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CHAPTER 1

Graph, Weights and Forests

1.1. Introduction: Feynman graphs

Basic definitions. Modern physics describes elementary particles and their interactions by the
heavy machinery of perturbative quantum field theory(pQFT). Within this framework, graphical objects
known as Feynman graphs play a prominent role. Pictorial representations of such graphs are

for example. Accommodated to the needs of physical theory, these graphs are non-standard as will
become apparent in the following. Rather than giving a formal definition loaded with technicalities, we
shall adopt a more informal and narrative style of describing them.

For a start, depending on what one focusses on, Feynman graphs are generally labelled. That is,
equipped with maps that assign information of physical interest(momentum, position, etc.) to its edges
and vertices. We will further elaborate on these maps as we go along.

Let Γ be one such Feynman graph. We shall use the terms ’Feynman graph’ and ’graph’ inter-
changably henceforth. Γ consists of its vertex set Γ[0] and a set of edges Γ[1]. We distinguish between
external and internal edges: if an edge e ∈ Γ[1] connects to only one vertex, i.e.

(1.1) |e ∩ Γ[0]| = 1

we speak of it as external, and if |e∩Γ[0]| = 2, the edge is called internal(it connects two vertices). Their

sets are denoted Γ
[1]
ext and Γ

[1]
int, respectively. This may seem a bit strange at first, but external edges

are ’open’ towards one end and are not, as in standard graph theory, a pair of vertices. The edges of a
Feynman graph should rather be thought of as extra elements with data on which vertex they connect
to and, moreover, are subdivided into half-edges: internal edges are two joint half-edges, whereas an
external edge is made up of a single half-edge.

Though this may sometimes not be of interest, edges are oriented. For example, in Yukawa theory
one encounters the graph

a b

1

2

with oriented internal edges 1,2 and vertices a,b. The source s(e) of an edge e ∈ Γ[1] is the vertex it
is oriented away from, while its target t(e) is the one it is oriented towards. In our example, if we choose
the orientation suggested by the little arrow, we have s(edge 1) = a and t(edge 1) = b.

Feynman graphs are built from various edge and vertex types, each corresponding to a type of
quantum particle and type of interaction, respectively1. Edges come in the form of straight, wiggly
and dashed lines, amongst other somewhat fancy line styles. For example, the lines used for gluons are
strongly reminiscent of telephone cords. Here are some examples:

.

1The corresponding notion in standard graph theory is that of a coloured graph.

1



2 1. GRAPH, WEIGHTS AND FORESTS

Vertices together with their adjacent half-edges are called corollas, such as

.

A Feynman graph can therefore be thought of as constructed by glueing together corollas, as in

.

If an edge is made of two half-edges that connect to the same vertex, we get self-loops like

,

where the latter belongs to what has been dubbed ’tadpoles’(inspired by their shape). Though
they are genuine Feynman graphs which a physicist might play around with(prior to what is known as
renormalization), we will forbid self-loops. Given a vertex v ∈ Γ[0] and an adjacent edge e ∈ Γ[1], then
hv(e) is the half-edge of e which is attached to v. By n(v) we denote the set of all adjacent edges of the
vertex v. Consider the graph

ha(e2) hb(e2)

e1

e2

a b

e3

e4

,

where we have marked the two half-edges ha(e2), hb(e2) of edge e2. The adjacent edges of the two
vertices a and b are n(a) = {e1, e2, e3} and n(b) = {e2, e3, e4} with |n(a)| = |n(b)| = 3(cardinality).

Definition 1.1.1. Let Γ be a connected Feynman graph. Γ is said to be one-particle irreducible(1PI) or
2-connected if it stays connected after removal of any internal edge. Furthermore, it is called

(1) vacuum graph(or vacuum bubble) if |Γ[1]
ext| = 0, i.e. if Γ has no external edges, like

;

(2) tadpole graph if |Γ[1]
ext| = 1;

(3) propagator or self-energy graph if |Γ[1]
ext| = 2

(4) and vertex graph if |Γ[1]
ext| ≥ 3.

Throughout this lecture we will only consider 1PI propagator and vertex graphs, discarding all the
rest. Take the vertex graph

e

.

It is not 1PI on account of the tadpole being attached to it: upon removal of edge e, we are left with
two components, namely a vertex graph and a vacuum bubble.

Evaluating graphs. Physicists assign numbers or certain functions to graphs. For example, say
the assignment is a map called eval, mapping Feynman graphs to the algebra C[L] of polynomials in one
variable L, then we might write

(1.2) eval( ) = d1L+ d0, eval( ) = c2L
2 + c1L+ c0 .

where the beginner unfamiliar with QFT need not wonder how these come about for the time being. In
fact, there is an intricate story behind eval which involves the evaluations of integrals and subtractions
to be unfolded in the lectures to come. For the moment, we content ourselves with noting that purely
combinatorial criteria determine how these polynomials, their degrees and coefficients are related. The
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difference between the two graphs in (1.2) is that the second one has a 1PI subgraph inserted, which is
the boxed one in

.

Subgraph insertions. On the set of graphs, we can define an insertion operation, in this particular
case,

(1.3) v ◦v =

where ◦v instructs us to insert the graph following behind it at vertex v. Or, if we choose the lowermost
vertex to be the insertion place, call it w, we find

(1.4)

w

◦w = .

To see how the labelling changes upon insertion, consider the self-energy graph insertion

(1.5) a

b

c

1

2

3

4

5

6

◦6
1

2

3

4

5

= a

b

c

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

.

Notice that the labelling shifts by the number of internal edges which enter the vertex graph through
insertion and that the external edges(which are half-edges) of the inserted self-energy graph are joined
with the half-edges of edge 6 of the ’hosting’ graph.

Here is an important fact: all graphs are made up of 1PI subgraphs. We can therefore, with these
insertion operations at hand, construct all Feynman graphs with given a fixed ’skeleton’: here is an
example from quantum electrodynamics(QED) with wiggly lines

(1.6)
v

◦v ( e ◦e ) =
v

,

where the skeleton is the leftmost 1-loop graph and the insertions are carried out according to this: first,
the self-enery graph is inserted into wiggly edge e, then the result is inserted at vertex v to yield the
vertex graph on the right hand side.

1.2. Operads and tree diagrams

Operads. Consider the multiplication map m : A ⊗ A → A on an algebra A. It is associative by
definition, in the language of commutative diagrams,

(1.7)

A⊗A⊗A
id⊗m−−−−→ A⊗A

�m⊗id

�m

A⊗A
m−−−−→ A
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commutes. With the usual shorthand ab := m(a⊗ b) for a, b ∈ A, this is nothing but

(1.8) (ab)c = a(bc).

We can write this in the form a tree diagram:

(1.9)

(ab)c

ca b

=

ca b

a(bc)

.

Seen as a ’multiplication machine’, this tree has input slots, represented by its leaves at the bottom,
and one output slot, given by the uppermost vertex. Every internal vertex represents a multiplication
procedure. Just like we have done before with subgraphs, we can build trees by insertion operations:

(1.10)

1 2

T1

◦1

1 2

T2

=

T

31 2

,

where ◦1 says ’attach tree T2 to leaf 1 of tree T1 to obtain the final tree T ’. Note how the leaves of the
resulting tree are labelled. Note also that upon attaching a tree τ to another, say T , at a leaf of T , we
merge the uppermost line of τ with this leaf. The operad equation corresponding to (1.9) takes the form

(1.11)

1 2

T1

◦1

1 2

T2

=

1 2

T1

◦2

1 2

T2

.

More generally, a repeated operad application might in tree diagram language look like

(1.12)

1  2 j n

.  ..  .

◦j (

1  2 l m

.  ..  .

◦l

.  .  .
1 k

) = 1  2

j .  ..

j + 1

j + l
.  . .  .

j + l + 1

.  .  .
j + l + k

j + k + m

n + m + k .

where the dots stand for the approriate number of lines. This is a more general situation as we are not
restricted to strictly binary trees which arise in the context of the multiplication map(strictly binary tree
means every node which is not a leaf has exactly two children). Note that setting the brackets around
the first two trees and changing the insertion instruction from ◦l to ◦j + l

(1.13) (

1  2 j n

.  ..  .

◦j

1  2 l m

.  ..  .

) ◦j+l

.  .  .
1 k

= 1  2

j .  ..

j + 1

j + l
.  . .  .

j + l + 1

.  .  .
j + l + k

j + k + m

n + m + k .

leads to the same tree as in (1.12). We thus have the operad equation

(1.14)

1  2 j n

.  ..  .

◦j (

1  2 l m

.  ..  .

◦l

.  .  .
1 k

) = (

1  2 j n

.  ..  .

◦j

1  2 l m

.  ..  .

) ◦j+l

.  .  .
1 k
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Loosely speaking and ignoring various other subtle aspects, an operad on the set of trees is a map that
takes any number of trees and composes them as in (1.13) to form a single tree. For a precise definition
see [VAT04].

Subgraph insertions as operads. We can represent a Feynman graph by a tree diagram if we
decorate the nodes of the tree appropriately with subgraphs. Instead of giving a precise definition of this
bijection at this stage, we illustrate it by an example. Take the QED graph

(1.15) Γ = ,

where we have omitted the orientation arrows which have no business to hang around in what follows. Γ
contains the 1PI subgraph

(1.16) γ =

which itself habours the two 1PI subgraphs

(1.17) γ� = = and γ�� = .

To represent Γ by a tree diagram, we use what is called a decorated rooted tree. This is a tree with
decorated nodes and a ’root’, a distinguished node that always has its place on top. The corresponding
tree for Γ then takes the form

Γ

γ

γ
′

γ
′′

.

The root, decorated with Γ, stands for the whole graph Γ. Every node below it represents a subgraph.
The children of these nodes are the subgraphs of those subgraphs, and so forth.

The advantage of a Feynman graph’s tree representation is that it makes its subgraph structure clearly
visible. Moreover, it can be read as recipe of subgraph insertions that have to be made in order to obtain
the graph.

It is these very subgraph insertions and the corresponding attachments of subtrees onto trees rep-
resenting Feynman graphs which are of operadic nature. Therefore, we arrive at the conclusion that
naturally Feynman graphs come with an operad structure.

1.3. The weight of a graph

Graph homology and labelling. Recall that although this might not always show up in its pictorial
representation, a Feynman graph Γ has labelled vertices and oriented edges with source and target vertex.
We do not consider self-loops, i.e. if e ∈ Γ[1] then we always have s(e) �= t(e). In addition to that, the
vertices are ordered. Putting all this data together, we get an oriented graph in the sense of graph
homology. Without taking too wide a detour, we briefly sketch this homology.

Consider a chain complex of Q-vector spaces generated by Feynman graphs and indexed by the
number of internal edges. There is a boundary operator d from one vector space to the next defined by

(1.18) dΓ =
�

e∈Γ
[1]
int

sgn(Γe)Γe,
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where Γe is the graph we obtain when we shrink the internal edge e to a point and sgn(Γe) = ±1 is such
that d ◦ d = 0. Then, roughly speaking, the quotient spaces with respect to the boundary operator yield
the graph homology. For more on this, see [ConVo03].

The labelling of a graph Γ may for instance be given by the following maps. The momentum labelling
ζ : Γ[1] → M4 associates to each edge a 4-momentum in Minkowski space M4 � R4. The edge variable

labelling A : Γ
[1]
int → R+ assigns a variable to each internal edge and, as we will see, constitutes what is

known as the two Kirchhoff or Symanzik graph polynomials(for more on this, see chapter 7). Furthermore,
let ΓH be the set of half-edges of Γ, then a : ΓH → R+ is the map associating a variable to each half-edge.
This map will be relevant in setting up the corolla polynomial of Γ, expounded in [KrSS12].

Assigning integers to graphs. We introduce a map ω : Γ
[1]
int ∪ Γ[0] → Z which assigns an integer

to each internal edge and to each vertex of a graph Γ. Then we define the weight of the graph Γ by

(1.19) ωD(Γ) :=
�

e∈Γ
[1]
int

ω(e) +
�

v∈Γ[0]

ω(v)−D · h1(Γ),

where D is the dimension of spacetime and h1(Γ) the first Betti number of Γ which is the number of
independent loops. We set

(1.20) ω( ) = 2, ω( ) = 0

and have in D = 6 dimensions of spacetime

(1.21) ω6( ) = 2ω( ) + 2ω( )� �� �
=0

−6 = 4− 6 = −2,

and

(1.22) ω6( ) = 5ω( ) + 4ω( )− 6 · 2 = 10− 12 = −2,

where the Betti numbers are h1( ) = 1 and h1( ) = 2. Next, consider

(1.23) ω6( ) = ω6( ) = ω6( ) = ω6( ) = 0,

where h1( ) = 3. Another example is a vertex graph with four external legs, for which we find

(1.24) ω6( ) = ω6( ) = ω6( ) = 2.

These calculations suggest that the weight of a graph is determined by the number of external legs, i.e.
if

(1.25) |Γ[1]
ext| = |�Γ[1]

ext|
for two graphs Γ and �Γ with edge and vertex types of those in (1.20), one always has ω6(Γ) = ω6(�Γ). In
fact, it is not difficult to show that if

(1.26) ωD(Γ) = ωD(�Γ) ∀Γ, �Γ : |Γ[1]
ext| = |�Γ[1]

ext|
then D = 6 follows.

Contractions. Graph insertions can be reversed by an operation called contraction. The contraction
of a subgraph γ in a graph Γ is an operation yielding the so-called cograph Γ/γ, which is the graph one
obtains by shrinking all internal edges of γ to a single point while the external leg structure remains
untouched. For example,

(1.27) / =

and

(1.28) / = .

Here is an interesting fact: if for some dimension D we find that (1.26) holds for a certain species of
graphs, i.e. with certain vertex and edge types, then

(1.29) ωD(Γ) = ωD(Γ/γ) ∀γ ⊂ Γ : ωD(γ) ≤ 0.

In other words, if (1.26) holds, we do not change the weight of a graph if we contract one of its subgraphs
of non-positive weight. A graph γ of non-positive weight (in dimension D), i.e with ωD(γ) ≤ 0 is also
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referred to as a (superficially) divergent graph. We define a primitive graph to be a 1PI graph that is void
of any divergent proper 1 PI subgraph.

1.4. Forests of a graph

Consider the 7-corolla gluon graph

(1.30) Γ :=

1

2

3

4

5

6

7

8

9

which has only gluon edges and trivalent corollas. It has the following proper subgraphs:

(1.31) γ1 =

1

2 3

4

, γ2 = 3

5

7

8 , γ3 = 4

6

7

9

and their unions

(1.32) γ12 := γ1 ∪ γ2 =

1

2 3  

4

5

8

7

, γ23 := γ2 ∪ γ3, γ13 := γ1 ∪ γ3.

The weights of its vertex and edge types are

(1.33) ω( ) = 2, ω( ) = −1.

Then we find for D = 4: ω4(Γ) = −1 and ω4(γi) = ω4(γij) = 0 for all i, j. Hence all subgraphs are
divergent, and so is Γ itself. Primitive subgraphs are γ1, γ2 and γ3.

Definition 1.4.1. Let Γ be a graph. A forest f of Γ is a collection of divergent 1 PI proper subgraphs
γ � Γ such that for any γ, γ� ∈ f one of the following conditions holds:

(1.34) (i) γ ⊂ γ�, (ii) γ� ⊂ γ, (iii) γ ∩ γ� = ∅,
i.e. either the subgraphs of f are disjoint or contained in each other.

The forests of our gluon graph Γ in (1.30) are:

(1.35) {γ1, γ12}, {γ2, γ12}, {γ1, γ13}, {γ3, γ13}, {γ2, γ23}, {γ3, γ23}
and every single subgraph by itself, {γj}, {γji} for all i, j.

Definition 1.4.2. A forest f of a graph Γ is maximal, if the cograph

Γ/f := Γ/ ∪γ∈f γ

is primitive.

Consider the simple forest {γ1}. If we contract it in Γ,

(1.36) Γ/γ1 = ,

where the 4-valent vertex has weight zero, we see that γ1 itself is not a maximal forest since this cograph
does have two 1PI proper subgraphs (of weight −5) and hence is not primitive. Neither are γ2 and γ3
maximal forests by the same argument. If we consider γ12, we find the primitive cograph

(1.37) Γ/γ12 =
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which tells us that γ12 by itself constitutes a maximal forest of Γ. The same goes for γ13 and γ23 as well
as all forests in (1.35).

Definition 1.4.3. A maximal forest f of a graph Γ is called complete if any γ ∈ f is either primitive
or there is a proper subgraph γ� ∈ f of γ such that γ/γ� is primitive.

This means that only the forests in (1.35) are complete. The forest {γ12} has only one non-primitive
subgraph for which there is no further subgraph in this forest that could be contracted to yield a primitive
graph. Consider the maximal forest {γ1, γ12}. It is complete because γ1 and the cograph γ12/γ1 are
primitive, i.e. have no divergent proper 1PI subgraphs.

To display the nestedness of subgraphs, it makes sense to write complete forests as a sequence of
subsets:

(1.38) γ1 � γ12 � Γ, γ1 � γ13 � Γ, γ2 � γ12 � Γ, γ2 � γ23 � Γ,

and so on, taking into account every disjoint subgraph sequence, too.
Now that we have the notion of a graph’s forest, we can specify the one-to-one correspondence between

Feynman graphs and decorated rooted trees: take the complete forest f = {γ1, γ12}. The corresponding
rooted tree now takes either the form

Γ

γ12

γ1

or

Γ

Γ/γ12

γ12/γ1

,

both decorations are possible. Now, we acknowledge that a decorated rooted tree corresponds to a
complete forest of a Feynman graph.

A final example with two disjoint divergent subgraphs is the gluon graph

(1.39) Γ =

γ

γ
′

with divergent subgraphs γ and γ�. The reader may check that ω4(Γ) = ω4(γ) = ω4(γ
�) = −2. The

corresponding rooted tree can be read off from the box system

γ

γ
′

Γ

,

where each divergent subgraph corresponds to a leaf and the whole graph to the root. Thus, we have
the simple tree

Γ

γ γ
′

with two leaves decorated by the two subgraphs. The forests are γ, γ� and {γ, γ�}. Only the latter is
complete.



CHAPTER 2

The Hopf Algebra of Rooted Trees

2.1. The route to a Hopf algebra

Our goal is to establish algebraic structures on the set of Feynman graphs which are those of what
is known as a Hopf algebra. However, understanding how these structures work on Feynman graphs and
that they do have the desired properties is anything but trivial. Our preferred route is this: we first
acquaint ourselves with these structures on the much simpler set of undecorated rooted trees and see how
their pre-Lie structure naturally gives rise to a Lie algebra structure. On account of the Milnor-Moore
theorem, a Hopf algebra structure is then guaranteed. Because all these structures can also be found on
the set of Feynman graphs, we will see that they do indeed form a Hopf algebra.

Pre-Lie structure. Let Γ be a Feynman graph and I(γ|Γ) the set of all possible insertion places
for γ into Γ, i.e. a set of vertices or edges of Γ. Consider the bilinear operation

(2.1) Γ � γ =
�

i∈I(γ|Γ)
Γ ◦i γ.

In fact, it is pre-Lie, which means that it is not associative and deviates from associativity in a very
specific way, namely

(2.2) (Γ � γ1) � γ2 − Γ � (γ1 � γ2) = (Γ � γ2) � γ1 − Γ � (γ2 � γ1)

which is not zero in general. The commutator with respect to this operation satisfies the Jacobi identity
and hence gives rise to a Lie algebra which then, by the theorem of Milnor and Moore, ensures a Hopf
algebra structure.

2.2. Rooted trees

Unlike Feynman graphs, rooted trees are standard graphs as they are known in graph theory.

Definition 2.2.1. A tree T is a connected and simply connected1 graph with vertex set T [0] and edge set
T [1]. A rooted tree is a non-planar tree with a distinguished node r ∈ T [0] such that any egde is oriented
away from it. By I we denote the empty tree. |T | := #(T [0]) is the number of nodes.

Here are some examples of rooted trees, ordered by their node number:

I , , , , , , , , ... ,

where the root is always represented by the topmost node and we have refrained from drawing arrows
to indicate the orientation of the edges. We introduce an algebra structure on the set of rooted trees by
considering the free commutative Q-algebra with generators labelled by rooted trees. These generators
will be identified with their rooted trees such that we get expressions like

(2.3) 3 +
4

3
+ 8 ,

where the last term is a product of trees. In graph-theoretic terms, the multiplication is the disjoint
union of trees. A product of trees is called forest(of rooted trees). The neutral element of multiplication
is the empty tree I(or ’empty forest’) with |I| = 0. As for trees, we set |f | to be the number of nodes in
the forest f . We denote this algebra by H.

1No loops.

9
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Grafting operator. Let T be the set of all rooted trees and �T �Q its linear span over the rationals.
We introduce the grafting operator B+ as a linear map H → �T �Q by B+(I) = and for a forest of trees
T1, ..., Tn

(2.4) B+(T1 ... Tn) :=

T1 Tn

...

T2

mapping any forest to a single tree by attaching the roots to a single new node which then becomes the
new root. A concrete example is

(2.5) B+( ) = .

Note that the product of trees is commutative, which would cause us trouble at this point if the trees
were planar. Thanks to their non-planarity, there is a unique forest X for every tree T ∈ T such that
T = B+(X), a fact which is somewhat obvious from the definition of the operator B+.

Grading. By the number of nodes, there is a natural grading on H. Let Fn be the set of all forests
with n nodes, i.e. τ ∈ Fn implies |τ | = n. The grading is then given by their linear Q-span

(2.6) Hn := �Fn�Q
and hence H =

�
n≥0 Hn, where H0 = QI. The elements of the subspaces Hn are called homogeneous:

they are linear combinations of forests with the same number of nodes each.
More formally, our algebra H is a triple (H,m, I), with multiplication2 m : H ⊗ H → H and unit

map3 I : Q → H0, the latter of which sends q ∈ Q to qI. The product has the grading property

(2.7) m(Hl ⊗Hk) ⊂ Hl+k.

Another important property of m is its associativity

(2.8) m(a⊗m(b⊗ c)) = m(m(a⊗ b)⊗ c) ∀a, b, c ∈ H

which can also be expressed in terms of a commutative diagram

(2.9)

H ⊗H ⊗H
id⊗m−−−−→ H ⊗H

�m⊗id m

�

H ⊗H
m−−−−→ H

as we have already seen in section 1.2.

Coproduct. To promote our algebra H to a bialgebra, we additionally need two linear maps: the
coproduct Δ and the counit Î. The first linear map, the coproduct Δ : H → H⊗H must be coassociative:
(id⊗Δ) ◦Δ = (Δ⊗ id) ◦Δ, or, alternatively,

(2.10)

H ⊗H ⊗H
id⊗Δ←−−−− H ⊗H

Δ⊗id

�
�Δ

H ⊗H
Δ←−−−− H

,

must commute, which is (2.9) with reversed arrows. It must also be compatible with the product in the
sense of an algebra morphism: if we write ab := m(a⊗ b), then this takes the simple form

(2.11) Δ(ab) = Δ(a)Δ(b),

i.e. the coproduct must be multiplicative. The product on H ⊗H is defined by

(2.12) (a⊗ b)(a� ⊗ b�) := aa� ⊗ bb� .

The counit Î vanishes on all trees and Î(I) = 1. The set

(2.13) Aug :=
�

n≥1

Hn

2The tensor product symbol ⊗ used here stands for the tensor product with respect to the rationals, i.e. for the symbol

⊗Q.
3Beware: this is a sleight abuse of notation.
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comprises the kernel of the counit Î. This makes ker Î =Aug it into an ideal named augmentation ideal.
In general, the coproduct maps a tree from T to a linear combination of elements in H ⊗ H. One

way to define the coproduct Δ on H is recursively by virtue of

(2.14) Δ ◦B+ = B+ ⊗ I+ (id⊗B+) ◦Δ.

This works as follows. Given a tree T = B+(X), where X is its corresponding forest. Then,

(2.15) Δ(T ) = Δ ◦B+(X) = B+(X)⊗ I+ (id⊗B+) ◦Δ(X).

First, we set Δ(I) := I⊗ I, whereby we have defined the coproduct on H0. Next, we define it on H1:

(2.16) Δ( ) = Δ ◦B+(I) = B+(I)⊗ I+ (id⊗B+)Δ(I) = ⊗ I+ I⊗ ,

and then on H2,

(2.17) Δ( ) = Δ ◦B+( ) = B+( )⊗ I+ (id⊗B+)Δ( ) = ⊗ I+ ⊗ + I⊗ .

H2 has another element: the forest . By multiplicativity, this is

(2.18) Δ( ) = Δ( )Δ( ) = ( ⊗ I+ I⊗ )( ⊗ I+ I⊗ ) = ⊗ I+ I⊗ + 2 ⊗ .

As an exercise, the reader may verify that

(2.19) Δ( ) = ⊗ I+ I⊗ + 2 ⊗ + ⊗ .

The fact that this really does define a genuine coproduct is worth a

Theorem 2.2.1. The algebra morphism Δ, recursively defined by the identity (2.14) is coassociative, i.e.
it satisfies

(2.20) (id⊗Δ) ◦Δ = (Δ⊗ id) ◦Δ.

Proof. By induction: starting with H0 and then walking up the grading from Hn to Hn+1. On H0,
the identity holds trivially: both sides yield I⊗ I⊗ I. The rest is left as an exercise for the reader. Hint:
insert T = B+(X) and use (2.14) as well as coassociativity on both sides. �

A standard notation for the coproduct of an element I �= x ∈ H is

(2.21) Δ(x) = I⊗ x+ x⊗ I+
�

(x)

x� ⊗ x�� = I⊗ x+ x⊗ I+ �Δ(x),

where �Δ(x) is called reduced coproduct. This motivates us to define a class of elements with a simple
coproduct.

Definition 2.2.2. An element x ∈ H is called primitive, if �Δ(x) = 0.

The simplest example is the single root: from (2.16) we have �Δ( ) = 0. Another less trivial example
is

(2.22) x = 2 −
to be verified by the reader, where use of (2.17) and (2.18) is highly recommended.

Admissible cuts. There is another way to define the coproduct. Let v ∈ T [0] be the node of a tree
T and Pv ⊂ T [1] the set of paths from v up to the root of T . Then an admissible cut C ⊂ T [1] is a subset
of edges such that |p ∩ C| ≤ 1 for all paths p ∈ Pv. That is, any path must cross no more than one edge
of C. By C(T ) we denote the set of all admissible cuts of a tree T . Take the tree

(2.23) T =
a b

c

with edge set T [1] = {a, b, c}. Admissible cuts are C1 = {a}, C2 = {a, b}, C3 = {c} and C4 = {a, c}.
Given a cut C ∈ C(T ), we take all edges e ∈ C and remove them from T . What we are left with is

a forest PC(T ), called the ’pruned’ part and RC(T ) the connected component containing the root. For
the cut C2 in our example (2.23) this is

(2.24) PC2(T ) = RC2(T ) =
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The coproduct of a tree T can then be defined by

(2.25) Δ(T ) = T ⊗ I+ I⊗ T +
�

C∈C(T )

PC(T )⊗RC(T ).

The reader should check to find the same results as in (2.16) to (2.19) by employing this definition. It is
now straightforward to show that the coproduct Δ has the grading property

(2.26) Δ(Hn) ⊂
n�

j=0

Hj ⊗Hn−j .

For the coproduct, this is easier to be seen in the definition of (2.25), while is it obvious for the multipli-
cation map.

There is an additional property of interest that a coproduct can have: it can be cocommutative. This
is the case when for all x ∈ H one finds that Δ(x) is invariant under the ’flip’, a linear map which
interchanges the two elements in a tensor product, i.e. a⊗ b �→ b⊗ a. If we define

(2.27) Δop := flip ◦Δ
(’opposite’) then Δ−Δop vanishes if the coproduct is cocommutative. However, this is not the case for
Δ on H:

(2.28) Δop( ) = I⊗ + ⊗ I+ 2 ⊗ + ⊗ .

Comparing this result with (2.19) shows that Δ is not cocommutative. The difference is

(2.29) Δ( )−Δop( ) = ( − 2 )⊗ + ⊗ (2 − ).

In this result, there is an interesting observation to made: the elements to the left and the right of the
tensor symbol are primitive. This is a first sign of something looming on the horizon which we do not
yet understand but will come to later.

Coinverse. What we have so far is the quadruple (H,m, I,Δ, Î) which is all one needs for a bial-
gebra. To promote this further to a Hopf algebra, we need a coinverse, also called antipode, an algebra
antimorphism S : H → H, defined by the property

(2.30) m ◦ (S ⊗ id) ◦Δ = I ◦ Î = m ◦ (id⊗ S) ◦Δ.

This definition immediately implies S(I) = I and a recursion relation

(2.31) S(T ) = −T −
�

C∈C(T )

S(PC(T ))RC(T )

for a non-trivial tree T or,

(2.32) S(T ) = −T −
�

C∈C(T )

PC(T )S(RC(T )).

alternatively. The reader can check these two identities by using (2.30) and Î(T ) = 0. Easy examples are

(2.33) S( ) = − , S( ) = − − S( ) = − + , S( ) = S( )S( ) = .

The coinverse can also be defined by

(2.34) S(T ) = −T −
�

C⊆T [1]

(−1)|C|PC(T )RC(T ),

where PC(T ) and RC(T ) are as above but this time all possible subsets of edges are permitted. It is easy
to check this for the trees in (2.33).

The defining property in (2.30) might strike those unacquainted with it as a bit odd at first sight.
But in fact, it is rather natural in the following context. Given two linear maps f, g : H → H on the
Hopf algebra H. Then the convolution product

(2.35) f ∗ g := m ◦ (f ⊗ g) ◦Δ
defines another linear map on H. One can show without much effort that ∗ qualifies as a group operation
with neutral element E := I ◦ Î and inverse f∗−1 = f ◦ S for any linear f on H, where the special role of
the coinverse S becomes apparent at this point. In the light of this, (2.30) states that S be the ∗-inverse
of the identity map id on H.
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Grading operator. A linear map D on an algebra is called derivation, if

(2.36) D(ab) = D(a)b+ aD(b)

for all algebra elements a, b. One such derivation on H is the grading operator Y . It is given by
Y (T ) := |T |T for a tree T , i.e. it simply multiplies a tree by its number of nodes. For a homogeneous
x ∈ Hn, one has Y (x) = |x|x = nx, hence the name. If we take the convolution product with the
coinverse, namely S ∗ Y , we find

(2.37) (S ∗ Y )( ) = , (S ∗ Y )( ) = 2 − .

It turns out, that S ∗ Y maps all (non-trivial) ladders to primitive elements. Ladders, denoted λk, are
defined by λ0 := I and λk+1 := B+(λk), they take the form

(2.38) λk =
k-times

and their coproduct is Δ(λk) =
�k

j=0 λj ⊗ λk−j .

Proposition 2.2.2. (S ∗ Y )(λk) is primitive for all k ≥ 1.

Proof. Exercise. First check (2.37) to get aquainted with this operator. Then use

(2.39) ΔS = flip(S ⊗ S)Δ and ΔY = (Y ⊗ id + id⊗ Y )Δ .

The first identity can be found in any book on Hopf algebras. Y ’s being a coderivative is a consequence
of being a derivation in combination with being its own dual. It is not difficult to prove for ladder trees.
The proof is also implicitly given in the appendix (see B.2) �

We shall see that understanding the Dynkin operator DY = S ∗ Y is already half the battle in
understanding the renormalization group! The reader can find more on this interesting operator in
appendix section B.2

2.3. Pre-Lie structure on the Hopf algebra of rooted trees

Analogous to what we have seen in section 2.1, we define a pre-Lie product on H. A leaf l of a tree
T is a vertex of T with no children. We denote the set of all leaves of a tree T by F(T )(’foliage’). Let
τ, τ � ∈ T be two trees and l ∈ F(τ) a leaf of τ . Then let T = τ ◦l τ � be the tree which arises upon grafting
the root of τ � to the leaf l of τ such that T has one more edge than τ and τ � together. Then

(2.40) τ � τ � :=
�

l∈F(τ)

τ ◦l τ �

defines a bilinear product on H which is pre-Lie, as we will see. An example is

(2.41) � • = + .

Let us now adopt a more convenient notation: given two trees µ, ν ∈ T , we use the shorthand

(2.42)

µ

ν

:= µ � ν.
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If we now take a third tree σ and right-�-multiply it, we get4

(2.43) (µ � ν) � σ =

µ

ν

σ

+

µ

ν σ

.

where the first term on the right-hand side stands for the sum over all grafting operations where σ is
attached to the leaves of ν(as part of the trees in µ � ν) and the second, where σ is grafted to the leaves
of µ not parentally connected to ν. If we now shift the brackets and first calculate ν � σ, arriving at

(2.44) ν � σ =
ν

σ

and then left-multiply this sum by µ, we find

(2.45) µ � (ν � σ) =

µ

ν

σ

.

Thus, the associator is

(2.46) X(µ, ν,σ) := (µ � ν) � σ − µ � (ν � σ) =

µ

ν σ

.

On account of the non-planarity of our rooted trees, we realize that it is symmetric with respect to an
interchange between the latter two arguments, i.e. X(µ, ν,σ) = X(µ,σ, ν) which means

(2.47) (µ � ν) � σ − µ � (ν � σ) = (µ � σ) � ν − µ � (σ � ν)

and thus the grafting �-operation is pre-Lie. Question: If we had defined the �-product by only allowing
a specific subset of leaves in F(τ), would this bilinear operation still be pre-Lie? Would the pre-Lie
property be lost if we allowed the root to be a grafting place? We finally point out that

(2.48) [µ, ν] := µ � ν − ν � µ

defines a bilinear map which obeys the Jacobi identity by virtue of being pre-Lie which is easy to check.
This makes H into a Lie algebra!

4The �-product is linear.



CHAPTER 3

Hopf Algebra Characters and Hochschild Cohomology

3.1. Prologue: A Hopf algebra induced by a Lie algebra

Hopf algebras arise in various contexts, one of which is non-commutative geometry where a Hopf
algebra structure was discovered by Connes and Moscovici[CM98]. This so-called Connes-Moscovici
Hopf algebra is intimately related to that discovered by the lecturer Dirk Kreimer himself[Kr98]. The
connection between the two Hopf algebras is expounded in [CoKr98] which also provides the background
for this lecture and is recommended as a reference for the eager student.

Connes-Moscovici Hopf algebra. Consider a vector space V over the field Q generated by the
symbols X,Y and a countable collection {δn : n ∈ N} of symbols. Let T (V ) be its tensor algebra. We
write the product of two vectors v, w ∈ T (V ) as a juxtaposition vw of which we recall that it is not
commutative by definition. Next, we additionally introduce a bilinear Lie bracket by

(3.1) [X,Y ] = X, [X, δn] = δn+1, [Y, δn] = nδn, [δn, δm] = 0

for all n,m ∈ N. If we establish an equivalence relation by identifying [v, w] ∼ vw − wv for v, w ∈ T (V )
and take the quotient T (V )/ ∼, we obtain a Lie algebra, also known as universal enveloping algebra of
V. To make it into a bialgebra, we define a coproduct by

(3.2) Δ(Y ) := Y ⊗ 1 + 1⊗ Y, Δ(X) := X ⊗ 1 + 1⊗X + δ1 ⊗ Y, Δ(δ1) = δ1 ⊗ 1 + 1⊗ δ1,

where 1 := δ0 is the neutral element of multiplication. If we require

(3.3) Δ(hh�) = Δ(h)Δ(h�)

and hence Δ([h, h�]) = [Δ(h),Δ(h�)], Δ(δn) is determined by δn = [X, δn−1]. The reader may verify that

(3.4) Δ(δ2) = δ2 ⊗ 1 + 1⊗ δ2 + δ1 ⊗ δ1

and

(3.5) Δ(δ3) = δ3 ⊗ 1 + 1⊗ δ3 + 3δ1 ⊗ δ2 + δ2 ⊗ δ1 + δ21 ⊗ δ1

follow1. One can show that Δ indeed is a coprodut on HT := T (V )/ ∼. The general form of the coproduct
of the generators δn is

(3.6) Δ(δn) = δn ⊗ 1 + 1⊗ δn +Rn−1,

where

(3.7) Rn = nδ1 ⊗ δn + [Δ(X), Rn−1]

is defined by this recursive relation. With the existence of an antipode S, which can also be proved, HT

is in fact a Hopf algebra. It is an example of a Connes-Moscovici Hopf algebra alluded to above.
What is so interesting about this Hopf algebra? It turns out, as we shall see, to be isomorphic to a

Hopf subalgebra HCM within our Hopf algebra of rooted trees H!

3.2. Connes-Moscovici Hopf subalgebra

Natural growth. Recall that a derivation is a linear map D on an algebra such that

(3.8) D(ab) = D(a)b+ aD(b)

for any elements a and b of the algebra. We consider a linear map N : H → H defined as follows. For
the empty tree, we set N(I) = , whereas for a non-trivial tree T �= I we set

(3.9) N(T ) :=
�

v∈T [0]

Tv,

1[a⊗ b, a� ⊗ b�] = aa� ⊗ bb� − a�a⊗ b�b

15
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where Tv := T ◦v is the tree we obtain when we graft a single leaf to the vertex v of T such that
|Tv| = |T | + 1. To define N on forests, we require it to be a derivation on the augmentation ideal
Aug=

�
k≥1 Hk. Note that we exclude H0 = QI from this since otherwise the derivation property (3.8)

would imply N(I) = 0. N is referred to as natural growth. Examples for its action are

(3.10) N( ) = , N( ) = +

and

(3.11) N( ) = + + , N( ) = 2 + .

Repeated application of the operator N on the single root yields interesting objects in H:

(3.12) δk := Nk(I) = N ◦N ◦ ... ◦N� �� �
k−times

(I)

for k ≥ 0. The first δk’s read δ0 = I,

(3.13) δ1 = , δ2 = , δ3 = + , δ4 = 3 + + + ,

and so on. The prefactors before the trees are called Connes-Moscovici weights. Notice that it is no
accident that we have used the same symbols δk as in the previous section.

Proposition 3.2.1. The elements δk ∈ H defined in (3.12) generate a Hopf subalgebra, the so-called
Connes-Moscovici Hopf subalgebra HCM ⊂ H. More precisely, HCM is the free commutative algebra of
their Q-linear span,

(3.14) �{δk : k ≥ 0}�Q.

Proof. To prove this assertion, one only has to show that HCM is closed under the coproduct and
the antipode, i.e. that

(3.15) Δ(HCM ) ⊂ HCM ⊗HCM , S(HCM ) ⊂ HCM

as all other properties are garanteed by H being a Hopf algebra. First note that by construction, δn
is a sum of trees, δn =

�
j Tj , where a tree may appear several times in the sum, depending on its

Connes-Moscovici weight. We proceed by induction. Assume that Δ(δn) ∈ HCM ⊗HCM . For n = 1, 2
this is trivial. For n+ 1, we have

(3.16) Δ(δn+1) = δn+1 ⊗ I+ I⊗ δn+1 +
�

j

�

C∈C(T �
j)

PC(T �
j)⊗RC(T �

j),

where δn+1 =
�

j T
�
j and linearity of Δ have been used. We now have to find a reason why the admissible

cuts in (3.16) do not lead out of HCM . Taking a closer look, we realize that the admissible cuts of the
tree T �

j fall into two rough categories: either the new grown leaf is cut off directly above its edge(case

1), or it is not(case 2). In the latter case it is either part of the pruned part PC(case 2a) or the root
component RC(case 2b). In case 1, the cut off leaf will always appear as a factor δ1 on the lhs of the
tensor product. This case has two subcategories: cuts of just a single edge with just one leaf cut off and
nothing else(case 1a) and those cuts where the leaf is cut off along with some other vertices or trees(case
1b). Case 1a results in n equal terms of the form δ1 ⊗ δn. How many terms do we get from the second
type, with other parts also cut off? Assume we want to ’carry out’ this cut: first we cut off all other
parts by removing all the corresponding edges and save the new grown leaf for last. Where can we find
it? Answer: there are exactly as many possibilities as there are nodes on the remaining tree. All in all,
finally, the reduced part of the coproduct on the rhs of (3.16) can be rewritten with δn =

�
l Tl in the
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form

n δ1 ⊗ δn +
�

l

�

C∈C(Tl)

|RC(Tl)| δ1 PC(Tl)⊗RC(Tl) +
�

l

�

C∈C(Tl)

N(PC(Tl))⊗RC(Tl)

+
�

l

�

C∈C(Tl)

PC(Tl)⊗N(RC(Tl))

in which we cannot spot any element not in HCM . Then closedness under the antipode follows immedi-
ately. �

3.3. Characters

Recall that the convolution product ∗ is a bilinear operation on the set of linear maps H → H. More
generally, a convolution can be defined for linear maps ψ,φ from H to a commutative algebra A with
multiplication mA by

(3.17) ψ ∗ φ := mA(ψ ⊗ φ)Δ

where we have suppressed the composition sign: a habit we shall frequently allow ourselves to succumb
to from now on. We choose A := C and define characters to be algebra homomorphisms φ : HCM → C
such that φ(I) = 1. Then the convolution is naturally given by

(3.18) φ ∗ ψ = mC(φ⊗ ψ)Δ = (φ⊗ ψ)Δ,

such that for a tree T we have

(3.19) (φ ∗ ψ)(T ) = φ(T ) + ψ(T ) +
�

C∈C(T )

φ(PC(T ))ψ(RC(T )).

We will relate these characters to formal diffeomorphisms, which are formal power series in C[[x]] of the
form

(3.20) h(x) = x+ a2x
2 + a3x

3 + ... ,

with h�(0) = 1. Because of this latter property they are said to be tangent to the identity. Their
derivatives

(3.21) h�(x) = 1 + 2a2x+ 3a3x
2 + ...

carry the same amount of information: we do not lose anything by differentiating2. Neither do we lose
any information if we consider their logarithm

log h�(x) = log(1 + 2a2x+ 3a3x
2 + ...) = 2a2x+ (3a3 − 2a22)x

2 + ...(3.22)

We associate to this so obtained formal power series a character φh on HCM by setting

(3.23) φh(δk) := ∂k
x log h�(x) |x=0 .

Then we have the interesting identity

(3.24) φh◦g = φh ∗ φg

which we shan’t prove here. The reader is referred to [CoKr98] for details. We check this formula for a
simple case. Given the two diffeomorphisms

(3.25) h(x) = x+ ax2 , g(x) = x+ bx2

one has log h�(x) = 2ax− 2a2x2 + ... and log g�(x) = 2bx− 2b2x2 + ..., which translates to

(3.26) φh(δ1) = 2a , φh(δ2) = −4a2 , φg(δ1) = 2b , φg(δ2) = −4b2.

On the one hand, we get for the composition h ◦ g
(3.27) log(h ◦ g)�(x) = 2(a+ b)x+ 2(ab− a2 − b2)x2 + ...

which means φh◦g(δ1) = 2(a+ b) and φh◦g(δ2) = 4(ab− a2 − b2) for the corresponding character. On the
other,

(3.28) (φh ∗ φg)(δ1) = φh(δ1)φg(I) + φh(I)φg(δ1) = φh(δ1) + φg(δ1) = 2a+ 2b

and

(3.29) (φh ∗ φg)(δ2) = φh(δ2)φg(I) + φh(I)φg(δ2) + φh(δ1)φg(δ1) = −4a2 − 4b2 + 4ab.

2Why is that?
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3.4. The Group of Hopf Characters

Let H be a Hopf algebra over Q with unit I and a grading {Hn}n≥0 such that H0 = QI. Moreover,
let A be a commutative algebra over Q with multipilcation mA : A ⊗ A → A. Then Hopf (algebra)
characters are algebra morphisms from H to A which preserve the neutral element of multiplication. We
will now see that they form a group with respect to the convolution product. The convolution of two
characters φ,ψ : H → A is given by

(3.30) φ ∗ ψ = mA(φ⊗ ψ)ΔH ,

where ΔH is the coproduct on H. This operation is associative: let φ1,φ2 and φ3 be characters. Then

(φ1 ∗ φ2) ∗ φ3 = mA((φ1 ∗ φ2)⊗ φ3)ΔH = mA(mA(φ1 ⊗ φ2)ΔH ⊗ φ3)ΔH(3.31)

= mA(mA ⊗ idA)((φ1 ⊗ φ2)⊗ φ3)(ΔH ⊗ idH)ΔH(3.32)

= mA(idA ⊗mA)(φ1 ⊗ (φ2 ⊗ φ3))(idH ⊗ΔH)ΔH(3.33)

= mA((φ1 ⊗mA(φ2 ⊗ φ3)ΔH)ΔH = φ1 ∗ (φ2 ∗ φ3).(3.34)

In (3.33) we have used the associativity of mA and the coassociativity of ΔH . Given the neutral element
of multiplication 1A ∈ A, one can define a unit map IA : Q → A by IA := φ ◦ I, where φ is any character.
Then we have IA(1) = 1A. The map e := IA ◦ Î is in fact a character which, as the following calculation
will reveal, is the neutral element of the convolution ∗-product: first check that for any character ψ

(3.35) (ψ ∗ e)(I) = mA(ψ ⊗ e)(I⊗ I) = 1A = ψ(I) = ... = (e ∗ ψ)(I)
and for I �= x ∈ H

(3.36) (ψ ∗ e)(x) = ψ(x) + e(x) +
�

(x)

ψ(x�)e(x��) = ψ(x),

where we have used e(Aug) = 0. The same goes for e ∗ ψ. If we take the antipode S of our Hopf algebra
and define φ := φ ◦ S for a character φ, we see that

φ ∗ φ = mA(φ⊗ φ ◦ S)ΔH = mA(φ⊗ φ)(idH ⊗ S)ΔH = φ ◦mH(idH ⊗ S)ΔH(3.37)

= φ ◦ I ◦ Î = IA ◦ Î = e(3.38)

and also φ ∗φ = e. Note that we have used the defining property of the antipode(see section 2.2) and the
multiplicativity of characters

(3.39) mA(φ⊗ φ) = φ ◦mH

where mH is the product on H. However, the upshot is that φ = φ ◦S is the inverse of φ with respect to
the convolution product. It is left to the reader to verify that this multiplicativity property is preserved
by the convolution. Given all this, we have proven the following

Proposition 3.4.1. The set of characters GH
A from H to A, i.e. unity-preserving algebra morphisms,

forms a group with respect to the convolution product.

3.5. Coradical Filtration

A filtration of an algebra A is a sequence of subspaces

(3.40) A0 ⊂ A1 ⊂ A2 ⊂ ...

such that A =
�

n≥0 A
n and mA(A

n ⊗Am) ⊂ An+m, where mA is the multiplication on A. Note that we
are not talking about subalgebras of A, but subspaces. For a bialgebra one has the additional requirement

(3.41) Δ(An) =
�

i+j=n

Ai ⊗Aj .

for the coproduct.
Let now again H be our Hopf algebra of rooted trees. We can use the grading in H to construct

a filtration: Hn :=
�n

j=0 Hj is a filtration for H, where we have introduced Hk in section 2.2 as the
subspace of Q-linear combinations of forests in H with k nodes. The first subspaces in the grading are

(3.42) H0 = QI , H1 = Q , H2 � Q ⊕Q , H3 � Q ⊕Q ⊕Q ⊕Q ,
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and so on3. There is another filtration which is key to us: the so-called coradical filtration. To define
it, we need to introduce some more maps on H. First a projector P : H → Aug onto the augmentation
ideal. It is characterized by linearity, P (I) = 0 and P = P 2. Note that also P = id − E with E = I ◦ Î.
Furthermore, we define a family of maps

(3.43) Δ0 := id , Δ1 := Δ , Δ2 := (Δ⊗ id)Δ , Δk+1 := (Δ⊗ id⊗k)Δk

we may also write as

(3.44) Δk = (Δ⊗ id⊗k−1)(Δ⊗ id⊗k−2)...(Δ⊗ id)Δ

which makes explicit that this is tantamount to repeatedly applying the coproduct to the first element
of the resulting tensor product. Now, finally, we consider an additional family of maps

(3.45) Δ0 := P , Δ1 := (P ⊗ P )Δ1 , Δk := P⊗k+1Δk.

Loosely speaking, what these maps essentially do is this: Δk creates a sum of (k+1)-fold tensor products
from a single element x ∈ H. Then P⊗k+1 annihilates all those terms in the sum that have at least one
empty tree I in their tensor product. For example, we do not need to apply the coproduct to create an
empty tree for I ∈ H, hence Δ0(I) = 0. For primitive elements x we have Δ1(x) = 0, since we must apply
the coproduct at least once to get an empty tree in every term: Δ(x) = I⊗ x+ x⊗ I.

Definition 3.5.1. The coradical filtration H0 ⊂ H1 ⊂ H2 ⊂ ... of the Hopf algebra of rooted trees H is
given by

(3.46) Hn := {x ∈ H | Δn(x) = 0 }
How does this relate to the grading? Let us consider some more examples.

(3.47) Δ0( ) = , Δ1( ) = (P ⊗ P )Δ( ) = (P ⊗ P )(I⊗ + ⊗ I+ ⊗ ) = ⊗ .

The two-node ladder is in H2, as the next calculation shows:

Δ2( ) = (P ⊗ P ⊗ P )(Δ⊗ id)Δ( ) = (P ⊗ P ⊗ P )(Δ⊗ id)(I⊗ + ⊗ I+ ⊗ )

= (P ⊗ P ⊗ P )(I⊗ I⊗ +Δ( )⊗ I+ ⊗ I⊗ + I⊗ ⊗ ) = 0.

The reader may check that

(3.48) Δ1( ) = 2 ⊗ , Δ2( ) = 0 , Δ1( − 1

2
) = 0 ,

which means that a linear combination of two elements in Hn may actually also be in the subset Hn−1 ⊂
Hn. The coradical degree of an element y ∈ H is defined as the number

(3.49) cor(y) := min{n | y ∈ Hn}.
The relation between the elements of the coradical filtration Hn and those of the grading Hn is this: if
y ∈ Hn, then cor(y) ≤ n. This can be made explicit by virtue of the coproduct’s grading property:

(3.50) Δ(Hn) ⊂
�

j+l=n

Hj ⊗Hl

from which

(3.51) Δk(Hn) ⊂
�

j1+...+jk+1=n

Hj1 ⊗ ...⊗Hjk+1

follows. How can you avoid jl = 0 for at least one l in the sum if k ≥ n? You cannot. �
Proposition 3.5.1. The growth operator B+ increases the coradical degree.

Proof. This follows from the identity

(3.52) ΔB+ = B+ ⊗ I+ (id⊗B+)Δ,

or, more concretely for an element x ∈ H

(3.53) ΔB+(x) = B+(x)⊗ I+ I⊗B+(x) + x⊗B+(I) +
�

(x)

x� ⊗B+(x
��).

3Why choose these ’isomorphic to’ symbols?
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Let cor(x) = n. The reader may check that by virtue of (3.53) one finds

(3.54) Δn(B+(x)) = Δn−1(x)⊗B+(I) +
�

(x)

Δn−1(x
�)⊗B+(x

��)

which does not vanish because Δn−1(x) �= 0 by assumption. Hint: first prove

(3.55) Δn = (Δn−1 ⊗ id)Δ,

(inductively) and then use it. �

Coradical degree and Feynman rules. As we shall see later, the coradical degree of an element
in h ∈ H sets an upper bound to the degree of the polynomial that physics assigns to the sum of graphs
represented by h. Feynman rules can for example be given by a character φL : H → A, where A = C[L]
is a polynomial algebra. For the element h this yields something of the form

(3.56) φL(h) =

cor(h)�

j=1

cj(h)L
j .

It will then be the renormalization group to dictate how the coefficients cj are related to each other.
Examples are

(3.57) φL( ) = c1L+ c2L
2 , φL( ) = φL( )2 = (d1L)

2 = d21L
2

and

(3.58) φL( − 1

2
) = c1L .

3.6. Tree factorials

Let T be a rooted tree and v ∈ T [0] one of its vertices. If ev ∈ T [1] is the adjacent edge just above
this vertex, the cut C = {ev} ∈ C(T ) yields a tree T (v) := PC(T ) with v as its root. The number
#T (v) = |T (v)| is called the weight of the vertex v. Then we have the following

Definition 3.6.1. The tree factorial T ! of a tree T is given by T ! :=
�

v∈T [0] |T (v)|. For the empty tree
we set I! := 1.

If we label the two trees

(3.59) λ4 =

1

2

3

4

, T =

1 1

3

5

1
,

with their vertex weights, their tree factorials are λ4! = 4! and T ! = 1 · 1 · 1 · 3 · 5 = 15. For ladder trees,
i.e. trees without sidebranchings, λk! = k! is obvious.

Let l ∈ F(T ) ⊂ T [0] be a leaf, i.e. a (childless) vertex with weight one. By T/l we denote the tree T
with l removed. An interesting identity is

(3.60)
|T |
T !

=
�

l∈F(T )

1

(T/l)!
.

For our two examples, this can be easily checked:

(3.61)
|λ4|
λ4!

=
4

4!
=

1

3!
=

1

λ3!
,

|T |
T !

=
5

15
=

2

8
+

1

12
= 2

1

!
+

1

!

.

For a proof see [Kr99] or [Lued].
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3.7. Iterated Integrals

Let [a, b] ⊂ R be an interval. Consider a collection of differential one-forms ωj(x) = fj(x)dx, j =
1, 2, 3, ... on the real line R. A family of so-called iterated integrals can be defined by

(3.62) F0(a; b) := 1 , Fn(a;ω1, ...,ωn; b) :=

� b

a

fn(x)Fn−1(a;ω1, ...,ωn−1;x)dx n ≥ 1.

We associate these to decorated ladder trees

(3.63) λk =
ωk−1

ωk

ω1

,

where the decoration is a map D assigning a differential one-form to each vertex. Generally, the target
set of a decoration can be anything, whatever is of interest. The integrals in (3.62) comprise ’nested’
integrations. Note that the leaf of λk corresponds to the innermost integration, i.e. that of the one-form
ω1, whereas the outermost integration has the one-form ωk as kernel.

Setting a = 1 and b = x ≥ 1, we can choose the same one-form for all nested integrations and get for
ω(x) = dx/x integrals of the form

(3.64) Fk(1;ω, ...,ω;x) =

� x

1

dyk
yk

� yk

1

dyk−1

yk−1
...

� y2

1

dy1
y1

,

where this is typical physics notation, coming in handy here: the outermost integration is represented
by the leftmost integration measure dyk/yk, with everything else depending on yk to the right of it. The
innermost integration is on the rightmost position. We invite the reader to verify by induction that

(3.65) Fk(1;ω, ...,ω;x) =
(lnx)k

k!
=

(lnx)|λk|

λk!
.

The identity

(3.66) Fn(1;ω, ...,ω;x) =
n�

j=0

Fj(1;ω, ...,ω;x
�)Fn−j(x

�;ω, ...,ω;x)

for any x� ∈ [1, x] is an instance of Chen’s lemma about iterated integrals. For example, for n = 2 we
have,

(3.67) F2(1;ω,ω;x) =
1

2
ln2 x

on the lhs and
2�

j=0

Fj(...)F2−j(...) = F0(1;x
�)F2(x

�;ω,ω;x) + F1(1;ω;x
�)F1(x

�;ω;x) + F2(1;ω,ω;x
�)F0(x

�;x)

= 1 · 1
2
ln2(x/x�) + lnx� ln(x/x�) +

1

2
ln2 x� · 1

on the rhs of (3.66). Are these results the same? Yes, they are: in contrast to what seems obvious, the
rhs does not depend on x�.

Tree-terated Integrals. We now generalize this game to all types of rooted trees, this time including
sidebranchings. The corresponding integrals are sometimes (more or less) jokingly referred to as tree-
terated integrals.

The rules for a tree T are actually quite simple. Any vertex v ∈ T [0] corresponds to an integration
with a measure induced by its decoration one-form ωv and the nestedness of integrations is determined
by the kinship relations of the vertices amongst each other: the root r ∈ T [0], being ancestor to any other
vertex in T , corresponds to the outermost integration with one-form ωr, while the children of a vertex v
are represented by disjoint integrations nested inside the integral with ωv. For example, we decorate a
simple three-vertex tree

(3.68) T =
ω1

ω3

ω2
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with one-forms

(3.69) ωj(x) = fj(x)dx, j = 1, 2, 3

and translate this to

(3.70) FT (a;ω1,ω2,ω3; b) =

� b

a

ω3(x)

� x

a

ω1

� x

a

ω2 =

� b

a

dx f3(x)

� x

a

dx�f1(x
�)
� x

a

dx��f2(x
��) ,

where we have in one integral suppressed integration variables when there is no necessity for them to
appear. To define a tree-terated integral for a general tree, let T be a decorated rooted tree with root r
and decoration D and

(3.71) D(τ) := {ωv : v ∈ τ [0]}
the set of the ’decor’ one-forms associated to a subtree τ ⊆ T (including τ = T ). Then there is a decorated
forest B−(T ) with its multiset of trees π0(B−(T )) which we obtain when we jettison all edges adjacent
to the root r. The tree-terated integral we associate to T is then given by

(3.72) FT (a;D(T ); b) :=

� b

a

ωr(x)
�

τ∈π0(B−(T ))

Fτ (a;D(τ);x).

Here is one more example to make this definition clear:

(3.73) ω1

ωr

ω
1′

ω
2′

ω
2′′

ω2

=

� b

a

ωr(x)

� x

a

ω1(y)

� x

a

ω1�(y
�)
� y�

a

ω2(y
��)
� y��

a

ω2�

� y��

a

ω2�� .

It is helpful to additionally label the vertices with the integration variables of the associated integration:

y

x

y
′

y
′′

,

where it is not necessary to mention the leaves’ integration variables; for vertex 1 we have done it
for clarity’s sake, though. Here is how the kinship relations determine the integrations:

�
ω2� and

�
ω2��

are disjoint integrations being nested inside the integration involving ω2, as the vertices 2� and 2�� are
children of vertex 2, which is itself child of vertex 1� and therefore subject to the integration with ω1� and
so on.

With this more general definition, we can come back to our simple iterated integrals we constructed
by iterating integrations of the one-form ω(x) = dx/x and ask whether there is a generalization of (3.65).
In fact, we come full circle with the following

Proposition 3.7.1. For trees decorated uniformly with the one-form ω(x) = dx/x, the tree-terated
integrals defined through (3.72) evaluate for a = 1 and b = x ≥ 1 to

(3.74) FT (1;ω, ...,ω;x) =
(lnx)|T |

T !
.

Proof. . Inductively all the way through the tree sets Tn = {t ∈ T : |t| = n}. First the reader may
check that

(3.75)

� x

1

dy

y
(ln y)n =

(lnx)n+1

n+ 1
.

Getting the induction started on T1 is trivial. Try also T2 and T3 to get familiar with these integrals.
Assume now the assertion holds on Tn and choose T ∈ Tn+1, i.e. |T | = n + 1. Then, by definition we
have

(3.76) FT (1;ω, ...,ω;x) =

� x

1

dy

y

�

τ∈π0(B−(T ))

1

τ !
(ln y)|τ |

because, by assumption, the formula holds for a tree τ ∈ �j≤n Tj . The reader should ponder over

(3.77) T ! = |T |
�

τ∈π0(B−(T ))

τ !

and write down neatly the complete proof as an exercise. �
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Chen’s lemma in (3.66) suggests there might be some coproduct-like operation behind the scenes.
This is indeed the case: if we use Sweedler’s notation for the coproduct of a tree T ,

(3.78) Δ(T ) =
�

j

T �
j ⊗ T ��

j ,

where the coproduct acknowledges the decoration, the more general version of (3.66) for the corresponding
tree-terated integrals is

(3.79) FT (a;D(T ); b) =
�

j

FT �
j
(a;D(T �

j); ζ)FT ��
j
(ζ;D(T ��

j ); b)

with a ≤ ζ ≤ b.
The coproduct acknowlegdes the decoration? Yes, for the tree in (3.68) this takes the form

(3.80) Δ(
ω1

ω3

ω2
) =

ω1

ω3

ω2
⊗ I+ I⊗

ω1

ω3

ω2
+ ω1

⊗ ω3

ω2

+ ω2
⊗ ω3

ω1

+ ω1 ω2
⊗ ω3

,

where the difference to the coproduct of this tree’s undecorated cousin is that the third and fourth term
are acknowledged to be unequal.

3.8. What is Hochschild cohomology?

The standard answer to this question is: Hochschild cohomology is the dual of a Lie algebra coho-
mology. For the latter, the coboundary operator d in this cohomology acts according to

(3.81) d[a, b] = [da, b] + [a, db]

on the Lie bracket for Lie algebra elements a, b. If we take the universal enveloping algebra of this Lie
algebra, a one-cocycle is a linear operator D such that for the product ab one has

(3.82) D(ab) = D(a)Î(b) + aD(b),

where Î is the counit, i.e. Î(b) is a scalar. The reader may verify that (3.82) is equivalent to

(3.83) ΔD� = D� ⊗ I+ (id⊗D�)Δ

for the dual operator D�. To work this out, consider, for example, the coproduct Δ. If we denote the dual
of an element a by �a, ·�, then �a,m(b ⊗ c)� = �Δ(a), b⊗ c� expresses the dual relation between product

and coproduct. Also, one should note that the counit Î is defined as the dual to the unit map I. A nice
reference for the dual relationship between Hopf and Lie algebras is the doctoral thesis [Foi02] (written
in French).

Hochschild Cohomology of H. Regardless of the dual relation to a Lie algebra, we shall now
define the Hochschild cohomology of our Hopf algebra of rooted trees H. Consider a cochain complex of
the Q-vector spaces Hom(H,H⊗n) of linear maps L : H → H⊗n, n ∈ N and H⊗0 := Q. The vectors in
Hom(H,H⊗n) are referred to as n-cochains. By virtue of the coproduct, we define a map

(3.84) Δ(j) : H
⊗n → H⊗n+1 , Δ(j) := id⊗j−1 ⊗Δ⊗ id⊗n−j

which applies the coproduct to the j-th slot. Next, consider the linear operator

(3.85) b : Hom(H,H⊗n) → Hom(H,H⊗n+1)

defined by

(3.86) bL := (id⊗ L)Δ+

n�

j=1

(−1)jΔ(j)L+ (−1)n+1L⊗ I

for all n ∈ N. To avoid confusion, L⊗ I is to be understood as the map

(3.87) H � x �→ L(x)⊗ I ∈ H⊗n ⊗H.

To also clarify the compositions of the form Δ(j)L, let now L : H → H ⊗H be a 2-cochain. For a ∈ H,
the image under L takes in general the form

(3.88) L(a) =
�

j

a�j ⊗ a��j ,
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where the sum is assumed to be finite. Then the two examples

(3.89) Δ(1)L(a) = Δ(1)(
�

j

a�j ⊗ a��j ) =
�

j

Δ(a�j)⊗ a��j

and

(3.90) Δ(2)L(a) = Δ(2)(
�

j

a�j ⊗ a��j ) =
�

j

a�j ⊗Δ(a��j )

illustrate the action of these compositions. Note that the images on the rhs are all in H⊗3.
It turns out that b as defined in (3.86) is a coboundary operator of the cochain complex, that is, it

has the property b ◦ b = 0. However, instead of going through the proof, which is more tedious than
illuminating, we note that the pair

(3.91) (Hom(H,H⊗·), b)

is a cochain complex. Cochains L : H → H⊗n with bL = 0 are called closed or n-cocycles. They form a
subspace which we denote by Cn(H). Within this space there are obviously those elements L ∈ Cn(H)
that vanish under the coboundary operator b because there is an (n − 1)-cochain φ such that L = bφ,
i.e. bL = 0 simply on the grounds that b ◦ b = 0. These so-called exact n-cocycles, or more common,
coboundaries, establish yet another subspace Bn(H) ⊂ Cn(H). Coboundaries are also referred to as
trivial cocyles. They carry this name because they get degraded to zero maps in the quotient spaces

(3.92) B(n)
H := Cn(H)/Bn(H) .

which constitute the Hochschild cohomology of H. Its n-th element B(n)
H is called n-th Hochschild coho-

mology.
One-cocycles L ∈ C1(H) are characterized by the identity

(3.93) ΔL = (id⊗ L)Δ+ L⊗ I
because bL = (id ⊗ L)Δ − ΔL + L ⊗ I = 0, which is (3.86) for n = 1 since Δ(1) = Δ. A prominent
example of a non-trivial one-cocycle is the growth operator B+ which satisfies this identity by definition
if one defines the coproduct recursively by it as we have done in section 2.2. How can we tell B+ is not
trivial? This is because for α ∈ Hom(H,Q) one has the coboundary

(3.94) bα = (id⊗ α)Δ− α⊗ I
by the above definition in (3.86) and consequently4 bα(I) = 0. And this is certainly not the growth
operators’s behaviour which we recall to be B+(I) = .

3.9. Universal Property of connected commutative Hopf algebras

We now come to a very important result concerning the Hochschild cohomology of H which might
at first glance seem abstract and of little practical use. However, as shall become apparent as soon as
we consider an example and even more so as the lecture series progresses, it provides the mathematical
underpinning for the Hopf-algebraic structure of renormalization.

This result holds more generally for connected commutative Hopf algebras, where a connected Hopf
algebra is by definition equipped with a grading H =

�
j≥0 Hj starting with H0 � QI.

Theorem 3.9.1 (Universal Property). Let B+ ∈ B(1)
H be a non-trivial one-cocyle of a connected commu-

tative Hopf algebra H. Then the pair (H,B+) is unique up to Hopf algebra isomorphisms and universal

among all such pairs ( �H,L). In other words, given any connected commutative Hopf algebra �H and

L ∈ B(1)
�H , then there exists a unique Hopf algebra isomorphism ρ : H → �H such that

(3.95) ρ ◦B+ = L ◦ ρ,
or, in terms of a commutative diagram, such that

(3.96)

H
ρ−−−−→ �H

B+

�
�L

H
ρ−−−−→ �H .

commutes.

4Note that by α⊗ I we mean the map x �→ α(x)⊗ I from H to Q⊗H � H.
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Proof. By induction up along the grading H =
�

j≥0 Hj . The proof is not difficult and is strongly

recommended to the reader as an exercise. The complete proof can be looked up in [CoKr98]. Before
trying, the reader may have a look at the special case of H being the Hopf algebra of rooted trees, treated
in [Panz12]. �

Algebra of formal integrals. Let now again H be our Hopf algebra of rooted trees. As it is
connected and commutative, it has the universal property. We consider an application displaying some
typical features of the problem of renormalization in QFT and take a first look at its underlying Hopf
algebra structure. In section 3.7 we have encountered integrals with respect to differential forms like

(3.97)

� b

a

ω =

� b

a

dx

x

which we assigned to decorated rooted trees. Obviously, the case of uniformly decorated trees can be
easily reduced to that of undecorated trees. However, we shall for now concern ourselves with ill-defined
integrals of the sort in (3.97) where b → ∞, that is, integrals like

(3.98)

� ∞

a

dx

x
.

This integral ill-defined on account of its logarithmic divergence, as is diverges as fast as ln(b) for b → ∞.
We let a > 0 to avoid yet another source of trouble. To still deal with (3.98) in a mathematically sound
way, we view it as the formal pair (

�∞
a

,ω), where the symbol
�∞
a

is seen as an element of the Betti
cohomology (whatever that may be) and ω(x) = dx/x as an element of the de Rham cohomology.

We identify a formal pair (
�
X
,ω) with the integral

�
X
ω if it is well-defined as an integral of the

differential form ω integrated over some interval X ⊂ R with infX > 0. These pairs form an algebra
where the corresponding operations on this algebra are given as follows: the sum of two formal pairs is
the analogue of the sum of the two corresponding integrals. The multiplication of two formal pairs is

(3.99) (

�

X

,ω(x))(

�

Y

,ω(y)) = (

�

X

�

Y

,ω(x)ω(y))

where this evaluates to the product of two independent integrals
�
X
ω(x) and

�
Y
ω(y) in case they are

well-defined. This algebra structure is in fact sufficient for what we are concerned with.

Corollary 3.9.2. Suppose in the set-up of Theorem 3.9.1 that the target set �H is a commutative algebra

and L : �H → �H a linear operator. Then there exists a unique algebra isomorphism ρL : H → �H for L
such that

(3.100) ρL ◦B+ = L ◦ ρL.
Proof. Obvious from the proof of Theorem 3.9.1. �

We may therefore let �H be the algebra of formal pairs. Recall that an algebra isomorphism like ρL
is called (Hopf) character. For a ∈ R we consider a character φa from H to our formal pairs such that

(3.101) φa(I) = (∅, 1) , φa ◦B+(I) = (

� ∞

a

,ω),

where (∅, 1) is the neutral element of the multiplication we defined in (3.99). One can show that φa is
the unique algebra morphism ρL for the linear operator L given by the identity

(3.102) (φa ◦B+)(T ) = (

� ∞

a

,ω(x)φx(T )),

for a tree T , where the rhs contains the formal integral of the form φx(T ) = (
�∞
x

,ωT ) with integral kernel
ω(x) = dx/x and ωT the differential form associated to the forest of T . More explicitly, L acts on a
formal pair as

(3.103) L(

� ∞

x

,ωT )(a) = (

� ∞

a

� ∞

x

,ω(x)ωT (x)),

which corresponds to a formal integral operator on formal pairs. Note that the pairs are viewed as
depending on an external parameter.
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Renormalization. We aim to turn these formal pairs into convergent integrals, a procedure known
as renormalization. Consider the antipode S and recall that it yields

(3.104) S(B+(I)) = −B+(I)
as B+(I) = is the root. Let R be the evaluation map such that Rφa = φb, that is, R changes the lower
’integration’ bound from a to b > 0. We then consider

(3.105) Rφa(S(B+(I)) = −φb(B+(I)) = −(

� ∞

b

,ω)

and add this to φa ◦B+(I) to find

(3.106) φa(B+(I)) +Rφa(S(B+(I)) = (

� ∞

a

,ω) + (−
� ∞

b

,ω) = (

� ∞

a

−
� ∞

b

,ω) = (

� b

a

,ω)

which can be identified with the well-defined integral
� b

a
ω =

� b

a
dx/x = ln(b/a). We define another

character Sφ
R : H → �H by the identity

(3.107) Sφ
R(h) = −R[Sφ

R ∗ (φa ◦ P )](h) , h ∈ Aug

where P is the projection onto the augmentation ideal and ∗ is the convolution product as it has been

already defined for characters from H to an algebra like �H. Then generally, the character

(3.108) φa,R := Sφ
R ∗ φa

yields the well-defined integral. The simplest example of this is (3.106): first compute

Sφ
R( ) = −R[Sφ

R ∗ (φa ◦ P )]( ) = −R[Sφ
R(I)φa( )] = −R[(∅, 1)φa( )](3.109)

= −φb( ) = −(

� ∞

b

,ω),(3.110)

where we recall that ∈ H is primitive, i.e.

(3.111) Δ( ) = ⊗ I+ I⊗ .

Then, finally, we evaluate (3.108):

φa,R( ) = (Sφ
R ∗ φa)( ) = Sφ

R(I)φa( ) + Sφ
R( )φa(I)

= (∅, 1)(
� ∞

a

,ω) + (−
� ∞

b

,ω)(∅, 1) = (

� b

a

,ω) .

As this is a well-defined integral, we identify

(3.112) (

� b

a

,ω) =

� b

a

ω = ln(b/a).

In summary, we have found the renormalized value φa,R( ) = ln(b/a) of the prior to renormalization ill-
defined integral φa( ) =

�∞
a

ω. The parameter b corresponds to what is known in ’real-world’ quantum
field theories as renormalization point. It is the parameter associated to the renormalization scheme
which corresponds to the map R.



CHAPTER 4

Hopf-Algebraic Renormalization

4.1. Rota-Baxter operator and characters

Let (H,mH , I,ΔH , Î, S) be a connected, commutative Hopf algebra and V an algebra equipped with
an associative, commutative product mV and a unit 1V ∈ V . We write the product of elements v, w ∈ V
simply as a juxtaposition vw. A linear map R : V → V is said to be a Rota-Baxter operator if

(4.1) R[ab] +R[a]R[b] = R[R[a]b+ aR[b]]

for all a, b ∈ V . One can interprete the rhs of this equation as a measure of how much this map deviates
from anti-multiplicativity: if R was anti-multiplicative, the rhs would vanish. Next, we consider characters
from H to V . Because V is an algebra, we can define a convolution product for characters φ,ψ : H → V
as usual by

(4.2) φ ∗ ψ = mV (φ⊗ ψ)ΔH .

As we have already mentioned before, (4.2) defines a group law on the group of characters GH
V . For a

character φ ∈ GH
V we define a linear map Sφ

R : H → V by setting Sφ
R(I) := 1V and

(4.3) Sφ
R(h) = −R[(Sφ

R ∗ φP )(h)] ,

for h ∈ Aug. The map P = idH − I ◦ Î : H → Aug is a projector and φP = φ ◦ P a shorthand notation.

Uniqueness of Sφ
R is ensured by the coproduct’s grading property

(4.4) ΔH(Hn) ⊂
�

k+l=n

Hk ⊗Hl

from which follows that the identity in (4.3) defines Sφ
R recursively on H. One can check that by virtue

of R having the Rota-Baxter property in (4.1), the map Sφ
R is multiplicative, i.e.

(4.5) Sφ
R(xy) = Sφ

R(x)S
φ
R(y)

which qualifies it to be a member of the character group GH
V . We will refer to this character henceforth

as the counterterm. The symbol Sφ
R has been chosen because the antipode S satisfies

(4.6) S(h) = −(S ∗ P )(h) , ∀h ∈ Aug

where the convolution ∗ is that in H, i.e. S ∗ P = mH(S ⊗ P )ΔH . (4.6) can be easily derived from the

antipode’s defining property S ∗ idH = I ◦ Î. The character φ, given by

(4.7) Sφ
R ∗ φ = Sφ

R + Sφ
R ∗ φP =: Sφ

R + φ .

is known as Bogoliubov map in physics. Another character, the map φR := Sφ
R ∗ φ corresponds to what

goes under the name renormalized Feynman rules. It can also be written as the result of a subtraction
procedure

(4.8) φR(x) = (Sφ
R ∗ φ)(x) = (idV −R)φ(x) x ∈ Aug,

following straightforwardly from (4.3) and (4.7).

4.2. Feynman rules as a character

Feynman rules, as they arise in perturbative QFT, assign parameter-dependent integrals to Feyn-
man graphs. However, this correspondence came about actually right the other way round: physicists
doing perturbative calculations encountered complicated and nested integrals for which they devised
mnemotechnically very convenient pictorial representations to help them organize their computations.
The rules for drawing these graphical representations were later named after their inventor, Richard

27
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Feynman. Mathematically, we view these rules as characters from the Hopf algebra of Feynman graphs
to an appropriate target algebra.

Regularizing Integrals. Since Feynman graphs are in a one-to-one correspondence with Feynman
graph-decorated rooted trees, we shall study Feynman rules characters on this Hopf algebra first. The
Feynman integrals one encounters in a typical QFT are mostly ill-defined as they are divergent. For
example, the integral

(4.9) I =

� ∞

0

1

1 + x
dx

is logarithmically divergent. A possible first countermeasure is to regularize it. By inserting a convergence
factor x−z the modified integral

(4.10) I(z) =

� ∞

0

x−z

1 + x
dx

does indeed converge for certain z ∈ C \ {0}. The function I(z) has a Laurent series around z = 0 in
which the pole term is of particular interest. Dropping it and taking the limit z → 0 is one possible way
to extract relevant information from the formerly ill-defined integral expression in (4.9).

Regularized Feynman rules. We consider a toy QFT model that has the same essential features
as a real-world QFT. Let c be a 1PI primitive Feynman graph with loop number |c| and Bc

+ a Hochschild
one-cocyle in the Hopf algebra HD of decorated rooted trees. Bc

+ takes a decorated forest X to the tree
T obtained by grafting all trees of X to the single node decorated by c, which becomes T ’s root. Then
we introduce our regularized Feynman rules for a toy model QFT in dimension D = 2 by the identity

(4.11) φ(B+(X)){q2/µ2; z} = µ2z

�
dDy

fc(|y|)
y2 + q2

�
y2

µ2

�−(
|c|
2 −1)z

φ(X){y2/µ2; z} ,

which is an instance of the operator identity we have seen in the universality theorem. The linear operator
on the target algebra corresponds to the integral operator on the rhs of (4.11). If we denote this integral
operator by Lc, (4.11) takes the form

(4.12) (φ ◦Bc
+)(X) = Lc(φ(X)) .

The ingredients of all this are the following. First note that q, y ∈ R2 and D = 2 − 2z, where the
integration measure is defined as

(4.13) dDy := |y|D−1ΩD−1 d|y| = |y|1−2zΩ1−2z d|y|
obtained by modifying the dimension parameter D in the usual Lebesgue measure in two dimensions in
terms of spherical coordinates by a complex number z with |z| � 1. Defining the spherical part ΩD−1

causes no trouble because the integrand will always be angle-independent and we can evaluate the angular
part to give a well-defined expression

(4.14)

�
ΩD−1 =

2πD/2

Γ(D/2)
=

2π1−z

Γ(1− z)
,

for D = 2− 2z. The real parameter µ > 0 is kept fixed for the moment. The function fc is supposed to
be real-valued and approach a constant as |y| → ∞. For simplicity, we let it be constant from the start,
say fc. We choose a shorthand notation for the integral kernel in (4.11) by defining the measure

(4.15) dM c
z (y, q) :=

2π1−z

Γ(1− z)

µ2zfc
y2 + q2

|y|1−2z d|y|

on R2. Then (4.11) can be recast in the form

(4.16) (φ ◦Bc
+)(X){q2/µ2; z} =

�
dM c

z (y, q)

�
y2

µ2

�−(
|c|
2 −1)z

φ(X){y2/µ2; z} .

As strange as the factor µ2z in (4.15) may seem, a simple substitution y → y/µ = ξ makes clear that all
integrals essentially depend only on the ratio q2/µ2.

We will be able to associate Laurent series around z = 0 in C to these so obtained integrals, just as
one can do with the integral in (4.10). Therefore, the target algebra V consists of Laurent series in z. The
coefficients of these series are smooth real-valued functions of the parameter q2/µ2 > 0. It is important
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to note that these Laurent series have no essential singularity, only poles of finite order. Because the
coefficients are in C∞(R+), we denote the target algebra by

(4.17) C∞(R+)[z−1, z]] .

However, it will turn out that by the upcoming theorem the coefficients are polynomials in L = ln(q2/µ2),
i.e. we can be more precise by writing

(4.18) V = C[L][z−1, z]] .

Analytic continuation. Consider the identity

(4.19)

�
(y2)−u

y2 + q2
dDy =

πD/2

Γ(D/2)
Γ(D/2− u)Γ(1 + u−D/2) (q2)D/2−u−1

which the reader may verify1. In cases where the lhs does not converge but the rhs has an analytic
continuation, we define the lhs integral by this analytic continuation of the rhs(a typical strategy applied
in physics to not be hindered by such petty hurdles). This way we associate a Laurent series to

(4.20) φ( c ){q2/µ2; z} = (φ ◦Bc
+)(I) =

�
dM c

z (y, q)

�
y2

µ2

�−(
|c|
2 −1)z

φ(I){q2/µ2; z} ,

i.e. the Feynman rules for the simple decorated root c = Bc
+(I). In terms of the introduced measure,

(4.19) yields

(4.21)

�
dM c

z (y, q)

�
y2

µ2

�−αz

= fc
π1−z

Γ(1− z)
Γ(1− (1 + α)z) Γ((1 + α)z)

�
q2

µ2

�−(1+α)z

with α := |c|/2− 1. Note that by φ being a character, one has

(4.22) φ(I){q2/µ2; z} = 1 ,

i.e. the ’Laurent series’ 1V = 1. Let now c be a one-loop graph, i.e. |c| = 1 and set fc = 1. Then (4.21)
yields

(4.23) φ( c ){q2/µ2; z} =
π1−z

Γ(1− z)
Γ(1− z/2) Γ(z/2)

�
q2

µ2

�−z/2

=: f (z)

�
q2

µ2

�−z/2

where everything except Γ(z/2) behaves benignly. To find the associated Laurent series we use

(4.24) Γ(1 + z) = exp

�
−γEz +

�
k≥2(−1)kζ(k)

zk

k

�
= 1− γEz +

1

2

�
ζ(2) + γ2

E

�
z2 +O(z3)

for the gamma function. The constant γE is defined by the peculiar limit

(4.25) γE := lim
N→∞

�
N�

k=1

1

k
− lnN

�
,

and known as Euler-Mascheroni constant, a sort of ’renormalized’ Riemann zeta value at 1, where ζ(1) =�∞
k=1 k

−1 = ∞. Employing these formulas we find that2

(4.26) Γ(z/2) =
2

z
Γ(1 + z/2) =

2

z
− γE +

1

24
(π2 + 6γ2

E)z +O(z2)

obviously has a pole of first order. All together, the first few terms of the Laurent series of the function
f (z) are

(4.27) f (z) =
2π

z
− 2π(γE + lnπ) +

π

12
(12[lnπ + γE ]

2 − π2)z +O(z2) .

Then, using L = ln(q2/µ2) to rewrite (q2/µ2)−z/2 = exp(−Lz/2) we get

φ( c ){q2/µ2; z} =
2π

z
− π(L+ 2γE + 2 lnπ)

+
π

12
(3L2 + 12[lnπ + γE ]L+ 12[lnπ + γE ]

2 − π2)z +O(z2) .
(4.28)

1Hint:Look up the various representations of the Betafunction B(x, y) = Γ(x)Γ(y)/Γ(x+ y) and use (4.14).
2ζ(2) = π2/6
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To calculate the counterterm Sφ
R = −Rφ we have to consider the Bogoliubov map φ. First recall that

Δ( c ) = c ⊗ I+ I⊗ c , as well as

(4.29) Sφ
R(I){q2/µ2; z} = 1 and (φP )( c ){q2/µ2; z} = φ( c ){q2/µ2; z} .

Then we compute

(4.30) φ( c ){q2/µ2; z} = (Sφ
R ∗ φP )( c ){q2/µ2; z} = φ( c ){q2/µ2; z} ,

in which the term c ⊗ I gets killed by the projector P .
For the Rota-Baxter operator R we choose the evaluation map setting q2/µ2 = 1 in all coefficients

of the Laurent series: given ψ ∈ V , applying R yields

(4.31) Rψ{q2/µ2; z} = ψ{1; z} ,

which sets L = 0. This map is obviously Rota-Baxter, if we quickly revisit (4.1). Then, consequently,
the counterterm is given by

Sφ
R( c ){q2/µ2; z} = −R[φ( c ){q2/µ2; z}] = −φ( c ){1; z} = −f (z)

= −2π

z
+ 2π(γE + lnπ)− π

12
(12[lnπ + γE ]

2 − π2)z +O(z2) .

For the renormalized character φR = Sφ
R ∗ φ we obtain

φR( c ){q2/µ2; z} = (Sφ
R ∗ φ)( c ){q2/µ2; z} = Sφ

R( c ){q2/µ2; z}+ φ( c ){q2/µ2; z}
= −φ( c ){1; z}+ φ( c ){q2/µ2; z}
= −πL+

π

4
(L2 + 4[lnπ + γE ]L)z +O(z2) ,

(4.32)

where everything in (4.28) not dependent on L has been subtracted. What is important to note at this
point is that the pole term has dropped out, rendering a pole-free renormalized character φR.

Physical limit and locality. The limit

(4.33) φR( c ){q2/µ2} := lim
z→0

φR( c ){q2/µ2; z} = −πL = −π ln(q2/µ2)

is known as the physical limit of the renormalized Feynman rules. For a real-world QFT (we are in a toy
model, remember3), this would in principle be an observable quantity!

Pole terms that depend on the parameter L = ln(q2/µ2) are called non-local poles. They may appear
in the intermediate steps during a calculation but must drop out along the way so as to make sure the
Bogoliubov map is purged of such poles. The trouble is, if the Bogoliubov map still contains non-local
poles, they will not be cancelled by the Rota-Baxter subtraction: these terms vanish upon applying R
and cannot be subtracted out! The physical limit would then not exist. A Bogoliubov map free of this
pathology is said to be local.

Theorem 4.2.1. Let T ∈ HD be a decorated rooted tree and φ the Feynman rules as given in (4.11).

Assume that both the Bogoliubov map φ = Sφ
R ∗ φP and the renormalized character φR = Sφ

R ∗ φ have
Laurent series around z = 0 with polynomials in L = ln(q2/µ2) as coefficients such that the limits

(4.34) lim
z→0

∂

∂L
φ(T ){q2/µ2; z} (’locality’)

and

(4.35) φR(T ){q2/µ2} = lim
z→0

(Sφ
R ∗ φ)(T ){q2/µ2; z} (’physical limit’)

exist, the latter being a polynomial in L. Then, if these assumptions hold for the tree T = c with any
decoration c, they hold for all trees T ∈ HD.

Proof. Inductively with respect to the grading. Let T = Bc
+(X) be a tree and X =

�
k Tk a forest

for whose trees Tk the assumptions hold. We abbreviate Δ(X) =
�

X �⊗X �� and consider the Bogoliubov
map

φ(T ) = (Sφ
R ∗ φP )(T ) = (Sφ

R ∗ φP )Bc
+(X)

= mV (S
φ
R ⊗ φP )(Bc

+(X)⊗ I+ (id⊗Bc
+)Δ(X)) =

�
Sφ
R(X

�)φ(Bc
+(X

��))

=
�

Sφ
R(X

�)Lc(φ(X
��)) =

�
Lc(S

φ
R(X

�)φ(X ��)) = Lc((S
φ
R ∗ φ)(X)) = Lc(φR(X)) .

3Real-World QFTs like the Standard Model do yield results of this form, though.
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The counterterm never depends on anything other than the parameter z and can therefore be drawn
under the integral. By assumption, the renormalized character φR for X has a Laurent series is of the
form

(4.36) φR(X){y2/µ2; z} =
�

k

φR(Tk){y2/µ2; z} =
∞�

j=0

uj(ln(y
2/µ2))zj =

∞�

j=0

uj(L̃) z
j

with polynomials uj(L̃) in L̃ = ln(y2/µ2). Then, φ(T ) = Lc(φR(X)) is

(4.37) φ(T ){q2/µ2; z} =
∞�

j=0

�
dM c

z (y, q)

�
y2

µ2

�−αz

uj(ln(y
2/µ2)) zj ,

with α = |c|/2− 1. Plugging in uj(L̃) =
�rj

a=1 uj,aL̃
a this turns into4

(4.38) φ(T ){q2/µ2; z} =

∞�

j=0

rj�

a=1

uj,a

�
dM c

z (y, q)

�
y2

µ2

�−αz

(ln(y2/µ2))a zj ,

where the integrals bring in pole terms of finite order. Taking the derivative in (4.38) with respect
to L = ln(q2/µ2), which acts only on the integral kernel and increases the polynomial degree in the
denominator,

(4.39)
∂

∂L
φ(T ){q2/µ2; z} = q2

∂

∂q2
φ(T ){q2/µ2; z}

yields convergent integrals also for z = 0. This means all poles are local! Therefore, the principle part of
φ(T ), i.e. the poles, cannot depend on L = ln(q2/µ2). This entails that

(4.40) Rφ(T ){q2/µ2; z} = φ(T ){1; z}
still contains all pole terms. Upon substraction

(4.41) φR(T ){q2/µ2; z} = φ(T ){q2/µ2; z}− φ(T ){1; z}
the poles are bound to drop out and hence φR(T ){q2/µ2; z} is pole-free.

To prove the assertion that the physical limit φR(T ){q2/µ2; z} is a polynomial in L, it suffices to
show that the Laurent series of φ(T ){q2/µ2; z} has polynomial coefficients with variable L. We inspect
one of the integrals in (4.38): let us pick the integral of the coefficient uj,a and substitute y = µξ to get

�
dM c

z (µξ, q/µ) (ξ
2)−αz(ln ξ2)a =

�
d|ξ| |ξ|1−2z 2fcπ

1−z

Γ(1− z)

(ξ2)−αz

ξ2 + (q2/µ2)
(ln ξ2)a .

We set s :=
�
q2/µ2 and rescale again ξ = sχ to find

�
dM c

z (µξ, q/µ) (ξ
2)−αz(ln ξ2)a = (s2)−(α+1)z

�
d|χ| |χ|1−2z 2fcπ

1−z

Γ(1− z)

(χ2)−αz

χ2 + 1
(lnχ2 + ln s2)a .

In the light of the exponential series

(4.42) (s2)−(1+α)z = exp(−(1 + α)z ln s2) =
∞�

k=0

(−1)k

k!
(1 + α)k(ln s2)kzk

one can see clearly that this integral is a Laurent series with polynomials in L = ln s2 as coefficients. It
follows that this also holds for φ(T ){q2/µ2; z}. �

We study two more examples to see all this explicitly. Let for simplicity all nodes be uniformly
decorated by c. Then we can suppress c in the notation. As before, we let |c| = 1, i.e. α = −1/2 and

fc = 1. The renormalized value assigned to the tree = B+( ) is given by

φR( ) = (Sφ
R ∗ φ)( ) = Sφ

R( )φ(I) + Sφ
R(I)φ( ) + Sφ

R( )φ( )

= Sφ
R( ) + φ( ) + Sφ

R( )φ( ) = −R[φ( )] + φ( ) = (idV −R)[φ( )] .
(4.43)

4Why does it start with a = 1?
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We will tackle these characters one after the other. First we compute

φ( ){q2/µ2; z} =

�
dM c

z (y, q)

�
y2

µ2

�z/2

φ( ){y2/µ2; z} = f (z)

�
dM c

z (y, q)

= f (z)
π1−z

Γ(1− z)
Γ(1− z)Γ(z)

�
q2

µ2

�−z

=: f (z)

�
q2

µ2

�−z

= f (z)e−Lz .

(4.44)

This function has a first and a second order pole term,

f (z) =
2π2

z2
− 4π2(γE + lnπ)

z
+

π2

12
(π2 + 48[γE + lnπ]2) +O(z) ,

which leads to a non-local pole term in5

φ( ){q2/µ2; z} =
2π2

z2
− 2π2(L+ 2[γE + lnπ])

z

+
π2

12
(12L2 + 48(γE + lnπ)L+ π2 + 48[γE + lnπ]2) +O(z) ,

The Bogoliubov map includes a subtraction

φ( ) = φ( ){q2/µ2; z}−R[φ( ){q2/µ2; z}]φ( ){q2/µ2; z}
= φ( ){q2/µ2; z}− φ( ){1; z}φ( ){q2/µ2; z}

= f (z)

�
q2

µ2

�−z

− f (z)f (z)

�
q2

µ2

�−z/2

= f (z)e−zL − f (z)f (z)e−Lz/2

= −2π2

z2
− 4π2[γE + lnπ])

z
+

π2

12
(6L2 + 5π2 − 48[γE + lnπ]2) +O(z) .

(4.45)

The subtraction has cancelled the non-local pole. To see how this comes about, we have a look at the
pole terms of the series

f (z)f (z)e−zL/2 =
4π2

z2
− 2π2(L+ 4[γE + lnπ])

z
+

π2

2
(L2 + 8[lnπ + γE ]L) +O(1) ,

which makes explicit why the non-local pole has dropped out. One more subtraction

φR( ){q2/µ2; z} = (idV −R)[φ( ){q2/µ2; z}] = π2

2
L2 +O(z)(4.46)

yields the pole-free renormalized value whose physical limit exists and is a polynomial in L:

φR( ){q2/µ2} =
π2

2
L2 =

π2

2
(ln(q2/µ2))2 .(4.47)

Next, we briefly discuss the tree = B+( ). The character φ yields

(4.48) φ( ) = (φ ◦B+)( ) = Lc(φ( )) = Lc(φ( )φ( )) ,

which amounts to

φ( ){q2/µ2; z} =

�
dM c

z (y, q)

�
y2

µ2

�z/2

(f (z))2
�
y2

µ2

�−z

= (f (z))2
�

dM c
z (y, q)

�
y2

µ2

�−z/2

.

Employing (4.21), this is

φ( ){q2/µ2; z} = (f (z))2
π1−z

Γ(1− z)
Γ(1− 3z/2)Γ(3z/2)

�
q2

µ2

�−3z/2

=: f (z)

�
q2

µ2

�−3z/2

.

5Here is the point to start using some computer algebra software!
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The Bogoliubov map is

φ( ) = (Sφ
R ∗ φP )( ) = φ( ) + Sφ

R( )φ( ) + 2 Sφ
R( )φ( )

= φ( ) + Sφ
R( )2φ( ) + 2 Sφ

R( )φ( ) ,

where we remember that the coproduct yields

(4.49) Δ( ) = ⊗ I+ I⊗ + ⊗ + 2 ⊗ .

Then, remembering Sφ
R( ){q2/µ2; z} = −φ( ){1; z} = −f (z), we have

φ( ) = f (z)

�
q2

µ2

�−3z/2

+ f (z)3
�
q2

µ2

�−z/2

− 2f (z)f (z)

�
q2

µ2

�−z

.

Finally, to obtain the renormalized character, we subject it to the Rota-Baxter subtraction

φR( ){q2/µ2; z} = (idV −R)φ( )

= f (z)(e−3zL/2 − 1) + f (z)3(e−zL/2 − 1)− 2f (z)f (z)(e−zL − 1)

with L = ln(q2/µ2). Its Laurent series has no pole

(4.50) φR( ){q2/µ2; z} = −π3

3
(L3 + π2L) +O(z)

telling us that the Bogolibov map was local, and the physical limit clearly is a polynomial in L .
Generally, for this simple model, in which every node is decorated with the one-loop graph c, one has

for a tree T

(4.51) φ(T ){q2/µ2; z} =

�
y2

µ2

�− |T |
2 z �

v∈T [0]

Ft(v)(z) ,

where t(v) is the subtree dangling down from vertex v ∈ T [0] and the function Ft(v)(z) is given by

(4.52) Ft(v)(z) :=
π1−z

Γ(1− z)
Γ(1− |t(v)|z/2) Γ(|t(v)|z/2) .

By multiplicativity of φ, this formula defines φ also for a forest w =
�

k Tk. The meromorphic function
F deserves its own name: it is called the Mellin transform. Its Laurent coefficients are in this model
actually sufficient to figure out the values of the renormalized character on the whole Hopf algebra H,
once the appropriate combinatorial laws are known, that is. Question: what is the meaning of the factor

(4.53)
π1−z

Γ(1− z)
?

However, easy question, let us have a look at the product

(4.54) fT (z) =
�

v∈T [0]

Ft(v)(z) .

It is actually the function we have introduced during the above computations, this time for a general tree
T . The identity in (4.51) is not difficult to prove: one only has to show that it satisfies (4.11) or (4.16)
setting |c| = 1 and fc = 1, but we will leave it there(see also [Kr03]).

4.3. Renormalized character

The renormalized character φR is also an algebra morphism in the sense of the universality theorem.
The corresponding ’intertwining’ equation is

(4.55) φR ◦Bc
+ = (idV −R)Lc ◦ φR ,

where the linear operator on the target algebra V is given by (idV −R)Lc. This identity is easy to prove
and very instructive. Note that φ ◦ Bc

+ = Lc ◦ φR, which is a byproduct of the proof of Theorem 4.2.1.
Then the assertion is trivial:

(4.56) φR ◦Bc
+ = (idV −R)φ ◦Bc

+ = (idV −R)Lc ◦ φR .

It is instructive because it tells us how renormalization works: each subintegration is cured of its diver-
gence individually!



34 4. HOPF-ALGEBRAIC RENORMALIZATION

4.4. Weinberg’s Theorem

The integrals associated to Feynman graphs, known as Feynman integrals, are in many cases diver-
gent, a typical example is the integral

(4.57) ID(q2) =

�
dDk

(k2 +m2)((k − q)2 +m2)

in D = 6 dimensions, with mass parameter m > 0. It is quadratically divergent because, by simple
power counting, the integrand behaves asymptotically as ∼ |k| for very large |k|: for an upper integration
boundary Λ, the value of the integral then growths as Λ2 for Λ → ∞. To render this integral convergent
and extract the relevant information out of it, one first introduces a regulator in a similiar manner as in
the toy model of [Kr03](see section 4.2), i.e. a parameter like z in D = 6− 2z. The result is a Laurent
series with poles. Then a well-chosen (Rota-Baxter) subtraction procedure R will make sure these poles
are discarded and the physical limit D → 6

(4.58) IR(q
2) = lim

D→6
(id−R)ID(q2)

is finite. As the rhs of (4.58) has a convergent integral for every D �= 6, one can reformulate the R-
subtraction at the integrand level. Denoting the above integrand in (4.57) by Int(q, k), this takes the
form

(4.59) IR(q
2) = lim

D→6

�
dDk (id−R)Int(q, k)

which, using again the symbol R, is an admittedly sloppy notation. However, the point is: the integrand
is now structured in such a way that

(4.60) IR(q
2) =

�
d6k (id−R)Int(q, k)

perfectly converges. Therefore, we could have skipped the regularization procedure from the start: this
type of renormalization scheme, known as BPHZ renormalization needs no regularization! It might be
necessary to introduce a regulator for practical reasons, though. Anyway, given a nested Feynman integral
of the form

(4.61) JD(q2) =

�
dDk

�
dDk� Int1(q, k) Int2(k, k

�) ,

with two multiplied integrands Int1(q, k) and Int2(q, k), the BPHZ-renormalized version of it, i.e.

(4.62) JR(q
2) =

�
dDk (id−R)[Int1(q, k)

�
dDk� (id−R)Int2(k, k

�)] ,

can only be expected to yield a well-defined convergent integral if every subintegration including the
outermost (’non-proper’ sub)integration is convergent. In essence, this is the assertion of Weinberg’s
theorem, which says that a Feynman graph gives rise to a convergent integral if it is convergent by power
counting in all its sectors. The reason we point this out is this: it is because of this maybe obvious fact
that renormalization actually works. Weinberg’s well-written paper [Wein60] be recommended to the
reader at this point.

4.5. Feynman graphs and their Hopf algebra

We shall now endow the set of Feynman graphs with a Hopf algebra structure. Strictly speaking,
we have already implicitly introduced these structures during the course of the previous chapters: given
the one-to-one correspondence between Feynman graphs and decorated rooted trees, the Hopf algebra
operations on Feynman graphs are almost obvious. First some definitions.

Definition 4.5.1. A graph Γ is called n-PI if for any n internal edges e1, ..., en ∈ Γ
[1]
int one finds that

(4.63) Γ� = Γ \ {e1, ..., en}
is still a connected graph. A graph Γ is said to be divergent if its weight

(4.64) ω6(Γ) = −6|Γ|+
�

e∈Γ
[1]
int

ω(e) +
�

v∈Γ[0]

ω(v)

is non-positive.
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For example, the graph

(4.65)

e

is not 1PI since

(4.66)
e

\ e =

is not connected.

Definition 4.5.2. HFG is the Hopf algebra of 1PI divergent Feynman graphs with edge type and

3-valent vertices of the form .

The product of two graphs Γ1 and Γ2 is given by their disjoint union, i.e.

(4.67) mHFG
(Γ1 ⊗ Γ2) := Γ1 ∪ Γ2

but for the most part denoted as a simple juxtaposition: Γ1Γ2. The neutral element of multiplication is
the empty graph ∅, denoted by I just like the empty forest(or tree).

A grading HFG = ⊕j≥0H
(j) is induced by the first Betti number of a graph:

(4.68) |Γ| := h1(Γ) Γ ∈ HFG ,

which is defined as the number of independent cycles of the graph Γ. The elements in H(j) are disjoint
unions of graphs with a total number of j independent loops. The grading starts with H(0) = QI and
Aug =

�
j≥1 H

(j) is the augmentation ideal, i.e. everything else than the span of the unit I.
As there is no potential for confusion, we will write the counit as Î, just like with the Hopf algebra

of rooted trees and let it be the linear map HFG → Q such that Î(I) = 1 and Î(Aug) = 0.
How can we define a coproduct? Since the coproduct must have the grading property Δ(H(k)) ⊂�k

l=0 H
(l) ⊗H(k−l) we need an operation that lowers the grading degree of a graph. One first guess is

this: let P (Γ) be the set of all proper subgraphs γ of a graph Γ ∈ HFG such that γ is a product of 1PI
subgraphs of Γ. Then,

(4.69) Δ∞(Γ) = I⊗ Γ+ Γ⊗ I+
�

γ∈P (Γ)

γ ⊗ Γ/γ

may define a coproduct on HFG. But it does not. Consider the graph

(4.70) Γ = .

If we let Δ∞ act on it, we get

(4.71) Δ∞(Γ) = ⊗ I+ I⊗ + ⊗ + ⊗ + ⊗ .

What are these funny animals in the latter two terms? We pick two of them and compute their weights,

(4.72) ω6( ) = 4 , ω6( ) = 2 .

This tells us that they are not divergent, because their weights are positive. They do therefore not belong
to the set HFG! To avoid graphs like these two, we add the additional requirement that all image graphs
be divergent. Thus, the coproduct had better be defined

(4.73) Δ(Γ) = I⊗ Γ+ Γ⊗ I+
�

γ∈P(Γ)

γ ⊗ Γ/γ ,

with P(Γ) := {γ ∈ P (Γ) | γ =
�

j γj s.t.∀j : ω6(γj) ≤ 0}. Then, the coproduct of the graph Γ = is

(4.74) Δ(Γ) = ⊗ I+ I⊗ + ⊗ .

By virtue of the grading property of Δ, the antipode S : HFG → HFG is completely determined by
setting S(I) = I and by the identity

(4.75) S(Γ) = −(S ∗ P )(Γ) = −mHFG
(S ⊗ P )Δ(Γ) = −Γ−

�

γ∈P(Γ)

S(γ) Γ/γ ,

where we have written the product of the two graphs S(γ) and the cograph Γ/γ as a juxtaposition. For

Γ = this reads

(4.76) S( ) = − − S( ) = − + = − + ( )2
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because of S( ) = − by (4.75). Another example is the graph :

(4.77) Δ( ) = ⊗ I+ I⊗ + 2 ⊗ .

The antipode yields

(4.78) S( ) = − − 2 S( ) = − + 2 .

Note that S(h) = −(P ∗ S)(h) for h ∈ Aug is an equation equivalent to (4.75), by definition of S.

Contraction of a propagator graph. A remark concerning the contraction operation is in order.
If γ � Γ is a propagator graph, i.e.

(4.79) |γ[1]
ext| = 2 ,

then the cograph Γ/γ has lost all information about γ altogether in the following sense. In the first
chapter we have defined the cograph as the graph we obtain if we shrink all internal edges of γ inside Γ
into one point while keeping the external leg structure of γ. This was not to say that we are left with a
2-vertex in case γ is a propagator graph! Consider the contraction

(4.80)
e1

e2

/
e1 e2

=

e

.

The external edges e1 and e2 of γ, strictly speaking half-egdes, merge with their adjacent half-edges to
leave behind one single edge e! In our example, the result is the graph on the rhs of (4.80) and not an
animal like

(4.81)

e2

e1

!

4.6. Hopf-algebraic renormalization

The good news is that we now do not just have a Hopf algebra of Feynman graphs HFG but also
have a character group GHFG

V in much the same way we have seen for the Hopf algebra of rooted trees
H! Consider the labelled Feynman graph and the corresponding divergent Feynman integral for D = 6:

(4.82) p

k

l

k + p

l + p

k − l l − q1

q1

q2

=

�
dDl

l2(l − q1)2(l + p)2

�
dDk

k2(k − l)2(k + p)2

Assume we regularize it by setting D = 6 − 2z. Then we first take care of the subintegration, i.e. the
Feynman graph subsector

(4.83) p

k

l

k + p

l + p

k − l
=

�
dDk

k2(k − l)2(k + p)2
−
�

dDk

k2(k − l)2(k + p)2

����
l2=p2=µ2

and renormalize it, where l, p ∈ R6 are the external parameters. We replace the subintegral in (4.82) by
this term and get

(4.84) ID =

�
dDl

l2(l − q1)2(l + p)2

��
dDk

k2(k − l)2(k + p)2
−
�

dDk

k2(k − l)2(k + p)2

����
l2=p2=µ2

�
.

However, this is not an expression for which the limit D → 6 exists on account of the logarithmic
divergence of the l-integration. We need yet another subtraction to achieve this aim, that is, add

−RID =

−
��

dDl

l2(l − q1)2(l + p)2

��
dDk

k2(k − l)2(k + p)2
−
�

dDk

k2(k − l)2(k + p)2

����
l2=p2=µ2

�������
p2=q21=µ2
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and the physical limit limD→6(ID − RID) exists. The renormalized expression (ID − RID) consists of 4
terms with different integrals: if we write the renormalized subintegration in (4.83) as (I �D − RI �D) and
sloppily denote by A the kernel of the outer l-integration in front of the round brackets in (4.84), this
takes the form

IR =

�
A(I �D −RI �D)−R[

�
A(I �D −RI �D)](4.85)

=

�
AI �D − (RI �D)(

�
A)−R[

�
AI �D] +R[(

�
A)(RI �D)](4.86)

=

�
AI �D − (RI �D)(

�
A)−R[

�
AI �D] + (RI �D)R[(

�
A)] .(4.87)

We compute the renormalized character φR = Sφ
R ∗ φ to see how this relates to the underlying Hopf

algebra structure:

φR( ) = (Sφ
R ∗ φ)( ) = Sφ

R( ) + φ( ) + Sφ
R( ) φ( )

= −R[(Sφ
R ∗ φP )( )] + φ( )−R[(Sφ

R ∗ φP )( )] φ( )

= −R[φ( ) + Sφ
R( ) φ( )] + φ( )−R[φ( )] φ( )

= −R[φ( )−R[φ( )] φ( )] + φ( )−R[φ( )] φ( )

= −R[φ( )] +R[R[φ( )] φ( )] + φ( )−R[φ( )] φ( )

= −R[φ( )] +R[φ( )] R[φ( )] + φ( )−R[φ( )] φ( )

We can reorder those terms to get

(4.88) φR( ) = φ( )−R[φ( )] φ( )−R[φ( )] +R[φ( )] R[φ( )]

The first subtraction eradicates the subdivergence assciated to the subgraph(’subsector’)

(4.89) γ =

whereas the subtraction of the last two terms cures the remaining divergence. By comparing carefully,
we identify

�
AI �D = φ( ) , −RI �D = −R[φ( )] ,

�
A = φ( ) ,(4.90)

−R[

�
AI �D] = −R[φ( )] , −R[(

�
A)] = −R[φ( )] .(4.91)

There should be no confusion because by close inspection we see that R[
�
A] = RI �D.

4.7. One-cocycles and finitely generated Hopf algebras

One can take a Feynman graph and use it as a generator of a Hopf algebra. A simple example can
be constructed from the primitive graph

(4.92) γ = .

The freely generated commutative Q-algebra has a linear basis simply consisting of monomials γn, n ≥ 1.
The coproduct does not bring in anything new

(4.93) Δ(γ) = γ ⊗ I+ I⊗ γ ,

except for the neutral element I. If we add this to our algebra, and take {I, γ} as the set of generators,
we have an infinite dimensional Hopf subalgebra Hγ generated by just two elements γ, I ∈ HFG. In the
same manner do we add all subgraphs γ of a graph Γ generated by the coproduct from it to this generator
set. Let us denote the set of generators of the Hopf algebra HΓ given rise to by a graph Γ in this way by
G(Γ). Examples are

(4.94) G( ) =
�

I, ,
�

, G( ) =
�
I, , ,

�

and

(4.95) G( ) =
�

I, , , , ,
�

.
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These finitely generated Hopf algebras do even have a natural grading, defined by the loop number. Can
we establish a Hochschild cohomology? The one-cocycles are linear maps L such that

(4.96) ΔL = (id⊗ L)Δ+ L⊗ I .
Consider the Hopf algebra H generated by G( ) = { I, }. Let B+ be a Hochschild one-
cocycle. Consider

(4.97) ΔB+ (I) = (id⊗B+ )Δ(I) +B+ (I)⊗ I = I⊗B+ (I) +B+ (I)⊗ I .

This suggests that B+ (I) = as this is the only primitive element in G( ). Next, consider

ΔB+ ( ) = (id⊗B+ )Δ( ) +B+ ( )⊗ I
= I⊗B+ ( ) + ⊗B+ (I) +B+ ( )⊗ I
= I⊗B+ ( ) +B+ ( )⊗ I+ ⊗

This requires

(4.98) B+ ( ) = /∈ H

which tells us that in H there is no one-cocycle! We have seen that the only candidate proved disap-
pointing. Let us look at H . First, we note that (4.97) holds just as well as in H , hence we choose
again B+ (I) = . We could, of course, have chosen the other primitive graph available, but that
wouldn’t make a difference. Consider the graph

(4.99) Γ := B+ ( ) .

If we use the one-cocycle property (4.96) as we have done before, we find

(4.100) Γ =
1

2

which surely is in H . However, the requirement in (4.98) is still valid on this Hopf algebra. It turns
out that generally, a Hopf subalgebra HΓ generated by a graph Γ has no one-cocycle. What’s behind this
is that the property (4.96) implies a one-cocycle increases the grading degree. The product does also
increase the grading degree but in a different way. Question: can a one-cocycle map a primitive graph
to a product of two primitive graphs?



CHAPTER 5

Lie algebraic Structures and Renormalization

5.1. Lie algebra of jets

Consider two smooth real-valued functions f, g ∈ C∞(R) on the line R. For a fixed x0 ∈ R let their
Taylor polynomials of degree m be denoted by

(5.1) (Tmf)(x) =
m�

j=0

1

j!
f (j)(x0) (x− x0)

j , (Tmg)(x) =
m�

j=0

1

j!
g(j)(x0) (x− x0)

j .

We declare f and g to be equivalent if these Taylor polynomials agree Tmf = Tmg and write f ∼ g. In
particular Tmf ∼ f and Tmg ∼ g. Let now x0 = 0. The equivalence classes {[f ] : f ∈ C∞(R)} span a
linear space on which we may also define a multiplication through

(5.2) (Tmf) · (Tmg) := Tm(fg) .

Note that this definition implies that we take the quotient with respect to the polynomial ideal

(5.3) (xm+1) := xm+1R[x] ,

being the space of all polynomials with vanishing coefficients up to the m-th. The elements of this
quotient space are referred to as jets of order m at x0 = 0. For f ∈ C∞(R), the corresponding jet is
usually denoted by Jm

x0
f and can be seen as represented by an abstract polynomial. Next, let us have a

look at the differential operators

(5.4) Zk := −xk+1∂x

on C∞(R). On account of the fact that the product of such differential operators is associative, their
commutator

(5.5) [Zk, Zl] = (k − l)Zk+l

establishes a Lie algebra structure. This is a representation of what is known as Witt algebra. We combine
these two at first glance disparate concepts by considering differential operators of the form

(5.6) Df = f(x)∂x , f ∈ C∞(R) .

Then we apply the Taylor polynomial equivalence to the smooth prefactor functions, just as above. These
differential operators can now be viewed as tangent vectors at the base point x0 = 0 with R as a smooth
one-dimensional manifold. Those readers who are not familiar with differential geometry may stick with
the differential operator notion, it is not wrong1.

However, the corresponding equivalence classes are m-th order jets in a differential geometric context.
By A1

n we denote the linear space of jets of order m = (n + 1) given rise to by tangent vectors of the
form2

(5.7) Df = f(x)∂x , f ∈ C∞(R) : f(0) = f �(0) = 0 ,

with the quotient taken with respect to the polynomial ideal (xn+2). Equipped with the commutator
in (5.5), one easily sees that A1

n is a Lie algebra! We call it the Lie algebra of jets (of (n + 1)-th order
at x0 = 0). However, what is of interest to us is that its universal enveloping algebra U(A1

n) is dually
related to the Connes-Moscovici Hopf subalgebra HCM introduced in section 3.1.

1As derivations, the tangent vectors f(x)∂x act on ’germs’ of smooth functions at x = 0.
2The superscript ’1’ in A1

n stands for ’vanishing derivatives up to 1-st order’.

39
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5.2. Milnor-Moore theorem

We briefly recall the concept of the universal enveloping algebra of a Lie algebra. Let L be a Lie
algebra. Its tensor algebra T (L) is given by the direct sum of linear spaces L⊗k

(5.8) T (L) =
∞�

k=0

L⊗k ,

where the product of a, b ∈ L is written as a ⊗ b ∈ L ⊗ L or as a simple juxtaposition ab and for the
higher spaces accordingly. Taking the quotient with respect to the equivalence relation

(5.9) ab− ba = a⊗ b− b⊗ a ∼ [a, b]

one obtains the universal enveloping algebra of L, denoted as U(L). Note that prior to establishing the
equivalence relation, both sides of the ∼ sign in (5.9) are not the same: the lhs is an element of L ⊗ L
and the rhs of L.
Proposition 5.2.1. Let Hn

CM be the Hopf subalgebra of HCM generated by the set {I, δ1, ..., δn}. Then,
we have

(5.10) Hn
CM � U(A1

n)
∗ .

Proof. We define linear forms Lk, k ≤ n on Hn
CM by

(5.11) �Lk, P (δ)� := Î
�

∂

∂δk
P (δ)

�
δ = (δ1, ..., δn) ,

which means that we formally differentiate the polynomial P (δ) ∈ Hn
CM with respect to the variable

δk, and annihilate anything except terms proportional to I, which are mapped to R. This means for
monomials

(5.12) �Lk, δl� =
�

1 k = l
0 else

with the neutral element L0 = 1 dual to δ0 = I, i.e. 1Lk = Lk and �1, ·� = Î. One now has to show that
these linear forms satisfy the Witt algebra commutator relation in (5.5). This amounts to showing that

(5.13) (k − l)�Lk+l, P (δ)� = �LkLl − LlLk, P (δ)� = �Lk ⊗ Ll − Ll ⊗ Lk,ΔP (δ)�
and that all stuctures are dual to each other. For example, the product on Hn

CM is dual to the coproduct
on the Lie algebra:

�Lk, PQ� = �Lk, P �Î(Q) + Î(P )�Lk, Q� = �Lk, P ��1, Q�+ �1, P ��Lk, Q�
= �Lk ⊗ 1, P ⊗Q�+ �1⊗ Lk, P ⊗Q� = �Lk ⊗ 1 + 1⊗ Lk, P ⊗Q�
= �Δ(Lk), P ⊗Q� .

Note that choosing the elements Lk � Zk to be primitive in the Hopf algebra U(A1
n) is a necessity. For

a complete proof the reader is referred to Proposition 3 in [CoKr98]. �

Milnor-Moore duality. In fact, this important result is a special instance of the following theorem,
known as Milnor-Moore theorem:

Theorem 5.2.2. Let H be a graded, connected and commutative Hopf algebra. Then H is the dual of
the universal enveloping algebra U(L) of some Lie algebra L.

Proof. See [Menc]. �

As we already know, the Hopf algebra of rooted trees H is connected and commutative. What is the
corresponding Lie algebra L? Consider the set of symbols ZT indexed by rooted trees T ∈ T . We take
their linear span over Q and moreover, we define a bilinear operation by

(5.14) ZT1 � ZT2 :=
�

T∈T
n(T1, T2;T )ZT ,

where n(T1, T2;T ) is the number of cuts C ∈ C(T ) such that PC(T ) = T1 and RC(T ) = T2. Easy
examples are

(5.15) Z � Z = 2Z + Z , Z � Z = Z .
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The latter differs from the former due to n( , ; ) = 0. This �-operation is pre-Lie and thus the
associator

(5.16) A(T1, T2, T3) := ZT1 � (ZT2 � ZT3)− (ZT1 � ZT2) � ZT3

is symmetric with respect to interchanging the last two arguments, i.e.

(5.17) A(T1, T2, T3) = A(T1, T3, T2) ,

which garantees that the bilinear bracket

(5.18) [ZT1
, ZT2

] := ZT1
� ZT2

− ZT2
� ZT1

satisfies the Jacobi identity. Therefore, we have the following

Lemma 5.2.3. The bracket defined in (5.18) satisfies the Jacobi identity.

Proof. Exercise: one may use (5.17). �

Proposition 5.2.4. The linear space L := �ZT , T ∈ T �Q is a Lie algebra with respect to the bracket
(5.18) and its universal enveloping algebra U(L) is dual to the Hopf algebra of rooted trees H.

Proof. Analogous to that of Proposition (5.2.1). The corresponding linear forms are given by

(5.19) �ZT , ·� = Î
∂

∂T

with a formal derivative with respect to the tree T ∈ T and the operation dual to the coproduct on H is
the �-product. The reader may check that

(5.20) �[Z ,Z ], � = �Z ⊗ Z − Z ⊗ Z ,Δ( )� .

�

The analogous notion exists for the Hopf algebra of Feynman graphs HFG. In section 2.1 we have
introduced the pre-Lie product

(5.21) Γ � γ =
�

i∈I(γ|Γ)
Γ ◦i γ ,

where I(γ|Γ) is the set of insertion places for the graph γ into Γ. One can also write this as

(5.22) Γ � γ =
�

Γ�

n(γ,Γ;Γ�)Γ�

with n(γ,Γ;Γ�) being the number of possibilities to insert γ into Γ in such a way as to obtain the graph
Γ�. Examples for QED graphs are

(5.23) � = + ,

(5.24) � =

and, suppressing the arrows,

(5.25) � = .

Note that

(5.26) � = 0

since there are no insertion places in the first for the second graph. Only internal (wiggly) photon lines
are insertion places for a photon propagator graph.
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5.3. The Riemann-Hilbert problem

Consider a smooth curve C in C and a map γ : C → G with values in a Lie group G. Let γ be
analytic along C, i.e. for a parametrization z : [0, 1] → C, t �→ z(t) of C, the derivative

(5.27)
d

dt
γ(z(t)) = lim

�→0
�−1{γ(z(t+ �))− γ(z(t))}

exists in G. Then there is a holomorphic continuation of γ on a tubular neighbourhood UC of C.
If we extend this neighbourhood so as to include the origin, we obtain a domain D on which there
is a meromorphic continuation D → G which we might also call γ. Then, γ(z) has Laurent series
with coefficients in G. One version of the Riemann-Hilbert problem is to find two other such maps γ±
factorizing γ in the form

(5.28) γ(z) = γ−(z)
−1 · γ+(z) z ∈ D ,

where γ+ is holomorphic. This pair of maps γ± is called Birkhoff decomposition of γ. The product is
that of the Lie group and γ−(z)−1 ∈ G is the inverse of γ−(z) ∈ G with respect to the Lie group product.
We may visualize the curve C and the maps γ, γ± on the Riemann sphere S2 � P1(C) as in Fig.1. If we

C

0

∞

γ−

γ+

γ

Figure 1. The Riemann sphere and the Lie group-valued maps γ, γ± : D → G.

assume that there is only one singularity at the origin, the domain where γ−(z)−1 is holomorphic tends
to be on the upper half of the Riemann sphere. As a matter of fact, renormalization with dimensional
regularization in quantum field theory provides an example for a solution of the Riemann-Hilbert problem!

Let us see how this comes about. First recall that the regularized Feynman rules are given in the
form of characters φ : HFG → V , where V is the target algebra. By fixing all external parameters like
momenta q ∈ R4 we may choose this algebra to be V = C[z−1, z]], i.e. the ring of Laurent series with
finite principle part. How can this be related to renormalization? Where is the Lie group G and the
maps γ, γ±?

To answer these questions, we may take the view that the Hopf characters are maps from HFG to C.
In other words, we replace the ring of Laurent series with C as target algebra. The assignment

(5.29) z �→ γ(z) = φ(·){z} .

yields a character in GHFG

C at every fixed point z on the domain D ⊂ P1(C). Then, the Lie group G is
this character group with Lie group product given through the character convolution

(5.30) φ ∗ ψ = mC(φ⊗ ψ)Δ .

To see that this character group G really is a manifold, let G be an ordered set of all Feynman graphs, i.e.
the countable generator set for the Hopf algebra HFG. Now, note that a character φ can be characterized
by its values on G, i.e. by a sequence

(5.31) (φ(Γ){z})Γ∈G

in C indexed by Feynman graphs. A character is therefore represented by an element in the infinite-
dimensional manifold C∞, where the global chart is given by the assignment

(5.32) φ �→ (φ(Γ){z})Γ∈G .
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Consequently, sweeping the involved subtleties brought about by dimG = ∞ under the carpet, G looks
like C∞ and thus G is an infinite-dimensional complex manifold(see [CoKr00] for more).

Recall that the renormalized character φR is given by φR = Sφ
R ∗ φ, which can also be written as

(5.33) φ = (Sφ
R)

∗−1 ∗ φR = (Sφ
R ◦ S) ∗ φR .

This is the Birkhoff decomposition with γ+ = φR and γ− = Sφ
R, where the former always maps to pole-free

Laurent series.

5.4. Minimal subtraction renormalization scheme

We now consider a concrete example for a Birkhoff decomposition in a renormalization scheme known
as minimal subtraction. This scheme differs from that introduced in sections 4.2 because it has a different
Rota-Baxter subtraction. The Rota-Baxter operator is given by the projector

(5.34) R : C[z−1, z]] → C[z−1]

which maps a Laurent series free of essential singularities to its principle part, i.e. given a Laurent series
f =

�
k≥−rf

fkz
k ∈ C[z−1, z]], one has

(5.35) R[
∞�

k=−rf

fkz
k] =

−1�

k=−rf

fkz
k

and thus

(5.36) (id−R)[

∞�

k=−rf

fkz
k] =

�

k≥0

fkz
k ∈ C[[z]]

is pole-free. Of course, not to forget, one has to prove the next

Lemma 5.4.1. The projection operator defined in (5.35) is Rota-Baxter with respect to the usual product
of Laurent series, i.e. for f, g ∈ C[z−1, z]], we have

(5.37) R[fg] +R[f ]R[g] = R[R[f ]g + fR[g]] .

Proof. Exercise. �

Let now the regularized Feynman rules φ : HFG → C[z−1, z]] in a simple model be given by

(5.38) φ(Γ){z} =

�
q2

µ2

�−|Γ|z
FΓ(z) ,

for a Feynman graph Γ ∈ HFG. For a fixed complete forest F(Γ) of Γ, the function FΓ is given by

(5.39) FΓ(z) =
c−1

|Γ|z f(|Γ|z)
�

γ∈F(Γ)

c−1

|γ|z f(|γ|z) ,

and

(5.40) f(z) = 1 +

∞�

l=0

cl
c−1

zl+1 .

We write L = ln(q2/µ2) and get for the graph Γ = ∈ HFG with F(Γ) = ∅

(5.41) φ( ){z} =
c−1

z
e−Lzf(z) =

c−1

z
+ c0 − c−1L+

1

2
(2c1 − 2c0L+ c−1L

2)z +O(z2) .

The counterterm Sφ
R is

(5.42) Sφ
R( ) = −R[(Sφ

R ∗ φP )( )] = −R[Sφ
R(I)φ( )] = −R[φ( )]

and thus evaluates to the simple Laurent polynomial

(5.43) Sφ
R( ){z} = −c−1

z
.

The renormalized character φR then gives

(5.44) φR( ){z} =
c−1

z
e−Lzf(z)− c−1

z
= c0 − c−1L+

1

2
(2c1 − 2c0L+ c−1L

2)z +O(z2)
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with physical limit z → 0

(5.45) φR( ) = c0 − c−1L .

The L-independent term c0 is an artfact of this special renormalization scheme. It does not appear
in kinematical subtraction, where the Rota-Baxter operator sets L = 0. In this example, the Birkhoff
decomposition is

((Sφ
R)

∗−1 ∗ φR)( ) = (Sφ
R)

∗−1( ) + φR( ) = (Sφ
R ◦ S)( ) + φR( )

= Sφ
R(S( )) + φR( ) = −Sφ

R( ) + φR( )

= R[φ( )] + φR( ) = φ( ) ,

i.e. the expected result. Next, consider the graph . The Feynman rules in (5.38) give

φ( ){z} =
c2−1

2z2
e−2Lzf(z)f(2z)

=
c2−1

2z2
+

1

2
(3c−1c0 − 2c2−1L)z

−1 + c2−1L
2 − 3c−1c0L+ c20 +

5

2
c−1c1 +O(z) ,

where the complete forest is F(Γ) = { }. For the counterterm we find

(5.46) Sφ
R( ) = −R[(Sφ

R ∗ φP )( )] = −R[φ( ) + Sφ
R( )φ( )] .

If we compute the term in square brackets, the Bogoliubov map φ, we get

(5.47) φ( ) =
c2−1

2z2
e−2Lzf(z)f(2z)− c2−1

z2
e−Lzf(z)

with Laurent series

(5.48) φ( ) = −c2−1

2z2
+

c−1c0
2z

+
1

2
(c2−1L

2 − 4c−1c0L+ 3c1c−1 + 2c20) +O(z) .

The Rota-Baxter projection yields the counterterm

(5.49) Sφ
R( ) = −R[φ( )] =

c2−1

2z2
− c−1c0

2z
.

Finally, the renormalized character is

(5.50) φR( ) =
1

2
(c2−1L

2 − 4c−1c0L+ 3c1c−1 + 2c20) +O(z).

Grading operator. In analogy to the grading operator Y on the Hopf algebra H of rooted trees,
there is also a grading operator Y on HFG. It is defined as a derivation such that

(5.51) Y (Γ) = |Γ|Γ ,

where Y (I) = 0 due to |I| = 0 for the empty graph. Consider the results

(5.52)
∂

∂L
φR( ){z} = −c−1 +O(z) , zφ(S ∗ Y )( ){z} = c−1 +O(z)

and

(5.53)
∂2

∂L2
φR( ){z} = c2−1 +O(z) , z2φ(S ∗ Y 2)( ){z} = c2−1 +O(z) .

We may therefore boldly assume that for |Γ| = k

(5.54) lim
z→0

∂k

∂Lk
φR(Γ){z}

����
L=0

= (−1)k lim
z→0

zkφ(S ∗ Y k)(Γ){z} ,

which says that the coefficient of the leading power in L of the physical limit φR(Γ) is related to the
highest order pole of the regularized value of a linear combination of (proper) subgraphs of Γ. Examples
for higher-loop order computations can be found in [BroKr98] and [BroKr99].
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Momentum Scheme. In momentum scheme, (5.54) holds for all coefficients of the renormalized
value of the graph Γ. To see this, we define a derivation θ−zL : HFG → HFG by

(5.55) θ−zL(Γ) := e−zLY (Γ) = e−zL|Γ|Γ

for a Feynman graph Γ. Note that the exponential is the operator exponential of the grading operator
Y and not the convolution exponential which appears in chapter 6. Assume now that the regularized
Feynman rules are again given by (5.38). We rewrite it as

(5.56) φL(Γ){z} = e−|Γ|zLφ0(Γ){z} ,

where L = ln(q2/µ2) is the momentum parameter. Written in this form, we can use the derivation θ−zL

and write

(5.57) φL(Γ){z} = φ0(θ−zL(Γ)){z} ,

by linearity of the character φ0. In momentum scheme, the counterterm is Sφ
R = φ0 ◦ S, which allows us

to represent the renormalized character in the form

(5.58) φR,L = (φ0 ◦ S) ∗ (φ0 ◦ θ−zL) = φ0 ◦ (S ∗ θ−zL) = φ0 ◦ (S ∗ e−zLY ) ,

where we have used that φ0 is multiplicative. Then follows

(5.59) φR,L(Γ){z} = φ0((S ∗ e−zLY )(Γ)){z} =
�

l≥0

(−z)l

l!
Llφ0 ◦ (S ∗ Y l)(Γ) ,

and thus,

(5.60) cl(Γ) := lim
z→0

(−z)l

l!
φ0 ◦ (S ∗ Y l)(Γ){z}

are the coefficients of the renormalized value of Γ in φR,L(Γ) =
�

l≥1 cl(Γ)L
l. Note that c0(Γ) = 0 as

(S ∗ Y 0)(Γ) = (S ∗ id)(Γ) = 0 by definition of the antipode S.

5.5. Virasoro algebras

Central extension of a Lie algebra. Let g be a Lie algebra over the field Q with Lie bracket [·, ·].
A subspace a is called (Lie algebra) ideal if [g, a] ⊂ a. A Lie algebra is called simple if it has no nontrivial
ideals, where the trivial ideals are the zero subspace {0} and the Lie algebra itself.

For every x ∈ g there is naturally a linear map y �→ [x, y] denoted by adx. The assignment x �→ adx
is a representation of g on itself called adjoint representation. The reader may check by using the Jacobi
identity that it is indeed a representation, i.e. for any x, y ∈ g

(5.61) ad[x,y](z) = [adx, ady](z) := (adx ◦ ady − ady ◦ adx)(z) ∀z ∈ g .

The maps adx are derivations of the Lie bracket, i.e.

(5.62) adx([y, z]) = [adx(y), z] + [y, adx(z)] ,

which the reader may also check quickly, again by employing the Jacobi identity. The kernel of the adjoint
representation ad,

(5.63) Z(g) := { x ∈ g | adx = 0 }
is called the centre of g(Z for german ’Zentrum’). These are all elements in g that commute with all
other elements. The centre is an ideal: if a ∈ Z(g), then [x, a] = 0 ∈ Z(g) for all x ∈ g. Because of this
trivial commutator behaviour, any subspace S ⊂ Z(g) is an ideal! The quotient vector space ĝ := g/Z(g)
is again a Lie algebra with Lie bracket

(5.64) [x+ Z(g), y + Z(g)] := [x, y] + Z(g) .

An extension of a Lie algebra c is given by a short exact sequence of Lie algebras3

(5.65) 0 → a → b → c → 0

where a is an ideal of b and c ∼= b/a. One also says that b is an extension of c by a. Why ’extension’?
Because one may say that b arises when we add a to c, i.e. b ∼= c⊕ a.

The short exact sequence in (5.65) is called central extension of c if a ⊂ Z(b) is a subspace, i.e. an
ideal from the centre of b. We may construct a very simple central extension of the Lie algebra ĝ by

3See appendix for a very concise introduction.
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putting a little subspace back in: take any element c ∈ Z(g). Then a := Qc ⊂ Z(g) is a one-dimensional
(sub)ideal. We set

(5.66) b := ĝ⊕ a = ĝ⊕Qc

and have a central extension of ĝ by a: it is given by 0 → a → ĝ⊕ a → ĝ → 0.

Witt algebra. We recall from section 5.1, that a Lie algebra W with generators {Ln}n∈Z and
commutator

(5.67) [Lm, Ln] = (m− n)Lm+n

is a so-called Witt algebra. Consider the derivation

(5.68)
d

dx
: Q[x−1, x] → Q[x−1, x]

on the ring of Laurent polynomials Q[x−1, x] defined as usual by

(5.69)
d

dx
(xn) = nxn−1 n ∈ Z .

Then the linear operators Ln

(5.70) Ln = −xn+1 d

dx

generate a Witt algebra. In fact, by the Lie bracket (5.67), for any n ∈ Z the subspace

(5.71) Wn := QL−n ⊕QL0 ⊕QLn

is a Lie subalgebra, i.e. a subspace of W closed under the Lie bracket. We may now extend W by a linear
space Qc with a symbol c and arrive at the extended Lie algebra V
(5.72) V := W ⊕Qc

with Lie bracket given by

(5.73) [Ln, Lm]ω := (n−m)Ln+m + ω(Ln, Lm)c , and [Ln, c]ω := 0

for all n,m ∈ Z, where ω : W ⊗W → Q is an antisymmetric bilinear form such that

(5.74) (k − n)ω(Lk+n, Lm) + (m− k)ω(Lm+k, Ln) + (n−m)ω(Ln+m, Lk) = 0

for all n,m, k ∈ Z. This condition garantees that (5.73) really is a Lie bracket. A simple possible choice
for the bilinear form is

(5.75) ω(Ln, Lm) = χn(n2 − 1)δn+m,0 ,

where χ ∈ Q, and δn,k is the Kronecker delta, i.e. δn,k = 0 for k �= n and δn,n = 1. As an exercise, the
reader may check that ω(·, ·) in (5.75) really is antisymmetric and satisfies the Jacobi condition (5.74).
This definition makes W1 = QL−1 ⊕QL0 ⊕QL1 into a trivial Lie subalgebra of V as

(5.76) ω �W1⊗W1
= 0

due to ω(Ln, ·) = 0 = ω(·, Ln) if n ∈ {−1, 0, 1}. Is this Lie subalgebra a Witt algebra? Yes. However, if
we choose χ = 1/12 the Lie algebra V is known as a Virasoro algebra, defined by (5.73). As we can see,
this Lie algebra is a nontrivial one-dimensional central extension of the Witt algebra W.

5.6. Insertion-Elimination Operators on Feynman graphs

We recall from section 5.2 the linear forms �ZT , ·� indexed by trees on the Hopf algebra of rooted
trees H defined by

(5.77) �ZT , T
�� =

�
1 T � = T
0 else

for trees T, T � ∈ T and �ZT , w� = 0 for any nontrivial forest w ∈ Aug2 = {τ τ̃ : τ, τ̃ ∈ Aug}. We have
learnt that the symbols ZT span a Lie algebra L whose universal enveloping algebra U(L) is dual to
H by the Milnor-Moore theorem. The analogous holds true for the Hopf algebra of Feynman graphs
HFG generated by symbols δΓ indexed by Feynman graphs Γ. To avoid awkward notational overload, we
identify δΓ with Γ and write

(5.78) �ZΓ,Γ
�� =

�
1 Γ� = Γ
0 else

.
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We set them equal to zero on nontrivial products of Feynman graphs.
The reader shall be reminded of derivations, the space of which is denoted by Der(HFG): these are

operators D ∈ Der(HFG) such that

(5.79) D(XY ) = D(X)Y +XD(Y )

for two Feynman graphs X,Y . This implies in particular D(I) = 0. Because we may sometimes not
appreciate this property, we shall relax our definition of derivations by only demanding (5.79) to hold for
nontrivial products.

We define the elimination operator Z−
Γ : HFG → HFG as a derivation by

(5.80) Z−
Γ (X) := (�ZΓ, ·� ⊗ id)Δ(X) =

�

i

�ZΓ, X
�
i�X ��

i ,

for a Feynman graph X, where Δ(X) =
�

i X
�
i⊗X ��

i is a variation of Sweedler’s notation. Note that only

if the coproduct of the graph X picks out Γ as a subgraph of X does Z−
Γ not vanish. In fact, the linear

span

(5.81) Z− := �Z−
Γ , Γ ∈ HFG�Q

qualifies as a Lie algebra with the commutator [Z−
Γ , Z−

Γ� ] := Z−
Γ Z−

Γ� −Z−
Γ�Z

−
Γ as bracket. It is the so-called

elimination Lie algebra on the Hopf algebra of Feynman graphs HFG. Another Lie algebra is given by
derivations known as insertion operators

(5.82) Z+
Γ (X) := X � Γ =

�

Γ�

n(Γ, X;Γ�)Γ� ,

for a Feynman graph X, where the insertion of a graph into another has already been introduced in
sections 2.1 and 5.2. Examples can be found there. These operators are part of a larger Lie algebra of
derivations given by

(5.83) Z[Γ1,Γ2](X) :=
�

i

�ZΓ2 , X
�
i� X ��

i �Gi Γ1 ,

the so-called insertion-elimination Lie algebra on HFG. The subscript bracket [Γ1,Γ2] is to be read as a
pair of data needed for the corresponding operator, without reference to a Lie bracket whatsoever. The
symbol Gi stands for the glueing data of the i-th term of the coproduct of X: the operation �Gi

inserts
the graph Γ1 into where X �

i has been taken out. In particular, this means

(5.84) X = X ��
i �Gi

X �
i .

Only if X �
i = Γ2 for at least one i can Z[Γ1,Γ2](X) be nonvanishing. For X �

i = I we have X ��
i = X and set

X ��
i �Gi Γ1 := X �Γ1. We can therefore understand the action of Z[Γ1,Γ2] on X ∈ HFG as follows: it seeks

out terms in the coproduct Δ(X) of the form Γ2 ⊗X/Γ2, inserts the graph Γ1 into the cograph X/Γ2 in
place of Γ1 and sums up all such terms. An example is

(5.85) Z[ , ]( ) = 2

where Γ2 = is cut out and replaced by Γ1 = , as it emerges in the coproduct

(5.86) Δ( ) = ⊗ I+ I⊗ + 2 ⊗ .

However, the operator Z[Γ1,Γ2] may vanish on X for two reasons: Γ2 is not a subgraph of X or Γ1 and
Γ2 do not have the same external leg structure. The reader may ponder over this one: the latter case
entails Z[Γ1,Γ2](X) = 0 for all Feynman graphs X ∈ HFG.

The insertion and elimation operators partake of this insertion-elimination operator family due to

(5.87) Z+
Γ = Z[Γ,I] , Z−

Γ = Z[I,Γ] .

This is because inserting or eliminating the empty graph I is tantamount to not inserting or eliminating
anything, respectively. The commutator can be shown to yield

[Z[Γ1,Γ2], Z[Γ3,Γ4]] = Z[Z[Γ1,Γ2](Γ3),Γ4] − Z[Γ3,Z[Γ2,Γ1](Γ4)] − Z[Z[Γ3,Γ4](Γ1),Γ2] + Z[Γ1,Z[Γ4,Γ3](Γ2)]

+ δΓ1,Γ4
Z[Γ3,Γ2] − δΓ2,Γ3

Z[Γ1,Γ4] ,
(5.88)

where

(5.89) δΓ,Γ� =

�
1 Γ = Γ�

0 else
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is the Kronecker delta map for graphs. For a proof, see [CoKr02]. However messy this may look, there
is pattern that the involved indices follow. It is there for the reader to be discovered.

Hopf algebra of words. Let A be a (possibly infinite) set of symbols which we call alphabet. If we
take its elements and freely generate the noncommutative but associative algebra W over, say Q, then
any element is a linear combination of terms of the form

(5.90) w = a1a2 ... an , aj ∈ A

called words. It can be made into a Hopf algebra with coproduct

(5.91) Δ(a1a2...an) = I⊗ a1a2...an + a1a2...an ⊗ I+
n−1�

j=1

a1...aj ⊗ aj+1...an .

One can now introduce operators

(5.92) Zw1,w2
(w) :=

�
w1v if w = w2v
0 else

which take out the subword w2 and replace it by w1. Note that in the coproduct of w� = vw2 the subword
w2 will not appear on the lhs of the tensor sign on its own: therefore Zw1,w2

(w�) = 0. This is completely
analogous to what the corresponding insertion-elmination operators on HFG do: only if the coproduct
cuts out a subgraph(here: subword) and puts it to the lhs of the tensor sign does the operator not vanish.
The commutator Lie bracket yields

[Zw1,w2
, Zw3,w4

] = ZZw1,w2 (w3),w4
− Zw3,Zw2,w1 (w4) − ZZw3,w4 (w1),w2

+ Zw1,Zw4,w3 (w2)

+ δw1,w4
Zw3,w2

− δw2,w3
Zw1,w4

,
(5.93)

with an obviously equal index pattern as the insertion-elimination operators on HFG(see also [MeKr02]).

5.7. Insertion-Elimination Lie algebra: the ladder case

An insertion-elimination Lie algebra can also be introduced on the Hopf algebra of rooted trees H.
The insertion operators are given by

(5.94) Nτ (T ) :=
�

v∈T [0]

T ∪v τ

for trees τ, T : the operation T �→ T ∪v τ glues the root r(τ) of the tree τ to the vertex v ∈ T [0] of the
tree T in such a way that

(5.95) (T ∪v τ)
[0] = T [0] ∪ τ [0] , (T ∪v τ)

[1] = T [1] ∪ τ [1] ∪ (v, r(τ)) ,

i.e. the additional edge (v, r(τ)) connects the two trees. We have already encountered a special member
of this family: the natural growth operator N : H → H in section 3.2. It is given by N = N , which
simply grafts a single leaf τ = to each vertex. As we have set N (I) = , this operator is also only a
derivation in the weak sense on H as discussed above. The elimination operator is defined like that in
(5.80)

(5.96) Mτ (T ) :=
�

i

�Zτ , T
�
i �T ��

i

for a tree T and extended to a derivation on H. The general insertion-elimination operator is

(5.97) Z[t1,t2](T ) :=
�

i

�Zt2 , T
�
i � T ��

i ∪Gi t1 .

For the nasty case4 t2 = I we set Z[t1,I] := Nt1 and the nice case is Z[I,t2] = Mt2 .

4’Nasty’ is the glueing data: an empty set void of any glueing directives.
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Ladder Hopf algebra. We recall the ladder trees λk ∈ H

(5.98) λk = k-times

with coproduct Δ(λk) =
�k

j=0 λj ⊗λk−j . They form a trivial Hopf subalgebra H� within H. These trees
correspond to ’rainbow’ or ’ladder’ graphs like

(5.99) and

with a trivial subgraph structure. To obtain the corresponding insertion-elimination operators on H� we
need to modify the insertion operator slightly. We do not have to modify the elimination operator Mλm

as it already by definition satifies Mλm(H�) ⊂ H� for any m ∈ N. The insertion operator Nλn does not
do us this favour, as it glues λn to every vertex of the argument tree, rendering sidebranchings. However,
a simple choice is

(5.100) Z+
n (λk) := λk+n n ∈ N ,

which just grafts λn ∈ H� to λk at its only leaf down at the bottom. We denote the elimination operator
by

(5.101) Z−
m(λk) = θ(k −m)λk−m m ∈ N ,

where θ(n) = 1 if n ≥ 0 and vanishing otherwise. This means the ladder must be long enough as one
cannot remove more rungs than are already there in the first place. The reader may check that indeed
Z−
m = Mλm from (5.96). The more general insertion-elimination operators are then given by

(5.102) Zn,m(λk) := θ(k −m)λk−m+n .

This coincides with Z[λn,λm] if m �= 0(excluding the nasty case). These derivations comprise a doubly
infinite family with at first glance messy commutator

[Zn,m, Zl,s] = θ(l −m)Zn,l−m+s − θ(s− n)Zl,s−n+m − θ(n− s)Zn−s+l,m

+ θ(m− l)Zn,m−l+s − δm,lZn,s + δn,sZm,l .
(5.103)

It is not messy, though: it is the analogon of (5.88), easy to check by replacing graphs by ladders. This Lie
algebra, let it be denoted by L�, has a grading: if we define the degree of an element by deg(Zn,m) := n−m
then the Z-grading reads

(5.104) L� =
�

j∈Z
�j , �j := spanC{Zn,m | n,m ∈ N : deg(Zn,m) = j } .

Indeed, as an exercise the reader may check that [�k, �i] ⊂ �k+i really is satisfied by (5.103). The grading
index has a straightforward interpretation: the elements in �j all effectively increase the length of a ladder
by j. By the grading property, we have a decomposition of L� into Lie subalgebras

(5.105) L� = L− ⊕ L0 ⊕ L+

where L− =
�

j<0 �j , L0 = �0 and L+ =
�

j>0 �j . In fact, L0 is an abelian Lie subalgebra: all of its

elements commute with each other by (5.103).
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Classical Lie algebras. The classical infinite dimensional Lie algebra

(5.106) gl(∞) := { Ei,j | i, j ∈ Z }
of generators Ei,j with Lie bracket

(5.107) [Ei,j , Ek,l] = δj,kEi,l − δi,lEk,j

has a Lie subalgebra gl+(∞) := {Ei,j |i, j ≥ 0} which is isomorphic to an ideal of the insertion-elimination
Lie algebra L�: though tedious, one can show that the operators

(5.108) Ei,j := Zi,j − Zi+1,j+1

obey (5.107) and form an ideal. We may identify this ideal with gl+(∞) and consider the short exact
sequence

(5.109) 0 → gl+(∞) −→ L� −→ C → 0

with C := L�/gl+(∞). It turns out that L� is not simple and that C allows for inifinitely many non-
equivalent central extensions.

However, there is a certain chance that one may draw on the existing vast body of knowledge about
infinite dimensional Lie algebras to further the understanding of the combinatorial structure of pertur-
bation theory in QFT.



CHAPTER 6

Renormalization Group

6.1. Formal power series and Green functions

Let Γ ∈ HFG be a Feynman graph. The residue of Γ is the graph res(Γ) obtained from Γ by shrinking
all internal edges to a single point. Instead of residue, we shall also speak of the external leg structure.
Examples are

(6.1) res( ) = res( ) = , res( ) = res( ) =

and

(6.2) res( ) = res( ) = , res( ) = res( ) = .

By R we denote a set of such residues of interest for a given renormalizable theory. It is generally finite.
The valence val(r) of the residue r = res(Γ) is defined as the number of external legs of the corresponding
graph Γ.

We consider formal power series in one variable α with coefficients in HFG for example of the form

(6.3) Γr(α) = I±
�

res(Γ)=r

α|Γ|

Sym(Γ)
Γ

where the sum is over all 1PI graphs with external leg structure r and Sym(Γ) is a symmetry factor
associated to the graph Γ. If val(r) = 2, then there is a minus sign in (6.3), and a plus sign in all other
cases. We formally apply a character representing some given Feynman rules and get a perturbative
expansion

(6.4) Gr(α, L, θ) := φ(Γr(α)){L, θ} = 1±
�

res(Γ)=r

α|Γ|

Sym(Γ)
φ(Γ){L, θ} ,

of what is known as a Green function Gr(α, L, θ) in which L and θ are external scale and angle parameters
or collections of such, respectively. If val(r) = 2, we refer to Gr as two-point function and if val(r) ≥ 3
as vertex function. Strictly speaking, this Green function is the corresponding structure function for the
amplitude r ∈ R. The textbook Green function is then given by multiplication of Gr with a form factor
such as p2 or /p = pµγ

µ for an incoming momentum p ∈ R4, well-known to readers acquainted with QFT.

6.2. Combinatorial Dyson-Schwinger equations

The formal series X(α) =
�

k≥0 α
kλk ∈ H�[[α]] with coefficients in the ladder Hopf subalgebra

satisfies the equation

(6.5) X(α) = I+ αB+(X(α)) ,

which can be easily checked since B+(λk) = λk+1 for all k ∈ N. This equation is a simple example of a
Dyson-Schwinger equation. Such equations do also exist for series with cofficients in the Feynman graph
Hopf algebra HFG like in (6.3). They are systems of equations of the form

(6.6) Γr(α) = I+ sgn(sr)B
r
+(Γ

r(α), Q(α)) , r ∈ R ,

where Q(α) is the so-called invariant charge given by

(6.7) Q(α) =
�

r∈R
(Γr(α))sr

51
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with integers sr. If val(r) = 2 one has sr < 0 and sr > 0 otherwise. This ensures a minus sign in (6.6)
for a propagator series. The operator Br

+(·, ·) is defined as

(6.8) Br
+(Γ

r(α), Q(α)) =
�

k≥1

αkBk;r
+ (Γr(α)Q(α)k)

with one-cocycles Bk;r
+ which themselves are defined by

(6.9) Bk;r
+ =

�

res(γ)=r,|γ|=k,prim.

1

Sym(γ)
Bγ

+

with one-cocyles Bγ
+. The sum extends over all 1PI primitive graphs γ with external leg structure r and

loop number k. Recall that a graph γ is called primitive if Δ(γ) = γ ⊗ I+ I⊗ γ. Notice that, in general,
there are infinitely many primitive graphs and hence the sum in (6.8) is not finite. An example for the
invariant charge Q(α) in QED is

(6.10) Q(α) =
Γ (α)2

Γ (α)Γ (α)2
.

However cryptic these expressions may look, the product Γr(α)Q(α)k of formal power series has coef-
ficients in HFG which are exactly what one can glue into a 1PI primitive graph γ with k loops and
external leg structure r. This glueing corresponds to what is known as vertex or propagator corrections
in standard QFT where our formal series are generally depicted by graphs with blobs: for QED they take
the form

(6.11) Γ = ,
1

Γ
= ,

1

Γ
= .

The Dyson-Schwinger equation for the QED vertex reads in this notation

(6.12) = + + + ...

where the tree-level graph = I is what we count as an empty graph. To understand the action of the
one-cocycles, consider the second term on the rhs of (6.12): it can be written as

(6.13) B1;
+ ( Q) = B+ ( Q) =

and has the following meaning: the growth operator B+ uses the vertex series Γ = to provide for all
radiative corrections at one vertex, say the leftmost one of the superscript skeleton graph γ = . Then,
it takes the invariant charge Q to glue in additional graphs so as to guarantee that every propagator is
fully dressed and the remaining vertices are fully corrected. For the higher loop primitives, higher powers
of Q are needed to dress all propagators and vertices which come with additional loops.

However, we come back to the general case and rewrite (6.6) into

(6.14) Γr(α) = I+ sgn(sr)
�

k≥1

αkBk;r
+ (Γr(α)Q(α)) , r ∈ R

whose solution exists and may be written in the form

(6.15) Γr(α) = I+ sgn(sr)

∞�

k=1

αkcrk , r ∈ R ,

where crk ∈ HFG is a linear combination of 1PI graphs with k loops and external leg structure r. These
coefficients generate a Hopf subalgebra with coproduct

(6.16) Δ(crk) =

k�

j=0

P r
k,j ⊗ crk−j ,
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where P r
k,j is a polynomial in these generators(see also [KrY06]). For example, in QED one has

(6.17) c0 = I , c1 =

and

(6.18) c2 = + + + + + + .

The reduced coproduct of the latter is

(6.19) �Δ(c2 ) = (2 + 3 + )⊗

which is, in terms of the generators,

(6.20) �Δ(c2 ) = (2 c1 + 3 c1 + c1 )⊗ c1 = P2,1 ⊗ c1 .

The other polynomials are P2,0 = I and P2,2 = c2 for the trivial part of the coproduct.

6.3. The structure of Green functions

If we apply the renormalized Feynman rules φR to (6.15) as in (6.4), the corresponding Green function
reads

(6.21) Gr
R(α, L, θ) = φR(Γ

r(α)){L, θ} = 1 + sgn(sr)
∞�

k=1

αkφR(c
r
k){L, θ} .

The individual coefficients φR(c
r
k) are polynomials in the external scale parameter L which is why we can

rewrite (6.21) to obtain

(6.22) Gr
R(α, L, θ) = 1 +

�

j

γr
j (α, θ)L

j ,

where j may be a multi-index and γr
j (α, θ) is a function of the loop parameter α and the angle parameter

θ. In a very simple linear case, where Q(α) = I and the operators in (6.9) are simplified significantly to
yield the analogon of (6.5) for HFG[[α]], the two-point Green function in (6.22) takes the form

(6.23) G(α, L) = 1 +
∞�

j=1

(−1)j

j!
γ(α)jLj = exp(−γ(α)L) ,

i.e. γj(α) = (−1)jγ(α)j/j!, where γ(α) is known as the anomalous dimension.
The Dyson-Schwinger equations in (6.6) for the Hopf algebra of Feynman graphs HFG, henceforth

abbreviated by DSE, correspond to a system of integral equations for the Green functions in the target
algebra A of the Feynman rules. This is on account of the universal property of graded Hopf algebras
with Hochschild one-cocycles according to which the operators Bγ

+ in (6.9) translate to integral operators
on the target algebra of the Feynman rules. This may take the form

(6.24) (φ ◦Bγ
+)(X){q} =

�
dγ(k, q) φ(X){k, q}

for a graph X with some integration measure dγ(k, q) associated to the graph γ. The renormalized version
of (6.24) is

(6.25) (φR ◦Bγ
+)(X){q} =

�
dγ(k, q) (φ(X){k, q}− φ(X){k, q0})

where q0 is an external momentum such that q20 = µ2, with µ being the renormalization point. To
distinguish between these two different types of DSE we refer to the system of integral equations as
analytic DSE and those in (6.6) as combinatorial DSE.
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Infinitesimal characters. There is an interesting way to obtain the coefficient functions γr
j (α) in

(6.22), where we suppress the angle-dependence in the notation for the moment. First we define a linear
map Y −1 : HFG → HFG by Y −1(I) = 0 and

(6.26) Y −1(γ) =
1

|γ|γ

for a product of Feynman graphs γ =
�

j γj , where |γ| :=
�

j |γj | counts the loops. This choice of

notation is justified as Y −1 really is the inverse of the grading operator Y on the augmentation ideal
Aug. Next, we introduce a family of linear maps σn : HFG → C by

(6.27) σ1 := ∂LφRY
−1(S ∗ Y )|L=0

and

(6.28) σn :=
1

n!
σ∗n
1 :=

1

n!
σ1 ∗ ... ∗ σ1� �� �
n−times

=
1

n!
mn−1σ⊗n

1 Δn−1

for n ≥ 2, where m is the usual multiplication in C and ∗ is the convolution product

(6.29) σ1 ∗ σ1 = m(σ1 ⊗ σ1)Δ .

Note that the map σ1 is a so-called infinitesimal character on HFG which means

(6.30) σ1(xy) = σ1(x)Î(y) + Î(x)σ1(y)

for all x, y ∈ HFG. This implies σ1(I) = 0 and that it vanishes on nontrivial products, i.e.

(6.31) σ1(h) = 0

if h = h1h2 with h1, h2 ∈ Aug.

Lemma 6.3.1. S ∗ Y is an infinitesimal character.

Proof. Let x, y ∈ Aug. Then

(S ∗ Y )(xy) =
�

(x)

�

(y)

S(x�y�)Y (x��y��)

=
�

(x)

�

(y)

[S(x�)S(y�)Y (x��)y�� + S(x�)S(y�)x��Y (y��)]

=
�

(x)

S(x�)Y (x��)
�

(y)

S(y�)y�� +
�

(x)

S(x�)x���

(y)

S(y�)Y (y��) = 0

(6.32)

on account of
�

(x) S(x
�)x�� = (id ∗ S)(x) = (S ∗ id)(x) = 0 which holds by definition of the antipode

S. �

The next assertion makes clear why these maps are of particular interest to us.

Proposition 6.3.2. The linear map σn evaluates a graph Γ to its n-th order coefficient of φR(Γ) with
respect to the variable L, i.e.

(6.33) σn(Γ) =
1

n!

∂n

∂Ln
φR(Γ){L}

����
L=0

.

Proof. We have to use the fact that the set g of infinitesimal characters is the Lie algebra generating
the Lie group of characters G on HFG in the sense that G = exp∗(g), i.e. for every character φ, there
exists an infinitesimal character σ ∈ g such that

(6.34) φ = exp∗(σ) :=
∞�

n=0

σ∗n

n!

and vice versa with σ∗0
1 := Î being the neutral element of the convolution product ∗. The inverse map of

exp∗ is given by

(6.35) log∗(φ) = −
∞�

n=1

1

n
(Î− φ)∗n = σ .
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For more on this, see Appendix section A.3 or [Man06]. This is but a small step away from realizing
that exp∗(Lg) for a variable L is the character group with target algebra C[L], i.e. for our character φR

we have

(6.36) φR = exp∗(LσR)

with some generator σR(see Appendix A.3). Then, clearly, we find

(6.37) ∂LφR = σR ∗ φR ⇒ ∂LφR|L=0 = σR .

To prove (6.33) it suffices to show that σR = σ1. To this end, we take a Feynman graph Γ and first
calculate

φRY
−1(S ∗ Y )(Γ) =

�
Î+ LσR +

L2

2!
(σR ∗ σR) + ...

�
Y −1(S ∗ Y )(Γ)

= LσRY
−1(S ∗ Y )(Γ) +O(L2) =

L

|Γ|σR


�

j

S(Γ�
j)Y (Γ��

j )


+O(L2)

=
L

|Γ|σR(S(I)Y (Γ)) +O(L2) = LσR(Γ) +O(L2) .

(6.38)

�

A nice consequence is the following

Corollary 6.3.3. The coefficient functions of the Green function Gr are given by

(6.39) γr
j (α) = σj(Γ

r(α)) and Gr
R(α, L) = exp∗(Lσ1)(Γ

r(α)) ,

where the ∗-exponential is defined as in (6.34).

6.4. Renormalization Group Equation

The coefficient functions γr
k of the Green function Gr satisfy

(6.40) γr
k(α) =

1

k

�
γr
1(α) +

�

u∈R
suγ

u
1 (α)α∂α

�
γr
k−1(α) , r ∈ R ,

which is a consequence of

(6.41) (Plin ⊗ Plin)Δ(Γr(α)) = PlinΓ
r(α)⊗ PlinΓ

r(α) + PlinQ(α)⊗ α∂αPlinΓ
r(α) ,

where Plin is the projector onto the linear span of the Hopf algebra’s generators, i.e. the Feynman graphs,
but excluding I. It is a fairly easy exercise to derive the so-called renormalization group equation

(6.42)

�
− ∂

∂L
+ αβ(α)

∂

∂α
+ γr

1(α)

�
Gr(α, L) = 0

from (6.40) with Gr(α, L) = 1 +
�∞

k=1 γ
r
k(α)L

k and the function

(6.43) β(α) := ∂LφR(Q(α))|L=0 = ... =
�

u∈R
suγ

u
1 (α)

known as β-function of the corresponding theory. A proof of both (6.40) and (6.42) can be found in
Appendix section A.5, where the reader will also be introduced to a slightly stronger version of (6.41)
and see how to fill the void ... in (6.43). Further relevant references are [KrSui06] and [Y11].

Example: a scalar 3-loop graph. Consider the graph

(6.44) Γ =
q1

q2

q3

q4

with reduced coproduct

(6.45) �Δ( ) = 2 ⊗ + ⊗ .

Say, the physical limit of some renormalized Feynman rules φR is

(6.46) φR( ) = c1L+ c2L
2 + c3L

3 ,
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where L = ln(q2/µ2) with q := q1 + q2 = q3 + q4, by momentum conservation. Given that we have

(6.47) φR(X){L} =

cor(X)�

j=1

σj(X)Lj =

cor(X)�

j=1

1

j!
σ∗j
1 (X)Lj

for a Feynman graph X and the infinitesimal characters σj : HFG → C introduced in the previous section,
we want to see how the coefficients c1, c2 and c3 relate to those of its subgraphs. The coradical degree of
a graph X is defined by

(6.48) cor(X) = min{ n | P(n+1)
lin (X) = 0 } ,

with P(n+1)
lin := P⊗n+1

lin Δn, analogous to the definitions for the coradical filtration of the Hopf algebra of
rooted trees H in section 3.5. Let now for the subgraphs

φR( ) = e1L+ e2L
2 , φR( ) = d1L , φR( ) = d21L

2(6.49)

be the case. The infinitesimal character Y −1(S ∗ Y ) yields

(6.50) Y −1(S ∗ Y )( ) = − 2

3
+

2

3
( )3 − 2

3

which evaluates to

(6.51) φR(Y
−1(S ∗ Y )( )) = c1L+

1

3
(3c2 − 2e1d1)L

2 +
1

3
(3c3 − 2e2d1)L

3 .

Not surprisingly, the map σ1 picks out the term

(6.52) σ1( ) = c1 .

The next map σ2 = (σ1 ∗ σ1)/2! yields

(6.53) σ2( ) =
2

2!
σ1( )σ1( ) +

1

2!
σ1( )σ1( )

� �� �
=0

= e1d1 .

For the third coefficient we have

(6.54) σ3( ) =
2

3!
σ1( )σ1( )σ1( ) =

1

3
d31

since

(6.55) P
(3)
lin ( ) = P⊗3

lin (Δ⊗ id)Δ( ) = 2 ⊗ ⊗ .

All higher σn for n ≥ 4 evaluate to zero, which is no suprise as the coradical degree of Γ is

(6.56) cor( ) = 3 .

We conclude that the leading log coefficient c3 = d31/3 and the next-to-leading log coefficient c2 = e1d1
of φR(Γ) are determined by the value of σ1 on the subgraphs of Γ. This is not surprising if we write φR

as ∗-exponential

(6.57) φR = exp∗(Lσ1) = Î+ Lσ1 +
L2

2!
σ1 ∗ σ1 +

L3

3!
σ1 ∗ σ1 ∗ σ1 + ...

with infinitesimal character σ1: all terms of higher order than k = 1 contain only values of σ1 on proper
subgraphs and cographs of Γ since the trivial part of the coproduct of Γ evaluates to zero on account of
σ1(I) = 0:

(6.58) (σ1 ⊗ σ1)(I⊗ Γ+ Γ⊗ I) = σ1(I)σ1(Γ) + σ1(Γ)σ1(I) = 0 .
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6.5. Renormalization Group Flow

We define be a family of derivations {θt}t≥0 on HFG by setting θt(Γ) := e|Γ|tΓ for a Feynman graph
Γ, which is related to the grading operator Y according to

(6.59) Y (Γ) =
d

dt
θt(Γ)

����
t=0

.

Both Y and θ can also be defined as maps acting on linear maps ψ : HFG → C through

(6.60) (Y ψ)(Γ) := ψ(Y (Γ)) , (θtψ)(Γ) := ψ(θt(Γ)) .

Recall that regularized Feynman rules φ yield parameter-dependent functions φ(Γ){z, µ}, where z ∈ C
and µ > 0 are the regulator and the renormalization scale parameter, respectively. In the following, we
consider Feynman rules φ on HFG such that

(6.61) θtzφ(Γ){z, µ} = φ(Γ){z, µet} .

This is for example the case if the graph Γ is mapped to terms proportional to factors like

(6.62)

�
q2

µ2

�−z|Γ|/2
= e−z|Γ|L/2 .

Each choice of µ > 0 corresponds to a fixed renormalization scheme. Continuously changing it by t �→ µet

amounts to ’flowing’ through this set of renormalization schemes. We are interested in the map

(6.63) t �→ Sφ
R ∗ θtz(Sφ

R)
∗−1

and, in particular, in the limit

(6.64) Ft = lim
z→0

Sφ
R ∗ θtz(Sφ

R)
∗−1 .

It can be shown to exist and moreover, Ft+s = Ft ∗Fs establishes a semi-group structure[CoKr01]. The
map

(6.65) β = ∂tFt|t=0

turns out to be the β-function (of the corresponding theory) in physics(see next section). Now, note that
infinitesimal characters ψ : HFG → C define a Lie algebra g with bracket

(6.66) [ψ,ψ�]∗ = ψ ∗ ψ� − ψ� ∗ ψ ψ,ψ� ∈ g .

Let Z0 ∈ g be a map of this type defined by

(6.67) [Z0,ψ]∗ = Y ψ

for all ψ ∈ g. Then we have the interesting ’scattering’ formula[CoKr01]

(6.68) Sφ
R = lim

t→∞
exp∗(−t(β/z + Z0)) exp∗(tZ0) ,

where we remind the reader that exp∗ is the ∗-convolution exponential1 given by

(6.69) exp∗(σ) =
∞�

k=0

σ∗n

n!
,

for an infinitesimal character σ ∈ g, where σ∗0 = Î. This exponential always evaluates to a finite sum on
any element in HFG, on account of σ(I) = 0 and the coradical filtration.

1Some authors omit the ∗-sign altogether, as it is generally clear from the context.





CHAPTER 7

Parametric Renormalization

7.1. Parametric Space

Consider the graph

(7.1) Γ = q

k + q

k

2

1

q

in φ3
6-theory with incoming momentum q ∈ R4 and internal momenta k+ q and k of particle 1 with mass

m1 and particle 2 with mass m2, respectively. Up to prefactors, the usual euclidean momentum space
Feynman rules associate the divergent integral

(7.2) DΓ =
1

π2

�

R4

d4k

((k + q)2 +m2
1)(k

2 +m2
2)

to this graph. It has an ultraviolett divergence, or more precisely, it is logarithmically divergent because
the integrand decreases asymptotically as 1/|k| for k → ∞. This integral resembles the one in section
4.4. Instead of massaging it into a convergent integral, we apply the so-called Schwinger trick

(7.3)
1

x
=

� ∞

0

dA e−xA , x ∈ C : �(x) > 0 ,

to each propagator separately to get

(7.4) DΓ =
1

π2

� ∞

0

dA

� ∞

0

dB e−(m2
1A+m2

2B)

�

R4

d4k e−[(k+q)2A+k2B] ,

where we have changed the order of integration. This is possible as the result remains infinite, a case of
conservation of ill-definedness. However, the Schwinger trick itself, as applied to the integrand in (7.2), is
a mathematically sound operation. If we now just focus on the innermost integration over k, we discover
it to be a convergent Gaussian integral: the exponent of the last exponential can be rewritten

(7.5) (k + q)2A+ k2B = (A+B)

�
k +

A

A+B
q

�2

+
AB

A+B
q2

by completing the square in the first term on the rhs. After a simple shift of the integration variable k,
this integral yields

(7.6) e−
AB

A+B q2
�

R4

d4k e−(A+B)k2

= π2 e−
AB

A+B q2

(A+B)2
.

Inserting this back into (7.4), we get

(7.7) DΓ =

�

R+

�

R+

dAdB
e−

AB
A+B q2−(m2

1A+m2
2B)

(A+B)2
,

an equally divergent integral. The only difference is: by virtue of the Schwinger trick in (7.3), we have
transformed the ultraviolett divergence in momentum space R4 into an infrared divergence in parametric
space R2

+ = R+×R+, the space of the two Schwinger variables A,B. The divergence is in this case caused
by the integrand’s singular behaviour at 0 ∈ R2

+, where both variables jointly vanish, i.e. A = 0 = B.
The integral in (7.7) is called parametric representation of the Feynman integral (7.2) with Schwinger
parameters.

An alternative parametric representation of (7.2) makes use of so-called Feynman parameters, which
we shall not discuss here. Most QFT textbooks cover this topic, see for example [PesSchr].
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7.2. Graph Polynomials

The integrand in (7.7) features the two polynomials that have a name:

(7.8) ψΓ = A+B , ϕΓ = q2AB

are the two graph polynomials associated to the graph Γ, known as first and second Symanzik polynomials,
or Kirchhoff polynomials. The integral in (7.7) then takes the form

(7.9) DΓ =

�

R2
+

dAdB
e
−ϕΓ

ψΓ
−(m2

1A+m2
2B)

ψ2
Γ

=

�

R2
+

ωΓ ,

where ωΓ is the corresponding (singular) differential form. We shall now define these polynomials for a
general scalar graph Γ, i.e. a graph with a single edge and vertex type as that in (7.1). In principle, they
can also be defined for other theories.

Let Γ be a scalar graph in D dimensions of spacetime. Then the integrand reads

(7.10) IΓ =
e
−ϕΓ

ψΓ
−M ·A

ψ
D/2
Γ

, where M ·A :=
�

e∈Γ
[1]
int

meAe

is a shorthand notation with Schwinger parameters {Ae : e ∈ Γ
[1]
int}. The two Symanzik polynomials are

given as follows. Let Γ be a scalar graph.

Definition 7.2.1. A connected and simply connected subgraph T ⊂ Γ is called spanning tree of Γ if
T [0] = Γ[0]. Then the first Symanzik polynomial is defined as

(7.11) ψΓ =
�

T

�

e/∈T [1]

Ae ,

where the sum is over all spanning trees of Γ.

The graph in (7.1) has the two spanning trees

(7.12) T1 = ⊂ and T2 = ⊂ .

For the tree T1 we have edge #2 with edge variable B that is not an edge of T1, whereas for the tree T2,
there is edge #1 with variable A not being an edge of T2. Thus, the products for each tree consist of
only one factor and we get the two terms A+B = ψΓ.

Definition 7.2.2. A spanning two-forest is a pair of connected and simply connected subgraphs T1, T2 ⊂ Γ
such that

(7.13) T1 ∩ T2 = ∅ and T
[0]
1 ∪ T

[0]
2 = Γ[0] .

The second Symanzik polynomial is then given by

(7.14) ϕΓ = −
�

T1∪T2

Q(T1) ·Q(T2)
�

e/∈T
[1]
1 ∪T

[1]
2

Ae

with the sum extending over all spanning two-forests of Γ and Q(Tj) the sum of all euclidean momenta
flowing into the tree Tj, where the momenta flowing out of it are included as flowing into it with a minus
sign.

The product Q(T1) · Q(T2) is the usual euclidean scalar product. Note that by momentum conser-
vation, we always have −Q(T1) ·Q(T2) > 0. This minus sign, however, is a convention. If dropped, one
must also drop the one in the exponential in (7.10) in front of ϕΓ/ψΓ. For our graph Γ in (7.1) there is
only one spanning two-forest:

(7.15) T1 =
v1

, T2 =
v2

⊂
v1 v2

.

For systematic derivation of these polynomials the reader is referred to the original paper [NoNa61] and
the more recent [BoWei03]. There are not many QFT textbooks with a thorough derivation. A nice
exception is [LeBe].
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Dunce’s cap. We consider another, more complicated example, the so-called Dunce’s cap graph:

(7.16) γ = 43

2

1

.

Its spanning trees can be characterized by their edges:

(7.17) T
[1]
1 = {1, 2}, T

[1]
2 = {1, 3}, T

[1]
3 = {1, 4}, T

[1]
4 = {2, 4}, T

[1]
5 = {2, 3} .

This yields

(7.18) ψγ = A3A4 +A2A4 +A2A3 +A1A3 +A1A4

for the first Symanzik polynomial. In fact, this is the determinant of the loop matrix

(7.19) Nγ =

�
A1 +A2 +A3 A1 +A2

A2 +A1 A1 +A2 +A4

�
,

which is obtained as follows. Instead of spanning trees, let us consider the independent loops of γ. They
may be written in terms of their participating edges. If we choose

(7.20) l1 = {1, 2, 3} , l2 = {1, 2, 4} ,

the components of the matrix Nγ are then given by

(7.21) (Nγ)ij =
�

e∈li∩lj

Ae , i, j = 1, 2 .

However, this formula defines in general an n × n matrix NΓ associated to a scalar graph Γ with the
property that

(7.22) ψΓ = detNΓ

for any choice of independent loops, which can be proven by algebraic methods(see [KrSS12], [BloKr10]
and references therein). For the second Symanzik polynomial, one considers the block matrix

(7.23) MΓ =




N �
Γ (

�
e∈lj

µeAe)

(
�

e∈lj
µeAe)

t
�

e∈Γ
[1]
int

µeµeAe


 ,

with the following entries. First, the symbols µe stand for a 2× 2 matrix given by

(7.24) µe = p0e12×2 − ip1eσ
1 − ip2eσ

2 − ip3eσ
3 ,

which we associate to the edge e ∈ Γ
[1]
int: {σj} are the usual Pauli matrices and pe = (p0e, p

1
e, p

2
e, p

3
e) is the

euclidean 4-momentum flowing along the oriented egde e. The notation

(7.25) (
�

e∈lj

µeAe)

stands for a column of 2 × 2 matrices with n components, one for each loop lj . This amounts to a
2n× 2 matrix, whereas its transpose in the lower left block is of type 2× 2n. N �

Γ is the 2n× 2n matrix
that one obtains from NΓ when every entry a is replaced by the 2 × 2 matrix a12×2. This leads to MΓ

being an (2n + 2) × (2n + 2) matrix. The second Symanzik polynomial ϕ is then given by its Pfaffian
determinant[KrSS12]

(7.26) ϕΓ = Pf(MΓ) ,

where the Pfaffian determinant is defined for a (2m× 2m) matrix A by

(7.27) Pf(A) :=
�

π∈S2m

sgn(π)Aπ(1),π(2)...Aπ(2m−1),π(2m) ,

the sum being over all elements in the permutation group S2m. However complicated this may seem, it
is in general easier to identify a set of independent loops and construct the loop matrix for a graph, than
to find all possible spanning trees.
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7.3. Angles and Scales

Let Γ be a Feynman graph with external leg structure res(Γ) = r and external euclidean momenta
pj ∈ R4, j = 1, ..., |r|, where we denote by |r| the number of external edges(’legs’). To each edge e ∈ Γ[1]

we associate a mass me > 0. Then, in general, the renormalized Feynman rules yield a function φR(Γ)
depending on the variables pi · pj (i, j = 1, ..., |r|) and mass parameters {m2

e|e ∈ Γ[1]}. We may define
the scale of the graph by

(7.28) S :=

|r|�

j=1

p2j

and introduce the new scaled variables θij := pi · pj/S and mass parameters θe := m2
e/S. This allows us

to define the rescaled Feynman rules

(7.29) φ�
R(Γ){S, θij , θe} := φR(Γ){Sθij , Sθe}

mapping the graph Γ to a function of the scale variable S > 0 and the angle variables {θij , θe}. We will
denote the collection of the latter two by {Θ}. We may wish to subject our renormalized Feynman rules
to certain boundary conditions and therefore introduce some modified renormalized Feynman rules ΦR

like

(7.30) ΦR(Γ){S, S0,Θ,Θ0} := φ�
R(Γ){S,Θ}− φ�

R(Γ){S0,Θ0} ,

where {S0,Θ0} is some reference (renormalization) point. The reader may find (7.30) slightly peculiar.
However, it is nothing but to a change of the renormalization point. Take Dunce’s cap

(7.31) Γ = 43

2

1

p4

p3

p2

p1

,

for example. The Feynman rules (7.30) yield something of the form

(7.32) ΦR( ){S, S0,Θ,Θ0} = c0 (Θ,Θ0) + c1 (Θ,Θ0) ln(S/S0) + c2 (Θ,Θ0) ln
2(S/S0) .

For the only subgraph we get

(7.33) ΦR( ){S, S0,Θ,Θ0} = c0 (Θ,Θ0) + c1 (Θ,Θ0) ln(S/S0) .

By the renormalization group we have

(7.34) c2 (Θ,Θ0) =
1

2
c1 (Θ,Θ0)c1 (Θ,Θ0) .

We now come back to parametric Feynman integrals which we have introduced in the previous section.
Let

(7.35) EΓ := |Γ[1]
int|

be the number of internal edges of a graph Γ and ωΓ{S,Θ} be the (singular) differential form such that

(7.36) ωΓ{S,Θ} = IΓ{S,Θ}(A1, ..., AEΓ) dA1 ∧ ... ∧ dAEΓ

with Schwinger variables Aj and

(7.37) Φ(Γ){S,Θ} =

�

REΓ
+

ωΓ{S,Θ}

yields the rescaled unrenormalized Feynman integral in parametric representation. Suppose now that Γ
is primitive. Then, this integral ceases to be of purely formal nature as soon as we replace (7.37) by

(7.38) ΦR(Γ){S, S0,Θ,Θ0} =

�

REΓ
+

(ωΓ{S,Θ}− ωΓ{S0,Θ0}) ,

which is a convergent and hence well-defined integral.
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Symanzik polynomials. We recall the two Symanzik polynomials

(7.39) ψΓ =
�

T

�

e/∈T [1]

Ae and ϕΓ = −
�

T1∪T2

Q(T1) ·Q(T2)
�

e/∈T
[1]
1 ∪T

[1]
2

Ae .

The notation has been introduced in the foregoing section. The rescaling affects only the second polyno-
mial ϕΓ as it depends on the kinematic variables Q(T1) · Q(T2) whereas the first Symanzik polynomial
ψΓ does not depend on anything other than the Schwinger variables. To streamline the notation, we set

(7.40) ϕΓ(Θ) := ϕΓ/S , φΓ(Θ) := ϕΓ(Θ) + ψΓ

EΓ�

j=1

Ajθj

with the rescaled variables introduced above. Then the integrand IΓ in (7.36) takes the form

(7.41) IΓ{S,Θ} =
e
−S

φΓ(Θ)

ψΓ

ψ2
Γ

in which we have supressed the integration (Schwinger) variables Aj and D = 4. We shall now rewrite

(7.42) ΦR(Γ){S, S0,Θ,Θ0} =

�

REΓ
+

e
−S

φΓ(Θ)

ψΓ − e
−S0

φΓ(Θ0)

ψΓ

ψ2
Γ

dA1 ∧ ... ∧ dAEΓ

into a projective integral and show that it exists for a primitive graph Γ. First we transform the Schwinger
variables by Aj = taj , where t := (A2

1 + ...+A2
EΓ

)1/2 and get

dA1 ∧ ... ∧ dAEΓ = (a1dt+ tda1) ∧ ... ∧ (aEΓdt+ tdaEΓ)

= tEΓ−1dt ∧ (a1da2 ∧ ... ∧ daEΓ
− ...+ (−1)EΓaEΓ

da1 ∧ ... ∧ daEΓ−1)

=: tEΓ−1dt ∧ ΩΓ ,

(7.43)

where ΩΓ is the volume form in projective space PΓ := PEΓ−1(R+). Due to

(7.44) ψΓ{Aj} = t|Γ|ψΓ{aj}
and REΓ ∼= R+ × PΓ the integral in (7.37) takes the form1

(7.45)

�

R+

�

PΓ

e
−t S

φΓ(Θ)

ψΓ

ψ2
Γ

dt

t
∧ ΩΓ

which is ill-defined due to the integral over R+: the form dt/t is singular at t = 0, where all Schwinger
variables collectively vanish. However, this integral can be regularized. We will now use the formula

(7.46)

� ∞

c

dt

t
e−tX = − ln c− lnX − γE +O(c ln c)

with regulator c > 0 and fixed X > 0(see appendix for a proof). Subtracting this integral at X0 allows
us to take the limit c → 0 to obtain

(7.47)

� ∞

0

dt

t
(e−tX − e−tX0) = − ln(X/X0) .

This can be used to carry out the t-integration in (7.42) with transformed integration variables as in
(7.45) yielding the projective integral

ΦR(Γ){S, S0,Θ,Θ0} = −
�

PΓ

ln(S/S0) + ln(φΓ(Θ)/φΓ(Θ0))

ψ2
Γ

ΩΓ

= (−
�

PΓ

ΩΓ

ψ2
Γ

) ln(S/S0)−
�

PΓ

ln(φΓ(Θ)/φΓ(Θ0))

ψ2
Γ

ΩΓ .

(7.48)

Comparing this with (7.33) we identify

(7.49) cΓ0 (Θ,Θ0) = −
�

PΓ

ln(φΓ(Θ)/φΓ(Θ0))

ψ2
Γ

ΩΓ, cΓ1 (Θ,Θ0) = −
�

PΓ

ΩΓ

ψ2
Γ

.

These numbers are periods: interesting numbers which we shall come back to later.

1Note that 2|Γ| = EΓ for a vertex graph in φ4-theory.
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7.4. Forest Formula

We extend the definition of the two Symanzik polynomials for a product of graphs γ =
�

j γj by
setting

(7.50) ϕγ :=
�

j

ϕγj

�

l �=j

ψγl
, ψγ :=

�

j

ψγj
.

Then, one has the following

Proposition 7.4.1. Let γ ⊂ Γ be a subgraph which is a product of 1PI divergent subgraphs. Then,

(7.51) ψΓ = ψΓ/γψγ +RΓ
γ , ϕΓ = ϕΓ/γψγ +R

Γ

γ ,

with polynomials RΓ
γ and R

Γ

γ such that

(7.52) |RΓ

γ |γ ≥ |RΓ
γ |γ = |ψγ |γ + 1,

where |...|γ is the polynomial degree in the edge variables of γ.

Proof. The proof makes use of the definition of spanning trees and two-forests. �

The well-known forest formula of QFT yields terms of the form

(7.53)
e
−S0

φf (Θ0)

ψf

ψ2
f

e
−S

φΓ/f (Θ)

ψΓ/f

ψ2
Γ/f

− e
−S0

φf (Θ0)

ψf

ψ2
f

e
−S0

φΓ/f (Θ0)

ψΓ/f

ψ2
Γ/f

,

which, in the notation of (7.41) corresponds to

(7.54) (id−R0)If{S0,Θ0}IΓ/f{S,Θ} = If{S0,Θ0}IΓ/f{S,Θ}− If{S0,Θ0}IΓ/f{S0,Θ0},
where R0 evaluates the integrand at the renormalization point {S0,Θ0}. If we apply the same procedure
to the corresponding integral as in the previous section which lead to the projective integral in (7.48), we
arrive at the projective form

(7.55) Mf
Γ{S, S0,Θ,Θ0} = −

ln
�

SφΓ/f (Θ)ψf+S0φf (Θ0)ψΓ/f

S0φΓ/f (Θ0)ψf+S0φf (Θ0)ψΓ/f

�

ψ2
Γ/fψ

2
f

ΩΓ .

Finally, the renormalized Feynman rules can be written as the projective form

(7.56) ωΓ{S, S0,Θ,Θ0} =
�

f∈F(Γ)

(−1)|f |Mf
Γ{S, S0,Θ,Θ0} ,

where the sum is over all forests of Γ including the empty one f = ∅, for which the graph polynomials
are defined as ψ∅ := 1 and ϕ∅ := 0.

7.5. Decomposing Feynman rules

An interesting result of [BrowKr11] is

(7.57) ΦR(Γ){S, S0,Θ,Θ0} = Φ∗−1
fin (Γ){Θ0} ∗ Φ1s(Γ){S/S0} ∗ Φfin(Γ){Θ}

which says that the Feynman rules can be decomposed with respect to the convolution product for
characters into angle and scale-dependent parts2.

Let us again consider a primitive graph Γ which is evaluated to the projective integral in (7.48). If
we rewrite it in the form

ΦR(Γ){S, S0,Θ,Θ0} =

�

PΓ

lnφΓ(Θ0)

ψ2
Γ

ΩΓ + (−
�

PΓ

ΩΓ

ψ2
Γ

) ln(S/S0)

−
�

PΓ

lnφΓ(Θ)

ψ2
Γ

ΩΓ ,

(7.58)

then the decomposition formula in (7.57) is nearly there. To see this, we take the coproduct of a primitive
graph twice

(7.59) Δ2(Γ) = Γ⊗ I⊗ I+ I⊗ Γ⊗ I+ I⊗ I⊗ Γ ,

2The index 1s stands for ’one-scale’, ’fin’ for ’finite’, as these characters are finite from the start.
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as this is what the three characters in (7.57) are applied to. As the antipode yields S(Γ) = −Γ we see
that

(7.60) Φ∗−1
fin (Γ){Θ0} = Φfin(S(Γ)){Θ0} = Φfin(−Γ){Θ0} = −Φfin(Γ){Θ0} .

Note that (7.59) tells us that (7.57) can only deliver three terms and must be of the form

(7.61) ΦR(Γ){S, S0,Θ,Θ0} = Φ∗−1
fin (Γ){Θ0}+ Φ1s(Γ){S/S0}+ Φfin(Γ){Θ} .

However, comparing this with (7.58) misleads us to erroneous assumptions: to find the characters in the
decomposition formula (7.57), one has to introduce auxiliary Feynman graphs. We smuggle in the first
Symanzik polynomial ψΓ2• of an auxiliary graph Γ2• and arrive at the correct terms which read

(7.62) Φfin(Γ){Θ} = −
�

PΓ

ln φΓ(Θ)
ψΓ2•

ψ2
Γ

ΩΓ, Φ1s(Γ){S/S0} = (−
�

PΓ

ΩΓ

ψ2
Γ

) ln(S/S0) .

Although the contribution of this graph drops out in (7.58), it is necessary for a coherent definition. The
auxiliary graph is obtained from Γ in two steps. First, one makes Γ into a so-called single-scale graph
Γ2: all internal masses are set to zero, all external momenta except two are set to zero and the remaining
momenta ’carry’ the whole flow of momenta. The superscript says that the graph has only 2 external
vertices3. Identifying these two remaining external edges yields the graph Γ2•. As an example, consider
again Dunce’s cap in (7.31): if we apply this scheme, we get

(7.63) Γ2 =
0

4

0

p1 + p2

p1 + p2

3

2

1

, Γ2• =
0

4

0

p1 + p2

p1 + p2

3

2

1
.

A more challenging example is the graph G

(7.64) G = p4

p2

p3

p1

3

1

2

→ G2 = 0

0

p

p

3

1

2

,

where G2 is not angle-dependent, if we choose p such that p2 = S. G has the subgraph

(7.65) γ = .

The double coproduct of G reads

(7.66) Δ2(G) = G⊗ I⊗ I+ I⊗G⊗ I+ I⊗ I⊗G+ γ ⊗G/γ ⊗ I+ I⊗ γ ⊗G/γ + γ ⊗ I⊗G/γ .

Applying the map Φ∗−1
fin ⊗ Φ1s ⊗ Φfin gives

Φ∗−1
fin (G){Θ0}+ Φ1s(G){S/S0}+ Φfin(G){Θ}+ Φ∗−1

fin (γ){Θ0}Φ1s(G/γ){S/S0}
+ Φ1s(γ){S/S0}Φfin(G/γ){Θ}+ Φ∗−1

fin (γ){Θ0}Φfin(G/γ){Θ} .
(7.67)

3A vertex is called external, if it is adjacent to at least one external leg.
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By Gγ we denote the graph in which the subgraph γ is made into a single-scale graph by rearranging
its external edges in G(and setting all internal masses to zero):

(7.68) Gγ =

p4

p2

p3

p1

3
1

2

→ G2
γ =

0

0

p

p

3
1

2

.

These auxiliary graphs are either single-scale or have single-scale subgraphs and are the ingredients needed
in constructing the decomposition in (7.67). For example, G2

γ , when subjected to renormalized Feynman
rules, yields an angle-independent term: both the whole graph and its subgraph are single-scale and
therefore not angle-dependent. This graph hence contributes to Φ1s(G){S/S0}, where, in this example,
a convenient scale S is given by S := (p1 + p2 + p3)

2. For details concerning this example and the
decomposition of Feynman rules as in (7.57), the reader is referred to [BrowKr11]. For Dunce’s cap in
(7.31), see [BrowKr12].

7.6. Periods as RG-Invariants

Let Γ be a primitive Feynman graph. In the previous lecture we have seen that the associated
renormalized Feynman integral can be rewritten as the projective integral

(7.69) ΦR(Γ){S, S0,Θ,Θ0} = −
�

PΓ

ln(S/S0) + ln(φΓ(Θ)/φΓ(Θ0))

ψ2
Γ

ΩΓ ,

which is a polynomial in the scale variable L = ln(S/S0)

(7.70) ΦR(Γ){S, S0,Θ,Θ0} = cΓ0 (Θ,Θ0) + cΓ1 (Θ,Θ0) ln(S/S0)

with coefficients

(7.71) cΓ0 (Θ,Θ0) = −
�

PΓ

ln(φΓ(Θ)/φΓ(Θ0))

ψ2
Γ

ΩΓ, cΓ1 (Θ,Θ0) = −
�

PΓ

ΩΓ

ψ2
Γ

=: pΓ .

A closer look reveals that the highest order coefficient pΓ is not at all angle-dependent, and moreover,
does not depend on any kinematical data of the graph. It is a constant number which is renormalization
scheme independent in the sense that it is invariant with respect to a change of the renormalization point
{S0,Θ0}: we refer to such numbers as RG-invariants. On account of the form of the integral, the number
pΓ is a period(see appendix for a short introduction).

Let now Γ be a graph such that �Δ(Γ) = γ ⊗ Γ/γ with primitive sub- and cograph γ and Γ/γ,
respectively, i.e.

(7.72) �Δ(γ) = 0, �Δ(Γ/γ) = 0 .

The renormalized Feynman rules evaluate this to

(7.73) ΦR(Γ){S, S0,Θ,Θ0} = cΓ0 (Θ,Θ0) + cΓ1 (Θ,Θ0) ln(S/S0) + pΓ ln
2(S/S0) ,

where again, the highest log coefficient pΓ is scheme-independent. By the renormalization group, we
know that it is given by the first order log coefficients of its subgraph and cographs: in this simple case,
this means

(7.74) pΓ =
1

2
pγpΓ/γ .

Given that these numbers are RG-invariants, and they are by the same argument as in (7.71), so is pΓ.
But there is another way to prove this. By the forest formula, we have

(7.75) ΦR(Γ) = −
�

f∈F(Γ)

(−1)|f |
�

PΓ

ln
�

SφΓ/f (Θ)ψf+S0φf (Θ0)ψΓ/f

S0φΓ/f (Θ0)ψf+S0φf (Θ0)ψΓ/f

�

ψ2
Γ/fψ

2
f

ΩΓ .
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As the set of forests F(Γ) has only one nontrivial forest, namely f1 = γ and the trivial one f2 = ∅, this
integral takes the form

(7.76) ΦR(Γ) = −
�

PΓ


 ln

SφΓ(Θ)
S0φΓ(Θ0)

ψ2
Γ

−
ln
�

SφΓ/γ(Θ)ψγ+S0φγ(Θ0)ψΓ/γ

S0φΓ/γ(Θ0)ψγ+S0φγ(Θ0)ψΓ/γ

�

ψ2
Γ/γψ

2
γ


ΩΓ .

It is in fact convergent: when all edge variables collectively tend to zero, the denominator polynomials
approach each other quickly because

(7.77) ψΓ = ψΓ/γψγ +RΓ
γ ∼ ψΓ/γψγ ,

for vanishing edge variables, where RΓ
γ → 0 faster than all other terms. Furthermore, the numerators

of the two fractions do also approach one another. All this happens in such a way that the integrand
vanishes although each term individually has a singularity. To compute the coefficient pΓ in (7.73), we
apply the differential operator

(7.78)
∂

∂ ln(S/S0)
= S

∂

∂S

twice to the rhs of (7.76), i.e. compute

(7.79) − S
∂

∂S
S

∂

∂S

�

PΓ


 ln

SφΓ(Θ)
S0φΓ(Θ0)

ψ2
Γ

−
ln
�

SφΓ/γ(Θ)ψγ+S0φγ(Θ0)ψΓ/γ

S0φΓ/γ(Θ0)ψγ+S0φγ(Θ0)ψΓ/γ

�

ψ2
Γ/γψ

2
γ


ΩΓ

and show that this monstrous expression really is independent of the renormalization point. The result
is

(7.80)

�

PΓ

(S0/S)φγφΓ/γ

ψΓ/γψγ(φΓ/γψγ + (S0/S)φγψΓ/γ)2
ΩΓ .

It is not obvious that this expression really is independent of x = S/S0. However, it can be scaled away:
set ae =: xa�e for the edge variables of γ. The Symanzik polynomials and the projective form scale as

(7.81) ΩΓ → xEγΩΓ, ψγ → x|γ|ψγ , φγ → x|γ|+1φγ .

Together with Eγ = 2|γ| for a graph in φ4-theory, we get

(7.82)

�

PΓ

φγφΓ/γ

ψΓ/γψγ(φΓ/γψγ + φγψΓ/γ)2
ΩΓ ,

which is independent of any external variables. To see that this decomposes into pγ and pΓ/γ , we use

(7.83) ΩΓ = tEγ−1dt ∧ Ωγ ∧ ΩΓ/γ

which involves the same type of transformation applied to the edge variables of γ as we have done in the
last lecture. The integral then takes the form

(7.84)

�

PΓ

φγφΓ/γ

ψΓ/γψγ(φΓ/γψγ + tφγψΓ/γ)2
dt ∧ Ωγ ∧ ΩΓ/γ ,

in which we can carry out the t-integration and finally arrive at

(7.85)

�

PΓ

Ωγ ∧ Ωγ

ψ2
γψ

2
Γ/γ

= (

�

Pγ

Ωγ

ψ2
γ

)(

�

PΓ/γ

ΩΓ/γ

ψ2
Γ/γ

) = pγpΓ/γ .

7.7. Quadratic Divergences in BPHZ

We consider the scalar graph

(7.86) Γ =
m

m

m

q q

in φ4-theory in D = 4 dimensions with internal particles of equal mass m. The corresponding Symanzik
polynomials are

(7.87) ψΓ = A2A3 +A1A3 +A1A2 , ϕΓ = q2A1A2A3 .
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Abbreviating

(7.88) φΓ(q
2,m2) := q2A1A2A3 +m2(A1 +A2 +A3)ψΓ,

the singular differential form in parametric representation for the graph Γ reads

(7.89) ωΓ(q
2,m2) =

e−φΓ(q
2,m2)/ψΓ

ψ2
Γ

dA1 ∧ dA2 ∧ dA3 .

If we again carry out the transformation of variables Aj = taj as before, we end up with4

(7.90) ωΓ(q
2,m2) =

e−tφΓ(q
2,m2)/ψΓ

ψ2
Γ

dt

t2
∧ ΩΓ .

The identity

(7.91)

� ∞

c

dt

t2
e−tX =

1

c
−X −X

� ∞

c

dt

t
e−tX +O(c)

helps us understand the behaviour of the Feynman integrand in (7.90) upon BPHZ subtraction at q2 =
m2(’on-shell’) if we set

(7.92) X := φΓ(q
2,m2)/ψΓ =: q2A+m2B

and plug this in (7.91) to get the projective form

(7.93)

� ∞

c

e−tX dt

t2
∧ ΩΓ

ψ2
Γ

=
ΩΓ

cψ2
Γ

− X

ψ2
Γ

ΩΓ −
� ∞

c

e−tX(q2A+m2B)
dt

t
∧ ΩΓ

ψ2
Γ

+O(c) .

If we set X0 := X|q2=m2 = m2(A+B) and apply a BHZP subtraction,
� ∞

c

�
e−tX − e−tX0

� dt
t2

∧ ΩΓ

ψ2
Γ

= −(X −X0)
ΩΓ

ψ2
Γ

−
� ∞

c

(q2e−tX −m2e−tX0)A
dt

t
∧ ΩΓ

ψ2
Γ

−m2

� ∞

c

(e−tX − e−tX0)B
dt

t
∧ ΩΓ

ψ2
Γ

(7.94)

all terms except one yield finite and well-defined expressions. The only misbehaving term in (7.94) is

(7.95) −
� ∞

c

(q2e−tX −m2e−tX0)A
dt

t
∧ ΩΓ

ψ2
Γ

which leads to a logarithmically divergent contribution as c → 0. We need to get rid of it by yet another
subtraction: if we deduct

(7.96) −
� ∞

c

(q2e−tX0 −m2e−tX0)A
dt

t
∧ ΩΓ

ψ2
Γ

from the misbehaving expression (7.95) we have tamed it since

(7.97) − q2
� ∞

c

(e−tX − e−tX0)A
dt

t
∧ ΩΓ

ψ2
Γ

keeps finite even in the limit c → 0. This seems like a rather idiosyncratic surgical operation. However,
the reader may check that the subtraction term (7.96) is given by

(7.98) (q2 −m2)
∂

∂q2

����
q2=m2

� ∞

c

e−tX dt

t2
∧ ΩΓ

ψ2
Γ

.

If we set

(7.99) IntcΓ(q
2,m2) :=

� ∞

c

e−tX dt

t2
∧ ΩΓ

ψ2
Γ

,

then the total subtraction procedure we have employed is

(7.100) IntcΓ(q
2,m2)− IntcΓ(q

2,m2)
��
q2=m2 − (q2 −m2)

∂

∂q2

����
q2=m2

IntcΓ(q
2,m2)

which can be written in terms of a Rota-Baxter operator R given by

(7.101) R[IntcΓ(q
2,m2)] := IntcΓ(q

2,m2)
��
q2=m2 + (q2 −m2)

∂

∂q2

����
q2=m2

IntcΓ(q
2,m2) .

4For a propagator graph in φ4-theory one has: 2|Γ| = EΓ − 1.
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Then, we can take the limit and obtain the renormalized value of the graph Γ:

lim
c→0

�

PΓ

(id−R)[IntcΓ(q
2,m2)] = −

�

PΓ

(X −X0)
ΩΓ

ψ2
Γ

+

�

PΓ

X ln(X/X0)
ΩΓ

ψ2
Γ

= −
�

PΓ

[φΓ(q
2,m2)− φΓ(m

2,m2)]
ΩΓ

ψ3
Γ

+

�

PΓ

φΓ(q
2,m2) ln

�
φΓ(q

2,m2)

φΓ(m2,m2)

�
ΩΓ

ψ3
Γ

.

(7.102)

7.8. Linear Dyson-Schwinger Equation

Recall from Lecture 13 that in the Hopf algebra of rooted trees H, the combinatorial DSE

(7.103) X(α) = I+ αB+(X(α))

has a unique solution in the ladder Hopf algebra H�[[α]] given by X(α) = I +
�

k≥1 λkα
k, where λk is

the ladder tree with k rungs.

Log-divergent case. In a simple toy model, we define the unregularized Feynman rules on the
ladder Hopf algebra H� by the intertwining equation of the universality theorem5

(7.104) φ(B+(·), u) =
� ∞

0

dx

x+ u
φ(·, x) ,

where u > 0 is an external parameter representing some kinematic variable. Sadly, if we take the simplest
ladder λ1 = • = B+(I), we find

(7.105) φ(•, u) = φ(B+(I), u) =
� ∞

0

dx

x+ u
φ(I, x) =

� ∞

0

dx

x+ u
= ∞

on account of the log-divergence of the integral. We may cure this pathology by introducing a cut-off
regulator Λ and get a finite regularized value

(7.106) φΛ(•, u) =
� Λ

0

dx

x+ u
= ln[1 + Λ/u] .

The renormalized Feynman rules then give

(7.107) φR(•, u/u0) := lim
Λ→∞

[φΛ(•, u)− φΛ(•, u0)] = − ln[u/u0] =

� ∞

0

dx

�
1

x+ u
− 1

x+ u0

�
.

with renormalization point u0. We can now recast (7.104) into the well-defined identity

(7.108) φR(B+(·), u/u0) =

� ∞

0

dx

�
1

x+ u
− 1

x+ u0

�
φR(·, x/u0)

for the renormalized character. Applying this to (7.103), yields the integral equation

(7.109) G(α, ln(u/u0)) = 1 + α

� ∞

0

dx

�
1

x+ u
− 1

x+ u0

�
G(α, ln(x/u0)),

i.e. a Dyson-Schwinger Equation (DSE) for the renormalized Green function

(7.110) G(α, ln(u/u0)) := φR(X(α), u/u0) .

Fortunately, the analytic DSE in (7.109) can actually be solved by virtue of the ansatz

(7.111) G(α, ln(u/u0)) =

�
u

u0

�−γ(α)

= e−γ(α) ln(u/u0) =
∞�

k=0

(−1)k
γ(α)k

k!
lnk(u/u0)

with a function γ(α). Plugging this into (7.109), one finds that (7.111) is a solution, if γ(α) obeys

(7.112) 1 = αF (γ(α))

with Mellin transform

(7.113) F (ρ) =

� ∞

0

x−ρ

1 + x
= Γ(ρ)Γ(1− ρ) = ρ−1 +

π2

6
ρ+O(ρ3).

The DSE in (7.109) can be formally rewritten in the form

(7.114) G(α, ln(u/u0)) = Z(α, u0) + α

� ∞

0

dx

x+ u
G(α, ln(x/u0))

5See Lecture 7.
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where Z(α, u0) = Sφ
R(X(α), u0) is the counterterm. This expression is strictly only valid, if the inte-

grations are regularized, preferably by analytic regularization as in (7.113). However, we shall suppress
the regulator in what follows. The counterterm Z(α, u0) encapsulates the ’infinity’ caused by the overall
divergence of the integral kernel in (7.114). It is derived as follows. First note that the solution X(α) of
the combinatorial DSE is grouplike, i.e. Δ(X(α)) = X(α)⊗X(α) and therefore, we have

φR(X(α), u/u0) = Sφ
R(X(α), u0)φ(X(α), u) = Sφ

R(X(α), u0)[1 + α

� ∞

0

dx

x+ u
φ(X(α), x)]

= Sφ
R(X(α), u0) + α

� ∞

0

dx

x+ u
Sφ
R(X(α), u0)φ(X(α), x)

= Sφ
R(X(α), u0) + α

� ∞

0

dx

x+ u
φR(X(α), u/u0) .

(7.115)

Comparing this with (7.109) yields the assertion.

Linearly divergent Green function. If the integral kernel of the Feynman rules in (7.104) is
modified so as to take the form

(7.116) K(x, u) =
x

x+ u
,

one contracts a linear divergence: the integrand behaves like a constant as x goes to infinity. If we
regularize it by a cut-off, we get

(7.117) φΛ(•, u) =
� Λ

0

dx K(x, u) =

� Λ

0

dx
x+ u− u

x+ u
=

� Λ

0

dx

� �� �
lin. div.

− u

� Λ

0

dx

x+ u� �� �
log-div.

.

This suggests that if we add a counterterm of the form

(7.118) Z0(Λ) + uZ1(Λ) := −
� Λ

0

dx+ u

� Λ

0

dx

x+ u0
= −Λ+ u ln(1 + Λ/u0) ,

i.e. decomposed into a linearly divergent term Z0 and a log-divergent term Z1, they jointly cure the
integral

�∞
0

dxK(x, u) of its linear divergence in the sense that the limit

(7.119) φR(•, u) = lim
Λ→∞

[φΛ(•, u) + Z0(Λ) + uZ1(Λ)] = −u ln[u/u0]

exists and is the renormalized value. If we write the kernel as

(7.120) K(x, u) =
x

x+ u
= 1− u

x+ u
=: 1− uC(x, u)

then the renormalized kernel KR(x, u) is given by

(7.121) KR(x, u) = −u[C(x, u)− C(x, u0)] =
u

x+ u0
− u

x+ u

which satisfies the boundary condition KR(x, u0) = 0. A kernel of the sort in (7.116) will appear in the
analytic DSE of a toy model given by the unrenormalized (and hence ill-defined) identity

(7.122) Σ(α, u) = u+ α

� ∞

0

dx

x+ u
Σ(α, x)

where Σ(α, u) = u G(α, ln(u/u0)) satisfies Σ(α, u0) = u. To renormalize it, we write it in terms of the
corresponding (yet unknown) infinite counterterms and get

(7.123) Σ(α, u) = Z0(α, u0) + uZ1(α, u0) + α

� ∞

0

dx

x+ u
Σ(α, u).

Inserting the ansatz

(7.124) u G(α, ln(u/u0)) = u

�
u

u0

�−γ(α)

= u e−γ(α) ln(u/u0)

yields

(7.125) u

�
u

u0

�−γ(α)

= Z0(α, u0) + uZ1(α, u0) + α

� ∞

0

dx
x

x+ u

�
x

u0

�−γ(α)

,
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where we recognize our linearly divergent integral kernel K(x, u) from (7.116). If we again decompose
this kernel into K(x, u) = 1− uC(x, u) we get

u

�
u

u0

�−γ(α)

= Z0(α, u0) + α

� ∞

0

dx

�
x

u0

�−γ(α)

+ uZ1(α, u0)− α u

� ∞

0

dx C(x, u)

�
x

u0

�−γ(α)

.

(7.126)

Wisely choosing the counterterms

(7.127) Z0(α, u0) = −α

� ∞

0

dx

�
x

u0

�−γ(α)

,

for the linear divergence and for the log-divergent piece

(7.128) Z1(α, u0) = 1 + α

� ∞

0

dx C(x, u0)

�
x

u0

�−γ(α)

= 1 + αF (γ(α))

with Mellin transform F as in (7.113), we find

(7.129) u

�
u

u0

�−γ(α)

= u+ u

�
1−
�

u

u0

�−γ(α)
�
αF (γ(α)).

It follows that the ansatz is a solution as long as γ(α) fulfills

(7.130) − 1 = αF (γ(α)) .





APPENDIX A

Renormalization Group of Hopf Algebra Characters

Within this part of the Appendix, we shall use the following notation which is independent of all
other parts of these lecture notes: C is a coassociative coalgebra, B will denote a connected bialgebra
with grading B =

�
j≥0 Bj , where B0 = QI. PB is the projector onto the augmentation ideal of B. H

will denote a connected Hopf algebra H =
�

j≥0 Hj and P the augmentation ideal projector. A is an
algebra. Except for H, all structures on C,B,H,A are indexed by the corresponding letter. For example,
ΔC denotes the coproduct on C, whereas ΔB and Δ are those of B and H, respectively.

A.1. Convolution Group

Let L(C,A) be the set of linear maps from C to A. By virtue of the structures on both spaces, the
convolution of two linear maps f, g ∈ L(C,A), given by

(A.1) f ∗ g := mA(f ⊗ g)ΔC ,

is an associative bilinear operation on L(C,A). The map e := uA ◦ �C is the neutral element with respect
to ∗.

Proposition A.1.1. The pair (L(C,A), ∗) is a monoid, i.e. a set equipped with an associative operation
and a neutral element with respect to it.

Proof. See section 3.4. �

Naturally, one can define ∗-powers by setting f∗0 := e, f∗1 := f and f∗n+1 := f ∗ f∗n recursively.
Even exponentials

(A.2) exp∗(f) :=
�

n≥0

f∗n

n!

may exist. However, let us first see whether one can find an inverse for a linear map f . For this to exist,
we must make sure that the von Neumann series

(A.3) f∗−1 = (e− (e− f))∗−1 =
�

n≥0

(e− f)∗n

can be given some sense. This is possible if we replace the coalgebra C by a connected bialgebra B and
restrict ourselves to such linear maps that preserve the unit map. i.e. f(IB) = 1A. Then the grading
property of the coproduct

(A.4) Δ(Hn) ⊂
n�

j=0

Hj ⊗Hn−j

garantees that for every element x ∈ B there exists an N > 0 such that

(A.5) (e− f)∗n(x) = 0 ∀n > N.

This is due to (e− f)(IB) = e(IB)− f(IB) = 0. Consequently, we have

Proposition A.1.2. The subset G(B,A) := {f ∈ L(B,A)|f(IB) = 1A} ⊂ L(B,A) is a group, called the
convolution group, i.e. for every map f ∈ G(B,A) there exist a linear map f∗−1 such that

(A.6) f ∗ f∗−1 = f∗−1 ∗ f = e

and f∗−1(IB) = 1A.

73
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Proof. Take x ∈ B. Then there is an N > 0 such that (e − f)∗n = 0 for all n > N . Then, using
the shorthand Δ(x) = x� ⊗ x��, we compute

(f∗−1 ∗ f)(x) =
�

n≥0

(e− f)∗n(x�)f(x��) =
�

n≥0

(e− f)∗n(x�)(e(x��)− [e(x��)− f(x��)])

=
�

n≥0

(e− f)∗n(x�)e(x��)−
�

n≥0

(e− f)∗n(x�)[e(x��)− f(x��)]

=
�

n≥0

(e− f)∗n(x)−
�

n≥0

(e− f)∗n+1(x) = (e− f)∗0(x) = e(x) .

(A.7)

This works equally well with f ∗ f∗−1(x). �

Let us consider the subspace(!)

(A.8) g(B,A) := {σ ∈ L(B,A)|σ(IB) = 0}
of linear maps for which the convolution exponential surely exists, as exp∗(σ)(x) is a finite sum for all
x ∈ B. We observe

(A.9) exp∗(σ)(IB) = e(IB) + σ(IB)� �� �
=0

+
1

2!
σ(IB)σ(IB) + ... = e(IB) = 1A,

i.e. exp∗(σ) ∈ G(B,A). We call σ the generator of f = exp∗(σ). Are all elements of G(B,A) generated
by the elements in g(B,A)? The answer is yes.

Proposition A.1.3. exp∗(g(B,A)) = G(B,A).

Proof. The convolution exponential exp∗ : g(B,A) → G(B,A) is a bijection and the convolution
logarithm

(A.10) log∗(f) := −
�

n≥1

1

n
(e− f)∗n

is its inverse by the same combinatorics and arguments as for the classical calculus logarithm. It clearly
yields a finite sum for all x ∈ B and f ∈ G(B,A). log∗(f)(IB) = 0 is straightforward. �

A.2. Algebraic Birkhoff Decomposition and Convolution Group

Let f ∈ G(B,A) and A = A− ⊕ A+ be a decomposition into linear subspaces. A pair of maps
f± ∈ G(B,A) is called algebraic Birkhoff decomposition of f with respect to the decomposition A± if

(A.11) f±(ker �B) ⊂ A± and f = f∗−1
− ∗ f+ .

Given two subspaces, the Birkhoff decomposition always exists and is unique.

Theorem A.2.1. Let f ∈ G(B,A) and A = A− ⊕ A+ be a decomposition into subspaces with projector
R : A → A−. Then, the Birkhoff decomposition f± ∈ G(B,A) is uniquely defined by the recursive relations

(A.12) f−(x) = −R[(f− ∗ fPB)(x)],

for every x ∈ ker �B and f+ := f− ∗ f .
Proof. First existence. We define the linear map by setting f−(IB) := 1A and using (A.12) which

determines f− uniquely due to

(A.13) (f− ∗ fPB)(x) ∈ f(x) +mA(f− ⊗ f)(
�n−1

j=1Bj ⊗Bn−j) .

f−(ker �B) ⊂ A− is satisfied by definition. f+(IB) = f−1(IB)f(IB) = 1A is trivial. On account of

f+(x) = (f− ∗ f)(x) = (f− ∗ fPB)(x) + f−(x) = (f− ∗ fPB)(x)−R[(f− ∗ fPB)(x)]

= [idB −R](f− ∗ fPB)(x) ∈ A+
(A.14)

for x ∈ ker �B we have f+(ker �B) ⊂ A+, because [idB − R] projects onto A+. Now Uniqueness: any
Birkhoff decomposition f± satisfies (A.12): take any x ∈ ker �B , then

(A.15) −R[(f− ∗ fPB)(x)] = −R[(f− ∗ f)(x)− f−(x)] = −R[f+(x)− f−(x)] = R[f−(x)] = f−(x) .

Because this recursive relation determines a map f− uniquely, the Birkhoff decomposition is unique. �
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A.3. Character Group

If we replace the connected bialgebra B by a connected Hopf algebra H, the convolution group has
a subset

(A.16) �G(H,A) := {f ∈ G(H,A) | f(xy) = f(x)f(y) ∀x, y ∈ H}
of multiplicative maps in which the inverse f∗−1 of an element f ∈ �G(H,A) is given by f ◦ S:
(A.17) (fS ∗ f)(x) = f(S(x�))f(x��) = f(S(x�)x��) = f(e(x)) = f(u�(x)) = f(�(x)I) = �(x)1A = e(x),

where e = uA ◦ � is the neutral element with respect to ∗. Note that fS is not necessarily in this subset!
This shows the following calculation:

(A.18) fS(xy) = f(S(xy)) = f(S(y)S(x)) = fS(y) fS(x)

which may not be equal to fS(x)fS(y), only if the target algebra A is commutative, is this in general

the case. Let now A be commutative. Then, we find for f, g ∈ �G(H,A)

(f ∗ g)(xy) = f(x�y�)g(x��y��) = f(x�)f(y�)g(x��)g(y��) = f(x�)g(x��)f(y�)g(y��)

= (f ∗ g)(x)(f ∗ g)(y) ,(A.19)

which is worth a

Proposition A.3.1. Let A be commutative. Then, �G(H,A) ⊂ G(H,A) is a subgroup.

This subgroup is named character group. Its elements are called Hopf algebra characters or (Hopf)
characters. How can we characterize the generator set in g(H,A) of this subgroup?

Proposition A.3.2. The characters in �G(H,A) are generated by the linear space

(A.20) �g(H,A) = {σ ∈ g(H,A) | σ(xy) = σ(x)e(y) + e(x)σ(y) ∀x, y ∈ H}
of infinitesimal characters. They form a Lie algebra with Lie bracket

(A.21) [σ,ω]∗ := σ ∗ ω − ω ∗ σ .

Proof. First one has to prove by induction that σ∗n(xy) =
�n

j=0

�
n
j

�
σ∗j(x)σ∗n−j(y). The cases

n = 0, 1, 2 are trivial but should be checked by the interested reader to be prepared for the induction step
which is done by the same trick jumbling with summation indices as in the proof of the binomial formula
of undergraduate calculus. The case n = 2 shows that in general σ ∗ ω is not an infinitesimal character
but their Lie bracket is. Then, making use of this result,

(A.22) exp∗(σ)(xy) = exp∗(σ)(x) exp∗(σ)(y)

is straightforward and completely analogous to the classical case of the exponential function. So far,
this proves that every infinitesimal character generates a character. It remains to be shown that the
convolution logarithm log∗ φ of a character φ is an infinitesimal character. We leave it to the reader to
show that

(A.23) log∗(xy − e(x)y − xe(y)) = 0.

�

Fig.1 shows in terms of Venn diagrams how the convolution monoid, the convolution group, Hopf
characters and their generators are situated within the space of linear maps L(H,A). We know from
section A.2 that maps in the convolution group G(H,A) have a unique Birkhoff decomposition for a given
decomposition of the target algebra A into subsets A±. What about Hopf characters, are the maps φ±
of the Birkhoff decomposition of a Hopf character φ ∈ �G(H,A) also Hopf characters?

Proposition A.3.3. In the setup of Theorem A.2.1, let φ be a Hopf character and the projector R be a
Rota-Baxter operator, i.e. such that

(A.24) R[ab] +R[a]R[b] = R[aR[b] +R[a]b]

for all a, b ∈ A. This is garanteed if A± are subalgebras1. Then the Birkhoff decomposition maps φ± are
Hopf characters.

1Not necessarily unital algebras!
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G(H,A)
�G(H,A)

L(H,A)

�g(H,A)

g(H,A)

Figure 1. Convolution monoid, group and Hopf characters and their generator spaces.

Proof. To understand that a projector onto subalgebras is always Rota-Baxter operator, one can
easily check that (A.24) is fulfilled in the possible cases a ∈ kerR, b ∈ imR, and so on. The proof is
inductive with respect to the grading of H. For H0 = QI. Assume φ± are multiplicative on

�n
j=0 Hj .

Then, choose x, y ∈ H such that xy ∈ Hn+1. We use the abbreviation

(A.25) φ := φ− ∗ φP
in the following computation. Then,

φ−(xy) = −R[(φ−(x
�y�)φP (x��y��)]

(∗)
= −R[φ−(x

�)φ−(y
�)φP (x��y��)]

= −R[φ−(x
�)φ−(y

�)φ(x��y��)− φ−(x)φ−(y)] = −R[φ−(x
�)φ−(y

�)φ(x��)φ(y��)− φ−(x)φ−(y)]

= −R[φ−(x
�)φ(x��)φ−(y

�)φ(y��)− φ−(x)φ−(y)] = −R[(φ− ∗ φ)(x)(φ− ∗ φ)(y)− φ−(x)φ−(y)]

= −R[(φ(x) + φ−(x))(φ(y) + φ−(y))− φ−(x)φ−(y)]

= −R[φ(x)φ(y) + φ(x)φ−(y) + φ−(x)φ(y)] = −R[φ(x)φ(y)− φ(x)Rφ(y)−Rφ(x)φ(y)]

= R[φ(x)]R[φ(y)] = φ−(x)φ−(y),

(A.26)

where we have used in (∗) that x�y� ∈ Hn+1 only if x� = x, y� = y, i.e. only if x��y�� = I, which does
not appear in the sum due to the presence of the projector P . Hence φ− is multiplicative. Then so is
φ+ = φ− ∗ φ(by Proposition A.3.1). �

Let us consider a nice example. Take the Hopf algebra of polynomials C[X] in one variable with
coproduct

(A.27) Δ(X) := 1⊗X +X ⊗ 1 ⇒ Δ(Xn) =
n�

j=0

�
n

j

�
Xj ⊗Xn−j .

If we choose A = C as target algebra, the characters are given by the evaluation maps

(A.28) �G(C[X],C) = {eva : a ∈ C}.
This is because any character φ is determined completely by its value λ := φ(X) on the monomial X.
Then, for any polynomial p(X) ∈ C[X] we get

(A.29) φ(p(X)) = p(φ(X)) = p(λ) = evλ(p(X)).

Let us see how the convolution acts,

(A.30) (eva ∗ evb)(Xn) = [(eva ∗ evb)(X)]n = [eva(X)evb(1) + eva(1)evb(X)]n = eva+b(X
n).

The identity eva ∗ evb = eva+b makes everything explicit: the neutral element is ev0 and the inverse for
any evaluation character eva naturally is simply given by ev−a. The generator set for these evaluations
is just as easy. Consider the linear map ∂0 : C[X] → C defined monomialwise by

(A.31) ∂0X
n := n ev0(X

n−1) = δn,0 :=

�
1 if n = 1
0 else

This operator takes the derivative and evaluates the resulting polynomial at zero. Then, the infinitesimal
character σa := a∂0 generates eva:
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Proposition A.3.4. For σa = a∂0 ∈ �g(C[X],C) one has exp∗(σa) = eva ∈ �G(C[X],C).

Proof. First, one has to show by induction that ∂∗n
0 (Xk) = k(k − 1)...(k − n+ 1)δk,n which means

that the n-fold convolution of ∂0 takes the n-fold derivative and evaluates it at zero. This is a nice
exercise. With this result at hand, finishing the proof is straightforward. �

A.4. Renormalization Group of Hopf Characters

The results of the previous sections set the stage to define the renormalization group RG as a group
of characters.

Proposition A.4.1. Let φ ∈ �G(H,C[X]) be a coalgebra morphism, i.e. Δφ = (φ ⊗ φ)Δ. Then its
generator is given by the infinitesimal character

(A.32) log∗ φ = X∂0φ,

i.e. φ = exp∗(X∂0φ).

Proof.

(A.33) eva log∗ φ = log∗(eva ◦ φ) = log∗(eva) ◦ φ = a∂0 ◦ φ = σa ◦ φ.
Notice that we have sloppily used the same convolution sign ∗ for different spaces of maps. �

This is actually relevant to physics: if we have Feynman rules φL : HFG → C[L] assigning polynomials
in the kinematic variable L to Feynman graphs, its generator is given by the infinitesimal character

σ := ∂0φL in �G(HFG,C) and one has φL = exp∗(Lσ). Then, clearly

(A.34) φL ∗ φL� = φL+L� ,

which may be called renormalization group equation, where the renormalization group RG is defined as
the set of characters indexed by L:

(A.35) RG = { φL | L ∈ R, φL ∈ �G(HFG,C[L]) }.
This has the following meaning in physics: the kinematic variable is L = ln(q2/µ2) with renormalization
point µ. If we fix the external momentum parameter q2, we can change L by varying the renormalization
point µ. In doing so, we change the renormalization scheme. As we see, a change in L entails a change
in Feynman rules according to (A.34). If we vary L infinitesimally, we get

(A.36) φL+ε = φL ∗ φε = φL + εφL ∗ ∂0φL +O(ε2)

Then, ∂Lφ = φL ∗ ∂0φL = ∂0φL ∗ φL is the infinitesimal version of the RG equation (A.34).

A.5. Proof of the Renormalization Group Equation

Let in the following Xr(g) be a formal series in one parameter g with coefficients in HFG such that
it satisfies the combinatorial Dyson-Schwinger equation

(A.37) Xr = I+ sgn(sr)
�

l≥1

glBl;r
+ (XrQl),

where we will sometimes suppress the argument g. We shall prove the RG equation

(A.38) [−∂L + gβ(g)∂g + γr
1(g)]G

r(g, L) = 0

for the Green function Gr(g, L) and

(A.39) kγr
k(g) = (γr

1(g) + gβ(g)∂g)γ
r
k−1(g)

for the coefficient functions of its log-expansion

(A.40) Gr(g, L) = 1 +
�

j≥1

γr
j (g)L

j .

We use the notation X|k := [gk]X which denotes the k-th coefficient of the formal series X. The DSE
implies X|0 = I and

(A.41) Xr|k = sgn(sr)
k�

l=1

Bl;r
+ (XrQl|k−l)

for k ≥ 1. Note that trivially Δ(X|k) = Δ(X)|k and that we can write Xr = I+ PlinX
r to separate the

scalar part I.
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Proposition A.5.1. Let X be a solution of the combinatorial DSE (A.37). Then, X satisifies the identity

(A.42) Δ(Xr)|n =
n�

j=0

(XrQn−j)|j ⊗ (Xr)|n−j

for all n ≥ 0. Or, equivalently

(A.43) ΔXr =
�

j≥0

XrQj ⊗ gjxr
j ,

where xr
j = Xr|j, i.e. Xr =

�
j≥0 x

r
jα

j.

Proof. First note that (A.43) is obtained by multiplying (A.42) with gn and then summing over all
n. We proceed by induction. The case n = 0 is trivial. Assume the assertion (A.42) holds for all indices
≤ n. The following computation will be carried out with the series in (A.43), tacitly assuming that we
take only the n-th partial sum. Alternatively, we can replace the series’ coefficients by coefficients that
vanish beyond the n-th. However, taking the coproduct, we get

ΔX = X ⊗ I+
�

j>0

XQj ⊗ xjg
j = I⊗ I+ (X − I)⊗ I+

�

j>0

XQj ⊗ x�
j ,(A.44)

where X = Xr for notational convenience2. We will also use the shorthand notation x�
j := xjg

j and
X|�j := x�

j . Then, by (A.44), for any integer s ∈ Z

Δ(Xs) = (ΔX)s =
�

n≥0

�
s

n

�
(ΔX − I⊗ I)n

=
�

n≥0

n�

m=0

�

j1>0

...
�

jm>0

�
s

n

��
n

m

�
(X − I)n−mXmQj1+...+jm ⊗ x�

j1 ...x
�
jm

=
�

j>0

�

n≥0

n�

m=0

�
s

m

��
s−m

n−m

� �

j1+..+jm=j

(X − I)n−mXmQj ⊗ x�
j1 ...x

�
jm

=
�

j>0

�

n≥0

n�

m=0

�
s

m

��
s−m

n−m

�
(X − I)n−mXmQj ⊗ (X − I)m|�j

=
�

j≥0

�

ν≥0

�

m≥0

�
s

m

��
s−m

ν

�
(X − I)νXmQj ⊗ (X − I)m|�j .

(A.45)

Note that in the last line we have changed the lower summation bound from j = 1 to j = 0 which is
possible due to (X − I)m|�0 = 0. Finally, using

�
i≥0

�
p
i

�
(X − I)i = Xp twice, we arrive at

Δ(Xs) =
�

j≥0

XsQj ⊗Xs|j .(A.46)

Next, we write the charge Q in the form

(A.47) Q =

t�

j=1

(Xrj )sj ,

where t := |R| is the number of residues and Xrj the combinatorial perturbation series for the j-th
residue. We are now in a position to compute its coproduct:

Δ(Q) =
t�

j=1

(ΔXrj )sj =
�

l1≥0

...
�

lt≥0

(Xr1)s1 ...(Xrt)stQl1+...+lt ⊗ (Xr1)s1 |�l1 ... (X
rt)st |�lt

=
�

l1≥0

...
�

lt≥0

Ql1+...+lt+1 ⊗ (Xr1)s1 |�l1 ... (X
rt)st |�lt

=
�

l≥0

�

l1+...+lt=l

Ql+1 ⊗ (Xr1)s1 |�l1 ... (X
rt)st |�lt

=
�

l≥0

Ql+1 ⊗
�

l1+...+lt=l

(Xr1)s1 |�l1 ... (X
rt)st |�lt =

�

l≥0

Ql+1 ⊗ Q|�l

(A.48)

2We suppress the superscript r whenever there is no potential for confusion.
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which looks surprisingly simple. So does

(A.49) Δ(Ql) =
�

k1≥0

...
�

kl≥0

Qk1+...+kl+l ⊗Q|�k1
...Q|�kl

=
�

k≥0

Ql+k ⊗Ql|�k.

The nice thing is, these latter two identities are (A.43) for Q and Ql (instead of X). Now we can compute

Δ(QlX) = (
�

k≥0

Ql+k ⊗Ql|k)(
�

j≥0

QjX ⊗X|�j) =
�

ν≥0

Ql+νX ⊗ (QlX)|�ν .(A.50)

which we have only proved up to the n-th coefficient:

Δ(QlX)|j =
j�

ν=0

(Ql+νX)|j−ν ⊗ (QlX)|ν j ≤ n.(A.51)

To finish the proof, consider the coproduct of the (n+ 1)-th coefficient

Δ(X)|n+1 = sgn(sr)
n+1�

l=1

ΔBl;r
+ (XrQl|n+1−l),(A.52)

where we have used (A.41). Applying the one-cocycle property of Bl;r
+ , we find

Δ(X)|n+1 = sgn(sr)

n+1�

l=1

(id⊗Bl;r
+ )Δ(XrQl|n+1−l) +X|n+1 ⊗ I.(A.53)

Because l ≥ 1, we have n+ 1− l ≤ n which is why we can employ (A.51) and find

Δ(X)|n+1 = sgn(sr)
n+1�

l=1

n+1−l�

ν=0

(Ql+νX)|n+1−l−ν ⊗Bl;r
+ (QlX|ν) +X|n+1 ⊗ I

= sgn(sr)
n+1�

l=1

n+1�

ν=l

(QνX)|n+1−ν ⊗Bl;r
+ (QlX|ν−l) +X|n+1 ⊗ I.

(A.54)

A change of summation order gives

Δ(X)|n+1 = sgn(sr)

n+1�

ν=1

ν�

l=1

(QνX)|n+1−ν ⊗Bl;r
+ (QlX|ν−l) +X|n+1 ⊗ I

= sgn(sr)

n+1�

ν=1

(QνX)|n+1−ν ⊗
ν�

l=1

Bl;r
+ (QlX|ν−l) +X|n+1 ⊗ I

=

n+1�

ν=1

(QνX)|n+1−ν ⊗X|ν +X|n+1 ⊗ I =
n+1�

ν=0

(QνX)|n+1−ν ⊗X|ν .

(A.55)

This concludes the induction step. �

Let Plin be the projector onto the linear span of all Feynman graphs excluding I, i.e. Plin(h) = h if
h is a Feynman graph and vanishing otherwise. Note that this projector differs from the augmentation
ideal projector P .

Then, an immediate consequence is the following

Corollary A.5.2. If we apply the projector Plin on both sides of (A.43), we get

(A.56) (Plin ⊗ id)Δ(Xr) = PlinX
r ⊗Xr + PlinQ⊗ g∂gX

r.

This result already implies the RG equation in chapter 6: let σ denote the Lie algebra generator of
the renormalized Feynman rules(denoted σ1 in section 6.3), i.e. φR = exp∗(Lσ), then take σ ⊗ σ∗n and
apply this to both sides of (A.56). The result is

(A.57) σ∗n+1(Xr) = (σ ⊗ σ∗n)Δ(Xr) = σ(Xr)σ∗n(Xr) + gσ(Q)∂gσ
∗n(Xr).

We define the coefficient functions γr
j (g) := σj(X

r(g)), where j!σj := σ∗j . Then,

(A.58) (n+ 1)γr
n+1(g) = γr

1(g)γ
r
n(g) + gβ(g)∂gγ

r
n(g) = [γr

1(g) + gβ(g)∂g]γ
r
n(g),

where

(A.59) β(g) := σ(Q(g)) = ∂0φR(Q(g)) = ∂LφR(Q(g))|L=0
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is the β-function. Let us compute it. Note that σ is an infinitesimal character which vanishes on I and
nontrivial products. Then,

σ

��

r∈R
(Xr)sr

�
= σ

��

r∈R
(I+ PlinX

r)sr

�
= σ

��

r∈R
(I+ srPlinX

r)

�

= σ

��

r∈R
srPlinX

r

�
=
�

r∈R
srσ(PlinX

r) =
�

r∈R
srσ(X

r) =
�

r∈R
srγ

r
1 .

(A.60)

Thus, we have proven the identity

(A.61) (n+ 1)γr
n+1(g) =

�
γr
1(g) +

�

t∈R
stγ

t
1(g)g∂g

�
γr
n(g),

which are the RG equations for the coefficient functions γr
n(g), n ∈ N. If we multiply both sides by the

n-th power of the variable L, we find

(A.62) (n+ 1)γr
n+1(g)L

n =

�
γr
1(g) +

�

t∈R
stγ

t
1(g)g∂g

�
γr
n(g)L

n,

and summing over all n, we arrive at the RG equation

(A.63)
∂

∂L
Gr(g, L) =

�
γr
1(g) +

�

t∈R
stγ

t
1(g)g∂g

�
Gr(g, L),

for the Green function Gr(g, L) = 1 +
�

n≥1 γ
r
n(g)L

n. Another possibility is to take (A.36) and apply
the infinitesimal character

(A.64) ∂LφL = ∂0φL ∗ φL = σ ∗ φL

to the series Xr(g) and use (A.56) again. �



APPENDIX B

The Dynkin Operator

Let H be a Hopf algebra with antipode S, counit � and unit map u. We set e := u ◦ �. Recall that
the defining property of the antipode is

(B.1) S ∗ id = e = id ∗ S
or, if we write Δ(x) = x� ⊗ x��, this takes the form S(x�)x�� = e(x) = x�S(x��).

B.1. Grouplike and Primitive Elements

An element x ∈ H is called grouplike, if

(B.2) Δ(x) = x⊗ x

and primitive if

(B.3) Δ(x) = I⊗ x+ x⊗ I.

Grouplike elements form a Hopf subalgebra and are related to primitive elements by formal exponentials:
a formal exponential of x ∈ H is given by the formal series exp(x) =

�
n≥0 x

n/n! which we identify with

a sequence an =
�n

k=0 x
k/k! in H. Note that we do not ask if it converges to anything. What counts is

that any element of this sequence is in H. The same goes for the logarithmic series

(B.4) log(x) := −
�

n≥1

1

n
(x− I)n.

It turns out that exp and log establish a relation between grouplike elements and primitive sequences
and vice versa.

Proposition B.1.1. Consider x, y ∈ H, where x is primitive and y grouplike. Then exp(x) is grouplike
and log(y) is primitive.

Proof.

Δ(exp(x)) = exp(Δ(x)) = exp(I⊗ x+ x⊗ I) (∗)
= exp(I⊗ x) exp(x⊗ I)

= (I⊗ exp(x))(exp(x)⊗ I) = exp(x)⊗ exp(x).
(B.5)

In (∗) we have used that the two terms I⊗ x and x⊗ I commute. This is also used in

Δ log(y) = log(Δy) = log(y ⊗ y) = log((y ⊗ I)(I⊗ y))
(∗)
= log(y ⊗ I) + log(I⊗ y)

= log(y)⊗ I+ I⊗ log(y).
(B.6)

�

B.2. Dynkin Operator and Projector

Let now H be commutative. For a grading operator Y on H, we define the Dynkin operator

(B.7) DY := S ∗ Y
and a map πY := Y −1(S ∗Y ). Some of its properties will now be investigated. First note that the Dynkin
operator fulfills DY Y

−1 = Y −1DY .

Proposition B.2.1. DY and πY are infinitesimal characters with

(B.8) kerDY = kerπY = QI⊕ (ker �)2,

where (ker �)2 := {xy ∈ H|x, y ∈ ker �}.

81
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Proof. A quick computation shows DY (xy) = DY (x)e(y) + e(x)DY (y), see Lemma 6.3.1. This
implies QI⊕ (ker �)2 ⊆ kerDY . Then, to see that the reverse inclusion is true, we write the coproduct of
x �= I as Δ(x) = I⊗ x+ x⊗ I+

�
x x

� ⊗ x�� and take any x ∈ kerDY to obtain

(B.9) 0 = DY (x) = Y (x) +
�

x

S(x�)Y (x��)

and hence Y (x) = −�x S(x
�)Y (x��) ∈ (ker �)2. �

Note that any element x ∈ H can be written as a finite linear combination x =
�

j αjxj of homoge-
neous elements xj ∈ H. The grading operator Y maps this to

(B.10) Y (x) =
�

j

αj |xj |xj .

If DY (x) = 0, we can be sure that this linear combination is a linear combination of nontrivial products.
This can only be the case if x was of this type in the first place. The next assertion shows that πY is a
projector.

Proposition B.2.2. π2
Y = πY is a projection and for a primitive x ∈ H one has πY (x) = x.

Proof. Take any x ∈ H and compute DY DY (x) = DY (Y (x) +
�

x S(x
�)Y (x��)) = DY Y x. This

implies that πY is a projector(why?). Let x now be primitive. Then

(B.11) πY (x) = Y −1(S(x)Y (I) + S(I)Y (x)) = Y −1(S(I)Y (x)) = Y −1(Y (x)) = x .

�
For the next assertion, we will write Δ(x) = x� ⊗ x�� for convenience. An element x ∈ H is called

cocommutative, if Δ(x) = flipΔ(x), i.e.

(B.12) Δ(x) = x� ⊗ x�� = x�� ⊗ x�,

with the sum implicit, i.e. x� is not necessarily equal to x��, only for grouplike elements which trivially are
cocommutative. Are primitive elements cocommutative? Slightly less trivial are ladder trees in the Hopf
algebra of rooted trees. What about the polynomial Hopf algebra C[X]? Is p(X) ∈ C[X] cocommutative?
An interesting result is the last

Proposition B.2.3. Let x ∈ H be cocommutative. Then DY (x) is primitive.

Proof. The map τn,m interchanges the n-th and the m-th element in a tensor product x1⊗ ...⊗xk,
where, of course n,m ≤ k. For example, to describe the multiplication map on H ⊗H, one needs a flip
map: to express

(B.13) (a⊗ b)(c⊗ d) = ac⊗ bd

in terms of the multiplication mH⊗H : H ⊗H ⊗H ⊗H → H ⊗H, one must employ τ2,3 to get the result:

(B.14) m(m(a⊗ c)⊗m(b⊗ d)) = m(m⊗m)(a⊗ c⊗ b⊗ d) = m(m⊗m)τ2,3(a⊗ b⊗ c⊗ d)

Thus, we are ’coerced’ to define mH⊗H := m(m⊗m)τ2,3. Then,

ΔDY (x) = Δm(S ⊗ Y )Δ(x) = (m⊗m)τ2,3(Δ⊗Δ)(S ⊗ Y )Δ(x)

= (m⊗m)τ2,3(ΔS ⊗ΔY )Δ(x) = (m⊗m)τ2,3((S ⊗ S)Δ⊗ (Y ⊗ id + id⊗ Y )Δ)Δ(x)

= (m⊗m)τ2,3(S ⊗ S ⊗ Y ⊗ id + S ⊗ S ⊗ id⊗ Y ))(Δ⊗Δ)Δ(x)

= (m⊗m)(S ⊗ Y ⊗ S ⊗ id + S ⊗ id⊗ S ⊗ Y )(Δ⊗Δ)Δ(x)

= (m(S ⊗ Y )⊗m(S ⊗ id) +m(S ⊗ id)⊗m(S ⊗ Y ))(Δ⊗Δ)Δ(x)

= (m(S ⊗ Y )Δ⊗m(S ⊗ id)Δ+m(S ⊗ id)Δ⊗m(S ⊗ Y )Δ)Δ(x)

= ((S ∗ Y )⊗ (S ∗ id) + (S ∗ id)⊗ (S ∗ Y ))Δ = ((S ∗ Y )⊗ e+ e⊗ (S ∗ Y ))Δ(x)

(B.15)

This is what primitive means:

ΔDY (x) = (S ∗ Y )(x�)⊗ e(x��) + e(x�)⊗ (S ∗ Y )(x��) = (S ∗ Y )(x)⊗ e(I) + e(I)⊗ (S ∗ Y )(x)

= (S ∗ Y )(x)⊗ I+ I⊗ (S ∗ Y )(x)
(B.16)

as e(x�) = 0 = e(x��) if x� �= I �= x� and e(I) = I. �



APPENDIX C

Miscellanies

C.1. Exact sequences

Let I ⊂ Z. A sequence of linear spaces {Vn}n∈I equipped with linear maps fn : Vn → Vn+1,

(C.1) ...
fn−1−→ Vn

fn−→ Vn+1
fn+1−→ ...

is called exact sequence if imfi = ker fi+1. Note that for

(C.2) 0 → V
f−→ V �

to be exact, f must be injective and in

(C.3) V
f−→ V � → 0

it must be surjective(the unmentioned maps are zero maps). An exact sequence with |I| = 5 of the form

(C.4) 0 → V
f−→ W

h−→ Z → 0

is called short exact sequence. It is characterized by three properties: f is injective, h surjective and
imf = kerh. We can view V as a subspace of W under f since imf = kerh is a subspace in W and
by f ’s injectivity we have V ∼= kerh. Furthermore, if π : W → W is the canonical projection onto
W := W/ kerh, then h := h◦π−1 : W → Z is injective and, as h is surjective, also an isomorphism. Thus

(C.5) Z ∼= W = W/ kerh ∼= W/V .

C.2. Integral identity

We will prove

(C.6)

� ∞

c

dt

t
e−tX = − ln c− lnX − γE +O(c ln c)

for c > 0 and X > 0. First, we do a partial integration

(C.7)

� ∞

c

dt

t
e−tX =

� ∞

cX

dτ

τ
e−τ = − ln(cX)e−cX +

� ∞

cX

dτ ln τ e−τ .

The latter integral can be rewritten into

(C.8)

� ∞

cX

dτ ln τ e−τ =

� ∞

0

dτ ln τ e−τ −
� cX

0

dτ ln τ e−τ = −γE −
� cX

0

dτ ln τ e−τ ,

where ∂zΓ(1 + z) =
�∞
0

dτ τz ln τ e−τ has been used. Since we have

(C.9)

� cX

0

dτ ln τ e−τ ≈ cX ln(cX)e−cX

for suffiently small c > 0, the result follows. �

C.3. Periods

First some definitions. A number a ∈ C is called algebraic if it is the zero of a non-zero polynomial
with rational coefficients. We denote the set of algebraic numbers by Q. If a is not algebraic, it is called
transcendental. Obviously, we have the hierarchy

(C.10) N ⊂ Z ⊂ Q ⊂ Q ⊂ C .

We will see that the set of periods has its place in between the latter two sets in the hierarchy.
A subset S ⊂ Rn is referred to as algebraic, if there are polynomials P1, ..., Pk ∈ Q[X1, ..., Xn] such

that x ∈ S implies Pj(x) = 0 for all j. Note that all polynomials can be trivial zero polynomials and
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thus S = Rn. A subset S� ⊂ Rn is called semialgebraic if there are polynomials P1, ..., Pk, P
�
1, ..., P

�
l ∈

Q[X1, ..., Xn] such that x ∈ S� means Pj(x) = 0 and P �
r(x) > 0 for all j, r. In other words, an algebraic

subset is a subset of Rn defined by polynomial equalities. For semialgebraic sets some or all of these may
be inequalities.

Definition C.3.1. A number p ∈ C is called period if there are semialgebraic sets S, S� ∈ Rn and
rational functions u, v : Rn → R with coefficients in Q such that

(C.11) p =

�

S

u(x)dx+ i

�

S�
v(x)dx ,

where dx is the usual Lebesgue measure on Rn.

We denote the set of periods by P. A simple example is the algebraic number

(C.12)
√
2 =

�

2x2<1

dx ,

where S = {x ∈ R | 2x2 < 1}. It turns out that there is an equivalent definition in which u and v are
only required to be algebraic functions and the algebraic sets S, S� defined by polynomials with algebraic
coefficients. An algebraic function f : Rn → R is a function for which there is non-zero polynomial
P ∈ Q[X1, ..., Xn, Y ] such that

(C.13) P (x, f(x)) = 0

for all x ∈ Rn. This means that there are polynomials a0, ..., al ∈ Q[X1, ..., Xn] such that

(C.14) a0(x) + a1(x)f(x) + ...+ an(x)f(x)
n = 0 .

Take the simple case n = 1. Because a rational function f satisfies

(C.15) q(x)f(x)− p(x) = 0

we see that rational functions are algebraic. An example for a non-rational but algebraic function is

(C.16) g(x) =
�

1 + x2

which fulfils

(C.17) 1 + x2 − g(x)2 = 0 ,

i.e. P (x, y) = 1 + x2 − y2. However, this equivalent definition implies immediately that P contains all
algebraic numbers, i.e.

(C.18) N ⊂ Z ⊂ Q ⊂ Q ⊂ P ⊂ C .

is the new hierarchy that we have. Does P also contain transcendentals? Obviously, because

(C.19)

� �

x2+y2<1

dx dy = π = 2

�

R+

dx

1 + x2
.

Further examples are logarithms of algebraic numbers:

(C.20) log(2) =

� 2

1

dx

x
.

What is also worth mentioning is that they are countable just as is Q! Therefore P \Q is a countable set
of transcendentals. However, by conjecture, the numbers

(C.21) e = lim
n→∞

�
1 +

1

n

�n

, γ = lim
n→∞

�
1 +

1

2
+

1

2
+ ...+

1

n
− ln(n)

�

are not periods.
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