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Abstract. Two programs, feyngen and feyncop, were developed. feyngen is designed to
generate high loop order Feynman graphs for Yang-Mills, QED and φk theories. feyncop can
compute the coproduct of these graphs on the underlying Hopf algebra of Feynman graphs.
The programs can be validated by exploiting zero dimensional field theory combinatorics and
identities on the Hopf algebra which follow from the renormalizability of the theories. A
benchmark for both programs was made.

1. Introduction
The Hopf algebra structure of Feynman graphs has been explored extensively in the last years.
It proved to be valuable for the analytic computation of Feynman amplitudes by means of
systematic parametric integration techniques and could lead to new non-perturbative results
in the scope of Dyson-Schwinger equations. feyngen and feyncop were developed to provide
input for the powerful new techniques. feyngen is a tool for the fast generation of higher loop
Feynman diagrams. feyncop can be used to calculate the coproduct on the Hopf algebra of
Feynman graphs. This coproduct encodes the BPHZ algorithm necessary to evaluate the finite
amplitude of a Feynman diagram and fits well into the world of Dyson-Schwinger equations. In
this framework certain identities can be obtained which were used to validate the two programs.

2. Feynman diagram generation with feyngen
The python program feyngen can generate φk for k ≥ 3, QED, QED with Furry’s theorem,
Yang-Mills and φ3 + φ4 diagrams ready to be used in green’s function calculations. Developing
feyngen, the focus was on the generation of Feynman diagrams with comparatively large loop
orders. Additionally to the generation of non-isomorphic diagrams, feyngen calculates the
symmetry factors of the resulting graphs. Handling of graphs with fixed external legs and
without is supported. Furthermore, options are available to filter for connected, one-particle-
irreducible (1PI), vertex-2-connected and snail free graphs. To achieve the high speed for the
computation feyngen relies on the established nauty package [1, 2]. The output of feyngen
is designed to be readable by a maple program.

Details to the implementation, theoretical background and handling are given in [3].



2.1. Examples
Consider the sum of all two loop, photon propagator residue type, 1PI, QED diagrams. For
convenience the vertices of the graph in the illustration are labeled as in the output of feyngen.
The labels do not have further meaning. Note that, also the external source vertices are labeled,
because they also appear in the output of feyngen.
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feyngen generates them if it is called with the command line

$ ./feyngen --qed 2 -b2 -p

qed_f0_b2_h2 :=

+G[[0,1,f],[1,2,f],[2,3,f],[3,0,f],[3,2,A],[4,0,A],[5,1,A]]/1

+G[[0,1,f],[1,2,f],[2,3,f],[3,0,f],[2,1,A],[4,0,A],[5,3,A]]/1

+G[[0,3,f],[1,2,f],[2,0,f],[3,1,f],[3,2,A],[4,0,A],[5,1,A]]/1

;

--qed indicates QED graph generation, 2 stands for 2-loop diagrams (~2), -b2 makes feyngen
generate graphs with 2 photon legs and the -p option filters out non 1PI graphs.

For the sum of all one loop, gauge boson propagator residue type, 1PI, Yang-Mills diagrams,
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the call,

$ ./feyngen --ym 1 -tp -b2

where the generation of Yang-Mills graphs is triggered with the --ym option, gives the desired
result:

ym_f0_g0_b2_h1 :=

+G[[0,1,c],[1,0,c],[2,0,A],[3,1,A]]/1

+G[[0,1,f],[1,0,f],[2,0,A],[3,1,A]]/1

+G[[1,0,A],[1,0,A],[2,0,A],[3,1,A]]/2

;

2.2. Validation
To validate the Feynman graph generation with the program feyngen, the perturbation
expansion of a zero dimensional quantum field theory was used. Given for instance the generating
function for φk theory in zero dimensions:

Zφk(λ, j) :=

∫
R

dφ√
2π

e−
φ2

2
+λφ

k

k!
+jφ, (1)

a powerseries expansion in terms of the coupling λ can be readily obtained,

Z̃φk(λ, j) =
∑
l≥0

∑
n,m≥0

nk+m=2l

(2l − 1)!!

n!m!(k!)n
λnjm. (2)

With this multivariate powerseries the sum of the symmetry factors of disconnected φk with a
fixed number of vertices and external legs can be obtained. Here, λ counts the number of vertices
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(a) Time to generate all 1PI diagrams of given loop
order.

0.001

0.01

0.1

1

2 3 4 5 6 7

t g
e
n

]
o
f

d
ia

g
ra

m
s

[s
]

] of loops

(b) Average generation time for one diagram for the
given loop order.

Figure 1. Plot of the results of the benchmark for feyncop. Legend: + : φ4 proper
propagator, × : φ4 proper vertex, ∗ : φ3 proper propagator, ut : φ3 proper vertex, : QED
proper photon propagator, ◦ : QCD proper gluon propagator.

and j the number of external legs. The corresponding powerseries for the connected diagrams
can be calculated by taking the logarithm. The reason for this is that Feynman diagrams are a
labeled combinatorial class for which the exponential theorem holds [4]:

W (λ, j) = log(Z(λ, j)). (3)

For the computation of the numbers for 1PI diagrams the classical field,

φc(λ, j) :=
∂W

∂j
, (4)

is needed. The source variable j → j′+ j0 is redefined such that φc(j
′) vanishes at j′ = 0. Using

the definition of the effective action as Legendre transformation of W , changing j′ for φc,

Γ = W − j′φc, (5)

the sum of the symmetry factors of the 1PI diagrams can be calculated using the Lagrange
inversion theorem [4]:

[φmc ] Γ(λ, φc) = − 1

m

[
j′

(m−2)
] ∂2W (λ, j′)

∂j′2

(
j′

φc(λ, j′)

)m
, (6)

where [·] is the coefficient extraction operator. Γ(λ, φc) generates the proper green’s functions
in zero dimension.

2.3. Benchmarks
Figure 1 depicts an example for the computation time for the 1PI diagrams generation of a
given loop order. Additionally to the non-isomorphic diagrams the corresponding symmetry
factors was computed. The benchmark was performed on a Intel(R) Core(TM) i7-3770 CPU

@ 3.40GHz. Although feyngen does not explicitly use parallelization, a speedup was gained



because the generation of graphs using nauty runs in parallel to the refinement of the graphs
to Feynman diagrams.

The benchmark clearly shows that the φ4-diagram generation is the fastest. The generation
of these diagrams was the main purpose for the development of feyngen. Therefore, the highest
loop orders can be achieved in this theory. The exponential rise in the computation time for
the QED diagram generation can be explained by the very naive diagram refinement algorithm
used. The same explosion in computation time can be expected for higher loop order QCD
diagrams, where the same simple algorithm was applied.

3. The Hopf algebra of Feynman graphs
As was shown by Kreimer et al. [5, 6, 7] a Hopf algebra HD can be used to describe the
self-similar structure of Feynman graphs and their renormalization. The index D stands for
the dimension of spacetime. The coproduct ∆D on this Hopf algebra corresponds to the forest
formula in BPHZ renormalization [8, 9, 10]. For 1PI graphs Γ the coproduct is defined as,

∆DΓ :=
∑
γEΓ

γ ⊗ Γ/γ : T → HD ⊗HD (7)

where T is the set of all 1PI graphs and

γ E Γ⇔ γ ∈

{
δ ⊆ Γ

∣∣∣∣∣δ =
⋃
i

δi, such that δi ∈ T and ωD(δi) ≤ 0

}
(8)

denotes the membership of γ in the set of subgraphs of Γ, whose connected components are
superficially divergent 1PI graphs. Disconnected graphs γ =

⋃
i
γi are identified with the product(∏

i
γi

)
∈ HD. Γ/γ denotes the contraction of the subgraph γ in Γ. The cograph Γ/Γ and the

empty graph γ = ∅ in (7) are identified with the unit I ∈ HD.
The function ωD : T → Z has an important role. It assigns the superficial degree of divergence

in D dimensions to a 1PI Feynman graph. ωD performs power counting on a graph in the sense
of Weinberg’s theorem [11].

Additionally, the reduced coproduct ∆̃D is defined as

∆̃D := ∆D − id⊗ I− I⊗ id : HD → HD ⊗HD, (9)

giving rise to the space of primitive elements of HD:

Prim (HD) := ker ∆̃. (10)

The primitive 1PI graphs are also called skeleton graphs.
Details to the Hopf algebra of Feynman graphs in the scope of the coproduct calculation with

feyncop are given in [3].

4. Coproduct computation with feyncop
The python program feyncop can be used to compute the reduced coproduct ∆̃D of given 1PI
graphs as defined in (9). The output of feyngen can be piped into feyncop to calculate the
reduced coproduct of all 1PI graphs of a given loop order and residue type.

By default, the subgraphs composed of superficially divergent, 1PI graphs of the input graphs
are computed and given as output. These correspond to the left-hand factor of the tensor product
originating from the coproduct. Optionally, the complementary cographs, giving account to the



right-hand factor of the tensor product, can be computed. Furthermore, there is the option to
identify the sub- and cographs with unlabeled 1PI graphs i.e. elements of HD. Additionally, the
input graphs can be filtered for primitive graphs.

The coproduct calculation does only take the degree of divergence obtained by power
counting, formulated by the map ωD into account. Further information, as gained by Furry’s
theorem in the case of QED, is not used.

4.1. Examples

The graph is represented as an edge list using an auxiliary vertex labeling, as in the output

of feyngen:

G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],[4,0],[5,1],[6,2],[7,3]].

This can be used as input for feyncop:

$ echo "G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],[4,0],[5,1],[6,2],[7,3]]"

| ./feyncop -D4

This will yield the output:

+ D[G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],[4,0],[5,1],[6,2],[7,3]],

[{{1,2}}, {{3,4}}, {{1,2},{3,4}}]]

;

The output line

[{{1,2}}, {{3,4}}, {{1,2},{3,4}}]

corresponds to the subgraphs which are composed of superficially divergent, 1PI graphs,
represented a by their edge sets. The edges are indexed by their order of appearance in the
edge list.
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represented as the sets of sets,

{{1,2}}, {{3,4}} and {{1,2},{3,4}}.

feyncop can also be used to identify the subgraphs with elements of the Hopf algebra of

Feynman graphs. Giving again as input:

$ echo "G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],[4,0],[5,1],[6,2],[7,3]]"

| ./feyncop -D4 -u

The output will be:

+ 2/1 * T[ G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]],

G[[1,0],[1,0],[2,0],[2,1],[3,2],[4,2],[5,0],[6,1]] ]

+ T[ (G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]])^2,

G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]] ]

;

This output corresponds to the tensor products on the right-hand side of

∆̃4

( )
= 2 ⊗ +

( )2
⊗ .

where the graphs are again represented using an auxiliary vertex labeling.
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(a) Time to calculate the coproduct of all 1PI
diagrams of given loop order.
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Figure 2. Plot of the results of the benchmark for feyncop. Legend: + : φ4 vertex type
diagrams, × : φ3 vertex type diagrams, ∗ : QED vertex type diagrams, ut : QCD 3-gluon vertex
type diagrams.

4.2. Benchmarks
Figure 2 depicts an example of the computation time of the coproducts of certain classes of
1PI diagrams of a given loop order. The benchmark was performed on a Intel(R) Core(TM)

i7-3770 CPU @ 3.40GHz. No parallelization was used.
Because φ4-diagrams have less edges per loop in comparison to the other diagram classes,

this coproduct computation is by far the fastest. There are no significant differences in the
coproduct computation times of the other classes. This difference in the performance could be
made much smaller by implementing a more elaborate 1PI subdiagram detection algorithm. The
fast handling φ4-theory was the main priority during the development of feyngen and feyncop,
so this optimization was not implemented.

4.3. Validation
The output of feyncop can be checked by using an identity from [12] on sums of Feynman
graphs:

∑
Γ∈T

∆DΓ

|Aut(Γ)|
=

∑
γ=

(∏
i
γi

)
∈F

ωD(γi)≤0

∑
Γ̃∈T

∣∣∣I(Γ̃|γ)
∣∣∣

|Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣γ ⊗ Γ̃, (11)

where
∣∣∣I(Γ̃|γ)

∣∣∣ is the number of insertions of γ into Γ̃, T the set of all 1PI graphs, F the set of

all products of 1PI graphs and |Aut(Γ)| is the number of automorphisms of the graph Γ.
For the validation the coproduct is calculated for the left hand side of equation (11) and

is compared to the right hand side which just depends on simple topological properties of the
underlying Feynman graphs.



5. Conclusions
Two programs were presented. feyngen can generate Feynman diagrams of various theories and
with certain optional properties and feyncop calculates the coproduct on the Hopf algebra of
Feynman graphs. The method of validation and a benchmark were presented for both programs.

Both programs are publicly available at http://people.physik.hu-berlin.de/~borinsky/.
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