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Do scale-invariant fluctuations imply the breaking of de Sitter invariance?
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Abstract

The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial
problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-
spectrum - certainly one of the most successful predictions of modern cosmology - is widely believed to be inconsistent
with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise
divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is not a necessary consequence
of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e the discrete
series of representations of the de Sitter group, that suffer from similar strong IR effects.
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1. Introduction: Fourier versus coordinate-space

two-point function

We review here the standard material leading to the pre-
diction of a scale-invariant power-spectrum for the CMB
fluctuations. Consider the mmc scalar field action:

S = −1

2

∫

d4x
√−g gµν∂µφ∂νφ,

where gµν is the de Sitter metric and g its determinant.
Making the change of variable u = aφ, where a is the scale
factor, the quantum field can be written as

û(τ,x) =
1

(2π)3/2

∫

dk
[

âk uk(τ)e
ik.x + â†

k
u∗
k(τ)e

ik.x
]

where τ is the conformal time defined below. In the Bunch-
Davies vacuum state [1], the normalized mode functions uk

read

uk =

√

~

2k
e−ikτ

(

1− i

kτ

)

.

The power-spectrum P(k) is defined through the Fourier
transform:

〈0|φ(x, τ)φ(x′, τ)|0〉 =
∫

dk eik.(x−x
′)P(k)

4πk3
.

This gives

P(k) =
|uk|2
a2

k3

2π2
=

(

H

2π

)2 [

1 +
k2

a2H2

]

(1)
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where H is the Hubble constant. When the wavelength
is much larger than the Hubble radius, one gets the cele-
brated scale-invariant power spectrum:

P(k) ≈ ~

(

H

2π

)2

.

On the other hand, it is widely known that the con-
struction of a coordinate-space representation of the mmc
field two-point function in de Sitter has remained a matter
of controversy and subject of debate for decades. Indeed,
IR divergences arise in the quantization of the mmc field,
leading to important technical and conceptual questions
about the breakdown of de Sitter invariance [2, 3] and/or
of perturbation theory [4, 5, 6].

We address in this Letter this tension between the
Fourier and coordinate-space representation of the two-
point function. As a direct and important consequence,
our work supports the possibility of a de Sitter-invariant
quantization of the mmc field that also agrees with the
observed scale-invariant CMB power-spectrum.

The organization of this Letter is as follows: after expos-
ing the necessary basics of de Sitter geometry and QFT, we
review the appearance of IR divergences in the coordinate-
space two-point function. We then present the construc-
tion given in [7] to deal with these divergences. In sec-
tion 4 we expose the central contribution of this Letter,
namely the use of a Cesaro-summation technique to define
the otherwise divergent Fourier transform that relates the
power-spectrum to the coordinate-space two-point func-
tion. Finally we show that this method is robust enough
to compute the power spectrum for all the scalar “tachy-
onic” fields in de Sitter.
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2. De Sitter geometry

The d-dimensional de Sitter spacetime can be identi-
fied with the real one-sheeted hyperboloid in the d + 1
Minkowski spacetime Md+1

1:

Xd =
{

x ∈ R
d+1, x2 = −R2

}

with R > 0 being the de Sitter “radius”. This definition
of the de Sitter manifold reveals the maximal symmetry of
Xd under the action of the de Sitter group SO0(1, d). We
define for convenience the de Sitter invariant quantity

ζ(x, x′) =
x.x′

R2
, x, x′ ∈ Xd.

Because of the causality properties of the Bunch-Davies
vacuum ζ will vary in the cut-plane

C∆ = C \∆, ∆ = {ζ ∈ C : ζ < −1}.

Planar coordinates. This is the coordinate system the
most relevant to cosmology. Here the spatial sections are
d−1 planes. Only half of the de Sitter spacetime is covered
by this coordinate system and it reads:

x(t,x) =







x0 = R sinh t
R + 1

2Rx
2 e

t

R

xj = x
j e

t

R , x ∈ Rd−1

xd = R cosh t
R − 1

2Rx
2 e

t

R .

The de Sitter metric and the invariant quantity ζ in this
coordinate system are given by

ds2 = dt2 − e2t/Rdx2

ζ(x, x′) =
e

t+t
′

R

2R2
(x− x

′)2 − cosh

(

t− t′

R

)

.

In particular we have

ζ(x, t;x′, t) =
e2t/R

2R2
r2 − 1.

Finally it is convenient to define the conformal time

τ =

∫

dt

a(t)
.

.

3. The massless field in de Sitter

The physical reason behind the appearance of strong IR
effects in de Sitter can be simply understood: the rapid
expansion of the spacetime dilate correlation patterns. Af-
ter all this is the exact reason why a de Sitter inflationary
phase in the early universe solves many problems of the

1We will use the “mostly minus” metric throughout the article

x2 = ηµνx
µxν , ηµν = diag(1,−1, · · · ,−1).

hot big-bang model. These IR effects are present at the
interacting level for massive fields (see [8, 9]). They are
even stronger for massless (and non-conformally invariant)
fields - such as the mmc and the graviton - as they appear
already at the tree-level. We review here these IR diver-
gences in the mmc case.
Recall that in the Bunch-Davies vacuum state the two-

point function for a massive scalar field reads :

Wm(x, x′) =Γ(−σ)
Γ(σ + d− 1)

(4π)d/2Rd−2Γ(d2 )

2F1

[

−σ, σ + d− 1,
d

2
;
1− ζ

2

]

where σ = − d
2+

√

d2

4 −m2R2 and 2F1 is the hypergeomet-

ric function. In the massless limit, σ → 0, this expression
diverges because of the pole of the first Gamma function
and we have the small mass expansion:

Wm(x, x′) ≈ d

4π
d+1

2

Γ

(

d− 1

2

)

1

m2Rd
+regular terms in m.

Note that in the flat space limit (R → ∞), this singular
term is absent and the massless limit is smooth2. More
precisely we have (for d > 2):

W flat
m (x, x′) = − iπ

(4π)d/2

(

m2

µ2

)

d−2

4

H
(2)
d

2
−1

(

2
√

m2µ2
)

−→
m→0

(

1

2
√
π

)d

Γ

(

d

2
− 1

)

µ2−d

where µ =
√

(x − x′)2 is the invariant distance and H(2)

is the Hankel function of the second kind.
One of the first papers studying the mmc scalar field

in de Sitter is [2], where the authors prove that a usual
de Sitter-invariant Fock space quantization is impossible
in this case. They then propose to trade the de Sitter
SO(1, d) invariance for a smaller one, say a SO(d) invari-
ance. Equivalently, it is a common belief among workers in
the field that a scale-invariant power-spectrum leads neces-
sarily to a breakdown of de Sitter invariance and that some
physical quantities might thus become time-dependent.
Several authors later proposed different treatments of

the mmc field, among which [7] is one of the most exhaus-
tive. Here the divergent term is subtracted, a “renormal-
ized” two-point function is computed and it reads:

W (x, x′) =
1

8π2R2

[

1

1 + ζ
− ln(1 + ζ)

]

+ constant. (2)

Hence this procedure allows for a de Sitter-invariant quan-
tization. The draw-back is that the two-point function no

2This means that the flat space limit (R → ∞) and the massless
limit (m → 0) do not commute. This is a physically important fact
and might mean that even a small amount of curvature - like in
today’s universe - might have important consequences on massless
fields.
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longer verifies the equation of motion �φ = 0, instead it
verifies the anomalous equation

�φ = −Γ
(

d+1
2

)

2π
d+1

2

.

This simple renormalization procedure has been used im-
plicitly in several earlier works. However, the major contri-
bution of [7] is proving that on a suitably chosen subspace
of states E , the equation of motion is effectively restored.
This “Physical” space of states should be regarded the
same way as we regard the one that appears in the quanti-
zation of gauge theory (for instance the space of transverse
photons in QED). Moreover, the authors were able to show
that the renormalized two-point function defines a positive
kernel when restricted to E , thus enabling a probabilistic
interpretation of the theory.

4. Scale-invariance of the power spectrum and de

Sitter symmetry breaking

As explained before, we define the power spectrum by
the Fourier transform

W (x, t;x′, t) =

∫

dk eik.(x−x
′)P(k)

4πk3
.

The two-point function obtained from the scale-invariant
part of the power spectrum (we set ~ = 1 in all following
formulas):

P(k) ≈
(

H

2π

)2

is logarithmically divergent in the IR. Hence this Fourier
transform is only formal. As we explained earlier, this
divergence is commonly believed to induce de Sitter sym-
metry breaking3.
We now present the central contribution of this Letter,

namely the calculation of the power-spectrum obtained
from the de Sitter-invariant renormalized two-point func-
tion (2). The latter is given by (up to a constant term that
we will show to be irrelevant)

W (x, x′) =
1

8π2R2

[

1

1 + ζ
− ln(1 + ζ)

]

.

In spatially flat coordinates this gives

W (x, 0;x′, 0) =
1

4π2r2
− H2 ln

(

H2r2
)

8π2

The power spectrum is then formally given by

P(k) =
1

(2π)3

∫

e−ik.(x−x
′)4πk3W (r).

3A similar issue appears in the QFT of a massless scalar field in
two-dimensional Minkowski spacetime. In this model too, an inter-
esting discussion arises on the general interplay between IR singu-
larities and the occurrence of Lorentz symmetry breaking [10]. This
similarity might however be more of a mathematical than a physical
nature.

For the
1

r2
part we get

k2

4π2
.

However the power spectrum of the logarithmic part is
given by

−H2k2

4π3

∫ ∞

0

dr ln
(

H2r2
)

sin(kr)

and is divergent. The integrand is however highly oscilla-
tory and turns out to be Cesaro-summable4:

Cesaro summability [12]. The integral
∫∞

0
f(x)dx is α Ce-

saro summable and denoted (C,α), if the limit

lim
λ→∞

∫ λ

0

(

1− x

λ

)α

f(x)dx

exists and is finite. If an integral is (C,α) summable for
some value of α, then it is also (C, β) summable for all
β > α, and the value of the resulting limit is unchanged.
Taking α = 2, the regularized integral can be computed

in closed form and the limit is

lim
λ→∞

∫ λ

0

(

1− r

λ

)2
[

−4π

k
r sin(kr)

1

8π2
ln

(

H2r2

2

)]

=

(

H

2π

)2

.

The final result, after restoring time dependence is

P(k) =

(

H

2π

)2 [

1 +
k2

a2H2

]

which is exactly the power spectrum one gets for the de
Sitter mmc field (1) if we take the formal Fourier represen-
tation from the beginning as explained in the first section.
We end this section by two remarks. First, note that

the Cesaro technique is a summability technique in the
mathematical sense. In particular it does not modify any
convergent integral. Instead, it only gives meaning to a
certain class of divergent integrals, moreover without the
introduction of any arbitrary cutoff that has to be elimi-
nated afterwards (as in [11] for instance).
Second, note that any two-point functions that differ

by a constant are Cesaro-summable to the same power-
spectrum. This fact is quite interesting as the renormal-
ization procedure presented in [7] only gives the two-point

4One can also regulate the IR divergence through:
∫

∞

0

dr g(k, r) →
d

dk

∫
∞

0

dr

∫ k

dk g(k, r)

Note that this method introduces another divergence near r = 0
and one has to separate the integration domain into two regions, one
near 0 and the other near infinity. Cesaro-summability is a more
physically sound and efficient option and we will use it throughout
this Letter.
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function up to a constant. In our construction, the power-
spectrum, which is a physical observable, is thus indifferent
to this arbitrary constant term, a fact that is not obvious
a priori.
Finally, the mmc two point-function (2) is logarithmi-

cally growing for largely separated points, a rather un-
conventional fact. However, we have seen that this is ex-
actly what is needed in order to reproduce the observed
scale-invariant power-spectrum. In other words, at least in
this situation, the IR growing of the two-point function is
physical. This is a quite important observation, since such
IR growing terms are often encountered in de Sitter and
their meaning is still ill-understood (see [13] and references
therein).

5. Discrete series power spectrum

This renormalization procedure (subtraction of the
1/m2 divergence) presented for the mmc scalar field has
been generalized in [7] to the tachyonic fields5 of negative
mass squared:

m2 = −n(n+ d− 1), n ∈ N.

It was also proven that this renormalization scheme gives
rise to a perfectly well-defined free QFT in de Sitter. We
find that the corresponding two-point functions, denoted
by Wn, have a growing large distance behavior given by

Wn ∼ ζn ln ζ.

The Cesaro-summation method we have been using for
the mmc field is sufficiently robust and enables us, after
some lengthy calculations, to compute the power-spectrum
of all the tachyonic fields. In terms of the variable x = k

Ha ,
we obtain

Pn =

(

H

2π

)2
[

x2 +

n
∑

m=0

an,m
x2m

]

,

an,m =
1√
π

Γ(32 +m)Γ(3 + n+m)

Γ(2 +m)Γ(1−m+ n)
.

The sum in this formula can be explicitly evaluated and
we get

Pn =

(

H

2π

)2
π x3

2

[

J2
n+ 3

2

(x) + Y 2
n+ 3

2

(x)
]

where Jν and Yν are the Bessel functions of the first and
second kind respectively. This calculation is a first step
towards an eventual observable effect of these tachyons

5We prefer the denomination “discrete series of representation”
to the “tachyon” one used in [7] because the flat space limit of
these fields is the massless field and not negative mass squared fields.
Hence referring to these fields as the discrete series representations is
more accurate. We will use however the two denominations in what
follows.

through their influence on the CMB power-spectrum. It
might also permit to rule out their existence6. Our results
on this will be presented elsewhere.

Finally, the possible generalization of this Cesaro-
summability technique to the interacting theory is a quite
interesting question and could constitute a first step to-
wards a more ambitious IR renormalization program for
massless interacting fields in de Sitter space. This issue is
studied in [14].
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