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A CHORD DIAGRAM EXPANSION COMING FROM SOME

DYSON-SCHWINGER EQUATIONS

NICOLAS MARIE AND KAREN YEATS

Abstract. We give an expression for the solution to propagator-type Dyson-Schwinger equations
with one primitive at 1 loop as an expansion over rooted connected chord diagrams. Along the
way we give a refinement of a classical recurrence of rooted connected chord diagrams, and a
representation in terms of binary trees.

1. Introduction

Dyson-Schwinger equations are integral equations in quantum field theory which have a recursive
structure that mirrors the recursive decomposition of Feynman diagrams into subdiagrams. As such,
they have a strong combinatorial flavour and there is much which can be said about them using
combinatorial tools. They are also very difficult to solve in general, and even partial information
can provide physically valuable results.

This paper looks at the special case where the underlying decomposition of diagrams has the
same shape as the standard recurrence for rooted trees. This occurs in Dyson-Schwinger equations
for propagators built from one diagram with one loop inserted in one place. For an example and
more details see Section 2.

The analytic contribution of this one diagram (which must be a primitive graph in the renormal-
ization Hopf algebra, as so will be referred to as the primitive of the Dyson-Schwinger equation)
can be given in the form of an expansion

F (ρ) =
f0
ρ

+ f1 + f2ρ+ · · ·

We will view the fi as known, given to us by physics. The Dyson-Schwinger equation we are
interested in is

(1) G(x,L) = 1− xG

(

x,
d

d(−ρ)

)−1

(e−Lρ − 1)F (ρ)
∣
∣
ρ=0

and the problem we consider is to give an explicit expression for G(x,L) in terms of the fj.
LetRCCD be the set of rooted connected chord diagrams, or equivalently connected arc diagrams

of matchings. These are classical and purely combinatorial objects. Let the size of a rooted be the
number of chords. For details and definitions on chord diagrams see Section 3. The main result of
this paper is that

G(x,L) = 1−
∑

i≥1

(−L)i

i!

∑

C∈RCCD
b(C)≥i

x|C|fCfb(C)−i

solves (1), where fC is a monomial in the fj given by the chord diagram, and b(C) is a parameter
of C which can be read off the intersection graph of C. The proof of this result is a mix of explicit
combinatorial constructions and recurrences. The result gives us G(x,L), which is a physically
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1

http://arxiv.org/abs/1210.5457v1


meaningful quantity, as a sort of multivariate generating function of chord diagrams. Some initial
observations on the consequences of this are given in Section 5.

For the reader who wishes to jump directly to the combinatorial constructions and the proof of
the main result, sections 3 and 4 can be read independently of the motivation from Section 2.

The paper is organized as follows. Section 2 briefly runs through the physical set up which
gives rise to problem considered in the paper. It is written with the mathematical reader in mind
and contains references to more comprehensive sources. Section 3 sets out the definitions and
constructions we need on rooted chord diagrams. Section 4 begins by proving two recurrences, one
of which refines a classical recurrence of Stein, and the other of which is a consequence of our tree
representation for rooted chord diagrams. Together these two recurrences let us conclude Section
4 with a proof of our main result. Section 5 gives an elementary account of consequences of the
result. These consequences can be divided in an analytic and a combinatorial part, each of which
will be explored further in a subsequent work. The paper concludes with Appendix A which gives
a table of examples of rooted chord diagrams and their associated trees.

2. Dyson-Schwinger equations

Let F be the set of forests of rooted trees. Such forests have a size given by the number of
vertices. Let H be the graded vector space span(F) over a base field of characteristic 0. Defining
the product of two forests to be their disjoint union and extending linearly makes H into an algebra:
the polynomial algebra generated by rooted trees. The identity element is the empty tree and will
be denoted 1. In fact, H has a nice combinatorially defined coproduct and is the Connes-Kreimer
Hopf algebra of rooted trees [9]. This Hopf algebra structure underlies the quantum field theoretic
context of the problem currently at hand, however we don’t need it for the purposes of this paper
and so it will be left to the references.

Definition 2.1. Let B+ : H → H be the operation which takes a forest T1T2 · · ·Tk and returns the

rooted tree where the subtrees rooted at children of the root are T1, T2, . . . , Tk, and extended linearly

to all of H.

Using this notation we can capture the recursive decomposition of a tree into the subtrees of the
root by the following equation

(2) X(x) = 1− xB+

(
1

X(x)

)

Note that since X(x) begins with 1, 1/X(x) is well defined simply by expanding the geometric
series. The solution to this equation in H[[x]], which can be constructed recursively and checked
inductively, is

X(x) = 1−
∑

T

x|T |p(T )T

where the sum runs over all rooted trees and p(T ) is the number of distinct plane representations
of a tree T , or equivalently the number of nonisomorphic orderings of the children of each vertex.
Other such equations yield other classes of trees [6]. Mapping each tree to 1 we would get the usual
generating function; we will be interested in more subtle maps from trees and graphs to numbers.

The same basic structure, though in general considerably more intricate, is seen in the nesting
of subdivergent Feynman diagrams in larger Feynman diagrams. This observation is the beginning
of the algebraic or combinatorial approach to Dyson-Schwinger equations as found in papers such
as [11, 19, 12, 17]. Combinatorial Dyson-Schwinger equations are equations such as (2) and
its generalizations which describe this recursive structure for a given class of Feynman graphs.
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In some simple instances the combinatorial Dyson-Schwinger equation will be exactly in the same
form as (2). For example [7] considers two such cases. One of these cases is the case where

is inserted into itself in all possible ways, yielding graphs such as

which has a tree structure to its insertions. This form will appear whenever we are interested in
iterating a propagator graph into itself along one internal edge. More general Dyson-Schwinger
equations are more complicated as different sorts of graphs can be inserted in different places, and
subgraphs can overlap.

Feynman rules give a map from Feynman graphs into (formal) integrals. One can then reg-
ularize the integrals, renormalize them, and sum over appropriate graphs to obtain physically
meaningful values. A reference in more or less the language used here is [10].

Applying Feynman rules to the combinatorial Dyson-Schwinger equations gives analytic Dyson-

Schwinger equations which are integral equations for the Green functions of the system in
question. They have the same basic recursive structure that the combinatorial Dyson-Schwinger
equations did. Continuing the above example [7] the combinatorial Dyson-Schwinger equation

X(x) = I− xB+

(
1

X(x)

)

interpreted as inserting the graph

into itself iteratively in all possible ways, yields the analytic Dyson-Schwinger equation

G(x,L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2)(k + q)2
− · · ·

∣
∣
∣
∣
q2=µ2

where L = log(q2/µ2). See [19] (also available as [18]) Example 3.5 for further details.
The analytic Dyson-Schwinger equations are still not in the form we need. Example 3.7 of

[19, 18] begins with the above example, proceeds to expand G(x,L) in L, convert logarithms to

powers using dkyρ

dρk
|ρ=0 = logk(y), swap the order of the operators, and thus obtains

G(x,L) = 1− xG

(

x,
d

d(−ρ)

)−1

(e−Lρ − 1)F (ρ)
∣
∣
ρ=0

where F (ρ) is the Feynman integral of the primitive with the propagator we are inserting on
regularized, and the integral evaluated at q2 = 1.

Rather than set up appropriate hypotheses on the original analytic Dyson-Schwinger equations
so as to guarantee that these transformations are always possible (which they will be in physi-
cally reasonable circumstances), we will now follow [19] by defining the analytic Dyson-Schwinger
equation associated to (2) to be

(3) G(x,L) = 1− xG

(

x,
d

d(−ρ)

)−1

(e−Lρ − 1)F (ρ)
∣
∣
ρ=0
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where

F (ρ) =
f0
ρ

+ f1 + f2ρ+ f3ρ
2 + · · ·

which is the integral of the primitive graph regularized by raising the insertion propagator to the
power 1 + ρ, evaluated with external momentum equal to 1, and expanded in ρ. F (ρ) is viewed as
given.

Write
G(x,L) = 1−

∑

k≥1

γk(x)L
k

and view the γk(x) as unknown series in x. Expanding it out, one can see that (3) determines the
γk(x) in terms of the fi, but only in a quite unwieldy way.

The goal of [19, 18] was to convert considerably more general Dyson-Schwinger equations into a
more workable form at the cost of introducing a new unknown function P . This new form proved
quite useful, in [15, 16] one of us along with Dirk Kreimer, Guillaume van Baalen, and David
Uminsky use the new form to investigate QED and QCD showing in the former case that it is
possible to avoid the Landau pole. Marc Bellon and Fidel Schaposnik [2, 3, 4, 5] have investigated
approximation schemes based on this method.

The present paper is more modest in the sense that only the Dyson-Schwinger equation (3) is
considered. However in another sense it is better; the result gives an explicit solution to this Dyson-
Schwinger equation as an expansion indexed by rooted chord diagrams; no mystery functions or
recurrences. In the last section we give some consequences of this expansion and we will pursue
the physical consequences more fully in future work with Dirk Kreimer.

3. Rooted chord diagrams

In this section we will define the combinatorial objects and constructions we need.
At the heart of the proof that the formal solution to the Dyson–Schwinger equation (1) is given

by

G(x,L) = 1−
∑

i∈N∗

(−L)i

i!

∑

C∈RCCD
b(C)≥i

fC fb(C)−i x
|C|

is the combinatorics of rooted connected chord diagrams. In particular, the monomials in the fj
appearing in this expansion are indexed by the sequences of gaps between distinguished chords
called the terminal chords of the diagrams.

We will describe these structures as well as a representation of the chord diagrams by planar
binary trees whose decomposition is the main ingredient of the recurrences in section 4.

3.1. Chord diagrams.

Definition 3.1. A chord diagram of order n is the data of 2n points (p1, · · · , p2n) arranged on a

circle, together with n distinct pairs of distinct points {{pi1 , pi2}, · · · , {pin , pi2n}} where {pik , pi2k} is
represented by a chord joining the points pik and pi2k on the circle. It is rooted when we distinguish

one of those points on the circle. It is connected when after erasing the circle we are left with a

connected graph.

In the following RCCD denote the set of rooted connected chord diagrams. We say that a
diagram with n chords has degree n and we denote by RCCD(n) the family of these diagrams.
Unless stated otherwise our chord diagrams are oriented counterclockwise, meaning that the points
on the outer circle are numbered p1, p2, ..., p2n with p1 corresponding to the root and continuing
counterclockwise from this point.

4



(A)
1

2

3
4

(B)
1

2

3

Figure 1. (A) is a rooted connected chord diagram of degree 4 while (B) has degree 3
but is not connected. Here the root is the circled vertex, the root chord is numbered 1 and
the rest is labelled in the counterclockwise order.

Observe that in general a chord diagram is distinct from its mirror image as can be seen in the
following example:

1

2

3
4

.

1

2

3

4

Definition 3.2. Let X be a rooted connected chord diagram of degree n. We denote by I(X) the

labeled directed graph whose set of vertices {1, 2, ..., i, ..., n} corresponds to the set of chords of X
where i stands for the ith chords in the counterclockwise order and there is a directed edge from

i to j if the ith chord intersects the jth chord with i < j. The graph I(X) is called the directed

intersection diagram of X.

Here is an example of a rooted connected chord diagram and its directed intersection graph:

1

2

3
4

1 2 3 4 .

Definition 3.3. Let X be a rooted connected chord diagram and I(X) its directed intersection

diagram. A chord i is said to be terminal if the vertex i of I(X) has no outgoing edges.

Hence a terminal chord does not intersect any chord with a larger index. As one can see in the
examples presented below, the linear order on the vertices of the directed intersection graphs makes
it easy to observe the gaps between terminal chords.

But unfortunately things are not straightforward and at this point we need to relabel the chords
of our diagrams in a new order called the intersection order.

5



This order is defined recursively directly on the chord diagrams or on their intersection diagrams.
We choose this second option and we express this new order as a permutation of the counterclockwise
order.

Definition 3.4. Let X be a rooted connected chord diagram of degree n with its sequence of chords

(1, 2, ..., n) in the counterclockwise order and I(X) its intersection diagram. Apply the following

recursive procedure:

1) consider the graph I(X) and delete the edges going out of its smallest vertex, the vertex 1;
2) obtain k connected components I1(X) = {1},I2(X), ...,Ik(X) where the smallest vertex of Ip(X)
is larger than the smallest vertex of Iq(X) when q < p;
3) then each connected component Ip(X) is associated to its sequence of vertices (x1,p, x2,p, ...) in

counterclockwise order. This defines a permutation (1, 2, ..., n) 7→ (1, x1,1, x2,1, ..., x1,2, x2,2, ..., x1,k, x2,k, ...);
4) apply this procedure recursively to each Ip(X), (x1,p, x2,p, ...) until we are left with n singleton;

This defines a permutation σX : (1, 2, ..., n) 7→ (σ1, σ2, ..., σn) that we call the intersection order

of X.

This procedure is easily understood on an example:

1 2

3

4

(X)

σX = (1243)

1 2 3 4

1 2 4 3

1 2 3 4

Step 1

(1, 2, 3, 4)

Step 2

(1, 2, 4, 3)

Step 3

(1, 2, 4, 3)

I(X)

I1(X) I2(X) I3(X)

I1(X) I2,1(X) I2,2(X) I3(X)

where each step corresponds to rearranging the elements of each block with respect to their
smallest label as prescribed in the definition.

So finally we obtain the chord diagram and its corresponding intersection diagram now labeled in
the intersection order given by σX = (1243):

1 2

4

3

(X)

1 2 3 4

Iσ(X)

.

If I(X) is a directed intersection graph we denote by Iσ(X) the graph obtained by relabelling
the vertices with the permutation σX . This operation is an automorphism of the graph I(X) so in
if i was a terminal (respectively initial) chord of X in the counterclockwise order, σi = σX(i) is a
terminal (respectively initial) chord of X in the intersection order.
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For chord diagrams of small degree the intersection order and the counterclockwise order coincide
most of the time. It is only at higher degrees that we start to see the differences between these
orders as one can observe on some families of examples given below.

Definition 3.5. Let X be a rooted connected chord diagram with intersection order σX = (σ1, ..., σn).
The sequence of terminal chords of X in the intersection order is denoted by Terσ(X) = (σi1 , ..., σik )
with σi1 < σi2 < ... < σik . We associate to Terσ(X) the sequence of consecutive gaps between ter-

minal chords in the intersection order:

δ(X) = (σi2 − σi1 , σi3 − σi2 , ..., σik − σik−1
) .

We denote by b(X) the first element of Terσ(X) i.e. the smallest terminal chord in the intersec-
tion order.

It is easier to handle sequences of gaps δ(X) with constant lengths over the chord diagrams with
constant degree. So if X has degree n and δ(X) = (δ1, ..., δk) we introduce:

δ̄(X) = (0, ..., 0,
︸ ︷︷ ︸

n−k−1times

δ1, ..., δk) ,

so that δ̄(X) has length n− 1 if X has degree n.

These are the objects that index the monomials in fj appearing in the γk expansions and we
define:

fX = fn−k−1
0 fδ1 fδ2 ... fδk .

Now that we understand the correspondence between the monomials in the chord diagram ex-
pansion and the gaps separating terminal chords we need to describe a decomposition of the chord
diagrams. Any rooted connected chord diagram of degree n defines 2n intervals on the outer circle
that we label 0, 1, 2, ...., 2n − 1 starting with 0 for the interval preceding the root and progressing
counterclockwise:

0 1

23

0 1

2

k

.

3.2. Decomposition and trees. The rest of the constructions are based on the following insertion
operation defined on rooted connected chord diagrams.

Definition 3.6. Let m,n ∈ N
∗ and 0 < i ≤ 2n − 1. Define the operation

y

(0, i): RCCD(m) ×
RCCD(n) −→ RCCD(m+ n) for all X ∈ RCCD(m) and Y ∈ RCCD(n) by

X
y

(0, i)

0 1

i

Y =
Y

X

7



that is the operation of insertion of X in Y by placing the root of X in the interval 0 of Y and the

rest of X in the ith interval of Y . The root of X
y

(0, i) Y is the root of X.

Observe that any rooted connected chord diagram can be decomposed canonically using this
insertion operation. A share in a chord diagram is formed by two arcs on the outer circle such that
if one endpoint of a chord is in the share the other endpoint must also be in the share, e.g.

a−

a+

←→

the grey area corresponds to the share of the arcs (a−, a+).

Definition 3.7. Let X be a rooted connected chord diagram and Ẋ the share of X formed on one

side by the root and on the other side by what is left of the diagram after deleting consecutively the

root-chord of X then the first connected component, for the induced counterclockwise order, of X
minus the root-chord. Then the root-share decomposition of X is

X = Ẋ
y

(0, i) (X \ Ẋ)

where X \ Ẋ is the diagram obtained by removing the chords of Ẋ from X and taking the root to

be the second chord in the counterclockwise order of X.

Here is an example of root-share decomposition:

=
y

(0, 1) .

Then we can use the root-share decomposition to construct planar binary trees from those chord
diagrams. Let PBT denote the set of rooted planar binary trees counted by their number of leaves.
We label the edges of those trees from 1 to 2n − 1 by a preorder traversal starting with 1 for the
root edge. Here are some examples:

1

2 3

4 5

1

2 3

4

5 6

7
.

Then we can define the following insertion operation on trees.
8



Definition 3.8. Let m,n ∈ N
∗ and 0 < i ≤ 2n−1. Define the operation

y

i : PBT (m)×PBT (n) −→
PBT (n+m) for all A ∈ PBT (m) and B ∈ PBT (n) by

y

i =
... i

...
i

that is the operation of insertion by the root edge of A on the left of the ith edge in B. The root of

A
y

i B is the root of B if i 6= 1 or the newly created vertex if i = 1.

Matching the insertion operations on the trees and chord diagrams we obtain a correspondence
defined recursively.

Definition 3.9. The map T : RCCD −→ PBT c, the set of rooted planar binary trees with leaves

colored by the integers, is defined recursively on the chord diagrams labelled in the intersection order

by:

T (

i

)=
i

and T

(

X
y

(0, i) Y

)

= T (X)
y

i T (Y ) .

It is very important that the T -map is defined for rooted connected chord diagrams with chords
labelled in the intersection order, and not the counterclockwise order, as it gives a simple charac-
terisation of the image of T . We will come back to that in the next section.

These are all the objects we need to introduce in order to prove the chord diagrams expansion
giving the formal solution to the Dyson–Schwinger equation (1) however there are still many inter-
esting combinatorial questions, like the statistical distribution of the sequences of gaps, that will
need further study.

3.3. Examples. Next we give some examples of families of rooted connected chord diagrams for
which all the objects introduced above are easily computed.

Example 3.10. One of the simplest family of rooted connected chord diagrams consists in the
cycloids. It is an example of family of diagrams which are minimally connected since removing any
of the chords (except the first and the last one) result in a disconnected chord diagram. They are
the diagrams such that the ith chord intersects only the i+ 1th chord:

(Cyc1)

,

(Cyc2)

,

(Cyc3)

,

(Cyc4)

...

(Cycn)

1
2

k
n

...

9



The directed intersection diagram of the cycloid with n chords is simply the line:

I(Cycn) 1 2 3 ... ... ... n .

In particular its intersection order coincide with the counterclockwise order so we get the identity
permutation σCycn = (123...n). Moreover there is only one terminal chord, Terσ(Cycn) = (n), which
is then the smallest terminal chord of (Cycn). With only one terminal chord the sequence of gaps
is empty, δ(X) = ∅. We associate to this chord diagram the sequence with length n− 1:

δ̄(Cycn) = (0, 0, · · · , 0) .

Finally, it is easy to compute the planar binary tree corresponding to the cycloid with n chords.
An easy induction gives that for all n ∈ N

∗ we have:

T (Cycn) =
1

2

k

n − 1 n

.

Example 3.11. Another very simple family of diagrams is given by the wheels with n spokes. If
the cycloids formed a family of minimally connected diagrams the wheel spokes are then maximally
connected since removing any chord leaves us with a connected chord diagram.

(W1)

,

(W2)

,

(W3)

,

(W4)

...

(Wn)
1

2

k

n

...

Any pair of chords intersects in (Wn) so its intersection diagram is a directed version of the
complete graph on n vertices:

I(Wn) 1 2 3 ... ... ... n .

Once more the counterclockwise order coincides with the intersection order and we get the
identity permutation σWn = (123...n). Also there is only one terminal chord, Terσ(Wn) = (n)
which is the smallest terminal chord of Wn. With only one terminal chord the sequence of gaps is
empty δ(X) = ∅ and we associate to this chord diagram the sequence with length n− 1:

δ̄(Wn) = (0, 0, · · · , 0) .

It is also easy to compute the planar binary tree corresponding to the wheel spoke with n chords.
An induction an the number of chords gives for all n ∈ N

∗

10



T (Wn) =

1 2

k

n − 1

n

.

Example 3.12. We can also construct the family of ladders which maximize the number of terminal
chords one can get for a connected chord diagram with a fixed number of chords:

(L1)

,

(L2)

,

(L3)

,

(L4)

...

(Ln)
1

2

k

n

...

In Ln the first chord intersects all the other ones so its intersection diagram has one edge (1, k)
for each k ∈ [[2, n]]:

I(Ln) 1 2 3 ... ... n− 1 n .

So in Ln we have n − 1 terminal chords, Ter(Ln) = {2, 3, ..., n} and the gap between any two
consecutive chords is 1 hence δ(Ln) = (1, 1, ..., 1). Once more the counterclockwise order coincide
with the intersection order so σLn = (123....n).

We can compute inductively the planar binary tree corresponding to Ln. For all n ∈ N
∗ we have:

T (Ln) =

1 n

k

3

2

.

Example 3.13. Here is a family of rooted connected chord diagrams that shows we can get any
sequence of gaps and also illustrates the difference between the counterclockwise order and the
intersection order:

1

2

3

45

6

7

8

9

CW3(2, 1, 3)

1

2

n

B1

B2

Bn

CWn(β1, β2, ..., βn)

.

11



Here CWn(β1, ..., βn) is formed by a wheel spoke with n chords such that the target of the kth

spoke lies in the first interval of a block Bk consisting of cycloid with βk chords.
The intersection diagram of CWn(β1, ..., βn) consists of two main parts mixing what we already

know for the wheels and for the cycloids. First, the vertices from 1 to n form a directed version of
the complete graph on n vertices then we have n disjoint lines corresponding to the cycloids B1 to
Bn and for each k ∈ [[1, n]] an edge directed from the kth vertex to the initial vertex of the block
I(Bk).

The terminal chords of CWn(β1, ..., βn) are the last chords of each of the n cycloids. This time
the intersection order does not corresponds to the counterclockwise order. The first n chords are
in a wheel spokes configuration so their counterclockwise order is preserved. Inside each block Bk,
since we have cycloids, the counterclockwise order is preserved. However the first spoke lies in the
block B1, so in the intersection order this is the last block. The second spoke lies in Bk which
becomes the next to last block, and so on. We end up with the permutation:

σCWn = (1...nBn ...B2 B1) .

In particular we obtain CW3(2, 1, 3) in the intersection order:

1

2

3

89

7

4

5

6

CW3(2, 1, 3)

.

The sequence of gaps is then the list of the differences between the consecutive terminal chords of
the cycloid blocks in their intersection order:

δ(CWn(β1, ..., βn)) = (σCWn(βn−1)− σCWn(βn], ..., σCWn(β1)− σCWn(β2)) .

A simple induction gives the corresponding planar binary tree. For all n ∈ N
∗ we have:

T (Wn) =

T (B1) T (Bk)

T (Bn−1)

T (Bn)

1 k

n − 1

n ,

where T (Bk) corresponds to the tree of the kth cycloid block.

4. Recurrences

In this section we will use the constructions above to prove some technical lemmas and then the
main theorem.

12



4.1. A refinement of a recurrence of Stein. Let cn = |RCCD(n)|. A classical recurrence for
cn is

cn = (n− 1)
n−1∑

k=1

ckcn−k for n ≥ 2 c1 = 1

due to Stein [14]. Nijenhuis and Wilf [13] give a proof of this recurrence using the root-share
decomposition. What their proof naturally gives is the equivalent recurrence

cn =

n−1∑

k=1

(2k − 1)ckcn−k for n ≥ 2 c1 = 1

By following essentially the same proof while keeping track of the terminal chords we get the
following

Proposition 4.1. Let

gi =
∑

C∈RCCD
b(C)≥i

x|C|fCfb(C)−i

then

gk = g1

(

2x
d

dx
− 1

)

gk−1 for k ≥ 2

Before proving the recurrence lets see how it refines the classic chord diagram recurrence. Note
that the lowest power of x appearing in gk is k. Write

gk =
∑

i≥k

gk,ix
i

so
gk,i =

∑

C
|C|=i
b(C)≥i

fCfb(C)−i

Then Proposition 4.1 is the statement

(4) gk,i =

i−1∑

ℓ=1

(2ℓ− 1)g1,i−ℓgk−1,ℓ for 2 ≤ k ≤ i

which has the same form as the classic chord diagram recurrence, but with the gk,i rather than
simple counts.

The key to the proof is the behaviour of δ̄ in the root-share decomposition. This is encapsulated
in the following lemma.

Lemma 4.2. Let C1 and C2 be rooted connected chord diagrams, and take 1 ≤ m ≤ 2|C2| − 1. Let

C = C1

y

(0,m) C2.

Then for any k for which all terms are defined we have

fCfb(C)−k = fC1
fb(C1)−1fC2

fb(C2)−k+1

Proof. The terminal chords of C are the terminal chords of C1 along with the terminal chords of
C2. Furthermore, if c is a chord in C2 with index i in the intersection order, then c has index i+1
in the intersection order in C, and if c is a terminal chord in C1 with index j in the intersection
order then c has index j + |C2| in the intersection order in C. This gives that

b(C) = b(C2) + 1.
13



Also the last terminal chord of C2 is the last chord of C2 which has index |C2| + 1 in C and the
next terminal chord in C is the first terminal chord of C1 which has index b(C1) + |C2| in C.

So δ̄(C) is the concatenation of δ̄(C2), b(C1) + |C2| − (|C2|+ 1)− 1, and δ̄(C1). Simplifying

δ̄(C) = (δ̄(C2), b(C1)− 2, δ̄(C1))

The result follows. �

Proof of Proposition 4.1. Take k ≥ 2.
Take two rooted connected chord diagrams C1 and C2, where |C2| = ℓ. Take 1 ≤ m ≤ 2ℓ − 1

and let

C = C1

y

(0,m) C2

By Lemma 4.2
fCfb(C)−k = fC1

fb(C1)−1fC2
fb(C2)−k+1

so the term contributed to the right hand side of (4) by C is the same as the term contributed to
the left hand side of (4) by C1 and C2. Since the root share decomposition is unique and there are
2ℓ− 1 choices for m, we thus obtain (4) which gives the proposition. �

Scaling to match what we will ultimately need, if we let

γi =
(−1)i

i!
gi

then Proposition 4.1 gives

(5) γk(x) =
1

k
γ1(x)

(

−1 + 2x
d

dx

)

γk−1(x) for k ≥ 2.

4.2. A tree recurrence. The goal of this subsection is the following somewhat technical recur-
rence.

Proposition 4.3.

(6)
∑

C∈RCCD
|C|=i+1
b(C)=j+1

fC =

i∑

k=1

j
∑

ℓ=1

(
j

ℓ

)










∑

C∈RCCD
|C|=k
b(C)≥ℓ

fCfb(C)−ℓ



















∑

C∈RCCD
|C|=i−k+1
b(C)=j−ℓ+1

fC










for i ≥ 1 and j ≥ 1.

This recurrence comes from the decomposition of T (C) into the left and right subtrees of the
root. This is a very natural decomposition at the level of trees, but it is not at all apparent at the
level of chord diagrams as can be seen on the following examples where the chords colored in red
are in the right subtree, the chords in blue are in the left subtree and the subtree of the root-share
have dotted edges :

1

2

3

1 3

2

1

2

3

1 2

3 .
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In order to prove Proposition 4.3 we need to characterize T (RCCD) and then we need some
technical lemmas.

Definition 4.4. The branch of a planar binary tree which follows the right child at each vertex will

be called the fully right branch. The number of leaves of a tree t will be denoted ℓ(t)

The elements of T (RCCD) are built inductively by insertions. These insertions shift the labels
of the leaves in the intersection order in a very simple manner. This is what the following property
encodes.

Lemma 4.5. Trees in T (RCCD) have the following property:

P1: At any vertex w, the smallest label in the left subtree of w is smaller than the label at the

end of the fully right branch from w.

Proof. After we have made a critical observation concerning the properties of the intersection order,
the proof follows from an elementary induction.

Let X and Y be elements of RCCD whose sequence of chords labelled in the intersection order
are respectively (σi1 , · · · , σin) and (πi1 , · · · , πim). Then for any 0 < k ≤ 2m − 1, the chords of

X
y

(0, k) Y in the intersection order are labelled:

σi1 < πi1 + 1 < · · · < πim + 1 < σi2 +m < · · · < σin +m

since the connected component attached to the root coming from X comes last in the definition of
the intersection order.

The rest follows immediately by induction on the number of leaves of our trees. The base case
is obvious:

1 2

So assume that any element of T (RCCD) with at most n− 1 leaves has the desired property and
now consider a tree T with n leaves.

Because of the root-share decomposition there is some integer k so that we can write T = T0

y

k T1

with T0, T1 ∈ T (RCCD) having less than n leaves. There are three possibilities:

(1) if w is the insertion vertex in T then the left subtree must contain the label 1 and the
property is true;

(2) if w is a vertex of T that was a vertex of T0 then by the induction hypothesis the property
must hold since by the preliminary remark the labels in the subtree at w have all been
shifted by ℓ(T1);

(3) if w is a vertex of T that was a vertex of T1 then by the induction hypothesis the property
must hold since by the preliminary remark the labels in the subtree at w have all been
shifted by 1;

So the property holds at any vertex of T which concludes the induction.
�

Definition 4.6. Given T ∈ PBT c, by removing the subtree rooted at a vertex w we mean deleting

this subtree and replacing the parent of w with its other child.
15



Given T ∈ PBT c which satisfies P1, define the smallest removable subtree containing 1 to

be the minimal subtree rooted at some w of T which has 1 as a leaf and which can be removed while

maintaining P1.

Here are some trees where the smallest removable subtrees have been marked in red:

1 3

2
3

1 2

4

1 4 2 3

.

Lemma 4.7. A tree T in T (RCCD) has the following property:

P2: Let H be the smallest removable subtree of T containing 1. H has leaf labels 1, ℓ(T ) −
ℓ(H) + 2, ℓ(T ) − ℓ(H) + 3, . . . , ℓ(T ).

Proof. Let T , T1, T2 as in the previous proof, v be a vertex of T and C, C1, C2 the chord diagrams
corresponding to T , T1, T2 respectively.

H can not be strictly contained in T2 as if it were then when H is removed the leaves of the left
child of v are labelled with some labels from |C2|+1 to |C| while all other labels in the tree are at
most |C2|. Thus P1 is not satisfied.

T2 can not be strictly contained in H as T2 is a removable subtree of T by construction.
Thus T2 = H and as a consequence H has P2. �

Say a tree satisfies P2 recursively if it satisfies P2 and what remains after removing the largest
removable subtree containing 1 satisfies P2 and so on.

Theorem 4.8. T (RCCD) is the set of T ∈ PBT c which satisfy P1 and satisfy P2 recursively.

Proof. By the preceding lemmas every T ∈ T (RCCD) satisfies P1 and satisfies P2 recursively.
To show that these properties characterize the image, we will inductively define the inverse of

T . Map the tree with only one vertex to the rooted chord diagram with only one chord. Consider
T ∈ PBT c with at least 2 vertices and which satisfies P1 and satisfies P2 recursively. Let T2 be
the largest removable subtree of T containing 1. Let T1 be T with T2 removed. Let k be the index
of the vertex where T2 was inserted. Shift the vertex labels of T1 and T2 preserving their orders.

Inductively associate T1 and T2 to chord diagrams C1 and C2. Associate T to C1

y

(0, k) C2.
This construction is clearly inverse to T . �

Next we need one further nice observation and three technical lemmas.

Proposition 4.9. Let C be a connected rooted chord diagram. The b(C) is the label of the leaf of

the fully right branch of T (C).

Proof. The result is clear if |C| = 1.
Suppose |C| > 1. Let C1, C2, T , T1, and T2 be as in the above proofs. By construction

b(C) = b(C2) + 1. The insertion of T2 into T1 does not affect the fully right branch except to shift
the labels of T2 up by 1. By induction the label of the leaf of the fully right branch of T2 is b(C2)
and so the label of the leaf of the fully right branch of T is b(C2) + 1 = b(C). �

Lemma 4.10. Let C ∈ RCCD with |C| ≥ 2. Let T = T (C), and let H1 and H2 be the left and

right subtrees, respectively, of T . Suppose D1 and D2 are chord diagrams with T (Di) = Hi. Then

b(D1) ≥ b(C)− b(D2).

16



Another way to say this is that the leaf label of the fully right branch of H1, with labels shifted
to be consecutive, is ≥ b(C) − b(D2). That is, this lemma tells us that D1 and D2 decompose C
into pieces which satisfy the correct conditions to be from a term on the right hand side of (6).

Proof. Let b(C) = j+1 and let b(D2) = j− ℓ+1, so ℓ = b(C)− b(D2). b(C) is the label of the leaf
of the fully right branch of T and b(D2) is the label of the leaf of the fully right branch of H2, but
these are the same leaf, the only difference is the label shifting. Thus there must be ℓ labels on the
H1 side of t which are less than b(C).

Let C = C1

y

(0, k) C2 be the root-share decomposition of C. Let Ti = T (Ci), and let v be the
kth vertex of T , that is the insertion vertex. The proof of the lemma is an induction on the size of
C2.

If |C2| = 1 then C2 = D2 and b(C) = 2. Also b(D2) = 1, so ℓ = 1, and since 1 is the smallest
label b(D1) ≥ 1 = ℓ.

Now suppose |C2| > 1. By induction the result holds for C2. Let D′
1 and D′

2 be the chord
diagrams corresponding to the left and right subtrees of T2. Now consider how C1 is inserted into
C2. There are three cases

(1) If v is the root of T , then C1 = D1 and |D1| = 1, so the lemma is true.
(2) If v is inD1 then b(D1) = b(D′

1)+1 and b(C) = b(C2)+1 as label 1 causes additional shifting
while b(D2) = b(D′

2) since the right subtree is not affected. The induction hypothesis says
b(D′

1) ≥ b(C2)− b(D′
2). Thus

b(D1) ≥ b(C2)− b(D′
2) + 1 = b(C)− 1− b(D1) + 1 = b(C)− b(D1)

(3) If v is in D2 then b(D1) = b(D′
1) since the right subtree is not affected, while b(D2) =

b(D′
2) + 1 and b(C) = b(C2) + 1. Thus

b(D1) ≥ b(C2)− b(D′
2) = b(C)− b(D2)

This completes the proof. �

Lemma 4.11. Let C ∈ RCCD with |C| ≥ 2. Let T = T (C), and let H1 and H2 be the left and

right subtrees, respectively, of T . Suppose D1 and D2 are chord diagrams with T (Di) = hi. Then

fC = fD1
fb(D1)+b(D2)−b(C)fD2

Proof. Let C = C1

y

(0, k) C2 be the root-share decomposition of C. Let Ti = T (Ci), and let v be
the kth vertex of T . Lemma 4.2 gives

(7) fCfb(C)−k = fC1
fb(C1)−1fC2

fb(C2)−k+1

If |C2| = 1 then C1 = D1, C2 = D2, k = 1, b(C) = 2, and b(D2) = 1, so (7) gives the result.
Now assume |C2| > 1. Let D′

1 and D′
2 be the chord diagrams corresponding to the left and right

subtrees of T2. By induction the result holds for C2, that is

(8) fC2
= fD′

1
fb(D′

1
)+b(D′

2
)−b(C2)fD′

2

There are again three cases

(1) If v is the root of T , then k = 1 so C1 = D1 and C2 = D2. Also b(C2) = b(C) − 1, and so
(7) becomes the statement of the lemma.

(2) If v is in D1 then D1 is C1 inserted into the (k − 1)st slot of D′
1, and so

(9) fD1
fb(D1)−k+1 = fC1

fb(C1)−1fD′

1
fb(D′

1
)−k+2
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Next, note that b(C) = b(C2) + 1 and b(D1) = b(D′
1) + 1 because inserting shifts the labels

up by 1 in the tree being inserted into. Then substituting (8) and (9) into (7) we get

fCfb(C)−k =
fD1

fb(D1)−k+1

fD′

1
fb(D′

1
)−k+2

fD′

1
fb(D′

1
)+b(D′

2
)−b(C2)fD′

2
fb(C2)−k+1

= fD1
fb(D1)+b(D2)−b(C)fD2

fb(C)−k

which implies the statement of the lemma.
(3) If v is in D2 then D2 is C1 inserted into the (k − 1− |D1|)st slot of D′

2, and so

fD2
fb(D2)−k+1+|D1| = fC1

fb(C1)−1fD′

2
fb(D′

2
)−k+|D1|+2

Similarly to the previous case b(C) = b(C2) + 1 and b(D2) = b(D′
2) + 1. So substituting

fCfb(C)−k =
fD2

fb(D2)−k+1+|D1|

fD′

2
fb(D′

2
)−k+|D1|+2

fD1
fb(D1)+b(D′

2
)−b(C2)fD′

2
fb(C2)−k+1

= fD2
fD1

fb(D1)+b(D2)−b(C)fb(C)−k

which implies the statement of the lemma.

All together, by induction, the result is proved. �

Lemma 4.12. Let D1,D2 ∈ RCCD and let Gi = T (Di). For every choice of j with j ≥ b(D2)− 1
and b(D1) ≥ j − b(D2) + 1 and for every shuffle of the first j labels of G1 and the first b(D2) − 1
labels of G2, there is a unique T in T (RCCD) with G1 as left child and G2 as right child.

Proof. Proceed again by induction. Suppose G1 and G2 both have just one vertex. So T is the tree
with a root with two leaves. In view of P1 there is exactly one way to label this so that it is in the
image of T . Furthermore, b(D2)− 1 = 1− 1 = 0, so the shuffle is trivial.

Take |g1| + |g2| > 2. Build a tree T with G1 as right child, G2 as left child, but only label the
vertices which had the first j labels in G1 and the first b(D2)−1 labels in G2, and label these leaves
by the specified shuffle.

With this labelling there is a leaf with label 1. Say 1 is on the Gi side (i = 1 or i = 2). Let G′
i

be Gi with the smallest removable subtree of Gi containing 1 removed. Let T ′ be T built with G′
i

in place of Gi. By induction we have a unique labelling of T ′ consistent with the given shuffle.
Shift all the labels in T ′ up by one, and reinsert the smallest removable subtree containing 1

with all labels other than 1 shifted to be larger than all labels in T ′. This gives a labelling of T
which is in the image T .

To show uniqueness, suppose there were another labelling of T consistent with the given shuffle.
By removing largest removable subtrees containing 1 as long as they match, we may assume that
the two labellings of T have different largest removable subtrees containing 1. However removability
of a subtree is not sensitive to whether the labels are consecutive, but the two labellings of T only
differ by how they shuffle the labels of G1 and G2, so this is impossible. �

Now we are ready to prove Proposition 4.3

Proof of Proposition 4.3. Take a connected rooted chord diagram C with |C| ≥ 2, and hence b(C) ≥
2. Let the associated tree be T = T (C). Let H1 and H2 be the left and right subtrees respectively
of T . H1 and H2 satisfy P1 and satisfy P2 recursively since T did; thus H1 and H2 are in the image
of T . Let D1 and D2 be the chord diagrams corresponding to H1 and H2.

Let b(C) = j + 1 and let b(D2) = j − ℓ+ 1, so ℓ = b(C)− b(D2). b(C) is the label of the leaf of
the fully right branch of T and b(D2) is the label of the leaf of the fully right branch of H2, but
these are the same leaf, the only difference is the label shifting. Thus there must be ℓ labels on the
H1 side of T which are less than b(C).
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By Lemma 4.10 D1 and D2 decompose C into pieces which satisfy the correct conditions to be
from a term on the right hand side of (6). Furthermore by Lemma 4.11, they contribute the correct
monomial in the fi to each side.

Now we need to argue the other way. Suppose D1,D2 ∈ RCCD. Viewing D1 and D2 as
contributing to a term on the left hand side of the lemma, we need to see that they can be
reattached to get a chord diagram C, and that this can be done

(
j
ℓ

)
ways.

Let G1 = T (D1) and G2 = T (D2). Clearly, we wish to build a tree with G1 as the right child
of the root and G2 as the left child. The question is how to shuffle the leaf labels of G1 and G2 in
building the new tree. Lemma 4.12 tells us that the answer is

(
j
ℓ

)
times, as desired. �

4.3. The main theorem.

Theorem 4.13.

γi(x) =
(−1)i

i!

∑

C∈RCCD
b(C)≥i

x|C|fCfb(C)−i

solves the Dyson-Schwinger equation

G(x,L) = 1− xG(x, ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣
∣
ρ=0

where

F (ρ) =
f0
ρ

+ f1 + f2ρ+ f3ρ
2 + · · ·

G(x,L) = 1−
∑

n≥1

γn(x)L
n

Proof. By [19] chapter 4, the γi which solve this Dyson-Schwinger equation satisfy

γk(x) =
1

k
γ1(x)

(

−1 + 2x
d

dx

)

γk−1(x) for k ≥ 2.

This γk recurrence is a rephrasing of the renormalization group equation for the Dyson-Schwinger
equation.

By Proposition 4.1 (see in particular the formulation in (5)) the γi defined in the statement of the
theorem satisfy the same recurrence. Thus it suffices to show that γ1 as defined in the statement
of the theorem satisfies the Dyson-Schwinger equation; namely, we only need to check that

(10) γ1 = x



1−
∑

k≥1

γk
dk

d(−ρ)k





−1

(−ρ)F (ρ)
∣
∣
ρ=0

To simplify signs let

gi = (−1)ii!γi

This agrees with the definition of gi from Proposition 4.1. Rephrasing in terms of the gk and
expanding the geometric series, (10) is equivalent to checking

g1 = x
∑

n≥0




∑

ℓ≥1

gℓ
1

ℓ!

dℓ

dρℓ





n

(f0 + f1ρ+ f2ρ
2 + · · · )

∣
∣
ρ=0
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Simplifying the right hand side we get

x
∑

n≥0




∑

ℓ≥1

gℓ
1

ℓ!

dℓ

dρℓ





n

(f0 + f1ρ+ f2ρ
2 + · · · )

∣
∣
ρ=0

= xf0 + x
∑

n≥1




∑

ℓ≥1

gℓ
1

ℓ!

dℓ

dρℓ





n

(f0 + f1ρ+ f2ρ
2 + · · · )

∣
∣
ρ=0

So it suffices to show

g1 = xf0 + x
∑

n≥1




∑

ℓ≥1

gℓ
1

ℓ!

dℓ

dρℓ





n

(f0 + f1ρ+ f2ρ
2 + · · · )

∣
∣
ρ=0

This is the content of the next lemma, following which the proof is complete. �

Lemma 4.14. Let

gi =
∑

C∈RCCD
b(C)≥i

x|C|fCfb(C)−i

then

(11) g1 = xf0 + x
∑

n≥1




∑

ℓ≥1

gℓ
1

ℓ!

dℓ

dρℓ





n

(f0 + f1ρ+ f2ρ
2 + · · · )

∣
∣
ρ=0

Proof. One can check directly that the linear term of g1 is correct.
For i ≥ 1 we have

[xi+1]g1 =
∑

C∈RCCD
b(C)≥1
|C|=i+1

fCfb(C)−1

while the coefficient of xi+1 on the right hand side of (11) is

[xi]
∑

n≥1




∑

ℓ≥1

gℓ
1

ℓ!

dℓ

dρℓ





n

(f0 + f1ρ+ f2ρ
2 + · · · )

∣
∣
ρ=0

One possible way for these to be equal is if the fj explicitly showing on the right hand side matches
with the fb(C)−1 from the left hand side. That is it would suffice to show for 1 ≤ j ≤ i

(12)
∑

C∈RCCD
b(C)=j+1
|C|=i+1

fC = [xi]
∑

n≥1




∑

ℓ≥1

gℓ
1

ℓ!

dℓ

dρℓ





n

ρj
∣
∣
ρ=0

To save space, let Gρ =
∑

ℓ≥1 gℓ
1
ℓ!

dℓ

dρℓ
, and let Fi,j = [xi]

∑

n≥0

(
∑

ℓ≥1 gℓ
1
ℓ!

dℓ

dρℓ

)n

ρj
∣
∣
ρ=0

. Note that

for j ≥ 1, the n = 0 term does not contribute and so Fi,j is the right hand side of (12). Calculate,
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for 1 ≤ j ≤ i

Fi,j =[xi]
∑

n≥1

(Gρ)
n ρj

∣
∣
ρ=0

=

i∑

k=1

(

[xk]Gρ

)



[xi−k]
∑

n≥0

(Gρ)
n



 ρj
∣
∣
ρ=0

=

i∑

k=1

j
∑

ℓ=1

(
j

ℓ

)(

[xk]Gdρ
ℓ
∣
∣
ρ=0

)



[xi−k]
∑

n≥0

(Gρ)
n ρj−ℓ

∣
∣
ρ=0





=
i∑

k=1

j
∑

ℓ=1

(
j

ℓ

)(

[xk]gℓ

)

Fi−k,j−ℓ

=

i∑

k=1

j
∑

ℓ=1

(
j

ℓ

)










∑

C∈RCCD
b(C)≥ℓ
|C|=k

fi(C)fb(C)−ℓ










Fi−k,j−ℓ

Thus we have a recurrence which gives Fi,j. To prove the lemma it suffices to prove (12); that
is, it suffices to prove that

Fi,j =
∑

C∈RCCD
b(C)=j+1
|C|=i+1

fC

for 1 ≤ i ≤ j. It still suffices to prove it with extended bounds 0 ≤ i ≤ j. To do this we check
the initial terms directly and then check that

∑

C∈RCCD
b(C)=j+1
|C|=i+1

fC satisfies the recurrence for Fi,j. The

second of these is the content of Proposition 4.3. For the first of these, if j = 0 then

Fi,0 = [xi]
∑

n≥0




∑

ℓ≥1

gℓ
1

ℓ!

dℓ

dρℓ





n

ρ0
∣
∣
ρ=0

= [xi]1 =

{

1 if i = 0

0 otherwise

while
∑

C∈RCCD
b(C)=0+1
|C|=i+1

fC =

{

1 if i = 0

0 otherwise

as the only rooted connected cord diagram with b(C) = 1 is the diagram with exactly one chord.
This completes the proof. �

5. Consequences and conclusions

5.1. Asymptotic analysis. Given the Laurent series expansion F (ρ) we obtained a formal solution
G(x,L) of the analytic Dyson–Schwinger equation (3):
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G(x,L) = 1−
∑

k∈N∗

γk(x)L
k ,

γk(x) ∈ C[[x]]

with an explicit expression for the series γk(x) in terms of the coefficients of F (ρ),

γk(x) =
∑

X∈RCCD
b(x)≥k

fX fb(X)−k x
|X| .

So by choosing the analytic properties of F (ρ) we are on good grounds to study the analytic
properties of the γk. This will be done in a future work.

As a preview lets look at an example of Gevrey classification of the γk. Remember that we say
γk(x) is a series of Gevrey class q ∈ R+ if there are positive constant Kk and Ak such that for all
n ∈ N its coefficients satisfy

|γk,n| ≤ Ak K
n
k (n!)q .

We have the following result.

Proposition 5.1. Assume that there is a positive constant C such that for all n ∈ N the coefficients

of F (ρ) satisfy |fn| ≤ Cn+1, then for all k ∈ N
∗ the formal power series γk(x) is of Gevrey class 1.

Proof. We need to show that for all k ∈ N
∗ and n ∈ N

∣
∣
∣
∣
∣
∣

∑

|X|=n , b(X)≥k

fX fb(X)−k

∣
∣
∣
∣
∣
∣

≤ Ak B
n
k n!

with Ak, Bk ∈ R+. To do so we write the monomial fX = f
p0(X)
0 · · · f

pn(X)
n with pi(X) the number

of times the factor fi appears in the product fX .

We have p0(X) + · · ·+ pn(X) = n− 1, the length of δ̄(X). So we get:
∣
∣
∣
∣
∣
∣

∑

|X|=n , b(X)≥k

f
p0(X)
0 · · · fpn(X)

n fb(X)−k

∣
∣
∣
∣
∣
∣

≤
∑

|X|=n , b(X)≥k

|f0|
p0(X) · · · |fn|

pn(X) |fb(X)−k|

≤
∑

|X|=n , b(X)≥k

Cp0(X)+2 p1(X)+···+(n+1) pn(X) Cb(X)−k+1 .

But since p0(X)+ · · ·+pn(X) = n−1, for each diagram X there are some integers P (X) and Q(X)
such that

n∑

i=0

(i+ 1) pi(X) = P (X)n +Q(X).

Hence with k ≤ b(X) ≤ n we obtain the bound
∣
∣
∣
∣
∣
∣

∑

|X|=n , b(X)≥k

fX fb(X)−k

∣
∣
∣
∣
∣
∣

≤
∑

|X|=n , b(X)≥k

CP (X)n+Q(X)+b(X)−k+1 ≤
∑

|X|=n , b(X)≥k

CPkn+Qk cn,k

with Pk, Qk some integers and cn,k the number of rooted connected chord diagrams of degree n
with smallest terminal chord larger than k. So for all k ∈ N this is bounded by the total number
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of rooted chord diagrams of degree n i.e.

cn,k ≤ (2n − 1)!! ≤ (2n)!! = 2n n! .

Putting everything together we get the desired bound:

∣
∣
∣
∣
∣
∣

∑

|X|=n , b(X)≥k

fX fb(X)−k

∣
∣
∣
∣
∣
∣

≤ CQk (2C
Pk)n n! .

�

For the γk satisfying the conditions of this proposition, applying the Borel transform gives
series with a non zero radius of convergence so that they are amenable to a study of their Borel
summability properties (see [1]).

5.2. P and the differential equations. In [19] more general Dyson-Schwinger equations, includ-
ing the one case considered in the present paper, are converted into differential equations which are
then analysed in some particular cases in [15, 16]. The principle difficulty of this method is that
this conversion process builds a new series P (x) out of the primitive graphs. P is not generally
well understood and so all results must be conditional on assumptions on P .

The chord diagram techniques considered above give a solution to the one particular Dyson-
Schwinger equation (3), and so in that case give

P (x) =
∑

C∈RCCD
b(C)≥1

x|C|fC(fb(C)−2 − fb(C)−1)

This shows us that in this case P (x) has an expansion which is a modified form of the expansion
γ1(x), with the final factor of fk replaced by fk−1−fk. We expect a similar overall shape to hold for
other Dyson-Schwinger equations which gives us some basis on which to evaluate the reasonableness
of assumptions on P .

5.3. Four-term relation. We are tempted to try to make a connection with the classical subject
of the study of algebraic structures on chord diagrams (and their linear / rooted version) linked
to the theory of Vassiliev invariants of knots [8]. Indeed non connected chord diagrams do not
appear in the γk expansions, which we can interpret as saying that the monomials already satisfy a
one-term relation. Hence it seems legitimate to ask whether or not these monomials define weight
systems on rooted chord diagrams. So do these products of fk satisfy a four-term relation?

Here we give a minimal (for the number of chords involved in the diagrams) counter-example
proving that it is not the case in general, that is when we consider the coefficients of F (ρ) as formal
objects. Define a family of maps Mα : RCCD −→ C[f0, f1, ...], X 7→Mα(X) = fX fb(X)−α(X) which
associates to X a monomial in the fk where α : RCCD −→ Z plays the role of a parameter. Then
the expansion γk(x) corresponds to the choice of α being the constant map equal to k. We are
going to show that, for α satisfying some reasonable properties, the map Mα does not satisfy a
four-term relation. But lets make these notions precise.

Definition 5.2. A sequence (A,B,C,D) of rooted connected chord diagrams is said to be in a

four-term configuration if they differ precisely in the following way:
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(A)

,

(B)

,

(C)

,

(D)

.

Now if (A,B,C,D) is in a four-term configuration we want to evaluate:

〈(A,B,C,D),Mα〉4T = Mα(A)−Mα(B) +Mα(C)−Mα(D).

Definition 5.3. We say that Mα satisfies a four-term relation if for all the sequences (A,B,C,D)
in four-term configurations we have 〈(A,B,C,D),Mα〉4T = 0.

We show that for a reasonable α the map Mα does not satisfy a four-term relation.

Proposition 5.4. If the map Mα satisfies a four-term relation then α : RCCD −→ Z is a multi-

valued map.

Proof. We exhibit a chord diagramX with minimal degree such that α(X) depends on the four-term
configuration where we find it. So consider the following four-term configurations:

(A)

,

(B)

,

(X)

,

(D)

which gives the sum

〈(A,B,X,D),Mα〉4T = f2
0

(
f0f4−α(A) − f0f4−α(B) + f2f2−α(X) − f0f4−α(D)

)

and

(A′)

,

(X)

,

(C′)

,

(D′)

which gives the sum

〈
(A′,X,C ′,D′),Mα

〉

4T
= f2

0

(
f1f3−α(A′) − f2f2−α(X) + f0f4−α(C′) − f0f4−α(D′)

)
.

So if Mα satisfies a four-term relation we must have at the same time α(X) = 2 and α(X) = 1 i.e.
α is multivalued.

�
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As a consequence there can be no four-term relation linking the monomials appearing in the
series γk since the map α is a constant map in this situation.

Of course this does not rule out the possibility of a four-term relation holding for some specific
F (ρ) and it would be interesting to exhibit non trivial examples of such a situation. There might
also be a four-term relation satisfied by Mα if we allow a sum over all possible roots in a four-term
configuration. It is finally possible that there are non-trivial general relations among the monomials
Mα(X) that are not related to the algebra of linear chord diagrams. Investigating these questions
would require a more detailed understanding of the distribution of terminal chords in the rooted
connected chord diagrams and will be done in a future work.

Appendix A. The objects

The following table contains all the rooted connected chord diagrams up to 4 chords together
with their corresponding rooted planar binary trees. The chords of the diagrams and the leaves of
the trees are labelled in the intersection order.

Chord Diagrams and their Planar Binary Trees ; n = 1

1

1

Chord Diagrams and their Planar Binary Trees ; n = 2

1

2

1 2

Chord Diagrams and their Planar Binary Trees ; n = 3
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1

2

3

1 3

2

1 2

3

2 3

1

1

2

3

1 3

2

1

2

3

1 2

3

Chord Diagrams and their Planar Binary Trees ; n = 4

1

2

3

4

1

2

3 4
1

2

3

4

2

1

3 4

1
2

3

4

3

1

2 4 1 2

3

4

1

3

2 4
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1

2

3

4

2

3

1 4 1

2

3

4

3

2

1 4

1
2

3

4

1

2 3

4

1
2

3

4

2

1 3

4

1 2

3

4
3

1 2

4

1

2

3

4

1

2 4

3

1
2

3

4

2

1 4

3

1
2

3

4

1 2 3 4

1
2

3

4

1 3 2 4 1 2

3

4

2 3 1 4
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1 2

4

3

1 4 2 3
1

2

3

4

2 4 1 3

2
1

3

4

1 3

4

2

1
2

3

4

1 4

2

3

1 2

3

4

1 2

4

3

1

2

3

4

1 4

3

2

1 2

3

4

1 2

3

4

1

2

3

4

2

1 4

3

1 2

3

4

1

2 3

4

1
2 3

4

1

2 4

3
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1
2

3

4

2

1 4

3

1
2

3

4

1

3 4

2

1 2

3

4

3

1 4

2
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