
(3)(~k − ~k′)

ω~k =

√
~k

2
+ m2


• The LSZ formalism will help find vacuum expectation values of operators, and to accom-

plish that it proves useful to smear the operators a little bit. To do this, we introduce a
function f1 that has smearing properties, for example a Gaussian wave packet.

â†(~k) → â†1 B
∫

d3k f1(~k)â†(~k)

f1 ∼ exp

− (~k − ~k1)2

4σ2


Therefore, the momentum of the state being created by the creation operator will not be
totally sharp, but still very localized.

• In the Schrödinger picture, the smeared state â†1 |0〉 will propagate and spread out for
|t| → ∞. â†1 is localized only in the vicinity of ~k1, â†2 is localized only in the vicinity
of ~k2, and so on. Therefore, â†1â†2 |0〉 should look like two widely separated states in the
limit |t| → ∞, because the two maxima propagate and the distance in between them gets
bigger. We call this effect ”cluster decomposition”.
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Axiom States become multisingular, separated states in the limit t → ±∞.

The axiom might hold long before or after an interaction. But in interacting field theory, â†1
and â†2 become time-dependent! (Note that this is still an assumption that makes sense for a
physicist who works with interacting field theory, but not necessarily for a mathematician).

21.1 Initial and final state
We interpret the axiom, however, as two incoming, free particles, the so-called ”initial state”.

lim
t→−∞

â†1(t)â†2(t) |0〉 C |i〉

Here, |i〉 describes the initial state. We assume that we can normalize the initital state, since it
is made up of free particle states:

〈i | i〉 = 1

For the same reason, we can interpret the limit on positively infinite time as the final state, also
a set of free, separated particle states.

lim
t→+∞

â†1(t)â†2(t) |0〉 C | f 〉

〈 f | f 〉 = 1

Example: Two particles approach each other, scatter, and the outcoming particles leave the
interaction area and are separated.
Since we want the two intital (final) states to separate in the end, we must also assume that
~k1 , ~k2. Otherwise the two wave packets would superimpose and the two states would not be
free, non-interacting particles outside each others ranges.

21.2 Scattering amplitude
Having defined the initial and final state as |i〉 and | f 〉, the scattering amplitude must be the
overlap of both states, the scalar product 〈 f | i〉. This means that we compare a wave packet at
t = +∞ with a wave packet at t = −∞. Following the fundamental theory of Perkins, we get

â†1(+∞) − â†1(−∞) =

+∞∫
−∞

dx0 ∂0â†1(t)

(1)⇒ = −i
∫

d3~k f1(~k)
∫

d4x ∂0

(
eikx

↔

∂0 φ(x)
)

= −i
∫

d3~k f1(~k)
∫

d4x eikx
(
∂2

0 + ω2
~k

)
φ(x)

= −i
∫

d3~k f1(~k)
∫

d4x eikx
(
∂2

0 + ~k
2

+ m2
)
φ(x)

= −i
∫

d3~k f1(~k)
∫

d4x eikx

∂2
0−

←−(
~∇ · ~∇

)
+m2

 φ(x)

= −i
∫

d3~k f1(~k)
∫

d4x eikx
(
∂2

0 −
(
~∇
)2

+ m2
)
φ(x)

= −i
∫

d3~k f1(~k)
∫

d4x eikx
(
� + m2

)
φ(x)
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In the fourth line, we used the definition of ω~k. In the fifth line, we expressed ~k2 as a derivative
acting on the left (on eikx). Finally, in the last line, we identified the Klein Gordon operator.
For free fields,

(
� + m2

)
φ(x) = 0. But in computing the scattering amplitude, obviously φ is

not a free field, but an interacting field! Therefore, we cannot assume that the Klein Gordon
operator acting on the field will generally give zero.
By the integral found above, wich equals â†1(+∞) − â†1(−∞), we can express relations between
the states at t = ±∞:

â†1(−∞) = â†1(+∞) + i
∫

d3~k f1(~k)
∫

d4x eikx
(
� + m2

)
φ(x)

â1(+∞) = â1(−∞) + i
∫

d3~k f1(~k)
∫

d4x e−ikx
(
� + m2

)
φ(x)

 C A

The second line was derived by Hermitian conjugation of the first line.
We use this result to express 〈 f | i〉:

〈 f | i〉 =
〈
0
∣∣∣â1(+∞)â2(+∞)â†1(−∞)â†2(−∞)

∣∣∣ 0〉
=

〈
0
∣∣∣∣T [

â1(+∞)â2(+∞)â†1(−∞)â†2(−∞)
]∣∣∣∣ 0〉

C 〈0 |B| 0〉

In the first line, we see immediately that the operators are time-ordered. Therefore we can bring
a time ordering operator into the expression without altering it.

21.3 The LSZ reduction formula
If we let σ → 0, the formerly smeared wave packets become sharp again, they regain the form
of three dimensional δ functions in momentum space, ∼ δ(3)(~k − ~k′). If we don’t consider just
two, but n scattering partners, and we use A in B, the formula for the scattering amplitude
becomes

〈 f | i〉 = in+n′
∫

d4x1 . . . d4xn

∫
d4y1 . . . d4yn′

{
eik1 x1

(
�x1 + m2

)
. . . e−ik′1y1

(
�y1 + m2

)
· · · ×

× 〈0 |Tφ(x1) . . . φ(xn)φ(y1) . . . φ(yn′)| 0〉 + δ

}
This is the ”LSZ reduction formula”. The x1 . . . xn correspond to n incoming particles with
momenta k1 . . . kn. Accordingly, the y1 . . . yn′ correspond to n′ outgoing particles with momenta
k′1 . . . k

′
n. The term +δ is expressing the fact that there are extra δ functions carrying information

about disconnected terms, that is if the two particles don’t interact, but maintain their former
paths. These terms are not interesting when talking about scattering processes, and will be
neglected in further discussions.
The initial and final states are understood to be free, non-interacting states at t → ±∞, so they
can be expressed in terms of creation and annihilation operators. Feynman diagrams give a nice
graphical interpretation of these terms.
Remark: A free particle interacts with itself and recombinates all the time.

22 Discussion
In the first part, we established the LSZ formalism. Now we will see how it can be used for
purposes of calculation and interpretation.
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22.1 The vacuum state
One axiom from part one was the assumption that the vacuum state |0〉 shall exist. Another ax-

iom stated that there are well-defined one-particle states
∣∣∣∣~k〉 with energy E = ω~k =

√∣∣∣~k∣∣∣2 + m2.

We write
∣∣∣∣~k1~k2

〉
as a two-particle state where the two involved particles carry momenta ~k1 and

~k2, and they are created out of the vacuum by the respective one-particle creation operators.

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

m

2m

E

p

Figure 1: energy momentum diagram

The energy of such a two particle state would then be
at least the sum of the masses of the two particles. If
we assume that the two particles are identical, because
they were created with the creation operators of the same
kind, then the total energy is at least twice the mass of
one particle. If the energy is exactly that, then the two
particles will be at rest, with respect to each other. If
there is relative movement, then the state also includes
the kinetic energy connected to that movement.

E∣∣∣∣~k1~k2
〉 = 2m + all kinetic energy ≥ 2m

22.2 Shifting the vacuum
If φ is not a free field, we can write it down expressing the interaction and use this for the
vacuum expectation value.

φ(x) = e−iPxφ(0)eiPx

⇒ 〈0 |φ(x)| 0〉 =
〈
0
∣∣∣e−iPxφ(0)eiPx

∣∣∣ 0〉
P is the momentum operator, whose eigenvalue to the vacuum state is 0.

⇒ 〈0 |φ(x)| 0〉 = 〈0 |φ(0)| 0〉 ∈ C

In general, the vacuum expectation value of the field φ at x = 0 gives some complex number.
Since â†1(±∞) |0〉 gives a pure one-particle state (in the limit of smearing without an overlap),
then this complex number should actually be zero. If 〈0 |φ(0)| 0〉 were not zero, then â†1(±∞) |0〉
would give a combination of states and no pure one-particle states. But we can assume that
one-particle states exist, because detectors can identify single quanta.
Having established that 〈0 |φ(0)| 0〉 = 0, shifting any field by its vacuum expectation value
should not change anything.

φ(x)→ φ(x) − 〈0 |φ(0)| 0〉 C φ̃(x)
〈0 | 0〉 = 1〈

0
∣∣∣φ̃(x)

∣∣∣ 0〉 = 0

The second line gives the normalization of the vacuum. We further on assume that all the
calculations (which are still basically assumptions) are something that we can do.
As for notation, the tilde will be dropped from now on, because we expect that every field has
had its vacuum expectation value subtracted.
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22.3 Amplitude between vacuum and non-vacuum states
We have seen how to handle vacuum expectation values, but what happens if the final state is
not the vacuum?

〈p |φ(x)| 0〉 =
〈
p
∣∣∣e−iPxφ(0)eiPx

∣∣∣ 0〉
= e−ipx 〈p |φ(0)| 0〉 ∈ C

Here, we have used that 〈p| e−iPx = 〈p| e−ipx with P being the momentum operator and p being
the eigenvalue. The same goes for the right side: eiPx |0〉 = 1 |0〉.
〈p |φ(x)| 0〉 is a Lorentz scalar because φ is a scalar field. A Lorentz scalar as a function of p can
not be proportional to p, only to p2 = m2.

22.4 Free field limit
In regarding t → ±∞, we expect 〈p |φ(0)| 0〉 to give 1, since this is the case for free fields.

c = lim
t→±∞

〈p |φ(0)| 0〉 !
= 1 , to agree with free fields.

If c , 1, we can rescale, so that it will give one. This is the second correction to the field φ that
we are carrying out, the first one was a shift by 〈0 |φ(0)| 0〉, and now there is a rescaling.

φ → φZ = φ̃ such that
〈
p
∣∣∣φ̃(0)

∣∣∣ 0〉 = 1.

22.5 Amplitude between vacuum and n-particle state
Now let us assume that φ is sandwiched between n-particle states, and later on we will check
what happens for two fields φ(x) and φ(y).

22.5.1 n-particle states

We are choosing the notation 〈P, n| for an outgoing state that is a collection of n particles moving
with momenta P, where any relative movements are already included in the expression.
Then:

〈P, n |φ(x)| 0〉 =

〈
P, n

∣∣∣∣eiP̂xφ(0)eiP̂x
∣∣∣∣ 0〉

= e−iPx 〈P, n |φ(0)| 0〉

C e−iPxAn(~p) C C

The overlap between 〈P, n| and the initial state should give zero:〈
P, n

∣∣∣â†1(±∞)
∣∣∣ 0〉 !

= 0

If we, as stated above, assume that 〈P, n| is a state with more than one particle, then we can
define a wave packet for the multi-particle state:

|ψ〉 B

∫∑ ∫
d3 p ψn(~p) |P, n〉

⇒
〈
ψ

∣∣∣â†1∣∣∣ 0〉 = −i
∫∑∫

d3 p ψ∗n(~p)
∫

d3k f1(~k)
∫

d3x eikx
↔

∂0 〈P, n |φ(x)| 0〉

=

∫∑∫
d3 p (2π)3ψ∗n(~p)

∫
d3k f1(~k)

∫
d3x(p0 + k0)ei(k−p)xAn(~p)

=

∫∑∫
d3 p (2π)3(p0 + k0)ψ∗n(~p) f1(~p)An(~p)ei(p0−k0)t
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with

p0 =

√∣∣∣~p∣∣∣2 + M2

k0 =

√∣∣∣∣~k∣∣∣∣2 + m2

M ≥ 2m > m ⇒ p0 < k0

In the limit t → ±∞, this entire expression will approach zero. So we can demand that

〈0 |φ(x)| 0〉 !
= 0

〈k |φ(x)| 0〉 !
= e−ikx

but we need to modify the Lagrangian a slight bit: We rescale every term and shift everything
in order to get a well-defined Lagrangian.

L = −
1
2
∂µφ∂

µφ −
1
2

m2φ2 +
g
4!
φ4

→ −
1
2

Zφ∂µφ∂µφ −
1
2

Zmm2φ2 + Zg
g
4!
φ4 + Zsφ

Zφ,Zm,Zg and Zs are called the Z-factors.

22.5.2 Derivation of the Källén-Lehmann representation of the two-point Wightman
function

We will examine the vacuum expectation value of two interacting fields before we get to the
generalization of n fields. Since fields are described as quantum mechanical operators, we can
expand 〈0 |φ(x)φ(y)| 0〉.

〈0 |φ(x)φ(y)| 0〉 = 〈0 |φ(x)| 0〉 〈0 |φ(y)| 0〉 +
∫

d3~k
2ω~k(2π)3

〈
0 |φ(x)|~k

〉 〈
~k |φ(y)| 0

〉
+

∫∑
〈0 |φ(x)|K, n〉 〈K, n |φ(y)| 0〉

Once again, we write for φ(x) = e−ipxφ(0)eipx and that gives us

〈0 |φ(x)φ(y)| 0〉 =

∫
d3~k

2ω~k(2π)3 eik(x−y) +

∫∑ d3K
2ω~K

eiK(x−y) |〈K, n |φ(0)| 0〉|2

We define

ρ(s) B
∫∑
|〈K, n |φ(0)| 0〉|2 δ(s − M2) if s ≥ 4m2

and ρ(s) ≡ 0 if s ≤ 4m2.

Also, ρ(s) ≥ 0.

Then we introduce time-ordering:∫
d4k

(2π)4

eik(x−y)

k2 − m2 + iε
= Θ(x0 − y0)

∫
d3~k

(2π)32ω~k
eik(x−y) + Θ(y0 − x0)

∫
d3~k

(2π)32ω~k
e−ik(x−y)
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All this preparation has lead to one really useful formula, the Källén-Lehmann representation
of the two-point function in momentum space. This formula is built on the assumption that we
can express ∆̂(k2), a Lorentz scalar, as the Fourier transform of 〈0 |Tφ(x)φ(y)| 0〉 = F(x − y).

∆̂(k2) =
1

k2 − m2 + iε
+

+∞∫
4m2

ds ρ(s)
1

k2 − s + iε

This formula, the Källén-Lehmann representation of the two-point Wightman function, holds
in a full interacting free field theory. It gives us information about proper poles of interacting
particles at fixed masses. Continuous parts (computations and measurements) agree well.
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• Interacting QFT
5.12.2011

Lately we discussed the LSZ formalism, a reduction formula that involves many integrals and
Klein Gordon operators, that we derived from physically sensible assumptions. It states that the
transition amplitude between two free initial and final states is given by

〈 f | i〉 = in−n′
∫

d4x1 . . . eik1 x1(�x1 + m2) . . . d4y1 . . . e−ik′1y1(�y1 + m2) . . . 〈0 |Tφ(x1) . . . φ(y1) . . .| 0〉+

+ ”disconnected terms”

���
���
���

���
���
���n’ n

Figure 2: visualization of
interaction with n′ incoming
and n outgoing edges

”Disconnected terms” means that there is no interaction at all, pic-
turedly speaking the particles ”don’t hit, but miss each other”. This
case is not interesting if we want to examine interacting quantum field
theory, therefore we name it here, but don’t look at it further.
The Wightman function, the vacuum expectation value 〈0 |T . . .| 0〉,
carries all information about the interaction.
It is time to talk about interacting quantum field theory, the perturba-
tion expansion, and Feynman diagrams.

23 Pictures in Quantum Mechanics
As we know, and this will be but a short reminder, there are different quantum mechanical pic-
tures to be taken into account when discribing quantum physics: the Schrödinger, the Heisen-
berg, and the interaction picture.

23.1 Schrödinger picture
In the Schrödinger picture, the states ΨS are time dependent, where this time dependence is
given by the Schrödinger equation.

∂t |ΨS 〉 = H(pS , qS , t) |ΨS 〉

The time development of states is expressed using unitary transformations.

|ΨS (t)〉 = U(t, t′) |ΨS (t′)〉

iU̇ = HU

U(t′, t′) = I

The time development operator is given using the exponentiation of the Hamiltonian:

U(t, t′) = e−iH(t−t′)

Operators, and therefore fields as well, are time independent in the Schrödinger picture. The
time development lies in the states alone.
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23.2 Heisenberg picture
In the Heisenberg picture, states are time independent, whereas fields are time dependent, as are
all operators. Their time development is given by the conjugation with the time development
operator, and the fields at time t = 0 are identical to the Schrödinger fields.

q̂H(0) = q̂S

p̂H(0) = p̂S

q̂H(t) = U†(t, 0) q̂H(0) U(t, 0)

p̂H(t) = U†(t, 0) p̂H(0) U(t, 0)
|ΨH(t)〉 = |ΨH(0)〉

24 Interaction picture
We can express the Hamiltonian as a decomposition of a free and an interacting Hamiltonian.

H = H0 +HI

The free Hamiltonian, H0, is quadratic in the fields, whereas the interaction Hamiltonian, HI ,
is a polynomials in the fields of degree greater than two.
We get the interaction picture, in which the fields and states at an arbitrary time t = 0 are exactly
the Schrödinger fields and states (at that time)

qI(0) = qS

pI(0) = pS

|ΨI(0)〉 = |ΨS (0)〉

Neither the fields not the states are time independent, but their time development is given only
by the free Hamiltonian,H0:

qI(t) = eiH0tqI(0)e−iH0t

pI(t) = eiH0t pI(0)e−iH0t

|ΨI(t)〉 = eiH0t |ΨI(0)〉

The matrix element M of an operator A is of course independent from the picture. To explain
this, let us take a closer look at M in the Schrödinger picture.

M(t) = 〈φS (t) |AS |ΨS (t)〉

=
〈
φI(t)

∣∣∣eiH0tAI(0)e−iH0t
∣∣∣ ΨI(t)

〉
= 〈φI(t) |AI(t)|ΨI(t)〉

Applying the time derivation operator on the interaction state gives the Schrödinger equation.
We see immediately that only the interacting Hamiltonian plays a role here.

i∂t |ΨI(t)〉 = eiH0t
(
H0(pS , qS +HI(pS , qS , t)

)
|ΨS (t)〉

= eiH0tH ′(pI(0), qI(0))e−iH0t |ΨI(t)〉

= HI

(
pI(t), qI(t), t

)
|ΨI(t)〉
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At first, we used i∂t |Ψ〉 = H |Ψ〉 and |ΨI〉 = eiH0t |ΨS 〉. Next, we commuted H and eiH0t and
wrote |ΨS 〉 in the interaction picture again. After that, we identified the fields in the Hamiltonian
to be at the time t = 0, and we used the relation OI(t) = eiH0tOI(0)e−iH0t, for any operator O, and
OI(0) = OS .
This expression leads us to the time dependence of interaction states and a differential equation
resulting from it:

UI(t, t′) |ΨI(t′)〉 = |ΨI(t)〉
i∂tUI(t′, t) = HI(t)UI(t, t′) (6)
UI(t′, t′) = I

”Philosophical” remark: We assume that the interaction disappears at t = ±∞. We never justify
this, and there is no evidence to suggest that this is the real case. (What is a ”free” field? Aren’t
there interactions everywhere?) But we use it all the time, and for some reason, the right results
come out.

25 Computing the transition
At first we write down the scattering matrix, S, as a solution of (6).

S = lim
t→+∞

lim
t′→−∞

UI(t, t′)

= T exp

−i

+∞∫
−∞

dtHI(t)


In order to compute S for any two times t1, t2, we have to expand:

S(t1, t2) = 1 − i

t2∫
t1

dtHI(t) −
1
2!

t2∫
t1

t2∫
t1

dt dt′T
[
HI(t)HI(t′)

]
+ . . .

= 1 − i

t2∫
t1

dtHI(t) −
1
2!

t2∫
t1

t2∫
t1

dt dt′HI(t)HI(t′) + . . .

To solve this, we will use Wick’s theorem, which we will learn in a minute. Before that, let us
remind ourselves of field decompositions, and learn what contractions are.

25.1 Field decompositions (short reminder)
Free fields are linear in creation and annihilation operators.

φ(x) =

∫
d3~k

2√ω~k

{
âe−ikx + â†eikx

}
25.2 Contractions
Contractions are defined as the difference between time ordering and normal ordering.

AiA j ≡ T (AiA j)− : AiA j :
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If we assume ti < t j, then

T (AiA j) =
(
A(+)

i + A(−)
i

) (
A(+)

j + A(−)
j

)
=: AiA j : +

[
A(−)

i , A(+)
j

]
⇒ AiA j =


[
A(−)

i , A(+)
j

]
if ti > t j[

A(−)
j , A

(+)
i

]
if ti < t j

Since our computations involve the creation of states out of the vacuum, normal ordering makes
no sense! It would annihilate the vacuum state, giving zero. For this reason, we discard : X :
for all X, as 〈0 |: X :| 0〉 = 0.
Now we see that the contraction is exactly the Wightman function:

AiA j =
〈
0
∣∣∣T AiA j

∣∣∣ 0〉
It is important to realize that AiA j is not an operator, but a number. It is an operator sandwiched
between two vacuum states, or a commutator which is either zero or proportional to some
number and a δ distribution.
Last but not least, there is an important rule for calculating contractions:

: A1A2A3A4 : ≡ A2A4 : A1A3 :

We will see that it is a good idea to express everything in terms of contractions due to the
graphical interpretation, which we will get to soon.

26 Wick’s Theorem
Theorem : The time-ordered product of n free fields is equal to the sum of the normal-ordered
product of all possible partial and complete contractions of all free fields in

{
T

∏
j φ j

}
.

This does not only account for fields, but for anything linear in fields and their creators or
annihilators. For now, we ignore the partial contractions.

26.1 Example
Consider the Lagrangian density

L =
1
2

(
∂νφ∂

νφ + µ2φ2
)

+
1
2

(
∂µρ

†∂µρ − m2ρ†ρ
)

+ λρ†ρφ

The first part in the sum gives a real, scalar field. The second part comes from a complex field,
therefore there is a charge flow. Both fields correspond to massive particles. The third part
describes the interaction, where λ is a small parameter, the coupling constant: λ � 1. The
interaction Lagrangian is also the interaction Hamiltonian: HI = λρ†(x)ρ(x)φ(x).

ρρ

φ

= Interaction: Vertex with ρ corresponding to a
half edge coming in, ρ† corresponding to a half
edge going out, and φ being a scalar field.

For every such vertex, we multiply with (−iλ), where the −i is from the time-ordered exponen-
tial, and λ is the coefficient inHI .
In this way, we can translate Wick diagrams to operations.
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26.1.1 Wick diagrams with two vertices

All possible Wick diagrams are made up from the basic vertex (see above), called corolla, just
like puzzles. From the different ways to glue these corollas together, we get different overall
interactions.
From the way the diagrams are drawn, we can extract the calculations: For every two half edges
that are connected, the two corresponding fields are contracted.

• Four-legged function (four external edges)

yx

Contribution to the S matrix given by
(−iλ)2

∫
d4x d4y ρ†(x)ρ(x)φ(x)ρ†(y)ρ(y)φ(y)

= (−iλ)2
∫

d4x d4y ρ†(x)ρ(y) : ρ(x)ρ†(y)φ(x)φ(y) :

There are four fields outside the contraction (namely ρ(x), φ(x), ρ†(y), and φ(x)), that
means four external fields, which gives us 24 terms in the creation and annihilation op-
erators α, α†, β, β†, γ, γ†. The contraction of ρ†(x) and ρ(y) will produce the Feynman
operator, propagating the field from y to x:

〈
p′, k′

∣∣∣∣∣∣∣∣∣∣∣ yx

Ψx

=(+) =(−)

x

(+)

x

(−)
Ψ

+Ψx

+Ψ
(+) (−)

y y+ΦΦ

Φy

(+)
+Φy

(−)
∣∣∣∣∣∣∣∣∣∣∣ p, k

〉

• Two-legged function (two external edges)

x y
ρ

ρ=

(x)

(x)(x)ρ

(x)ρ=
Two inner edges⇒ two contractions
Contribution to the S matrix given by
(−iλ)2

∫
d4x d4y ρ†(x)ρ(y)ρ(x)ρ†(y) : φ(x)φ(y) :

• Vacuum fluctuation (no external edges)

yx

No external edges⇒ contract everything
Contribution to the S matrix given by
(−iλ)2

∫
d4x d4y ρ†(x)ρ(y)ρ(x)ρ†(y)φ(y)φ(y)

26.2 Expressing fields on states as plane waves
If we again consider the decomposition of fields into a creation and an annihilation part, we
write

φ = φ(+) + φ(−)

dλ(~k) = d~k
(2π)32ω(~k)

 φ(+) =
∫

dλ(~k)eixkα̂†(k)
φ(−) =

∫
dλ(~k)e−ixkα̂(k)

ρ(+) =
∫

dλ(~k)eixkγ̂†(k)
ρ†(+) =

∫
dλ(~k)eixkβ̂†(k)

ρ(−) =
∫

dλ(~k)e−ixkβ̂(k)
ρ†(−) =

∫
dλ(~k)e−ixkγ̂(k)

If we let a scalar field φ(−) act on a state |p〉, we get

φ(−)(x) |p〉 =

∫
dλ(~k)e−ikxα̂(k)α†(p) |0〉

=

∫
d3~ke−ikxδ(3)(~k − ~p) |0〉

= eixp |0〉 with p2
0 = ~p2 + m2 ≡ ~k2 + m2
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We see that a field φ(−) acting on a state labeled with momentum p, will produce a plane wave
with that momentum.
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To the Feynman Rules
7.12.2011

We have learned about bicontractions of fields and that we can decompose scalar fields in cre-
ating and annihilating parts.

φ = φ(+) + φ(−)

φ(+) =

∫
dλ eixkα̂†(k)

φ(−) =

∫
dλ e−ixkα̂(k)

The annihilating part applied on a state simply gives a plane wave.

φ(−)(x) |p〉 = e−ipx |0〉

We saw that spin 1
2 fields can be decomposed in a similar way:

ψ = ψ(+) + ψ(−) ψ† = ψ†(+) + ψ†(−)

ψ(+) =

∫
dλ eixkβ̂†(k) ψ(−) =

∫
dλ e−ixkγ̂(k)

ψ(+)
† =

∫
dλ eixkβ̂(k) ψ(−)

† =

∫
dλ eixkγ̂†(k)

And we drew a Wick diagram whose contributions to the scattering matrix was given by the
following formula:

D

x
2

x
1

S(D) = (−iλ)2
∫

d4x1d4x2 : ψ†1ψ1φ1ψ
†

2ψ2φ2 :

Today we will focus on the symmetry of such expressions.

27 Contribution to the scattering matrix
There are four fields not contracted in

S(D) = (−iλ)2
∫

d4x1d4x2 : ψ†1ψ1φ1ψ
†

2ψ2φ2 :

and all of these have a (±) decomposition, therefore we have a lot of terms to consider. Since we
don’t want the contributions of disconnected pieces in a diagram, where there is no interaction,
we compute

〈p′, k′ |(S − I)| p, k〉

instead of 〈p′, k′ |S| p, k〉. Since different fields always commute, it suffices to compute the
action of one field sandwiched between two states of which one is the vacuum.

〈0 |φ| k〉 =
〈
0
∣∣∣φ(−)

∣∣∣ k〉 = e−ixk

〈k′ |φ| 0〉 =
〈
k′

∣∣∣φ(+)
∣∣∣ 0〉 = e+ixk′

〈0 |ψ| p〉 =
〈
0
∣∣∣φ(−)

∣∣∣ p
〉

= e−ixp〈
p′

∣∣∣ψ†∣∣∣ 0〉 =

〈
p′

∣∣∣∣ψ(+)†
∣∣∣∣ 0〉 = e+ixp′
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With the matrix element for D being

M(D) =

〈
p′, k′

∣∣∣∣∣∣∣∣∣∣∣∣∣
1   

(+)ψ    +ψ
= =

1   

(−)

(+) (−)ψ   +ψ
2 2

(+) (−)

2 2
ϕ   +ϕ

ϕ   +ϕ
1   1   

(+) (−)

∣∣∣∣∣∣∣∣∣∣∣∣∣
p, k

〉

the only surviving diagrams give

M(D) =

〈
p′, k′

∣∣∣∣∣∣∣∣∣∣∣∣∣


1   

(+)=

2

2

1   

(+)

ψ    

ϕ   

ϕ   

ψ   

(−)

(−)

+

1   

(+)=

(−)

2

(−)

(+)

1

2
ϕ  

ψ    

ψ   

ϕ  


∣∣∣∣∣∣∣∣∣∣∣∣∣
p, k

〉

= (−iλ)2
∫

d4q
(2π)4

{
i

q2 − m2 + iε

(
(2π)4δ(4)(k + p − q)(2π)4δ(4)(k′ + p′ − q)︸                                               ︷︷                                               ︸

momentum conservation in the first diagram

+

+ (2π)4δ(4)(k′ − p + q)(2π)4δ(4)(k − p′ + q)︸                                               ︷︷                                               ︸
momentum conservation in the second diagram

)}
There are no closed loops, hence these diagrams are called first order tree level Feynman
diagrams contributing to the scattering of two fields. For every vertex, we have momentum
conservation in the form of a δ function with respect to incoming and outgoing charge, and a
multiplication with iλ(2π)4.
Remark: the second diagram is drawn in a way that makes it easy to understand the interaction,
but drawing it in a more distorted way makes it easier to realize the similarities and differences
to the first diagram. Keep in mind:

1   

(+)=

(−)

2

(−)

(+)

1

2
ϕ  

ψ    

ψ   

ϕ  

=

1   

(+)=

(−)

2

(−)

(+)

1

2
ϕ  

ψ    

ψ   

ϕ  

,

1   

(+)=

2

2

1   

(+)

ψ    

ϕ   

ϕ   

ψ   

(−)

(−)

27.1 General rules for drawing diagrams
• We draw diagrams in such a way that time flows from right to left. Therefore, ”left comes

later”. This is only important for the initial and final states, since the interaction process
is not observable and hence time order is unknown.

• At first, we write down the internal edges: Lines for incoming particles to the right, lines
for outgoing particles to the left.

• For every vertex, we write down a δ(4) function of the sum of all momenta with respect to
the sign, and multiply by iλ(2π)4.

• We sum over all possible diagrams with the same number of vertices.

• We integrate over all free momenta.

• We also have to take the symmetry factor into account, a rational factor before some terms
which gives the rank of the automorphism group, sym (Γ) = |Aut |. (Especially important
for self-interacting fields.)
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28 Symmetry factors
Before we can compute symmetry factors, let us have a look at some basic integrals.∫

R

dxe−
1
2 ax2

=

√
2π
a

, a > 0 (7)

∫
R

dxe−
1
2 ax2+Jx =

√
2π
a

exp
(

J2

2a

)
, a > 0 (8)

We can use (7) to define the mean of some even power of x:

〈
x2n

〉
B

∫
R

x2ne−
1
2 ax2

dx∫
R

e−
1
2 ax2 dx

=
(2n − 1)!!

an

where (2n − 1)!! B (2n − 1) · (2n − 3) ·... ·3 · 1

The numerator of
〈
x2n

〉
gives the number of Wick contractions!

28.1 Action
Reminder: The action is defined by the four-integral over the Lagrangian density:

S B

∫
d4xL(φ) =

∫
d4x (L0(φ) +LI(φ))

Then,
〈
x2n

〉
gives the number of pairings of 2n terms, where n is the number of propagators, or

lines. The free Lagrangian, L0, is quadratic in the field (→ x2), the interacting Lagrangian, LI ,
is a polynomial in the fields whose degree is greater than two.

29 Interacting field theory
Let us take (8) to a more general level by adding a polynomial P(x) to the exponent. This
polynomial is to play the role of interaction, and its degree should be greater than two.

Z(J) =

∫
R

dx e−
1
2 ax2+P(x)+Jx

=

∫
R

dx
( ∞∑

n=0

Pn(x)
n!︸     ︷︷     ︸

=eP(x)

)
e−

1
2 ax2+Jx

=

∞∑
n=0

1
n!

∫
R

dx Pn(x)e−
1
2 ax2+Jx

We can express this integral using∫
dx xke−

1
2 ax2+Jx =

∫
dx

(
d

dJ

)k

e−
1
2 ax2+Jx
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and with (8) this expression gives∫
dx

(
d

dJ

)k

e−
1
2 ax2+Jx =

√
2π
a

(
d

dJ

)k

e
J

2a

Now we set P(x) = λ
k! xk, k ≥ 3:
∞∑

n=0

∫
R

dx
Pn(x)

n!
e−

1
2 ax2+Jx =

∞∑
n=0

∫
R

dx
1
n!

(
λ

k!
xk

)n

e−
1
2 ax2+Jx

⇒ Z(J) =

√
2π
a

exp

 λk!

(
d

dJ

)k

+
J2

2a


29.1 Second approach
We expand Z(J) in a different form in order to introduce a Green function.

Z(J) =

∞∑
N=0

JN

N!

∫
R

dx xNe−
1
2 ax2+P(x) C Z

∞∑
N=0

JNGN

Here, GN denotes the Green function (in the toy model). It counts how often there can be a
vertex.

GN B

∫
R

dx xN

N! e
− 1

2 ax2+P(x)

∫
R

dx e−
1
2 ax2+P(x)

=

∞∑
n=0

∫
R

dx xN

N!

(
λnk

k!

)n 1
n!e
− 1

2 ax2

∞∑
n=0

∫
R

dx
(
λ nk

k!

)n 1
n!e
− 1

2 ax2

29.1.1 Example

Set P(x) = λ x4

4! . From the exponent being equal to four, we can already gather that the only
possible vertices of this kind of interaction are the following:

Therefore, any diagrams are made up of this basic vertex, called corolla. One corolla consists
of four half edges in one vertex. By putting two corollas next to each other and contracting
two half edges at a time, we get interactions for external J fields.

−→

contract =

J J

JJ
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29.2 Symmetry factor
At the end of the day, we get for the number of Wick contractions the generic integrand∫

dxxN xkne−
1
2 ax2

=
(N + kn − 1)!!

N!n!(k!)n (9)

Here, N denotes the number of external edges, n is the connection of extra edges (Wick con-
traction), and k is the power in the Lagrangian. For k = 4 and N = 4, we might get

⇒

Obviously, we could have connected different edges in the three corollas and still would have
gotten the same final graph. The number of different ways of gluing edges of corollas together
is called the symmetry factor. It shows up in (9) when the summation in terms of graphs is
carried out:

(9)⇒
∑

topologically
different graphs

φ(Γ)
sym (Γ)

Here again, φ(Γ) denotes the Feynman rules of the graphs Γ.

29.2.1 Example

Let us consider φ3 theory where the corolla is

If we wanted to build up the graph

we could either glue the two upper edges and the two lower edges together, or glue one of each.

or

Since there are two different ways to achieve the desired interaction, the symmetry factor of this
graph is two.
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30 Feynman rules of Feynman graphs Γ, in φ3 theory

30.1 Vertex
For each vertex, we multiply with

(−iλ)(2π)4δ(4)(k + p − q)

The signs in the delta function come from the orientation of the edges. Internal edges can be
oriented arbitrarily, but the orientation must be kept alike for the entire expression.

30.2 Internal edges
For each internal edge, we multiply with the scalar propagator and the volume element:

→
d4k

(2π)4

i
k2 − µ2 + iε

30.3 Example
Let us look at the graph

qq

2

_

1

k

k

For the contribution to the S matrix, we get

S′ = λ2
∫

δ(4)(k1 + k2 + q)
1

k2
1 − µ

2 + iε
δ(4)(−k2 − k1 + q̄)

1
k2

2 − µ
2 + iε

d4k1d4k2

where the first δ distribution from the left vertex, the second δ distribution comes from the right
vertex, the first propagator (and integration over k1) comes from the upper internal line, and the
second propagator (and integration over k2) comes from the lower internal edge.
Carrying out one integration in four dimension yields k1 = −k2 − q. With the other integration,
we get q = q̄.
Overall momentum is conserved, but there is still a free integration over k2! This is non-trivial!
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Topology of Wick Diagrams
12.12.2011

Last time we finished with the important formula for the number of Wick contractions (numer-
ator)

(N + kn − 1)!!
N!n!(k!)n

for interactions of the type

λ

k!
φk

• k: number of fields interacting; exponent of the field in the Hamiltonian

• n: exchange of corollas

• N: exchange of external edges

And if we take symmetry into account, we get∑
graphs Γ

λ#v(Γ)J#external edges(Γ)

|Aut (Γ)|
1

q#internal edges(Γ)

• #v(Γ) denotes the number of vertices in the graph Γ

• #external edges(Γ) denotes the number of external edges, that is, the number of incoming
and outgoing lines

• q#internal edges(Γ) denotes the number of internal edges, that is, the number of lines connecting
two vertices

• The last part in the expression,
1

q#internal edges(Γ) , is our ”toy Fenyman rule”.

31 Example
Order λ2 (two vertices) and k = 3: two corollas (→ two vertices), two-point function (→ two
external edges)→ J2

x yx x x y y y1   2   3  1   2   3  

Number of Wick contractions and symmetry factor:
7 · 5 · 3
(3!)22!

Now the question is: What graphs

can we glue together of these two corollas, and how often can we get the same graph?
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1.

For the lower graph, the only one involving corollas, we can connect each of the three legs
of one corolla with each of the three legs of the other one, therefore are 3 · 3 possibilities
to glue. With N = 0 (no external legs connected with a vertex), n = 2 (two corollas), and

k = 2 (because of order λk = λ2) we get for the symmetry factor
9

0!2!(3!)2 =
9

2 · 36
=

1
8

,

and 8 is the rank of the automorphism group / the symmetry factor.

This result can be interpreted as the flipping of two connected edges or rotating of the
graph, where the result gives the same graph.

2.

We get for the inverse rank of the automorphism group:
1
|Aut |

=
1
2

. The possibility to

rotate the graph along the external lines and flip it without changing its appearance is the
reason for the factor 2 in the denominator.

3.

Here, we have the same kind of symmetry as before. The bubble can be rotated, so that
the two half-edges switch position, and the graph does not change. Once again, we get

1
|Aut |

=
1
2

.

4.
Now, there are two loops, each of which can be rotate over without manipulating the
appearance of the diagram. Both of these transformations give a factor of two to the

denominator. Therefore, the inverse rank of the automorphism group is
1
|Aut |

=
1

2 · 2
=

1
4

5.

In this last example, there are two axes along which there is a symmetry. First, there is a
factor of 3! = 6 because this is the number of cobinations for the three half-edges from
the right vertex to the three half edges of the left vertex. Then there is an additional factor

of two because this graph can be rotated again.
1
|Aut |

=
1
12

32 Tree level graphs
From now on, we will consider tree level graphs (graphs without closed loops). For example:

yx
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We are trying to set up an interacting quantum field theory using free quantum field theory
(which we know) and math (which we can learn). We use propagators in order to describe free
quantum field theory, and vertices to describe interacting quantum field theory. The actual form
of the vertex can be derived from the Lagrangian.

32.1 φ4 theory
Assume you look at the possibility of a scalar field interacting like λφ

n

n! where λ is some coeffi-
cient classifying the strength of the interaction. If, in a four-dimensional spacetime, we assume
n = 4, the interaction

is constant under Lorentz transformation. This means that there exists a constant matrix, which
is particularly not a function of the respective momenta. Therefore, the interaction cannot be
proportional to a derivative.
The contribution to the S matrix is then given by

q q

q
k

k

q
1

2 3

4

2

1 ∝ (−iλ)2
∫

d4k1 d4k2 δ
(4)(q1 + q2 + k1 + k2)δ(4)(q3 + q4 − k1 − k2)×

×
1

k2
1 − m2 + iε

1
k2

2 − m2 + iε

⇒ (−iλ)2
∫

d4k1δ
(4)(q1 + q2 + q3 + q4)

1
k2

1 − m2 + iε
1

(q3 + q4 − k1)2 − m2 + iε

The δ distribution is not a function of k1, which is the variable to be integrated over, it ”only”
provides global momentum conservation. The propagators diverge logarithmically when inte-
grated over. We solve this problem by using a cut-off because we assume that the physics we
are describing is insensitive to high energies. We don’t integrate from −∞ to +∞, but from −Λ

to +Λ where Λ is the renormalization parameter. When regarding the limit Λ → ∞, we regain
the former expression.

→

q q

q
k

k

q
1

2 3

4

2

1

∝ (−iλ)2
+Λ∫
−Λ

d4k1δ
(4)(q1 + q2 + q3 + q4)

1
k2

1 − m2 + iε
×

×
1

(q3 + q4 − k1)2 − m2 + iε
∝ log Λ + finite terms = ”const.”

lim
Λ→∞

1
log Λ

residue

The residue of the interaction is the short term distance singularity and it gives the Feynman
rule for the interaction.
There can be more complicated graphs, but they will always be built with the same vertices (→
the same interaction). If the theory is self-consistent, then the residues can still be determined,
and the behaviour of the system, no matter how complicated, is given by the simplest vertices.
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33 Short distance behaviour
Now that we have local interaction rules, we need to come up with a manual for using them.
Let us try and look at propagation and interaction from a mathematical point of view.
For any manifold M, we can define a tangent vector space in a point x, T Mx.

x

TM x

In T M, we have a Lorentz group, which yields a representation theory, which gives free propa-
gators where we can find residues of convolutions of propagators which finally lead to vertices.

Lorentz group→ representation theory→ free propagators→ residues of convolutions of
propagators→ vertices

Feynman diagrams are the outcome of the respresentation theory on the tangent space.
Having Feynman rules, we will now try to write them in a (mathematically) nice way.

33.1 Kirchhoff polynomials
Example: For the Lagrangian

L =
1
3

(
∂µφ∂

µφ − m2φ2
)
−

g
4!
φ4

we have an interaction with vertices with four external fields, and we can, for example, get this
graph with four external legs:

1

2

3

4 5

6

p

p

p

p
1

2

4

3

(10)

The six internal edges are labeled with the numbers 1 . . . 6. (Note that this is the same graph as

p
4

p
2

p
3

p
1

1

2

4 53

6

(11)

if we read the two lines in the middle in a way that they are solid diagonals, but do not interact
with each other.)
In this graph, there are three independent loops, which (in a four-dimensional spacetime) leads
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to a twelve-fold integration. This may not be not the easiest task, but at heart, it is doable.
We use the well-known Γ function

Γ(x) =

∞∫
0

e−ttx dx
x

and the relation (“Schwinger trick”)

1
U

=

∞∫
0

e−Ut dt

in order to write each of the three propagators in the following form:

∞∫
0

dA1 . . . dA6

exp

−φ(Γ){pi} +
(∑6

e=1 Aem2
e

)
Ψ(Γ)

Ψ(Γ)


Ψ2(Γ)

This formula includes the Kirchhoff Polynomials which are defined by

Ψ(Γ) =
∑

spanning treesT

∏
e<T

Ae

φ(Γ){pi} =
∑

spanning two trees
T1∪T2

T1∩T2=∅

Q(T1) · Q(T2)
∏

e<T1∪T2

Ae


Q(Ti) =

∑
vertices
v of Ti

q(v)

A spanning tree is a tree (graph with no closed loops) that is part of a bigger graph (that ”spans”
the bigger graph). It contains all vertices, but possibly fewer edges.
The product in φ(Γ){pi} means that the multiplication is carried out over all edges e that are not
in the two-tree. In Q(Ti), q(v) denotes the external momentum incoming to v.
The contribution of this graph to the β function is 6ζ(3), which connects the topology of graphs
with algebraic geometry and number theory. This is rather counterintuitive!

33.2 Betti homology
So far, we have seen that a manifold M presents us with a tangent space T M on which respre-
sentation theory SO(1, 3) gives free quantum field theory and locality leads to interacting field
theory. With the Kirchhoff polynomials, we have made the connection to algebraic geometry -
what comes next will be quite interesting.

33.2.1 Example

If we consider the graph
p
1

p
2

p
3

2

3

1

q q
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we see that there are three closed loops, made up of two labeled lines each: (1, 2), (2, 3), and
(1, 3). We can get (1, 3) by subtracting (2, 3) from (1, 2), therefore there are only two indepen-
dent loops in this graph. As a basis, we choose

l1 = (1, 2) = “1 + 2”
l2 = (2, 3) = “2 + 3”

They are the basis of a Betti homology.
For each momentum p, we define a 2 × 2 matrix:

p → p0σ0 + p1σ1 + p2σ2 + p3σ3

and write the Kirchhoff parameters Ae in a matrix:
︷                   ︸︸                   ︷
A1 + A2 A2

A2 A2 + A3︸                   ︷︷                   ︸
CM0

µ1A1 + µ2A2

µ2A2 + µ3A3

µ̄1A1 + µ̄2A2 µ̄2A2 + µ̄3A3 µ̄1µ1A1 + µ̄2µ2A2 + µ̄3µ3A3

 C M

And the determinants of M0 and M give the Kirchhoff polynomials:∣∣∣MΓ
0

∣∣∣ = Ψ(Γ)∣∣∣MΓ
∣∣∣ = φ(Γ)

In graph theory, there is a sequence: 0 → Hr
e → Qε

∂
→ QV → 0. Here, Hr

e denotes the
Betti homology.

34 Hopf Algebra structure of graphs
If we expand φ4 theory to order λ3, we see some repetitions.

(−iλ)

  + (−iλ)2

 + +

 +

+ (−iλ)3

 + + . . .

 + . . .

Of course, there is no evident reason to believe that this sum ever converges. But there is a lot
of self-symmetry in the graphs of different orders:

?
⇐⇒

?
⇐⇒

For our further analysis, we will have to work out the Hopf algebra sturcture on graphs.
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34.1 Hochschild 1-cocycle
We define an operator Bγ

+ that will plug γ into another graph Γ (in places where it fits) to create
a bigger graph Bγ

+(Γ).

B( )
+

( )
→ + +

The four external lines of γ = are connected with the vertices in Γ = so γ pops up inside
Γ. The sum states all the possible positions for γ in Γ.
There are fixpoint equations in the form of

Xn = 1 ±
∑

primitive
graphs γ

g|γ|

|Aut (γ)|
Bγ

+

(
XnQs|γ|

)
which are the equations of motion for this system, if Bγ

+(Γ) is Hochschild closed. The + sign
accounts for vertices, the − sign for propagators. |γ| denotes the number of vertices in γ.
The Green’s function

Xn =
∑

all graphs

g|Γ|
Γ

|Aut (Γ)|

is a solution to this fixpoint equation.
In a coalgebra, we have a coproduct ∆ : Γ →

∑
γ ⊗ Γ/γ, which gives us all possible ways to

decompose a graph Γ in smaller graphs γ and Γ/γ, following certain rules. γ and Γ/γ glued
back together give Γ again.
A Hopf algebra has (among others) the properties of a coalgebra, so we still have the coproduct.
We have the option to do a coradical filtration, which in the end gives information about how
often subgraphs fit into graphs. We can then define a map that shifts from the coradical filtration
n to the coradical filtration n + 1, and call this map ”shift operator”. Hochschild maps are those
maps that glue the subgraphs γ into Γ.
The Green function for the propagator is then:

Q =
X4

(X2)
4
2

This fixpoint equation is a Dyson Schwinger equation:

−→
∑
γ

g|γ|

|Aut |
Bγ

+

This points to number theory: Quantum field theory translated into mathematical questions in
number theory. Quantum field theory is not mathematically well-defined, which means that it
is not understood (yet). We are still facing a lot of ”unknown math”.
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Review and Outlook
02.01.2012

Today, our goal is to present an overview over what we have learned so far, and to grasp the
aims for the upcoming weeks.
For the rest of this term, we will collect Feynman rules for different systems.

• Feynman rules for scalar fields, as in

L = ∂νψ
†∂νψ − m2ψ†ψ + λψ†ψφ +

1
2
∂νφ∂

νφ −
1
2
µ2φ2

• Feynman rules for spin 1
2 fermions

p

• Feynman rules for Yukawa theory: φψ̄ψ

• Feynman rules for QED (quantum electrodynamics)

Our set-up for accomplishing all that will be: to learn about
tree level scattering first, which involves rather complicated, but
straight-forward calculations which can basically be done by a
computer. That which cannot be done by a computer is to eval-
uate closed internal loops, because they need to be understood
rather than just written down.
After we had a deep look into closed internal loops, we will also
speak about parametric representations.
In the summer semester course, we will get into gauge theories,
renormalization, and path integrals.

35 Review
We talked about Wick diagrams, such as

This is only one Wick diagram, but there are several Feynman diagrams corresponding to it,
due to the decomposition of the external fields into creation and annihilation parts. In this case,
there are 24 terms, since there are four external legs and two possibilities for each of them. Not
all combinations contribute, though, and the only Feynman diagrams remaining are

1   

(+)=

2

2

1   

(+)

ψ    

ϕ   

ϕ   

ψ   

(−)

(−)

+

1   

(+)=

(−)

2

(−)

(+)

1

2
ϕ  

ψ    

ψ   

ϕ  
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They correspond to transition amplitudes which can easily be computed using Feynman rules.

35.1 Feynman rules of Yukawa theory
• Vertex: Real field coupling to a charged field.

k

q

p

For every vertex, we multiply with

(−iλ)(2π)4δ(4)(k + p − q)

In the argument of the δ distribution, which guarantees momentum conservation, we sum
over the external momenta, with relative signs with respect to charge flow.

• Charged field: Propagator with momentum p.

p

For each internal line corresponding to a charged field, we multiply with

d4 p
(2π)4

i

/p − m + iε

where m denotes the mass of the fermion.

• Real field: Propagator with momentum k.

k

For each internal line corresponding to a scalar field, we multiply with

d4k
(2π)4

i
k2 − µ2 + iε

where µ denotes the mass of the boson.

36 Computing scattering amplitudes
Let us compute the contribution of the following graph to the scattering amplitude of 2→2
scattering:

pp

p

1 1

p
2 2

’

’

k

66



By applying the Feynman rules of Yukawa theory, we get:∫
d4k

(2π)4

i
k2 − µ2 + iε︸                ︷︷                ︸

internal scalar field

· (−iλ)(2π)4δ(4)(p1 − k − p′1)︸                             ︷︷                             ︸
upper vertex

· (−iλ)(2π)4δ(4)(p2 + k − p′2)︸                             ︷︷                             ︸
lower vertex

We chose for k to be directed downwards, but the result is insensitive to this choice if it is kept
consistent.
The integration results in the δ distribution giving k = p′2 − p2, and we get

(2π)4 δ(4)(p1 + p2 − p′1 − p′2)︸                       ︷︷                       ︸
global momentum conserved

(−iλ)2 i
(p1 − p′1)2 − µ2 + iε

But there is a second graph contributing to the scattering with these external legs and with the
same order of λ. We can compute its contributions with a very similar calculation.

p

p
1
p

1

2
p
2

’

’

+

p

p
1
p

1

2
p
2

’

’

−→ (−iλ)2
{

i
(p1 − p′1)2 − µ2 + iε

+
i

(p1 − p′2)2 − µ2 + iε

}
This is the invariant amplitude of order λ2 contributing to the process Ψ†Ψ→ Ψ†Ψ:

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

pp’

p
1

1

2
2

p’

36.1 How to find Feynman rules
We can write down a theory with its transformation rules under the Poincaré group. For scalar
fields, unfortunately, this does not really tgive away much about Feynman rules. For the inter-
acting part of the Hamiltonian, we get something like

HI ∝ λ
φn

n!

where n gives the number of legs running into a vertex. But which n is a good choice, which
ones are bad choices? To find that out, we have to check the theory’s consistency under renor-
malization. (We will talk a lot more about renormalization in the upcoming term.)
Eventuelly, it turns out that n = 4 is a good choice for spacetime dimensions D = 4. Then, we
get for 2 × 2 scattering to order λ2: + +


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The contribution of the first of these three to S can be computed to give

pp’

p
1

1

2
2

p’

λ λ

1k

k2

∝

∫
d4k1 d4k2

1
k2

1 − m2 + iε
1

k2
2 − m2 + iε

δ(4)(p1 + p2 − k1 − k2)︸                      ︷︷                      ︸
→ k1+k2=p1+p2

δ(4)(k1 + k2 − p′1 − p′2)

=

∫
d4k

1
(k − p1 − p2)2 − m2 + iε

1
k2 − m2 + iε

δ(4)(p1 + p2 − p′1 − p′2)︸                       ︷︷                       ︸
no k!

∝

∫
d4k

1
(k − p1 − p2)2 − m2 + iε

1
k2 − m2 + iε

This is clearly a divergent integral! To get around the ill-definedness for just now, we define a
cut-off Λ for the integration boundaries. If we do that, the integral will be proportional to log Λ.

36.2 Physicists’ solution
We will try to redefine the coupling λ by introducing a second parameter λ0, where the observed
λ is a correction to the ”real” coupling λ0:

λ = λ0(1 + c1λ0 log Λ)

This is just a modification of the formula, no physical observables are changed by this. But
it turns out that this modification absorbs the divergence! Even more, in n = 4, we can find
suitable c1, c2, etc. for any graph to absorb the divergences! However, this will only work for
n = 4, and for no other n (in φ4 theory, at least). Consequently, n = 4 appears to be a very good
choice for n.

37 Coupling of a spin 1
2 field and a real field

Reminder: We associate with
Ψ̄Ψ a spin 1

2 field
φ a real field

and we keep in mind that Ψ is a column vector, Ψ̄ = Ψ†γ0 is a row vector, φ is a scalar, and that
Ψ̄(·)4×4Ψφ eventually gives a scalar. (·)4×4 can only be the unitary matrix, which becomes clear
after consulting a little Clifford algebra and representation theory, because only I transforms
like a scalar.

37.1 Vertex correction
Since vertices are fundamental for interactions, it is quite interesting to look at vertex correc-
tions. By this, we denote further interactions within the primary vertex that shift the global
transition amplitude. The single vertex,

,
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contributes with a factor (−iλ). The next highest order would result in the exchange of a boson
between the two fermion lines and contributes with a factor (−iλ)3:

k1

k

k

2

3

p
1

p
2

p
3 ∝ (−iλ)3

∫
d4k1 d4k2 d4k3

i
/k1 − m + iε

i
/k2 − m + iε

i
/k3 − µ + iε

×

× δ(4)(p1 − k1 − k3)δ(4)(k1 − k2)δ(4)(k2 + k3 − p2)

Even though this is not generally the case, we have set p3 ≡ 0 to make the calculation a lit-

tle bit easier. With
i

/k − m + iε
=

/k + m
k2 − m2 + iε

, two of the integrals break down due to the δ

distributions. We will be left with an overall δ function and an integral like∫
d4k

1
(/k − m)(/k − m)

1
(k + p1)2 − µ2

→

+Λ∫
−Λ

d4k
/k/k

(k2 − m2)2(k + p1)2

→

+Λ∫
−Λ

d4k
1
k4

→ c · log Λ

From the interaction, we get c = I4×4.
In QED, is not a scalar field, but a vector field, and thus transforms like a vector,
too. Since there are plenty of options for a matrix (in the vectorial case) instead of I (in the
scalar case) to transform like a vector, things get a lot more interesting in QED!
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Yukawa Theory, Spin Sums, and γ-matrices
04.01.2012

Before we start, let us accept that today, we will gain but a small insight in the technology
of Yukawa theory, spin sums, and γ-matrices. For the latter, we will focus especially on the
multiplication and calculation on machines.

38 Yukawa theory
The interaction Lagrangian of Yukawa theory is

Lint = gφψ̄ψ

and the propagators for the ψ and φ fields are (in momentum space):

ψ : S (p) =

∫
d4 p

(2π)4

i(/p + m)
p2 − m2 + iε

φ : ∆(p) =

∫
d4 p

(2π)4

i
p2 − M2 + iε

where m and M are the masses associated with the respective fields.
In Yukawa theory, the Feynman rules are quite easy. To demonstrate that, and to get used to
the theory, let’s try to calculate the vacuum expectation value of Tψα(x)ψ̄β(y)φ(z1)φ(z2), for
connected graphs to the lowest order (which is g2).
In coordinate space:

〈
0
∣∣∣Tψα(x)ψ̄β(y)φ(z1)φ(z2)

∣∣∣ 0〉
C
∝


y

z

xw

z

1

12

w2

+

y

z

xw

z

1

12

w2


∝ g2
∫

d4w1d4w2

{(
S (x − w1)S (w1 − w2)S (w2 − y)

)
αβ
×

×

(
∆(z2 − w2)∆(z1 − w1)︸                     ︷︷                     ︸

first graph

+ ∆(z1 − w2)∆(z2 − w1)︸                     ︷︷                     ︸
second graph

)}

In momentum space:

〈0 |. . .| 0〉C ∝ g2


p p’p+k

k’k

+

p p’p+k

k’k


∝ g2ūs′(p′)

[
/p + /k + m

(p + k)2 − m2 + iε
+

/p − /k′ + m
(p + k′)2 − m2 + iε

]
us(p)

This is already a bit lengthy if we try to calculate it on paper, but it is still doable, in the sense
that nothing unexpected shows up and the approach is straight-forward. However, for more
complicated graphs, these expressions become rather hard, if not hopeless.
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39 Feynman rules of Yukawa theory
For this discussion, we assume that the spin 1

2 fermion is an electron, the respective antifermion
is a positron, and that the boson has spin 0 and could therefore be a Higgs particle. Let us also
remind ourselves that the arrow in the fermion lines indicates charge flow.

field multiply with
• p incoming e− with momentum p → us(p)

• p outgoing e− with momentum p → ūs(p)
(

= u†s(p)γ0
)

• −p incoming e+ with momentum p → v̄s(p)

• −p outgoing e+ with momentum p → vs(p)

•
p

incoming Higgs with momentum p → 1

•
p

outgoing Higgs with momentum p → 1

• e−-e+-Higgs vertex → igI4×4 (I usually omitted)

• internal e− line with momentum p → propagator:
i(/p + m)

p2 − m2 + iε

• p internal Higgs line with momentum p → propagator:
i

p2 − M2 + iε

For all spinors with spin index, s gives the spin (+ or −) in the direction of the propagation.
So far, so good, but the more difficult part is to find the right spin indices.
We can only allow for fermion lines with consistent orientation. To write down the transition
amplitude in the correct order, start at the end of a fermion line and then read the fermion line
backwards. then we can compute the probability amplitude with only the use of traces.

39.1 Relative sign in fermionic expressions
Consider the exchange of one boson between two fermions,

?
± ,

where we have identical incoming and outcoming particles. What is the relative sign between
the two transitions?
We can obtain the relative sign by arbitrarily choosing one diagram, giving this diagram a +

sign, and determine the number of permutations needed in order to transform this graph into
the other graph. The overall sign cannot be obtained, but since the observable quantity is the
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absolute square, it is not important to know the global phase, only the relative phase is of
importance. In this case, we find a − sign.

40 Spin sums
Let us we write the above transition amplitude in momentum space with the abbreviations

ū′ B ūs′(p′)
u B us(p)

A B
/p + /k + m

(p + k)2 − m2 + iε
+

/p − /k′ + m
(p + k′)2 − m2 + iε

⇒
〈
0
∣∣∣Tψα(x)ψ̄β(y)φ(z1)φ(z2)

∣∣∣ 0〉
C
∝ g2ū′Au

Since ū′ is a row vector, u is a column vector, and A is a 4 × 4 matrix, the overall transition
amplitude is a scalar, as it is supposed to be.
The calculations can be simplified for just a little bit, if we keep in mind that in the end all we
need is the absolute square of the transition amplitude, |T |2.
If we sum over all possible (two) spins, we get the identity∑

s=±

us(~p)ūs( p̄) = /p + m

then we can express |T |2 as

|T |2 =
(
ū′Au

)(
ūAu′

)
≡ Tr

[
ūū′Auu′

]
We know that in A there are two slashed spinors and therefore two γ matrices, and with ūū′ =

/p′ + m and uu′ = /p + m, the trace must be a product of (at most) four γ matrices.

41 γ matrix technology
We will use the Clifford algebra in order to find out how to multiply γ matrices in an efficient
way. The so-called γ-matric technology is about the calculus of Clifford algebras: traces of
products of γ matrices.

41.1 Basic rule
There is one elementary rule for γ matrices, their anticommutator:{

γµ, γν
}

= γµγν + γνγµ = 2gµνIn′×n′ (12)

⇒ γ2
0 = I, γ2

i = −I (13)

Here, n′ = 2
n
2 is the dimension of the matrices, where n is the dimension of spacetime. In our

case, where n = 4, we get n′ = 4. gµν denotes the metric tensor. The µ and ν are spacetime
indeces, µ, ν ∈ {0, 1, 2, 3}.
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41.2 γ5

Besides the γµ, there is another quite interesting and useful matrix:

γ0γ1γ2γ3 C c · γ5

where c is either 1, i, or −i. The choice of c is not important, but it needs to be consistent
throughout the calculations. γ5 has the properties that

γ2
5 ∼ I

and {γ5, γµ} = 0.

41.3 Computing traces
For an interaction with external fermions, we write down the spinors and the propagators,
bracket the propagator matrix, and compute traces of the resulting products of γ matrices. But
how do we calculate these traces?
We find two different types of traces Tr

(
γµ1 . . . γµk

)
:

• Traces with no γ5 involved

• Traces with one γ5 involved.

Since γ5 and γµ anticommute, we can always move all γ5’s within the expression to one spot,
and with γ2

5 = I, we are left with either one or no γ5.
In the end, we find four different cases of traces:

1. Tr
[
γµ1 , . . . , γµ2k

]
: even numbers of γ’s, no γ5

2. Tr
[
γµ1 , . . . , γµ2k+1

]
: odd numbers of γ’s, no γ5

3. Tr
[
γ5γµ1 , . . . , γµ2k

]
: even numbers of γ’s, one γ5

4. Tr
[
γ5γµ1 , . . . , γµ2k+1

]
: odd numbers of γ’s, one γ5

It turns out that all traces with an odd number of γ’s is identical zero. We will see about that in
a minute.

41.4 even number of γ’s, no γ5

41.4.1 two γ matrices

To compute Tr
[
γµ1 , . . . , γµ2k

]
, we start with the simplest case of two γ matrices.

Tr
[
γµγν

]
= Tr

[
1
2

(
γµγν + γνγµ︸        ︷︷        ︸

=2gµνI

)
+

1
2

(
γµγν − γνγµ

)]

= gµν Tr (I)︸︷︷︸
=4

+
1
2

(
Tr

[
γµγν

]
− Tr

[
γνγµ

]︸    ︷︷    ︸
=Tr

[
γµγν

]
)

→ Tr [γµγν] = gµν Tr [I] = 4gµν

In the second line, we used the linearity of the trace, and in the third line the cyclicity (Tr [ABC] =

Tr [CAB] = Tr [BCA]).
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41.4.2 Clifford algebra representations

Looking for a basis of 4 × 4 matrices, we can use Clifford algebra representations.

• I: one matrix

• γµ with µ ∈ {0, 1, 2, 3}: four matrices

• γµ ∧ γν (external product): six matrices σµν = 1
2 [γµ, γν]

• εµνρσγ
µγνγρ: four matrices

with the total antisymmetric tensor (Levi-Cevita tensor):

ε0123 B +1

and εµνρσ B


+1 for even permutations of {0, 1, 2, 3}
−1 for odd permutations of {0, 1, 2, 3}
0 else

• γ5 = 1
24εµνρσγ

µγνγργσ: 1 matrix

This set of 16 independent matrices is a basis of 4 × 4 matrices.

41.4.3 four γ matrices

For the trace

Tr
[
γµγνγργσ

]
= Tr

[
γµγν(γσγρ + 2gρσI)

]
= Tr

[
γσγµγνγρ

]
When we use the Clifford algebra relation from the beginning, and also use the cyclicity of the
trace, then we will realize that anticommuting two γ matrices will eventually give either the
same trace again, or terms with fewer γ matrices. In that way, we can reduce the number of γ
matrices in the trace step by step. We have found an inductive way to determine the trace. This
does not only hold for four, but for any even number of γ matrices with no γ5 in the expression.

41.5 odd number of γ’s, no γ5

To convince ourselves that Tr
[
γµ1 , . . . , γµ2k+1

]
= 0, we will start by computing Tr [γµ]. To do

that, we use

(γ5)2 = I

and
[
γ5, γµ

]
= 0

⇒ Tr [γµ] = Tr [(γ5)2 γµ] = −Tr [γ5γµγ5] = Tr [γµ (γ5)2] = −Tr [γµ]
⇒ Tr [γµ] = 0

In the second step, we used the anticommutator, and in the third step the cyclicity of the trace.
Similarly, we can always plug in (γ5)2 anywhere and use the anticommutator and cyclicity to
make the expression zero.
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41.6 even number of γ’s, one γ5

Before we compute Tr [γ5γµγν] we consider the longer, yet simpler expression

Tr
[
γ5γµ1 . . . γµ4

]
= Tr

[
γν1 . . . γν4γµ1 . . . γµ4

]
·

1
2
εν1...ν4

To solve this, we use the fact that this expression is antisymmetric in νi, and we use the cyclicity
again. Then we will see that this trace is a product of linear combinations of four metric tensors,
where all combinations are allowed:

Tr
[
γ5γµ1 . . . γµ4

]
= gν1ν2gν3ν4gµ1µ2gµ3µ4 + · · · + gν1µ1g... . . .

∝ εµ1µ2µ3µ4

The proportionality to the Levi Cevita tensor is given because of the complete antisymmetry in
νi.

42 Physical computations
We have see that the trace of an odd number of γ matrices vanishes, and that the trace of an
even number of γ matrices and one γ5 is totally antisymmetric. In particle physics, one often
comes across computations like

Tr
[
u′ū′AuūA

]
with

u′ū′ = /p′ + m
uū = /p + m
A ∝ /k

So, in principal we get

Tr
[
/p′/k/p/k

]
= p′αkβpγkδ Tr

[
γαγβγγγδ

]
= −Tr

[
/p′/k/k/p

]
+ 2(p · k) Tr

[
/p′/k

]
= −k2 Tr

[
/p′/p

]
+ (p · k) (p′ · k) Tr [I]

= −k2 (p′ · p) Tr [I] + (p · k) (p′ · k) Tr [I]

= −4k2 (p′ · p) + 4(p · k) (p′ · k)

In the second line, we used the Clifford algebra relations to swap /p and /k. In the third line, we
used /k/k = k2 and /k/p = k · p, where (·) denotes the scalar product.

42.1 Vertex correction: one loop
For the plain vertex,

∝ g ,
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we can compute a correction,

∝ g3 ,

for now in the limit of massless fermions and bosons, m = 0 = M. We will also omit all constant
factors like (2π)4 in the calculation for simplicity.

∝ g3
∫

d4k
/k/k

k2k2(k + q)2

= g3
∫

d4k
1

k2(k + q)2

This integral is logarithmically divergent and thus not very well-defined. In order to try to
navigate around the divergence, we use

1
U

=

∞∫
0

dA e−AU

and we set k2 or (k + q)2 for U.

⇒ g2
∫

d4k
k2(k + q)2 = g3

∫
d4k

∞∫
0

dA

∞∫
0

dB e−Ak2−B(k+q)2

Next time, we will explicitely evaluate this integral. For now, let me illustrate how it is to be
solved.
At first, we aim at carrying out the k integration first, so we complete the square, and we get

−Ak2 − B(k + q)2 = −(A + B)
{

k2 +
1k · qB
A + B

+
Bq2

A + B

}
= −(A + B)

{(
k + q

B
A + B

)2

−
q2B2

(A + B)2 +
(A + B)Bq2

(A + B)2

}
and since the k integral is translation invariant, we can shift k to k + q B

A+B so that the integral
looks

∞∫
0

dA

∞∫
0

dB e−
q2AB
A+B

∫
d4k e−(A+B)k2

= 4π2

∞∫
0

dA

∞∫
0

dB
e−

q2AB
A+B

A + B

This integral is still problematic for q2 = 0: It is highly divergent at lower boundaries.
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An integral towards QED
09.01.2012

At the end of the last lecture, we saw a draft of the computation of the one-loop correction to
the vertex function. We will now finish this computation in more detail.

43 Vertex correction in Yukawa theory
Applying the Feynman rules of (massless) Yukawa theory, the one loop vertex function with no
incoming momentum translates to

0

q

q

→

∫
I

/k
k2 + iε

I
/k

k2 + iε
I

1
(k + q)2 + iε

→ I

∫
d4k

k2

(k2 + iε)2

1
(k + q)2 + iε

→

∫
d4k

1
k2(k + q)2

where we set /k1 = /k2 = /k because there is no momentum exchange. We are reminded that

/k =

3∑
µ=0

kµγµ ≡ kµγµ Einstein’s summation convention

/k/k = kαγαkβγβ = kαkβγαγβ = kαkβ
{1

2

(
γαγβ + γβγα︸        ︷︷        ︸

=2gαβI

)
+

1
2

(
γαγβ − γβγα︸        ︷︷        ︸

=0

)}
= k2

The first term in just the Clifford algebra anticommutator applied, the second term must be zero
because it is antisymmetric in α and β, but kαkβ is symmetric, so the antisymmetric part has to
vanish.
To try to avoid the divergence of the vertex correction, we used

1
U

=

∞∫
0

dA e−AU

in order to rewrite the integral to give

0

q

q

→

∫
d4k

∞"
0

d4A d4B e−Ak2−B(k+q)2

We will now do the k integration first and leave the parametric integration be for just now, so
that maybe we understand the matter a little bit better. We complete the square:

−Ak2 − B(k + q)2 = −k2(A + B) + 2k · qB + B2q2

= −(A + B)
{(

k +
qB

A + B

)2

−
q2B2

(A + B)2 +
q2B(A + B)

(A + B)2

}
= −(A + B)

{(
k +

qB
A + B

)2

−
q2AB

(A + B)2

}
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We get for the k integration: ∫
R4

d4k e−(A+B)k2
=

4π2

(A + B)2

where the exponent of the denominator is half of the spacetime dimension.
Altogether, the integral gives

0

q

q

→

∫
R2

+

dAdB
e−

q2AB
(A+B)

(A + B)2

We set B = A · b. The integral will then give

+∞∫
−∞

dAdb
A(1 + b)2 e−q2A b

1+b C I(q2)

And this expression would also be equal to

∞∫
0

dt
t

e−tq2 ab
(a+b)

(a + b)2

(
adb − bda

)
No matter how we alter the expression, we always find a divergence for (A, B) close to (0, 0).
Therefore, in order to find out the functional structure of the integral, we introduce a cut-off at
the lower boundary. We use the exponential integral:

Ei(t) =

∞∫
c

e−t
t

dt ∼ log c + γE + O(c) , 0 < c � 1

where γE is the Euler Mascheroni constant. In that way, we navigate around the singularity at
the origin by leaving out a quarter disc.

Our integral above would give

I = log c + log q2 + O(c) + γE

and the divergence is ”only” logarithmic and not a function of q2, the physical observable. We
can erase the divergence by simply comparing the integral with the same integral at a different
scale q̄2.

I(q2) − I(q̄2) = log
(
q2

q̄2

)
With this knowledge, we can find that the one-loop vertex correction depends on log c, where
c is a parameter 0 < c � 1, which is a constant independent of any physical parameter, so

78



we can modify or shift the expression by a term which may be divergent, but is independent of
all parameters and does not alter any physically important quantity, because it is unobservable.
Therefore, after shifting, we get

∼ log c + . . . ⇒ ∼ I + finite terms

For any logarithmic divergences, we can avoid singularities by simply comparing two integrals
(”measuring twice / at two different scales”). For divergences of a higher order, say, linear or
quadratic divergences, this is not so easy. However, since k2 = k2

o −
~k2 has a zero, we can

derive that all problems are independent of the short-distance scale. Still, for large k, there is a
problem, which does not go away by simply transfering it from one spot to another. In our case,
we went from a momentum integral to a parameter integral, which made it easier to understand
the divergence, which is still there after all.

44 QED corrections
So far, we found a vertex correction in massless Yukawa theory. In order to find out what the
photon propagator and the vertex function in QED should look like, we will use the Clifford
algebra to derive possible Feynman rules for QED.
What we actually do know about quantum electrodynamics if that there are three fields ψ̄, ψ, Aµ,
where ψ̄ and ψ correspond to charged fermion fields and Aµ is the photon field, denoted in a
diagram by and , respectively.
We can find Feynman rules of

q

0

q

just by looking at

ψ̄

Aµ

There should exist a simple vertex with non-vanishing incoming momentum, proportional to
some matrix Γµ:

p

q

q−p

∝ Γµ

So that we get an expression for incoming and outgoing fermions like

ψ̄Γµψ ⇔
(
· · · ·

) 
·

·

·

·



·

·

·

·


For a general ansatz to finding Γµ, we write

Γµ ∼ c1γµ + c2
/qqµ
q2 + . . .
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44.1 Vertex correction in QED
We know what the scalar field propagator, 〈0 |φφ| 0〉, graphically given by , does. For
photons, however, the fields are not scalar, but vector fields. We try to find the bosonic field
propagator 〈

0
∣∣∣AµAν

∣∣∣ 0〉 ⇔ q
µ ν

Since photons are bosons, AµAν is symmetric in µ and ν, so we need a symmetric two-tensor.
This tensor could only depend on the metric or external momenta, since there are no other
quantities involved. Possible terms of the photon propagator are

• gµν

• qµqν

So the most general ansatz for the photon propagator is

q
µ ν ∝

c̄1gµν + c̄2
qµqν
q2

p2 + iε

With this ansatz, we calculate the one-loop correction to the photon-fermion-antifermion-vertex.

β

µ

α

→

∫
γα

1
/k + iε

γµ
1

/k + iε
γβ

{
c̄1gαβ + c̄2

(k + q)α(k + q)β
(k + q)2 + iε

}

→ c̄1

∫
γα/kγµ/kγα

(k2)2(k + q)2︸              ︷︷              ︸
(A)

+c̄2

∫
(/k + /q)/k(/k + /q)
(k2)2(k + q)2︸                 ︷︷                 ︸

(B)

(A) ⇒ /kγµ/k = /kγµγβkβ = −/kγβγµkβ + 2gµβkβ/k = −k2γµ + 2kµ/k

γαγµγ
α = −γµγαγ

α + gµαγα = −4γµ + 2γν = −2γµ

γα/kγα = −/kγαγα + 2kαγα = −4/k + 2kαγα = −2/k

From the calculation of (B), it follows that must transform as a vector under the Lorentz
group. So we can write it as

q

0

q

→ F1

(
q2, c̄1, c̄2, {ci}

)
· γµ + F2

(
q2, c̄1, c̄2, {ci}

)

The functions F1 and F2 are called form factors. F1 is proportional to log c and finite terms,
where c is the same parameter we used before when we cut out a quarter disc around the origin
with radius c. F2 gives only finite terms.
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⇒All short-distance singularities in QED sit in the γµ form factor because log c is the only term
in the expression that actually ”sees” the singularity.

!
∼ γµ ⇒ ψ̄γµψAµ

!
∼ HI

Since is proportional to γµ, the matrix in between the two fermionic spinors has to be
proportional to γµ as well. The interaction Hamiltonian of QED follows.

44.2 Photon propagator correction
Now that we know the vertex, we can compute a one-loop correction to the photon propagator,
called self-energy.

ab

c d

k

q q

k+q

We will give a short draft today and focus on the detailed computation next time. For the closed
fermion loop, we know that we have to compute the trace of the respective matrices, since we
get an expression like MabMbcMcd Mda, where the M are matrices and their indices indicate the
trace. From the above results, we suspect that the one-loop correction should be proportional to
qµqν and / or q2gµν, since there are no other quantities available that have an impact.

ab

c d

k

q q

k+q

µ ν →

∫
d4k Tr

(
γµ

1
/k
γν

1
/k + /q

)

=

∫
Tr

(γµ/kγν(/k + /q)
k2(k + q)2

)
︸                     ︷︷                     ︸

C(+)

=q2gµνF1(. . . ) + qµqνF2(. . . )

F1 and F2 are dimensionless variables. This expression gives the general structure of the prop-
agator, but for reasons of gauge invariance, we claim that there shall be only one F:

(+) !
∼

(
q2gµν − qµqν

)
F

We multiply (+) with qµ, write /q = (/k + /q) − /k, and use cyclicity of the trace:

Tr
(
/q/kγµ(/k + /q)

)
Through cyclicity, the propagator goes away, then the tensor vanished, and therefore the integral
also vanishes.
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The Structure of the QED Vertex and
Propagators

16.01.2012

This lecture will give some general remarks to the structure of QED, its vertices and propaga-
tors. As an example, we will examine the one-loop vertex γ → e+e−. Our considerations will
cover the case of zero momentum transfer.

q

0

q

k+q
k

−k

µ

β

α

We suspect that ∼ γµ, which is only dependent on the Lorentz index of the vertex and not

on external momenta, therefore should just be proportional to an intergral over a single
loop.

∼

∫
d4k γα

1
/k − m + iε

γµ
1

/k − m + iε
γβ Dαβ(k + q)︸      ︷︷      ︸

photon
propagator

(14)

45 Photon propagator
The propagator for a spin one boson, which is a solution to the Maxwell equations, must be the
inverse of the Fourier transform, ∼ 1

(k+q)2+iε , and its numerator should have two Lorentz indices:
Aµ, Aν are the two fields, and vacuum expectation values of bosonic fields are symmetric in µ
and ν. Therefore the general form of the numerator is

Dαβ(k + q) ∼ gαβ + ξ(k + q)α(k + q)β

This is the general form that the photon propagator must have. To simplify things, we will
choose ξ = 0 = m. Then (??) becomes∫

d4k γα
1

/k + iε
γµ

1
/k + iε

γβ
gαβ

(k + q)2 + iε
C Λ1µ(q)

The index 1 of Λ1µ(q) covers the one-loop correction, whereas µ is the Lorentz index stating
that Λ transforms as a vector under the Lorentz group. We have omitted the fermion masses for
simplicity.

45.1 Form factor decomposition
In order to compute Λ1µ, we make the structural ansatz

Λ1µ(q) = F1(q2)γµ + F2(q2)
/qqµ
q2
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This ansatz is called form factor decomposition. Now we have to determine F1 and F2. To do
that, we multiply Λ with γµ or /qqµ

q2 from the right.

Λ1µ(q)γµ = F1(q2) γµγµ︸︷︷︸
=4I

+F2(q2)
/qqµγµ

q2︸︷︷︸
=I

=
(
4F1(q2) + F2(q2)

)
I

Λ1µ(q)
/qqµ

q2 = F1I + F2I

⇒ F1(q2) =
1
3

(
Λ1µγ

µ − Λ1µ
/qqµ

q2

)
F2(q2) =

4
3

Λ1µ
/qqµ

q2 −
1
3

Λ1µγ
µ

So we have two integrals to compute:

Λ1µγ
µ →

∫
d4k γα

1
/k + iε

γµ
1

/k + iε
γβγ

µ
gαβ

(k + q)2 + iε

=

∫
d4k

γα/kγµ/kγαγµ

(k2 + iε)2
(
(k + q)2 + iε

)
with γµ/k = −/kγµ + 2kµ
and γα/qγα = −2/q

Λ1µ
/qqµ
q2 →

∫
d4k γα

1
/k + iε

γµ
1

/k + iε
γβ
/qqµ
q2

gαβ
(k + q)2 + iε

These integrals are doable, see ensuing discussions. Eventually, this reconfirms ∼ γµ, so
we assume this further on.

45.2 One-loop correction
Since we don’t really know much about the photon propagator yet, but there is also no internal
photon line in the one-loop correction, luckily we know enough to compute fermion loops.
Because of the anticommutation of fermion fields, we get a relative minus sign from the closed
fermion loop. The interaction Hamiltonian is

HI = ψ̄(x) /A(x)ψ(x)ψ̄(y) /A(y)ψ(y) ,

since we consider the case of two vertices at spacetime points x and y, with the associated fields.
The only possible contraction that leaves two external photon fields is the following.

HI → ψ̄(x) /A(x)ψ(x)ψ̄(y) /A(y)ψ(y)
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This corresponds to the expected graph and the assocated integral:

k

q q

k+q

µ ν ∝ −

∫
d4k γµ

1
/k
γν

1
/k + /q

= −Tr
∫

d4k
γµ/kγν(/k + /q)

k2(k + q)2

C Π1µν(q)

= A(q2)q2gµν + B(q2)qµqν

The index 1 states that this is the first correction to the bosonic propagator. If we demand
transversality, that is, A + B !

= 0, we get

Π1µν(q) = A(q2)
(
q2gµν − qµqν

)
= −Tr

∫
d4k

γµ/kγν(/k + /q
k2(k + q)2

The term after the A(q2) illustrates transversality of the photon. Because of the closed loop, we
have to compute the trace. If we multiply Π1µν(q) from the right with qµ, we get

Π1µν(q)qµ → −Tr
( ∫

d4k
/q/kγν(/k + /q)
k2(k + q)2

)
= −Tr

( ∫
d4k

(/kγν
k2 −

γν(/k + /q)
k2(k + q)2

))
In the second line, we used /q = (/k + /q) − /k and the cyclicity of the trace. This entire expression
approaches zero if we maintain a translation invariant loop measure.
Before, we chose ξ = 0, but in general, depends on ξ because there is an internal photon

line. Now, for , the result is always independent of ξ!

45.3 Full photon propagator
To consider not just one-loop corrections, but any possible corrections to the photon propagator,
we would have to draw an infinite number of graphs:

= + + + · · · + + + + . . .

This can be interpreted as a geometric series in the self-energy Π1
µν we just computed. But not

many graphs are really different from other graphs. For example, in

we can interpret this as twice the same type of one-loop correction, ∼
(
gµνq2 − qµqν

)
. At

tree level, without loop integrals, everything can easily be calculated, but even with loops, we
must only consider those graphs which are one-particle irreducible.
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46 The fermion propagator
We know the bare fermion propagator, and we lately derived the photon propagator.

1
/p − m + iε

k

gαβ + ξ
kαkβ
k2

k2 + iε

Then the one-loop correction to the fermion propagator looks like

q q
γβγα

→

∫
d4k γα

1
/p + /k − m + iε

γβDαβ C Σ1(q)

From one of the exercises, we remember that

∂

∂qµ
S F(q) = −S F(q)γµS F(q)

and we know

∂

∂qµ

1
/q

= −
1
/q
γµ

1
/q

and
∂

∂qµ
/q = γµ

Which gives us a Ward Identity:

∂

∂qµ
Σ1(q) ∼ Λ1µ(q)

⇒
∂

∂qµ

(
q q

)
∼

q

0

q

We only need to consider graphs which are one-particle irreducible (1PI)! 1PI means that the re-
moval of any one single line will not result in the graph falling apart into two disjoint diagrams.
1PI graphs give any contributing graphs (up to a given loop order) because all other graphs can
be constructed from 1PI graphs.

47 Techniques and Applications
It can be said that no matter how we twist it, eventually we will encounter an integral like∫

dDk
1(

k2
)α(

(k + q)2
)β = F(q2; D, α, β) D, α, β ∈ C

At first it seems insane that D, α and β should be complex! This has no physical interpretation,
we cannot identify 1

k2 with a propagator anymore if its power is not an integer. Also should the
spacetime dimension be four, or at least any integer. As it turns out, however, it may make sense
to handle D, α and β as complex numbers for regularization purposes.
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47.1 Regularization Techniques
47.1.1 Cut-off Regularization

If we have an integral that diverges at the limits being infinity, we put it into a four dimensional
box by integrating not up to infinity, but to some cut-off parameter Λ, and so we make the result
a function of Λ

+∞∫
−∞

d4k F(k, {q},m) →

+Λ∫
−Λ

d4k F(k, {q},m) = Fcut-off(k, {q},m,Λ)

where {q} is the set of external momenta. This approach is quite ancient, and it has the disad-
vantage of not being translation invariant, which stands in contrast to gauge theories for which
translation invariance is crucial.

47.1.2 No regulator

A second, also ancient method is to subtract on the level of the integrand. This works well for
QED and Yang-Mills theories, like (g − 2) in QED.
It is a lot more complicated than cut-off.

47.1.3 Dimensional Regularization

Dimensional regularization is basically the method of choice nowadays. It works with a gauge
invariant regulator outside chiral group theory. We will see about dimensional regularization in
the next lecture.

47.1.4 Analytic regularization

For analytic regularization, the quantum equations of motion produce fields that self-regulate
by anomalous dimensions.

47.2 Wick Rotations
Wick rotations are used when the Minkowsky square need to be transformed into a euklidean
square. This proves useful when calculating the well-known integral∫

d4k
1

k2(k + q)2 →

∫
d4k

∞"
0

dAdB e−k2A−(k+q)2B

=

∫
d4k̄

∞"
0

dAdB e−k̄2 f (A+B)e...

where we complete the square, use translation invariance and so on, as we have done plenty of
times. Now we have to remember that we always considered only the leading order in k, but the
integral looks actually more like

+∞∫
−∞

dk0dk1dk2dk3
1(

k2 + iε
) (

(k + q)2 + iε
)
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and the two terms +iε from the propagators correspond to the shifting of the poles in the com-
plex plane off the real axis. When we integrate, we close the contour either above or below the
real axis. But we could also close it in a different way, namely half of it above and half of it
below the real axis, by integration along the imaginary axis as well.

This change of contour will result in a shift

k0 → ik0

k2
0 → −k2

0

and therefore

k2
0 − k2

1 − k2
2 − k2

3 → −k2
0 − k2

1 − k2
2 − k2

3

and so the Miskowsky square becomes a euklidean square.
Of course, this method only works like this if all the poles lie outside the new ”inside” of the
contour. If we have more than just two propagators, the poles might lie somewhere else and the
Wick rotation gets more complicated.
The method of Wick rotations is explained in great detail in ”QTF” by Itzykson & Zuber.

47.3 Remark to the number of scalar products
Consider an argument of a discussion with the structure∫

d4k1 . . . d4kn F
(
{k], {q}, {m}

)
for N external momenta {q}. Of course the result of the integration will be a scalar, so it can
only be proportional to scalar products of the external momenta. For the number of invariant
scalar products, we find:

N scalar products number of invariant scalar products
2 q1 · q1 1
3 q2

1, q2
2,

{
q2

3 or q1 · q2

}
3

4 . . . 6
N . . . 4N − 10

If

 N∑
k=1

ukqk

2

≤ 0 ∀ real uk,

then there exists a timelike vector n̂ such that n̂ · qk = 0 ∀k.
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Epilogue and Prologue for QED
18.01.2012

Today we are going to focus on the detailed computation of a Feynman diagram. From our
previous studies, we can assume that we know the Feynman rules for internal lines and the ver-
tex. In quantum electrodynamics, these are internal photon and fermion lines, and the photon-
fermion-antifermion vertex.

→
i

/p − m + iε

q
µ ν → i

(
gµν + ξ

qµqν
q2

)
q2 + iε

→ −ieγµ

We need to know the Feynman rules for external lines, for example incoming or outgoing pho-
tons. For example, when we talked about the one-loop corrections to the photon propagator, we
mainly focused on the fermion loop, but we never really gave much thought to the transversal
photon.

→ gµνq2 − qµqν

→ , =?

48 Integrals
Here is a compilation of some important integrals we are going to use throughout the calcula-
tions.

48.1 The Γ function
The hopefully well-known Γ function has the properties

z Γ(z) = Γ(z + 1)
Γ(1) = 1
Γ(0) has a pole

This is an integral representation of the Γ function:

Γ(ρ) =

∞∫
0

e−AAρdA
A
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The measure dA
A is invariant under rescaling. We set A = ua:

Γ(ρ) =

∞∫
0

e−ua(ua)ρ
da
a

(15)

= uρ
∞∫

0

e−uaaρ
da
a

(16)

⇒ u−ρ =
1

Γ(ρ)

∞∫
0

e−uaaρ
da
a

(17)

48.2 A second identity
We know that in some D dimensional spacetime,∫

dDk e−Xk2
=

1

(2πX)
D
2

∀D ∈ Z

for all integers D, this is well-known. We take this as a definition for a measure with complex
D:

1

(2πX)
D
2

B “
∫

dDk ” e−Xk2
(18)

We integrate in a complex-dimensional spacetime. This makes no real-life sense, but at some
point, we want to do dimensional regularization, and this is exactly what we would have to do
there. In fact, most integrals we will want to compute look like

I B
∫

dDk
1(

k2
)α(

(k + q)2
)β ∀ α, β,D ∈ C

This integral is crucial for quantum field theory. There is no way around this giant.

49 Computation
By using (??), we set

I =

∫
dDk

1(
k2

)α(
(k + q)2

)β =
1

Γ(α)Γ(β)

∫
dDk

∞"
0

e−k2A−(k+q)2BAαBβdAdB
AB

=
1

Γ(α)Γ(β)

∫
dDk

∞"
0

dAdB Aα−1Bβ−1e−(A+B){k2+2k·q B
A+B +q2 B

A+B}

Now we complete the square and go from k to k̄ by using translation invariance.

I =
1

Γ(α)Γ(β)

∫
dDk̄

∞"
0

dAdB Aα−1Bβ−1e−(A+B)
{
k̄2−q2 B2

(A+B)2
+q2 B

A+B

}

=
(2π)−

D
2

Γ(α)Γ(β)

∞"
0

dAdB Aα−1Bβ−1 1

(A + B)
D
2

e−q2 AB
A+B
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In the last line, we used (??) in order to compute the k̄-integral. Next, we set B C Ab.

I =
(2π)−

D
2

Γ(α)Γ(β)

∞"
0

dAdb Aα+β−1bβ−1 1

A
D
2 (1 + b)

D
2

e−q2 Ab
1+b

Next, we make the transformation q2A b
1+b C a → A = a1+b

bq2

⇒ I = (q2)
D
2 −α−β

(2π)−
D
2

Γ(α)Γ(β)

"
dadb

1 + b
b

(
a

1 + b
b

)α+β− D
2 −1 bβ−1

(1 + b)
D
2

e−a

= (q2)
D
2 −α−β

(2π)−
D
2

Γ(α)Γ(β)

∫
da aα+β− D

2 −1e−a
∫

db
(
1 + b

b

)α+β− D
2 bβ−1

(1 + b)
D
2

The integral over a is exactly the integral representation of the Γ function!

⇒ I = (q2)
D
2 −α−β

(2π)−
D
2 Γ

(
α + β − D

2

)
Γ(α)Γ(β)

∫
db

(
1 + b

b

)α+β− D
2 bβ−1

(1 + b)
D
2︸                                 ︷︷                                 ︸

CI′

In order to calculate I′, we change variables again and set b′ B b
1+b , db = 1

(1−b′)2 db′:

I′ =

1∫
0

db′ (1 − b′)
D
2 −β−1(b′)

D
2 −α−1

≡ B
(D

2
− α,

D
2
− β

)
≡

Γ
(

D
2 − α

)
Γ
(

D
2 − β

)
Γ (D − α − β)

This is the integral representation of the B (Beta) function!
We have computed the entire integral, called the Master Integral. The result is∫

dDk
1(

k2
)α(

(k + q)2
)β =

(q2)
D
2 −α−β(2π)−

D
2 Γ

(
α + β − D

2

)
Γ
(

D
2 − α

)
Γ
(

D
2 − β

)
Γ(α)Γ(β)Γ (D − α − β)

(19)

As expected and required, it is translation invariant in k and symmetric in α and β. We still need
to discuss an analytic continuation of the master formula.

49.1 Consequences
If we assume α or β to be equal to zero, the denominator will diverge and therefore the entire
integral will vanish. This will always happen if one propagator does not appear (its power is
zero), so we know without further computation that∫

dDk (k2)−α ≡ 0 ∀α
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As a consequence, all tadpole contributions vanish.
Let us consider the most natural Feynman integral, where D = 4 and α = β = 1. Here,
Γ
(
α+ β− D

2

)
has a pole! This might seem like a problem, but it is only natural and makes sense

because the integral it came from, namely
∫

d4k 1
k4 approaches infinity for |k| → ∞ or |k| � 1.

Therefore, Γ
(
α + β − D

2

)
should have a pole!!

Of course, the integral is much more complicated for more propagators. On the other hand,∫
d4k

(k2)4

has a pole for small |k|. A regulator z is introduced, D = 4 − 2z, where z is a small complex
quantity with positive real part. Then Γ

(
D
2 − α

)
becomes Γ(−z).

The question remains, what to do with mixed poles?

50 φ4 theory in four dimensions
In φ4 theory, the Lagrangian is

L =
1
4
∂µφ∂

µφ −
1
2

m2φ2 +
g
4!
φ4

The vertex ∼ ig corresponds to 2 × 2 scattering and its one-loop corrections divided by their
symmetry factors are

1
2
q
1

q2 q
3

q
4

+
1
2

q2

q

q

q
1

3

4

+
1
2

q2 q
3

q
4

q
1

Note that the incoming momenta q1 and q2 and the outgoing momenta q3 and q4 are fixed. These
three diagrams are the only one-loop contributions to 2× 2 scattering, any other one-loop graph
with four externa edges would be a distortion of one of the above, for example:

q2 q
3

q
4

q
1

=

q
1

q2 q
3

q
4

50.1 Computation of the one-loop integral
For the two internal momenta k1 and k2, we already know from momentum conservation that
we can eliminate one of the two and express it via the qi and k. This gives us

1
2

q2 q
3

q
4

q
1

k

k+q +q
1 2

+
1
2

q
3

q
4

q2

q
1

k
k+q +q

1 4 +
1
2

q2 q
3

q
4

q
1

k 1k+q +q 3 C I
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When integrating out, we get three times almost the same integral. This time, we leave the
spacetime dimension D as a free parameter. When talking about the one-loop correction to the
vertex, the order is g, or g2, depending on whether or not one takes into account that the vertex
already has order g. One could say that the one-loop integral has order g2 and the correction to
the vertex is of order g.

I ⇒
1
2

g2
{∫

dDk
1

k2(k + q1 + q2)2 +

∫
dDk

1
k2(k + q1 + q4)2 +

∫
dDk

1
k2(k + q1 + q3)2

}
=

1
2

g2(2π)
D
2
Γ(2 − D

2 )Γ2( D
2 − 1)

Γ2(1)Γ(D − 2)

((
(q1 + q2)2

) D
2 −2

+
(
(q1 + q4)2

) D
2 −2

+
(
(q1 + q3)2

) D
2 −2

)
Now we set D B 4 − 2z by introducing the regulator z, |z| � 1, z , 0,<(z) > 0.

⇒ I =
1
2

g2 (2π)z

(2π)2

Γ(z)Γ2(1 − z)
Γ(2 − 2z)

( (
(q1 + q2)2

)−z︸          ︷︷          ︸
s-channel

+
(
(q1 + q4)2

)−z︸          ︷︷          ︸
t-channel

+
(
(q1 + q3)2

)−z︸          ︷︷          ︸
u-channel

))

For z → 0, the Γ2(1−z)
Γ(2−2z) part stays regular, but the Γ(z) in the numerator will be singular. This is a

problem, yet not unexpected. To get a better impression of the brackets with the channels, we
expand them in z using

U−z = e−z ln U

⇒
(
(q1 + q2)2

)−z
= 1 − z ln (q1 + q2)2 + O(z2)

Basically what this is telling us is that our understanding of quantum field theory almost makes
sense but not entirely (yet). By using the expansion in I, we get

I →
1
2

g2 1
(2π)2

(
1 + z ln 2π + O(z2)

)1
z

(1 + . . . )
{
1 + 1 + 1 − z ·

(
ln (q1 + q2)2 + ln (q1 + q4)2 + ln (q1 + q3)2

)}
Which gives us a pole part of 3g2

2(2π)2
1
z and finite parts. Hopefully, we can find a good argument

why this pole should vanish. This might indeed be true, since the pole is independent of the qi.

51 Massless Yukawa Theory
As a reminder, here are the Feynman rules for massless Yukawa theory:

→
i

/p + iε

→
i

p2 + iε

→ −iλI

To get the one-loop correction to the vertex, we have

0

q

q

∼ (−iλ)3
∫

dDk
1
/k

1
/k

1(
(k + q)2

)1+ρ
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where we omit the I for the vertices. For dimensional regularization, we regulate in D, and
assuming that the bosonic propagator has a scaling behavious with ρ, we also regulate in ρ.

0

q

q

→ +λ3 (2π)
D
2

Γ(1)Γ(1 + ρ)
Γ(2 + ρ − 2 + z)Γ(1 − z)Γ(1 + ρ − z)

Γ(2 − 2z − ρ)

(
q2

)−z−ρ

As we can read off from Γ(2 + ρ − 2 + z) = Γ(ρ + z), there is a pole part for small ρ and z.
Thereby,

1
z + ρ

(
q2

)−(z+ρ)
=

1
z + ρ

(
1 − (z + ρ) ln q2

)
so we can regulate by z, or ρ, or even both of them. Anyway, we get a pole with a coefficient
ln q2. How do we get rid of this pole? These computations are a lot more complicated for graphs
like, say, . We cannot compute this graph, but we can at least compute that it has a pole, and
we may even be able to physically interpret this pole.

52 Divergence
In the one-loop correction to the vertex, we have found a logarithmic divergence. If we want
to find out for other graphs what their order of divergence is, without having to compute all of
them, there is an easy way to do so.

• We weight each internal line with its power in the Fourier transform:

1

2

• We count the number of loops and multiply it with the dimension of spacetime, D:

.1 D

• We take the number of loops multiplied with D and subtract the sum over all weights.

For example, look at

1

2

1

The sum over all weights is 4. The spacetime dimension is D = 4 − 2z, we get −2z → 0 if
z→ 0. This graph is logarithmically divergent.
Not let’s look at

1

2

1

1

1

2

This graph is also logarithmically divergent, since the sum over all weights is 8 and there are
two closed loops, therefore we get 2 · D − 8 = −4z→ 0 if z→ 0.
In this way, we can determine whether or not a graph is logarithmically divergent.
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53 Outlook: Renormalization
The techniques of removing poles is called renormalization. We need to find out what tricks are
used, how they are justified and why the results make sense. Also, the Lagrangian formulation
of renormalization is worth a look.
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Introduction to Renormalization
23.01.2012

54 Review
In the first part of today’s lecture, we will give an overview about our previous calculations.

54.1 Vertex corrective integral
We have considered the integral

IE(D, α, β) =

∫
dDk

1(
k2)α((k + q)2

)β
for which we introduced the Wick rotation which shifts k0 to ik0 by changing the path of inte-
gration from along the real axis and closing either above or below, to

As a consequence, k2
0 − k2

1 − k2
2 − k2

3
becomes −k2

0 − k2
1 − k2

2 − k2
3

and thus, with the k2 = k2
0 + k2

1 + k2
2 + k2

3
minus sign pulled out, q2 = q2

0 + q2
1 + q2

2 + q2
3

⇒ . . . → . . .
(−1)

positive definite propagators

Since k2 and (k + q)2 are now positive quadratics, the intergral is a well-defined expression
F(D, α, β, q2). It should be possible to continue the variable q2 analytically to negative real
values to undo the Wick rotation. This is merely a matter of complex analysis.
Remark: The same result would have been obtained if the integration would have been carried
out without the Wick rotation and the undoing.
The integral is known:

IE(D, α, β) =

∫
dDk

1(
k2)α((k + q)2

)β = π−
D
2 (q2)

D
2 −α−β

Γ
(

D
2 − α − β

)
Γ
(

D
2 − α

)
Γ
(

D
2 − β

)
Γ(α)Γ(β)Γ (D − α − β)

54.2 Vertex corrections in φ4 theory
We looked at one-loop vertex correction in φ4 theory and the symmetry factors of the graphs
and we calculated them using dimensional regulation.

1
2

 + +

→
(
1
2

3
z

+ terms regular at z = 0

)
g2

There is a pole in z = 0, that’s true, but this pole is independent of any momenta associated with
the graphs, and therefore our hope is that it might not be a physical observable, since it does
not rely on any, and could therefore be removed. Our goal is to reveal how to handle φ4 in four
dimensions of spacetime, but for D = 4 − 2z (dimensional regularization) we get a pole in z.
The regular terms are indeed dependent on the momenta: They are given by

1
2

 4∑
i=2

ln (q1 + qi)2


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54.3 Massless Yukawa theory
We also looked at the one-loop vertex correction in massless Yukawa theory, graphically given
by

∼ λ

0

q

q

∼ λ3
{

1
ρ

+ terms regular at ρ = 0

}

It seems we always come accross those ”annoying” poles. Do they have to be there? Is there an
approach to quantum field theory without the poles? The answer is yes, they have to be there,
they are fundamental and not a result of a formulation. They are physically not oservable, but
experiments only show how effects change when the energy scale changes, so it is only natural
that the energy scale must be taken into account. The poles are necessary for identifying short-
distance behaviour, and they dictate coefficients in the renormalization group equations and the
dynamics of variables.
Either way, we have to find out how the limits D → 4 or z → 0 can be taken without the
physically measurable expressions to diverge. For that, we need to understand the analytical
structure of the integrals.

55 Four ways of thinking in renormalization
We will get started on renormalization today and study some of the approaches in detail. We
start with a definition:

Definition We call a Feynman graph n-particle irreducible (n-PI), if it is connected when
we remove n internal edges. A connected graph is 0-PI.
Example: is 0-PI, but not 1-PI.
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The vertex in Yukawa theory, with corrections up to two loops, is given by

+ + + + +

+ + + + + +

+ + + + +

+ + + . . .

But almost all of these graphs are superfluous, the only 1-PI graphs are

, , , ,

, , ,

Any of the other graphs, for example , can be derived from the knowledge of .

In fact, all non-1-PI graphs can be factorized into 1-PI pieces, thus it suffices to compute only
1-PI graphs. Once we know the one-loop propagator corrections,

→ +

→ +

we basically know all 0-PI two-loop graphs. It needs no mention that it is helpful to work with
just the 1-PI graphs.

56 To find out if a 1-PI graph is divergent
Since we are eventually facing an infinite number of graphs, it makes sense to sort them in some
way to classify which set of graphs is ”problematic” and which is not.
Further on, we work with 1-PI graphs only. Not only do we neglect 0-PI graphs, but also
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2-PI and any higher order of connectedness. It turns out that only 1-PI graphs are actually
advantageous.
Remark: Mathematicians call 1-PI graphs two-connected because there are two lines between
final and initial states / two lines need to be removed in order to disconnect final and initial state.
In order to classify 1-PI graphs, we need another definition.

Definition In D ∈ N+ dimensions, let

ωD(Γ) B |Γ|D −
∑
e∈Γ[1]

int

w(e) −
∑
v∈Γ[0]

w(v) ,

where

• |Γ| is the first Betti number of the graph Γ (the number of independent cycles, or the loop
number)

• Γ
[1]
int is the set of internal edges in Γ

• Γ[0] is the set of vertices in Γ

• w(e), w(v) are weights, where

w(e) =

1 if e is a fermionic edge
2 if e is a bonosic edge

and w(v) is the mass dimension of the coupling at the vertex v. In our examples so far,
w(v) ≡ 0 ∀v. (This is about to change in the summer term)

56.1 Yukawa theory

a

c
x

y

b
z

is called the vertex-function at one loop, and it is 1-PI.

|Γ| = 1 ⇒ ω4(Γ) = 1 · 4 − w(a)︸︷︷︸
=1

− w(b)︸︷︷︸
=1

− w(c)︸︷︷︸
=2

− w(x)︸︷︷︸
=0

− w(y)︸︷︷︸
=0

− w(z)︸︷︷︸
=0

= 4 − 4 = 0

Since ω4

( )
= 0, is logarithmically divergent. Now if we consider

⇒

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = 2 ⇒ ω4


 = 2 · 4 − 4 · 1 − 2 · 2 = 0

⇒
∣∣∣ ∣∣∣ = 1 ⇒ ω4

( )
= 1 · 4 − 1 · 1 − 1 · 2 = +1

⇒

∣∣∣∣∣ ∣∣∣∣∣ = 1 ⇒ ω4

( )
= 1 · 4 − 2 · 1 − 0 · 2 = +2
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56.2 Grading of graphs
Let ΓYuk be the set of all 1-PI graphs in Yukawa theory. In ΓYuk, the graphs can be graded by
their Betti numbers (numbers of loops):

ΓYuk = Γ0 ∪ Γ1 ∪ Γ2 ∪ . . .

But there is another way to decompose ΓYuk: Let res (Γ) be the graph obtained by shrinking all
internal edges e ∈ Γ

[1]
int to zero length.

Example:

res


 =

res
( )

=

res
  =

Then we classify the graphs in ΓYuk by their residues:

⇒ ΓYuk = ΓYuk ∪ ΓYuk ∪ ΓYuk ∪ ΓYuk
rest ,

where ΓYuk is the set of all 1-PI graphs Γ with res (Γ) = , and so on. All graphs whose

residues are neither , nor , nor , are in ΓYuk
rest .

Example:

res


 = ⇒ ∈ ΓYuk

rest

Theorem
ω4(Γ) = 0 ∀Γ ∈ ΓYuk

ω4(Γ) = +1 ∀Γ ∈ ΓYuk

ω4(Γ) = +2 ∀Γ ∈ ΓYuk

ω4(Γ) =< 0 ∀Γ ∈ ΓYuk
rest

Proof Obvious for one-loops graphs (see above). Euler-characteristics tells you the rest, so
actually the proof is over at this point. To visualize this, we look at the changes made to get
from a one-loop graph to a two-loop graph. In fact, we get one additional loop, so the expression
adds four, and we also get one additional bosonic edge and two additional fermionic edges.

→

res
( )

= 1 · 4 − 2 · 1 = +2 → res
( )

= 2 · 4 − 4 · 1 − 1 · 2 = +2

Remark: ω4

( )
= 0, not < 0, but there is an argument by Caveat why this process does not

appear in Yukawa theory. (Confer Caveat: Four boson interactions, Stokes theorem)
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56.3 Divergence in graphs
For ω4 = 0, we get a logarithmic divergence, which has the nice property that the divergence
drops out in the sum over all graphs, therefore we can treat logarithmically divergent graphs as
”basically convergent”! This is a major advantage of power counting.
Still, for ω4 = +1 we get linear divergence, for ω4 = +2 even quadratic divergence, which
is not so easy to get rid of. Analysis of ωD helps find out how bad the problem is by at least
identifying all divergent graphs.

Definition A theory for which a D > 0 exists such that ωD(Γ) = ωD(Γ̃) ∀ Γ, Γ̃ with res (Γ) =

res (Γ̃), or in other words, where Γ and Γ̃ have the same external leg structure, is called renor-
malizable in D dimensions. (⇒ Yukawa theory is renormalizable in four dimensions of space-
time)
We have considered ω4 mainly because it is most interesting, since we live in a world with four
dimensions. However, it is also worth looking at other values of D. For example, what happens
to Yukawa theory in two dimensions?

56.3.1 Yukawa theory in two dimensions

ω2

( )
= 2 − 2 = 0 ⇒ logarithmically divergent

ω2

( )
= 2 · 2 − 4 − 2 = −2 ⇒ convergent at two loops

but : res
( )

= res
( )

=

In D < 4 dimensions, ωD(Γ) < 0 for |Γ| large enough / with |Γ| < n0. A theory for which
ωD(Γ) < 0 ∀ Γ is called superrenormalizable in D dimensions.

56.3.2 Yukawa theory in six dimensions

ω6


 = 6 − 4 = +2 ⇒ quadratically divergent

ω6


 = 2 · 12 − 8 = +4 ⇒ quartically divergent

ω6


 = 2 · 6 − 6 = 0 ⇒ logarithmically divergent

(
is certainly convergent in D = 4!

)
A theory for which ωD(Γ) ≥ 0 for all res (Γ) for |Γ| large enough is called non-renormalizable.
(Our) QFTs are either renormalizable, or superrenormalizable, or non-renormalizable.
For some reason which we do not know, nature organizes in renormalizable QFTs, as far as we
know (exception: quantum gravity might or might not be renormalizable).
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57 Theories and their renormalizability
We finish today with a list of theories and their degrees of interaction, and the dimensions of
spacetime in which they are renormalizable.

Theory Interaction Renormalizability Decomposition

φ3scalar theory cubic D = 6 Γφ
3
6 = Γ

φ3
6 ∪ Γ

φ3
6 ∪ Γ

φ3
6

rest

φ4scalar theory quartic D = 4 Γφ
4
4 = Γ

φ4
4 ∪ Γφ

4
4 ∪ Γ

φ4
4

rest

QED cubic D = 4 ΓQED4 = Γ
QED4 ∪ ΓQED4 ∪ ΓQED4 ∪ Γ

QED4
rest

Yukawa theory cubic D = 4 ΓYuk4 = Γ
Yuk4 ∪ ΓYuk4 ∪ ΓYuk4 ∪ Γ

Yuk4
rest

101



Renormalization (1)
30.01.2012

Review So far, we got for our dimensionally regularized integral (omitting arbitrary factors
of 2π because sometimes, dDk B dDk

(2π)D) ):∫
dDk

(2π)D

1(
k2

)α(
(k + q)2

)β = (4π)−
D
2 (q2)

D
2 −α−β

Γ
(
α + β − D

2

)
Γ
(

D
2 − α

)
Γ
(

D
2 − β

)
Γ(α)Γ(β)Γ(D − α − β)

(20)

This expression is divergent for D = 4, α = β = 1.

58 Renormalization
To renormalize, we rescale all quantities in the Lagrangian density and write the scalings as
series in the coupling constant. In that way, we hope to get rid of all divergencies without
changing any physics.

58.1 Scalings in φ4 theory
We will do one-loop renormalization of the vertex function in massless φ4 theory. The interac-
tion Lagrangian is given by

LI =
g
4!
φ4

where φ is a real scalar field, and the Lagrangian is a function of the field, the derivative of the
field, the coupling g, and in general the mass m (not here).

L = L
(
φ, ∂µφ, g,m

)
We rewrite the Lagrangian with the following scalings:

L → L

(
Z

1
2
φ φ,Z

1
2
φ ∂µφ,Zgg,Zmm

)
Zi = 1 + gc1i + g2c2i + . . .

We use these scalings Zi to make sense of initially ill-defined expressions. The square root of
Zφ is there for historical reasons. Temporarily, yet not generally, we set Zφ = 1 = Zm , so only
Zg is left.

58.1.1 1-PI vertex function

Expanding the vertex in graphs up to one loop, we get

+
1
2

 q
1

q2 q
3

q
4

+

q2

q

q

q
1

3

4

+

q2 q
3

q
4

q
1


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where the first term is of order g, the last three terms are of order g2. We compute the 1-PI
vertex function of φ4 theory to order g2 using dimensional regularization (??).
We call the vertex function Green function G

(
g, {pi}

)
G

(
g, {pi}

)
= g +

g2

2

{∫
dDk

(
1

k2(k + p1 + p2)2 +
1

k2(k + p1 + p4)2 +
1

k2(k + p1 + p3)2

)}
= g +

g2

2

{(
p1 + p2)2

)−z
+

(
p1 + p4)2

)−z
+

(
p1 + p3)2

)−z
}

Γ(z)Γ2(1 − z)
Γ2(1)Γ(2 − 2z)

+ O(g3)

In the second line, we have set D = 4 − 2z. Because of the term Γ(z) in the numerator, this
expression diverges for z = 0, of course.

58.1.2 Rewriting the Γ function

Using a property of the Γ function,

zΓ(z) = Γ(1 + z) ,

and that Γ(1 + z) is regular at z = 0, we can derive that Γ(z) has a pole of first order at z = 0. We
then use the Taylor expansion of Γ(1 + z):

Γ(1 + z) = eγEz exp

− ∞∑
k=2

ζ(k)
k

(−z)k


where ζ(k) gives the Zeta value of z. Plugging this expression into G , we get

G
(
g, {pi}

)
= g +

g2

2

{ (
1 − z ln (p1 + p2)2 + O(z2)

)
+

(
1 − z ln (p1 + p4)2 + O(z2)

)
+

+
(
1 − z ln (p1 + p3)2 + O(z2)

) }
Now we introduce the scaling of the coupling, namely g→ Zgg in L:

G
(
g, {pi}

)
= Zgg +

Z2
gg2

2

{ (
1 − z ln (p1 + p2)2 + O(z2)

)
+

(
1 − z ln (p1 + p4)2 + O(z2)

)
+

+
(
1 − z ln (p1 + p3)2 + O(z2)

) }
58.1.3 Determining Zg

Our goal now is to establish Zg in such a way that the limit z → 0 can be taken for the Green
function as a function of g and Zg.
Remark: The Lagrangian is well-defined for any z other that z = 0, even though this is necessary
for the natural dimension N = 4. But nature does not realize Lagrangians, but Green functions
and Wightman functions, so the Lagrangian might as well diverge.
Zg is a series in g, Zg = 1 + gc1g + g2c2g + . . . , but we only wanted to go up to order g2. Conse-
quently, the Green function gives

G
(
g, {pi}

)
= g + g2c1g +

g2

2

3
2

1
z

+

 4∑
j=2

ln (p1 + p j)2

 · (1 + O(z)
)
−

3
2
γE + O(z)


where c1g is a Laurent-Taylor series in z.
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58.1.4 Making G finite

To make G finite, we certainly need

c1g = −
3
2

1
z
−

1
2
· (finite term)

The finite term is a term that we are free to choose! It is not fixed by mathematics and it is
independent of the kinematics of the scattering process. This choice determines (up to one
loop) my renormalization scheme.

G → Gren

(
scheme, g, {pi}

)
58.2 Renormalization schemes
The mathematician’s job is done at the point where they find out that they can choose a renor-
malization scheme. However, physicists try to make some sense out of different schemes. Some
choices might be “better” than others - what are the “good” choices?

58.2.1 Kinematic renormalization scheme

At Euklidean p2
1 = p2

2 = p2
3 = p2

4 ≡ µ
2 (uniform angles), the renormalized Green function is

Gren
!
= g

The one-loop terms in the φ4 vertex are

1
2

 q
1

q2 q
3

q
4

+

q2

q

q

q
1

3

4

+

q2 q
3

q
4

q
1


and they give three integrals of the same kind. We will only work with one of them, for example

1
2

q
1

q2 q
3

q
4

→
1
2

∫
d4k

1
k2(k + p1 + p2)2

With dimensional regularization being omitted here, this expression is ill-defined! But we know
that it is “only” logarithmically divergent, so if we subtract at the integrand at some other value
of k in the kinematic renormalization scheme, we get the expression

1
2

∫
d4k

(
1

k2(k + p1 + p2)2 −
1

k2(k + p̄1 + p̄2)2

)
which exists!
If we now sum over all three graphs, we get

1
2

4∑
j=2

(
(p1 + p j)2

(p1 + p̄ j)2

)
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The two limits (subtraction and integration) interchange, but they do so only in the kinematic
renormalization scheme! (It is generally not possible to subtract at the integrand in other
schemes.)
This choice of scheme determines c1g completely.

Gren = g +
g2

2

 4∑
j=2

(
(p1 + p j)2

(p1 + p̄ j)2

)︸                 ︷︷                 ︸
=0

, where p̄2
i = µ2

The sum vanishes because ln (1) = 0.
This scheme can be set up at any order of the coupling constant.

58.2.2 Minimal subtraction scheme / MS scheme

At first, we set

c1g = −
3
2

1
z

This takes care of the pole, but since a logarithm cannot be taken of a non-dimensionless quan-
tity, we need something additional for the logarithm.
In an earlier exercise, we determined the mass dimensions of fields. Let us do this again because
it gives a good argument where to get the scale from:

L =
1
2
∂µφ∂

µφ +
g
4!
φ4

S =

∫
M

L d4x

The action S is a dimensionless quantity we get by integrating the Lagrangian density over the
entire Minkowsky space M. This helps us determine the mass dimensions of fields, since the
mass dimensions of d4x is 4, [dx]m = 1. Now we know that [∂]m = 1, so [φ]m has to be 1 as
well. Hence, the mass dimension of the coupling g is 0.
In dimensional regularization, though, the mass dimensions are regulated as well.

S =

∫
M

L d4x , D = 4 − 2z

⇒ [φ]m = 1 − z ⇒ [φ4]m = 4 − 4z

g→ g0(z) =
g

(µ2)−z

These dimensions do note make any physical sense, they are just there for regularization pur-
poses. In the minimal subtraction scheme, the logarithm becomes

ln
(
(p1 + pi)2

µ2

)
And the Green function will be

Gren = g + g2

 4∑
j=2

ln
(
(p1 + pi)2

µ2

)
−

3
2
γE


We basically threw the pole term out. The advantage of this method is that it is really quick, but
the disadvantage is the strange parts that occur in the Green function.
Remark “− 1

k2(k+ p̄1+p̄2)2 ” is called a counterterm at the level of an integrand. “
(
−1

2
1
z + finite

)
is a

counterterm as a function of the regulator.
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58.3 The renormalized Lagrangian
In the minimal subtraction scheme, we saw that we threw away pole terms. Since pole terms
contain useful information, maybe this is not exactly what we want to do from the start. Let us
have a look at the Lagrangian:

L = L
(
Zφ, φ,Zg, g,Zm,m

)
(z) .

We want to fix the Zi in such a way that

lim
z→0
G

(
Zφ, φ,Zg, g,Zm,m, {pi}

)
exists. We need that Zi cancel all the poles that occur!
The limit exists and is called renormalized Green function in the XYZ scheme.

lim
z→0
G (. . . ) (z) = Gren, scheme (g,m, {pi}, µ)

The renormalization parameter µ is dictated by the scheme.
Remark: It is not a trivial statement that the limit exists, neither is it a trivial statement that the
renormalization factors can be worked out.

58.4 Quantum equations of motion
For the vertex correction in Yukawa theory, we can imagine a Green function giving a simplified
version of quantum equations of motion:

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

= G
(
λ, {pi}

)
As a simplification, we will only sum over the graphs with interactions like

+ + + + . . .

(This simplification is called Ladder Approximation). As an ansatz, we take

G → Gren(λ, q) =

(
q2

µ2

)−γ(λ)

= 1 − γ(λ) ln
(
q2

µ2

)
+
γ2

2!

(
ln

(
q2

µ2

))2

+ . . .

We claim that with this ansatz, Gren gives a solution of the integral equation

Gren(λ, q) = 1 + λ2


(∫

d4k
1
/k
G(λ, k)

1
/k

1
(k + q)2

)
−

(∫
d4k

1
/k
G(λ, k)

1
/k

1
(k + q)2

)∣∣∣∣∣∣
q2=µ2


and that G · λ gives the transition amplitude. We will see about that in the next lecture.

106



Renormalization (2)
01.02.2012

Review Lately, we focused on vertex renormalization to one loop in φ4 theory, in dimensional
regularization, computed in the kinematic renormalization scheme and the minimal subtraction
scheme. To do that, we rescaled the coupling g with some power series in g, to get

LI =
g
4!
φ4 , g→ Zgg , Zg = 1 + c1gg + c2gg2 + . . .

Followingly L will include a number of monomials with infinite coefficients, called countert-
erms.

59 Vertex Renormalization
We have already seen vertex renormalization in massless φ4 theory. Today, we will focus on
massless Yukawa theory and iterate a subclass of graphs.

59.1 The vertex function of Yukawa theory
By writing down

0

q

q

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

,

we mean the vertex function of Yukawa theory, ergo all possible interactions at the vertex. The
vertex function should be a series, lead by the tree level graph.

0

q

q

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

= 0

q

q

+ + + + +

+ + + + + . . .

The tree level graph is of order λ, the one-loop graphs are of order λ3, the two-loop graphs are
of order λ5, and all following graphs must be at least of order λ7.
A problem about renormalization is that all internal propagators are to be renormalized as well
because they carry divergences on their own. What seems to be a neverending story is suppos-
edly very similar to what we have down up until here.
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59.2 A subclass of graphs
Let us try to classify graphs and consider all graphs with zero-momentum at the bosonic line,
which have the form of

+ + + . . .

This simplification is called Ladder Approximation, for obvious reasons.
We claim that this simplified series of graphs is a solution to an integral equation.

0

q

q

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

= 0

q

q

+
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�k

k+q

q
k

0

q

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

We solve this integral equation with the boundary condition that at some fixed external momen-
tum q2 = µ2, the vertex function should be proportional just to λ.

0

q

q

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

∣∣∣∣∣∣∣
q2=µ2

!
= λI

We write for the integral equation of the vertex function in terms of the coupling λ and the
Green function:

λG(λ, q2, µ2) = λI + λ3
∫

1
/k
G(λ, k2, µ2)

1
/k

1
(k + q)2 d4k

Since the second term should vanish at q2 = µ2 (this is our boundary condition), we can subtract
it. Or in other words, by subtracting it, we make sure that the whole integral epression vanishes
at q2 = µ2.

λG(λ, q2, µ2) = λI + λ3
{∫

1
/k
G(λ, k2, µ2)

1
/k

1
(k + q)2 d4k −

∫
1
/k
G(λ, k2, µ2)

1
/k

1
(k + q)2 d4k

∣∣∣∣∣
q2=µ2

}
Dividing by λ gives the fixpoint equation

G(λ, q2, µ2) = I + λ2
{∫

1
/k
G(λ, k2, µ2)

1
/k

1
(k + q)2 d4k −

∫
1
/k
G(λ, k2, µ2)

1
/k

1
(k + q)2 d4k

∣∣∣∣∣
q2=µ2

}
If we expand the expression in parentheses, we get the overall quadratic term of λ from the
constant term in G.

G(λ, q2, µ2) = I + λ2
{∫

1
/k
I
1
/k

1
(k + q)2 d4k −

∫
1
/k
I
1
/k

1
(k + q)2 d4k

∣∣∣∣∣
q2=µ2

}
+ O(λ4)

In subtracting at some fixed value of q2, q2 = µ2, we got a well-defined integral because the
infinite constants simply drop out. The Green function then goes like ∝ ln

(
q2

µ2

)
.

Remark: This only works because the graph is logarithmically divergent and not linearly or

108



even worse.
In the integral, if we go up to order λ4, we get:

G(λ, q2, µ2) = I + λ2
{∫

1
/k
I
1
/k

1
(k + q)2 d4k −

∫
1
/k
I
1
/k

1
(k + q)2 d4k

∣∣∣∣∣
q2=µ2

}
+

+ λ4
{∫

d4k
1
/k

(
. . .

)1
/k

1
(k + q)2 −

∫
d4k

1
/k

(
. . .

)1
/k

1
(k + q)2

∣∣∣∣∣
q2=µ2

}
where (. . . ) represents the integral associated with λ4, but with external momentum k, and
internal momentum k′ integrated out. This corresponds to the graph

k’+k

k+q

q

k

k’

k’

k

q

0

If we solve the integral equation for higher and higher orders of λ, it will reproduce all the
Feynman rules needed for the next vertex each time.

59.3 Bootstrap equations
Let’s try to write the integral equation in a more sensible way. We make an ansatz for the Green
function:

G(λ, q2, µ2) =

(
q2

µ2

)−γ(λ)

I

We need to derive γ(λ) in order to have a working Green function. The integral equation (up to
order λ2) becomes

(
q2

µ2

)−γ(λ)

I = I + λ2


∫

1
/k

(
q2

µ2

)−γ(λ) 1
/k

1
(k + q)2 d4k︸                                ︷︷                                ︸

CA

−

∫
1
/k

(
q2

µ2

)−γ(λ) 1
/k

1
(k + q)2 d4k

∣∣∣∣∣∣∣
q2=µ2


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To solve this (part of the) integral equation, let us have a closer look at A.

A =

∫
d4k

1
/k

(
q2

µ2

)−γ(λ) 1
/k

1
(k + q)2

=

(
1
µ2

)−γ(λ)

I

∫
d4k

1
(k2)q+γ(λ)(k + q)2

=

(
1
µ2

)−γ(λ)

Iπ2q−γ(λ)
Γ
(
γ(λ)

)
Γ
(
1 − γ(λ)

)
Γ(1)

Γ(1)Γ
(
1 + γ(λ)

)
Γ
(
2 − γ(λ)

)
=

(
q2

µ2

)−γ(λ)

I
1
γ(λ)

1
1 − γ(λ)

⇔

(q2

µ2

)−γ(λ)

− 1

 I = λ4

(q2

µ2

)−γ(λ)

− 1

 I 1
γ(λ)

1
1 − γ(λ)

⇒ I =
λ2

γ(λ)
(
1 − γ(λ)

)
⇒ γ(λ) =

1
2
±

√
1
4

+ λ2

We got solving for γ(λ) down to just one ± sign. Since λ is the coupling, λ = 0 would result in no
interaction at all, if the coupling strength is zero, then there would be no vertices. Consequently,
we would expect that the Green function would just become the identity in the case λ = 0.
Therefore, the ± sign has to be a −.

G(λ, q2, µ2) =

(
q2

µ2

)− 1
2 +
√

1
4 +λ2

I

This Green function resums all graphs from the ladder approximation with boundary conditions
G(q2 = µ2) = I.
Remark (1): I admit that it is quite possible that a factor π2 is missing somewhere.
Remark (2): Is a set of graph self-regulated, or is self-renormalizable, then the vertex function
will develop an anomalous dimension γ(λ) which shows up in the integrand.

59.4 Propagator corrections in the vertex
If we make the ansatz from above,

0

q

q
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= λ

(
q2

µ2

)−γ(λ)

I = λG ,

then we can write down the same graph, but with a non-vanishing incoming momentum on the
bosonic line.

q

q

1    2
q −q
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But there is no ansatz for it, if we want to take all propagators and their corrections into account.
We would get something like

q

q

1    2
q −q
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+ . . .

= λI + λ3

 + + + . . .

 + . . .

which basically corresponds to

λI + λ3


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+ . . .

 + . . .

where the vertex functions go up to one loop.
With this graphic explanation, any imaginable graph is produced. Problematically, there is no
useful ansatz for it yet, even though there is proof that this ansatz exists.
But even though we don’t have an explicit form of the Green function, maybe we can get some
answers to the dominant kinematical behaviour. We may not know how to express a solution,
but we can find some relations or dependencies about it.

59.5 Back to perturbation theory
Still today, there are no solutions known that are non-perturbative. So we go back to perturba-
tion theory and see what else we can find out. We remember the master integral,∫

dDk
(2π)D

1

(k2)α
(
(k + q)2

)β → (q2)
D
2 −α−β

Γ
(
α + β − D

2

)
Γ
(

D
2 − α

)
Γ
(

D
2 − β

)
Γ (α) Γ (β) Γ (D − α − β)

,

and we also remember that we got this expression from the integral representation of the Γ

function,

Γ(z) =

∞∫
0

e−xxz dx
x

60 Symanzik Polynomials
If we look at some arbitrary graph, for example

Γ B

1

2

4 6

5

3

,

from φ4 theory, where the six internal edges are labeled, we can assign a variable Ai to each
edge i in order to distinguish the edges.
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Definition A spanning tree of Γ is a simply-connected subset of Γ which contains all vertices
of Γ.
Simply-connected means that there are no internal loops. For example, this Γ given above has
sixteen spanning trees. We denote by ΨΓ the first Symanzik polynomial or dual Kirchhoff

polynomial,

ΨΓ B
∑

spanning trees
T of Γ

∏
e<T

Ae

Even though we have already defined the Kirchhoff polynomials, we talk about the Symanzik
polynomials as well because sometimes they are more convenient for Feynman graphs.
Examples:

Γ = ΨΓ = A1 + A1

Γ =
1

2

3 4 ΨΓ = (A1 + A2)(A3 + A4) + A3A4

This should immediatedly remind us of the calculation of the graph , where we came ac-
cross some factor of ∼ (A1 + A2)−D, which comes exactly from this.

Definition A two-forest is a set of two disjoint trees T1,T2 ( T such that T1 ∪ T2 contains all
vertices.
In other words, a two-forest consists of two proper subsets of the spanning tree in such a way
that they is merely one edge removed.
We define the second Symanzik polynomial as

ϕΓ B
∑

T1∪T2

Q(T1) · Q(T2)
∏

e<T1∪T2

Ae

where Q(Ti) denotes the sum of all external momenta of the vertices of Ti.
Examples:

Γ =

ϕΓ = (q1 + q2)(q3 + q4)A1A1

= −(q1 + q2)2A1A2

= −(q3 + q4)2A1A2

Γ =
1

2

3 4

ϕΓ = (q1 + q2)(q3 + q4)A1A2(A3 + A4)+
+q3(q1 + q2 + q4)A1A2A3 + q4(q1 + q2 + q3)A2A3A4

= (q1 + q2)(q3 + q4)A1A2(A3 + A4) − q2
3A1A2A3 − q2

4A2A3A4

Here, we used overall momentum conservation, that the sum over all initial momenta equals
the sum over all momenta in the final state. For massless propagators, the Feynman rules for a
graph Γ are available through the Symanzik polynomials and given by

ΦΓ =

∫ exp
(
−
ϕΓ

ΨΓ

)
(ΨΓ)

D
2

dA1 . . . dAE

where E denotes the number of internal edges in Γ.
Thus, all we need to do to compute a graph is to write down some polynomials which are
defined combinatorically, and integrate over all edges.
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Renormalization (3)
06.02.2012

Review Last time, we focused on vertex renormalization in massless Yukawa theory. The
ladder approximation gave us the identity

0

q
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which led us to an integral equation for the massless vertex function in Yukawa theory at zero
momentum transfer in the ladder approximation. To make a long story short, we made our lives
easier. Typically, though, there are masses involved which we cannot neglect, and there will be
a momentum transfer and so the incoming boson will carry a momentum other than zero.

q

q

1    2
q −q
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→ G(q1, q2,m,M, λ, scheme)

Usually, the ladder approximation will not be sufficient either because we cannot generally
neglect diagrams like or , for which we would need more integral kernels.

• The ladder approximation is an extreme simplification. This is why we could do it so
easily.

• But: Once we’ve understood the ladder approximation and all computations related to it,
we will be able to break down everything that is more complicated into the same structure.

In any case, we will always have to deal with a fix point equation for the Green function. In last
week’s case, there was just one fix point equation for the vertex function.

61 Propagators
Since we have dealt with the vertex function, it is time to move on to propagators. For the
propagator function, we can (again) start with the tree level graph and sum it with graphs of
loop order 1, 2, and so forth.

+ + + +

+ + + . . .

We know that applying the Feynman rules to any one of these diagrams will give rise to ill-
defined integrals. At least we know that some graphs, for example , are not one-particle
irreducible. The question is: How do I get all connected diagrams contributing to a propagator,
just from 1-PI graphs?
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61.1 Propagator as a geometric series
Let us call , the sum over all 1-PI graphs contributing to the fermion propagator, Σ(p), where
p is the external momentum of the fermion line. Let us also call the tree level propagaor, ,
S F(p). Multiplying S F(p) by 1

1−S F (p)·Σ will give

⇒ S F(p)
(

1
1 − S F(p) · Σ

)
→ S F(p) + S F(p) Σ S F(p) + S F(p) Σ S F(p) Σ S F(p) + . . .

→ + + + . . .

Now we can write out Σ, starting with one loop. We also amputate the external fermion lines
(”amputated propagators”).

Σ = + + . . .

61.2 Computing the self-energy function
Today we are going to see one example of propagator renormalization, and we will see why it
is a bit more complicated than the vertex function (it needs wave function renormalization and
mass renormalization). To make life simpler, as usual, we will start with scalar field theory,
where there is only one propagator. We can choose from φ4

4 theory and φ3
6 theory.

61.2.1 φ4 theory

In φ4 theory, the Lagrangian looks like this.

L =
1
2
∂µφ∂

µφ −
1
2
φ2 −

g
4!
φ4

There are two monomials in the Lagrangian that appear quadratically, and we need both of
them in order to renormalize properly. Let’s review power counting. The lowest-order vertex
correction is of the form

2

0

2

0 , with weight w = 4 − 4 = 0 ,

so the vertex function is logarithmically divergent and a single subtraction at a different value
for the external momenta will make it finite.
As for the propagator, let us consider one-loop and two-loop corrections.

2

0q q
w = 4 − 2 = 2

0 0

2

2

2

q q w = 8 − 6 = 2

The first order correction does not depend on q or q2, since there is only one single integral,∫
d4k (k2 − m2 + iε)−1, but this is merely an accident of the theory than anything fundamental.

By looking at the power counting, we see that the propagator is quadratically divergent. This
is by far more difficult to handle than a logarithmic divergence. A single subtraction will not
suffice for quadratically divergent graphs. On the contrary, we will also need to subtract on the
level of the first term in the Taylor expansion at q2 = µ2, and even more.
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61.2.2 φ3 theory

In φ3 theory, the Lagrangian is

L =
1
2
∂µφ∂

µφ −
1
2
φ2 −

g
3!
φ3

φ3 theory is renormalizable in six dimensions, which is the reason why it is sometimes denoted
by φ3

6. Let us again review the vertex and the propagator correction at lowest order, and do some
power counting.

0

0

02

2

2

w = 6 − 6 = 0 logarithmically divergent

w = 6 − 4 = 2 quadratically divergent

As a nice little combinatorical exercise, it is left to the reader to show that all graphs with the
same external leg structure have the same order of divergence.
Let us try to compute the propagator correction.

→
1
2

g2
∫

d6k
(2π)6

1(
k2 − m2 + iε︸        ︷︷        ︸

BP1

)(
(k + q)2 − m2 + iε︸                ︷︷                ︸

BP2

)
∝

∫
1
P1

1
P2

=

∫
P2 − P1

P1P2
2

+

∫
1
P2

2

=

∫ {
(P2 − P1)2

P1P3
2

+
P2 − P1

P3
2

+
1
P2

2

}
We have two totally different problems.

•
∫

4k·q2

P1P3
2
⇒ power counting: 8dim

8dim ⇒ logarithmically divergent ⇒ simple subtraction
suffices

•
∫

q2

P3
2
⇒ 1

P3
2

may be independent of q2, so a simple subtraction would suffice, but q2

P2
1

is
not so easy.

•
∫

1
P2

2
can be shifted to

∫
k2−m2

P2
2

Apparenty, we need two subtractions. Since this is very technical, we will work out the details
next term. So far, we have dealt with kinematic renormalization and minimal subtraction. Now,
we have two structure functions of q2 and m2 to renormalize, and it is not always clear which
scheme to choose.

• Propagators might have different masses. In the Standard Model, for example, there are
loads of particles with all kinds of different masses. We also have to distinguish between
external and internal lines because they don’t generally have the same mass scale: external
lines are always on-shell, while internal lines are off-shell.
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• If Σ(p2) is the self-energy of a massive scalar boson with mass µ2, then this mass param-
eter in the Lagrangian is not necessarily the physical mass. This effect is comparable to
the coupling: When we set g→ Zgg, we distinguished between the physical coupling and
the bare coupling, an unphysical quantity. The same accounts for the mass parameter in
the Lagrangian, which need not even be finite. To distinguish more easily, we give it a
different name and denote it by µ2

0. Then the propagator becomes

i∆ =
i

p2 − µ2
0 + iε

+
i

p2 − µ2
0 + iε

(
−iΣ(p2)

) i
p2 − µ2

0 + iε
+ . . .

=
i

p2 − µ2
0 + iε

 1

1 +
iΣ(p2)

p2−µ2
0+iε


So we need to renormalize. The Lagrangian gives a propagator, which is a geometric series in
the self-energy. Sensible renormalization conditions for the propagator are:

Σ(p2) = Σ(µ2) + (p2 − µ2)Σ′(µ2) + Σ̃(p2)

The propagator should have a pole at the physical mass, or in other words, the inverse propagator
should vanish at the physical mass. This is exactly how experimentists detect particles. The
derivative should also vanish at p2 = µ2, so here, Σ̃ denotes the remaining parts of the Taylor
expansion in p2 = µ2, with Σ̃(µ2) = 0 and Σ̃′(µ2) =

∂Σ̃(p2)
∂(p2)

∣∣∣∣
p2=µ2

= 0. Then, the propagator i∆

becomes

i∆→
i

p2 − µ2
0 − Σ(µ2) − (p2 − µ2)Σ′(p2) − Σ̃(p2) + iε

→
i

(p2 − µ2)
(
1 − Σ(µ2) − Σ̃(p2)

)
+ iε

⇒ i∆(p2) =
Zφ

p2 − µ2 − Σ̃(p2) + iε

Here, we introduced

Zφ =
(
1 − Σ′(µ2)

)−1

⇒ φren = Z−
1
2

φ φ

p2 − µ2
0 − Σ(µ2) C µ2Zµ2

⇒ i∆ren =
i

p2 − µ2 − Σ̃(p2)

We will have to carry out two subtractions:

• One at p2 = µ2.

• One at the level of the derivative, which should also vanish at p2 = µ2.

The Lagrangian then becomes

L = Zφ
1
2
∂µφ∂

µφ − Zmm2φ2 − Zg
g
3!
φ3

Since the Zi are power series in g, at two loops, they are already dependent on g.
This was just a taste of things to come. In the next terms, we will learn how to do renormaliza-
tion explicitly, learn about the renormalization group,. . .
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62 Combinatorics
We have already discussed some graph polynomials, the Kirchhoff and Symanzik polynomials.
Let Γ be a 1-PI graph, then the Symanzik polynomials are given by

ΨΓ =
∑

spanning
trees T

∏
e<T

Ae

φΓ =
∑

spanning
two-trees
T1∪T2

Q(T1) · Q(T2)
∏

e<T1∪T2

Ae

From elementary observation, we can set up a sequence of maps, where the image of each map
lies in the kernel of the next map.

0 → H1
Γ → QE ∂

→ QV → 0

H1
Γ

denotes the first Betti homology number (the loop numbers). E stands for edges, V for
vertices. For example, consider the graph

1

2

1

3

e

V

V

e

e

2V

3

where the arrow represents the orientation of the edges. Then the derivatives of the edges map
onto the set of vertices in the following way:

∂(e1) = v3 − v2

∂(e2) = v1 − v3

∂(e3) = v2 − v1

As a second example,

1

3

2 5

4

has three loops, namely
{

, ,
}
, but only two independent loops.

We can compute the polynomials ΨΓ and φΓ by looking at the choice of loop basis.

62.1 ΨΓ

Let us work with the graph

2

0q q

and define the basis

h1 B “1 + 2 + 3”
h2 B “1 + 2 + 4”
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Let us set up a matrix in the homology of h1 and h2, by writing in each cell the common elements
(edges) from colomn and row, where hi is in the ith row or column.

h1 h2

M →
h1

h2

(
A1 + A2 + A3 A1 + A2

A1 + A2 A1 + A2 + A3

)
⇒ M B

(
A1 + A2 + A3 A1 + A2

A1 + A2 A1 + A2 + A3

)
⇒ det M = |M| = (A1 + A2 + A3)(A1 + A2 + A4) − (A1 + A2)2 =

= (A1 + A2)2 + A1A3 + A2A3 + A1A4 + A2A4 + A3A4 − (A1 + A2)2 =

= A1A3 + A1A4 + A2A3 + A2A4 + A3A4 =

=
∑

spanning
trees T

∏
e<T

Ae

If we had chosen a different basis, for example

h1 B “1 + 2 + 3” h′2 B “3 + 4”

the result would have been the same:

M′ B

(
A1 + A2 + A3 A3

A3 A3 + A4

)
⇒ det M′ = |M′| = (A1 + A2 + A3)(A3 + A4) − A2

3 =

= A1A3 + A1A4 + A2A3 + A2A4 + A3A3 + A3A4 − A2
3 =

= A1A3 + A1A4 + A2A3 + A2A4 + A3A4 =

=
∑

spanning
trees T

∏
e<T

Ae ≡ det M

62.2 φΓ

For φΓ, we define the matrix a bit differently. To avoid confusion, let us work with a simpler
graph,

The we define∣∣∣∣∣∣ A1 + A2 µ1A1 + µ2A2

µT
1 A1 + µ2AT

2 µ1µ
T
1 A1 + µ2µ

T
2 A2

∣∣∣∣∣∣ = (A1 + A2)(µ1µ
T
1 A1 + µ2µ

T
2 A2) − (µ1A1 + µ2A2)(µT

1 A1 + µ2AT
2 )

= . . .

= (µ1 ± µ2)(µT
1 ∓ µ

T
2 )A1A2

We identify µ1 − µ2 as the momentum incoming into a vertex. If we remember momentum and
spin representations of the Lorentz group, we will see that

p0

p1

p2

p3

→ p0I2×2 − pi · σi C µ
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where σi denotes the Pauli matrices.
In general, we can set up the matrix with

(A1 + A2 + A3) (A3 + A4)
∑

e∈hi
µiAi

(A3 + A4) (A1 + A2 + A4) ( )
(
∑

e∈hi
µiAi)T ( )T ∑

edges e µeµ
T
e Ae

62.3 Kirchhoff polynomials
From the Kirchhoff polynimials, we get the Feynman rules by∫

e−
φ
4

Ψ
D
2

→ Feynman rules

where properties of the integral and the polynomials can be understood just by looking at the
determinants of matrices of the kind like we just set up. While Ψ is completely understood, φ
gives unknown terms already at two loops.
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