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Dual Graph Polynomials and a 4-face Formula

Dmitry Doryn

doryn@mpim-bonn.mpg.de

Abstract

We study the dual graph polynomials ϕG and the case when a
Feynman graph has no triangles but has a 4-face. This leads to
the proof of the duality-admissibility of all graphs up to 18 loops.
As a consequence, the c2 invariant is the same for all 4 Feynman
period representations (position, momentum, parametric and dual
parametric) for any physically relevant graph.

1 Introduction

The analysis of amplitudes and periods in renormalization group functions
by means of arithmetic and algebraic geometry has become a common quest
in recent years. Since the work of Broadhurst and Kreimer, [BrKr], it is
well-known that the single-scale massless Feynman integral in perturbative
quantum field theory usually give rise to interesting patterns involving mul-
tiple zeta values (MZV). In particular, the Feynman periods for primitive
graphs in φ4 are evaluated to elements in Q-algebra of MZV for almost all
known cases, see [Sch]. The first (and, so far, unique) example, when a
Feynman period gives something worse, was computed by Panzer in [Pa],
the value is expressible in terms of multiple polylogarithms evaluated at
primitive sixth roots of unity. Unfortunately, these values are obtained by
the intensive numerical analysis and there is no good way to predict the
periods of Feynman graphs in general.

The first step to the understanding of the Feynman period from the
algebro-geometrical perspective was done by Bloch, Esnault and Kreimer
in [BEK], where the ”Feynman motive” was defined. Further results in the
cohomological direction can be found in [D], [BrD]. More can be done on
the arithmetical side, see [St], [D2], [Sch2], [BrSch]. Out of the number of
rational points on the poles of the Feynman differential form, one can define
the c2 invariant. The miracle is that it respects all the relations between
known periods, so it seems to be the discrete analogue of the Feynman
period. In this article we continue to study the properties of the c2 invariant.
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For a graph G, define the graph polynomial and the dual graph polyno-
mial

ΨG :=
∑

sp.tr.T

∏

e 6∈T

αe, ϕG :=
∑

sp.tr.T

∏

e∈T

αe ∈ Z[α1, . . . , αNG
] (1)

with the sums going over all spanning trees. The variety XG := V(ΨG) ⊂
ANG describes the poles (of order 2) of the Feynman differential form. For
being able to speak on the Feynman period one needs to restrict to log-
divergent graphs: the graphs G with the number of edges equal to twice the
loop number, NG = 2hG.

Counting the Fq-rational points of the graph hypersurface XG, one ob-
serves that the important piece of this value is the coefficient of q2 in the
q-expansion:

c2(G)q := #XG(Fq)/q
2 mod q3. (2)

It is called the c2 invariant. On one side, we are able to compute this coef-
ficient analytically (or partially on a computer) for many small (physically
relevant) graphs. On the other side, it turns out the this coefficient contains
some information about the period.

There are 4 different representations of the Feynman period: in position
and momentum spaces, parametric and dual parametric representations.
The 4 resulting values do coincide. One can also try to get a discrete ana-
logue of this result. In [BSY], the authors have constructed the c2 invariant
c2(G)

mom
q out of the geometry of the poles of the Feynman period in mo-

mentum space and have proved that c2(G)
mom
q = c2(G)q for log-divergent

graphs. In [D4], the c2 invariants c2(G)
pos
q and c2(G)

dual
q were defined in

position space and in dual parametric space out of the related geometry,
and the coincidence of all four c2 invariants was proved for graphs with
minor conditions plus the important restriction to the graphs called duality
admissible:

Theorem 1.1
Let G be a log-divergent graph that is duality admissible with hG ≥ 3.
Then

c2(G)
mom
q = c2(G)q = c2(G)

dual
q = c2(G)

pos
q . (3)

The condition of duality admissibility for G means the vanishing of c2(γ)
dual
q

for certain sub-quotient graphs γ of G (see Definition 3.10). This condition
is the property that is surprisingly hard to verify in general, but seems to
be always satisfied.

Conjecture 1.2
Let G be a log-divergent graph with hG ≥ 3. Then G is duality admissible.

2



In [D4], the conjecture was verified for graphs G with girth (G) ≤ 3. Here
girth (G) is the minimal n such that each cycle of G has length at least
n. While checking the duality admissibility we should control a half of all
sub-quotient graphs of G, so the case girth = 3 is not enough already for
several graphs with 7 loops.

In this article we prove the conjecture for graphs with girth (G) = 4.
More precisely (Theorem 5.3):

Theorem 1.3
Let G be a log-divergent graph with 3 ≤ hG ≤ 18 loops. Then G is duality
admissible.

Hence, for all these graphs (3) holds (see Theorem 5.4). The indication
of the bound hG ≤ 18 comes from the fact that the first minimal log-
divergent graph with girth = 5 has 18 vertices. The Feynman periods are
computed only for graphs up to 8 loops (and for several 9-loop graphs), as
well as for the several infinite series of graphs like WSn, ZZn, which have
girth = 3. Thus, we cover all the interesting Feynman graphs so far. On
the other hand, the graphs with girth (G) = 4 enter the game since, for
example, one of the first counter-examples to Kontsevich conjecture on the
number of rational points on graph hypersurfaces was a graph with 7 loops
and girth 4, see [D2], [Sch2]. In addition to Theorem above, we formulate
a sufficient combinatorial criterion for an arbitrary graphs (hG ≥ 3) to be
duality admissible, see Theorem 5.5

In Section 2, we introduce a new algebraic way of understanding the dual
graph polynomials ϕG: we do not use the Dodgson polynomials for ΨG with
inverted variables (Cremona transformation), but we introduce ϕG and the
dual Dodgson polynomials as minors of a certain matrix LG. This leads to a
better control of the sings in the formulas and to an independent picture of
dual graph polynomials situation from that one of the graph polynomials.

The computational technique is presented in Section 3, as well as the
known or intuitive results related to graphs with triangles. The proved
facts are very similar to the case of the graphs hypersurface itself. We
work in the Grothendieck ring of varieties K0(V ark) and then jump to the
computation for the number of Fq-rational points since we are going to
intensively use the Chevalley-Warning vanishing. The most complicated
and technical computations explaining the 4-face situation are moved to
Section 4.

The main result is stated in Section 5.

Acknowledgements: I would like to thank MPIM Bonn for hospitality
and for the financial support.
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2 Dual graph polynomials

From some point, studying the dual graph polynomials, we follow the strat-
egy of Section 2 of [Br] and prove the corresponding statements to the
theorems for graph polynomials given there. We usually identify a graph
with it’s set of edges.

Consider a connected graph G. For the two free Z-modules labelled with
the set of edges E = E(G) and the set of vertexes V = V (G), define the
map ∂ : ZE → ZV : e 7→ vt − vs, where vs and vt are the source and the
target of the edge e respectively. We extending the map by linearity and
get a homological sequence

0 → H1(G,Z) → ZE ∂
→ ZV → H0(G,Z) → 0. (4)

Definition 2.1
We call a set C = {c1, . . . ch}, ci ∈ H1(G,Z) the basis of small cycles of G,
if the following conditions are satisfied:

i). Each ci is a pre-image of an (oriented) cycle (topological loop).

ii). The set of cis generates H1(G,Z).

iii). if ci +
∑

j 6=i λjcj = λc for some i ≤ h, c ∈ H1(G,Z), λ, λj ∈ Z, λ 6= 0,
then λ = ±1.

Since G is connected, it follows that H0(G,Z) ∼= Z and then hG = h1(G) :=
rankH1(G,Z) = NG − |V | + 1 is called the loop number. For a generating
set C of H1(G,Z) satisfying the conditions (i) and (ii) of the definition, we
construct the following hG ×NG−matrix F = FC : Fi,j equals 1 if the edge
ej belongs to the cycle ci and the orientation of the edge and that of ci
coincide, and equals −1 if the orientations are different, and equals 0 in the
case the edge does not belong to ci.

Lemma 2.2
Fix a basis of small cycles C of a graph G. Let FC(T ) be the square matrix
that we get from FC after deletion of the columns labelled by T , T ⊂ E(G).
Let T be a set of NG − hG edges of G. Then

detFC(T ) =

{

±1 if T is a spanning tree,

0 otherwise.
(5)
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Proof. We fix a subgraph T with NG − hG edges. Doing the elementary
row operations (over Z) of the matrix FC we try to make FC(T ) upper-
triangular and can end up with one of the following three cases.
1) The matrix FC(T ) (after the possible interchange of rows) becomes an
upper-triangular matrix, the rows of FC(T ) are linearly independent (over
Z) with diagonal entries ±1. Then detFC(T ) = ±1. Assume that T is not
a spanning tree. Since T has cardinhality NG − hG = |V | − 1, it follows
that it is not a tree and has a loop c′ ⊂ T . This loop gives us an element
of H1(G,Z) linearly independent of the rows of FC(T ), this contradicts the
assumption on the rank of H1(G,Z).
2) The rows of FC(T ) are linearly dependent. Then detFC(T ) = 0. Since
C generates H1(G,Z), there is a linear combination

∑

λiei = 0 with not
all coefficients equal zero, where the summation goes over the edges of T .
This is impossible in the case T is a spanning tree. To see this, consider a
leaf with a non-zero coefficient or a vertex with no non-zero coefficients of
the vertices below, this vertex cannot cancel out with something else in the
sum above, so the sum cannot lie in the kernel of ∂.
3) Consider now the case FC(T ) is upper-triangular, but not all diagonal
entries are equal to ±1. We can assume that we have λe −

∑

λiei = 0 in
H1(G,Z) for ei ∈ T , λi ∈ Z and for some e ∈ E(G)\T , λ ≥ 2. It follows
that each λi is divisible λ. Indeed, since T is a spanning tree and e 6∈ T ,
there is a path with endpoints the same as endpoints of e. The pre-image of
this cycle together with the relation above give us a linear relation between
edges in T if not all λi are ±λ, but then T cannot be a spanning tree (see
case (2)). Thus, our elementary transformation yields an element λc′ for
c′ ∈ H1(G,Z), this contradicts the choice of C (part (iii) of the Definition
2.1) and case (3) never happens.

Proposition 2.3
Let G be a connected graph. Then there exist a basis of small cycles of G.

Proof. One way to construct a basis is the following. Fix a spanning tree
T . As in part (3) of the previous lemma, for each edge e ∈ E(G)\T there
exist a path p(e) with endpoints exactly that of e and consisting of the only
edges of T . Then e and p(e) together form a cycle. In this way we construct
a set C of hG cycles. Building the matrix FC , we see that FC(T ) (modulo
interchange of rows) is a diagonal matrix with entries ±1. Thus, rows of
FC are linearly independent and satisfy parts (i) – (iii) of Definition 2.1, so
C is a basis of small cycles.
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From now on, for any given graph G, we choose and fix some basis of
small cycles C, build a matrix FC , and, omitting subscript C, write FG

instead.
We define

LG :=

(

∆(α) F t
G

−FG 0

)

∈ MatNG+hG,NG+hG
(Z[{αi}i∈E(G)]), (6)

where ∆(α) is the diagonal matrix with entries α1, . . . , αNG
. Here and later,

we often identify edges with their indices E(G) = {1, . . . , NG}. For a graph
G, we write G\I (resp. G//J) for the graph that we get after deletion (resp.
contraction) of the edges of the set I ⊂ E(G) (resp. J ⊂ E(G)).

Proposition 2.4
Let G be any connected graph.
i) For the dual graph polynomial defined by (1), one obtains

ϕG = detLG. (7)

ii) One has the contraction-deletion formula

ϕG = ϕe
Gαe +ϕG,e (8)

for any edge labelled by e, where the coefficients are again the dual graph
polynomials ϕe

G = ϕG//e and ϕG,e = ϕG\e. The contraction of an edge e
corresponds to the determinant of the matrix LG after deletion of the e-th
row and column, and deletion of an edge corresponds to setting αe to zero:

ϕG//e = detLG(e, e), ϕG\e = detLG|αe=0. (9)

Proof. One computes

detLG =
∑

T⊂G

∏

i∈T

αi det

(

0 F t(T )
−F (T ) 0

)

=
∑

T⊂G,|T |=h

∏

i∈T

αi detF (T )
2 (10)

In the middle matrix for both cases |T | > h and |T | < h the rows of the
matrix become linear dependent, thus the determinant is zero. For the re-
maining summands, where |T | = h, we apply lemma above: detF (T )2 = 1
if T is a spanning tree, and zero otherwise. The second statement of the
proposition follows from the contraction-deletion formula and an observa-
tion that the determinant detLG is linear in αe with the corresponding
coefficients. The second part of the theorem follows directly from (1).
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For a matrixM , we writeM(I, J) for the minor that we get after deletion
of the rows indexed by the set I and of the columns indexed by J .

Definition 2.5
Let I, J,K be subsets of edges of G such that |I| = |J |. Define the dual

Dodgson polynomial to be

ϕI,J
G,K := detLG(I, J)|{αe=0,k∈K}. (11)

On easily sees that ϕI,J
G,K = ϕJ,I

G,K and degϕI,J
G,K = NG − h− |I|. Using

the propositon above, one also gets

ϕI,J
G\B//A,K = ϕI∪A,J∪A

G,K∪B (12)

for any A,B ⊂ E(G). Thus we usually consider the case I ∩ J = ∅ and
K = ∅.

Proposition 2.6
With the notation above, one gets

ϕI,J
G,K =

∑

T⊂G

(±)
∏

e∈T

αe, (13)

where the sum goes over all subgraphs T ⊂ G which are simultaneously
spanning trees for both G\(K ∪ I\(I ∩J))//J and G\(K ∪J\(I ∩J))//I. In
particular, every monomial in ϕI,J

G,K also occurs in bothϕI,I
G,J∪K andϕJ,J

G,I∪K .

Proof. By passing to the minor G 7→ G\(I ∩ J)//K, we reduce to the case
I ∩ J = ∅ and K = ∅. Similar to (10), one computes

det(LG(I, J)) =
∑

S⊂G\(I∪J)

∏

i∈S

αi det

(

0 F t(S ∪ I)
−F (S ∪ J) 0

)

=

∑

S⊂G\(I∪J)

±
∏

i∈S

αi detF (S ∪ I) detF (S ∪ J). (14)

The term on the right survives iff detF (S ∪ I) 6= 0 6= F (S ∪ J), thus, by
Proposition 2.4, both S∪I and S∪J are spanning trees of G. Since I∩J = ∅,
S should be a spanning tree for G\I//J , similar to G\J//I. Conversely, such
an S gives detF (S ∪ I) = ±1 = F (S ∪ J) by Proposition 2.4.

Later, we will drop the subscript G in the dual graph and Dodgdon poly-
nomials when G is clear from the context.

Recall the following Plücker identities:
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Lemma 2.7
Let M be an N ×N symmetric matrix and let i1, . . . , i2n be distinct indices
between 1 and N . Then

2n
∑

k=n

(−1)k detM({i1, . . . , in−1, ik}, {in, . . . , îk, . . . , i2n}). (15)

Proof. See Lemma 27 in [Br].

The matrix LG becomes symmetric after multiplication of some rows by −1,
this allows us to apply the lemma above and to obtain

2n
∑

k=n

(−1)kϕ{i1,...,in−1,ik},{in,...,̂ik,...,i2n}
G = 0. (16)

We will also use the Jacobi determinant formula,

Lemma 2.8
Let M = (aij) be an invertible N ×N matrix and let adjM = (Aij) denote
the adjoint matrix of M , i.e. the transpose of the cofactors of M . Then for
any k, 1 ≤ k ≤ N ,

det(Aij)k≤i,j≤N = det(M)N−k−1 det(aij)1≤i,j≤N . (17)

Proof. See Lemma 28 in [Br].

The special case of this lemma k = N − 2 is attributed to L. C. Dodgson:
for any 1 ≤ p < q ≤ N and 1 ≤ r < s ≤ N

Ap,rAq,s − Ap,sAq,r = det(M) detM(pq, rs). (18)

Proposition 2.9
Let G be a connected graph and let I,J be two subsets of edges with |I| = |J |
and let a, b, c, d ∈ E(G)\I ∪ J and S := I ∪ J ∪ {a, b, c, d}. Then the (first)
Dodgson identity is

ϕIa,Jb
S ϕIc,Jd

S −ϕIa,Jd
S ϕIc,Jb

S = ±ϕI,J
S ϕ

Iac,Jbd
S (19)

with + sign when (a− c)(b− d) > 0, and − sign otherwise.
Now let I and J be two subset of edges with |J | = |I|+1 and let a, b, c 6∈ I∪J ,
S := I ∪ J ∪ {a, b, c}. Then the second Dodgson identity is

ϕIa,J
S ϕIbc,Jc

S −ϕIac,Jc
S ϕIb,J

S = ±ϕIc,J
S ϕIab,Jc

S . (20)
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Proof. The first part follows from (18) while the second part can be proved
similarly to part (2) of Lemma 30 in [Br].

Consider the Cremona transformation ι : Z[α1, . . . , αn] −→ Z[α1, . . . , αn]
defined by

ι(f)(α) :=
∏

1≤j≤n

αif
( 1

α1

, . . . ,
1

αn

)

(21)

for any homogeneous polynomial f .

Lemma 2.10
i) Let S,K ⊂ E(G) are subsets of edges of G, S ∩K = ∅. Then

ϕS
G,K = ι(ΨK

G,S). (22)

ii) Let i, j ⊂ E(G) are two edges of G, i, j /∈ S ∪ K. Then the Dodgson
polynomial is related to the dual Dodgson polynomial by Cremona trans-
formation up to a sign:

ϕSi,Sj
G,K = ±ι(ΨKi,Kj

G,S ). (23)

Proof. The part (i) follows from (1) and Proposition 2.4. The statement
in (ii) we can reduce to the case K = S = 0. By the first Dodgson identity
(19), we have

ϕi,i
2 ϕ

j,j
1 ±ϕϕij,ij = (ϕi,j)2. (24)

The same identity with the same sign holds for a graph polynomial Ψ.
Applying the Cremona transformation to both sides and using part (i), one
gets ϕi,j = ±ι(Ψi,j).

Proposition 2.11
Let A, B, I ⊂ E(G) be tree subsets of edges of a graph G, where |A|=|B|,
I = {i1, . . . , ik} and I ∩ (A ∪ B) = ∅. If ϕA∪I,B∪I = 0, then for each t,
1 ≤ t ≤ k, we have

ϕAit,Bit =
∑

s 6=t

±ϕAit,Bis =
∑

s 6=t

±ϕAis,Bit (25)

as elements in Z[α1, . . . , αNG
].

Proof. The proof uses the Jacobi identity (17) and is analogously to that
of Lemma 31 of [Br].
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Corollary 2.12
Assume that the edges e1, . . . , en in E(G) form a cycle. Then

ϕ1 =
∑

j 6=1

λjϕ1,j with λj = ±1. (26)

Proof. The contraction of all of the edges of a cycle gives the vanishing
of the dual graph polynomial: ϕI

G = 0 for I = {1, . . . , n}. Then (25) with
A = B = 0 implies the statement.

Remark 2.13
The corollary above implies the dual statement for the graph polynomial
itself: If the edges e1, . . . , en form a cycle, then

Ψ1 =
∑

j 6=1

λjαjΨ
1,j with λj = ±1. (27)

Indeed, one only needs to apply the Cremona transformation to (26) and
use Lemma 2.10. This statement was proved in [BSY], Propostion 24, using
spanning forests polynomials. Our proof here is much more elementary.

Proposition 2.14
Let e1, . . . , en ∈ E(G) be the set of edges that form a corolla (have the same
endpoint). Then

ϕ1 =
∑

j 6=1

λjαjϕ1,j with λj = ±1. (28)

Proof. One obtains the result by dualizing the corresponding statement to
(26) for graph polynomial (see [BSY], Remark 25) and by use of Lemma
2.10.

Example 2.15
Consider a graph G and assume that the edges e1, e2 and e3 form a tri-
angle. Choose the orientation of the triangle and orient the 3 edges in the
corresponding way. Orienting the other edges arbitrarily, we fix a matrix
FG and consider ϕG and the dual Dodgson polynomials.

Since contraction of a loop leads to the vanishing of ϕ, we get ϕ123 = 0.
In addition to this, we also have ϕ12

3 = ϕ23
1 = ϕ13

2 since the deletion of one
of the edges and contraction of the other two gives the same sub-quotient
graph. The Jacobi identity (17) implies

det





ϕ1 ϕ1,2 ϕ1,3

ϕ2,1 ϕ2 ϕ2,3

ϕ3,1 ϕ3,2 ϕ3



 = 0. (29)

10



By Proposition 2.11, we get ϕ1 = ϕ1,2 −ϕ1,3. These signs are fixed by the
natural numeration of the edges in FG.

Lets define g0 := ϕij
k , gk := (−1)j−i+1ϕi,j

k , g123 := ϕ123, where {i, j, k} =
{1, 2, 3}.

The identity above implies

ϕ12
3 α2 +ϕ13

2 α3 +ϕ1
23 = ϕ

13,23α3 +ϕ1,2
3 +ϕ12,23α2 −ϕ1,3

2 . (30)

Working similarly with other rows of the matrix, we derive

g0 = ϕij,jk and ϕi
jk = gj + gk. (31)

Now the dual graph polynomial ϕG takes the form

ϕG = g0(α1α2+α2α3+α1α3)+(g2+g3)α1+(g1+g3)α2+(g1+g2)α3+g123.
(32)

By (19), we have the Dodgson identity ϕ2
13ϕ

3
12 − ϕ

23
1 ϕ123 = ϕ2,3ϕ3,2. In

our new notation, this reads (g1 + g3)(g1 + g2)− g0g123 = (g1)
2. Thus,

g0g123 = g1g2 + g2g3 + g1g3. (33)

The formulas in this example are identical to the case of a 3−valent case for
ΨG in [Br], Example 32, and the situation is dual to the case of a triangle
for ΨG in Example 33, (loc.cit.).

Now we introduce our main geometrical object of interest.

Definition 2.16
For a graph G with NG edges, define the dual graph hypersurface

ZG := V(ϕG) ⊂ A
NG

Z . (34)

Here we use the notation V(f1, . . . , fm) (resp. V(I)) to denote the variety
defined by the vanishing of a set of polynomials f1, . . . , fm ∈ k[x1, . . . , xn]
(resp. of all the elements of an ideal I) in An. The dimension of the ambient
space is usually clear from the context.

In the next sections we will try to understand the dual graph hypersur-
faces by means of point-counting functions or the classes in the Grothendieck
ring using the identities proved above.

3 K0(V ark) and Fq-rational points

The essential results of the paper are formulated as some equalities and
congruences between the numbers of Fq-rational points on the strata of the
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dual graph hypersurface. The stratification goes by successful elimination
of the first few variables step by step in various orders.

For a prime power q and for an affine variety Y defined over Z, we define
by [Y ]q := #Ȳ (Fq) the number of Fq-rational points of Y after extension of
scalars to Fq. More o less, this means that [f ]q is a number of solutions of
f = 0 in Fn

q after taking the coefficients mod q for an affine hypersurface
given by f ∈ Z[x1, . . . , xn]. Here and later, we use the shortcut [f, . . . , fn]q
for [V(f1, . . . , fn)]q. We think of [·]q as a function of q. Sometimes (but
not in general), this function is a polynomial of q, when the arguments
are some strata of the (dual) graph hypersurfaces discussed later for small
graphs. Our main interest is the coefficient of q2 of this function, the c2
invariant (see (2)). There are many graphs for which we know that c2(G)
is constant, either 0 or 1, see [BSY].

If one considers a closed subvariety Y of a variety X ⊂ An
Z, then [X ]q =

[Y ]q + [X\Y ]q. This is the main relation we use during our computation.
There is a space much more natural for this scissors relation, namely the
Grothendieck ring of varieties over a field, K0(V ark). It is much closer to
the geometry of our varieties than the number of rational points. As a
consequence, the computation on the level of K0(V ark) can give us more
information about poles of the Feynman differential form and about the
period. The point-counting function factors through the Grothendieck ring.
On the other hand, K0(V ark) is very big, less tractable and, against our
intuition, several reasonable statements analogues to the statements for
point-counting functions fail in this ring, i.e. Chevalley-Warning vanishing.
We prove a big part of our results on the level of the Grotendieck ring and
shift to the computation of rational points only when we cannot avoid this.

Define the Grothendieck ring of varieties over k, K0(V ark) as the free
group Z(V ark) generated by all the varieties over k after localization by the
relation : X = Y +X\Y for any variety X and any closed subscheme Y .
We denote by [Y ] the class of Y in K0(V ark). The ring structure is given
by the product: [X ] · [Y ] = [X ×k Y ]. Define L := [A1] and 1 := [Pt].

By the factorisation of the point-counting function through the Grothendieck
ring, L is mapped to q and 1 is mapped to 1. One can more or less ignore the
use of K0(V ark) just by thinking of our formulas as stated for the number
of Fq-rational points by the substitution above.

In K0(V ark), for the computation of the class of a variety given by the
polynomials linear in one of the variables, one can try to eliminate that
variable. The dual graph polynomial ψG is linear in all of the variables, so
the optimist may hope to get rid of the variables step by step.

12



Lemma 3.1
Let f 1, f1, g

1, g1, h ∈ Z[α2, . . . , αn] be polynomials. Then, considering the
varieties on the right hand side of the coming formulas to be in An−1 and
the varieties on the left to be in An,

1. for f = f 1α1 + f1, one has

[f, h] = [h]− [f 1, h] + [f 1, f1, h]L, (35)

and, in particular,

[f ] = Ln−1 − [f 1] + [f 1, f1]L. (36)

2. for f = f 1α1 + f1 and g = g1α1 + g1, one has

[f, g, h] = [f 1, f1, g
1, g1, h]L+ [f 1g1 − g1f1, h]− [f 1, g1, h]. (37)

and
[f, g] = [f 1, f1, g

1, g1]L+ [f 1g1 − g1f1]− [f 1, g1]. (38)

Proof. Equality (36) follows from (35) by putting h = 0. For proving the
equality (35), consider the two cases f 1 = 0 and f 1 6= 0 separately. If
f 1 = 0, then f 1α1 + f1 = 0 implies f1 = 0 and α1 does not appear in
the defining equations. So, V(f, h) ∩ V(f 1) is a trivial A1-fibration over
V(f 1, f1, h) ⊂ An−1. If f 1 6= 0, then we evaluate α1 from f 1α1 + f1 = 0 and
get an isomorphism between V(h, f)\V(h, f, f 1) ⊂ An and V(h)\V(h, f 1) ⊂
An−1. One computes in K0(V ark)

[f, h] = [A1 ×k V(f
1, f1, h)] + [V(h)\V(h, f 1)]. (39)

Now the statement follows from the very definition of the classes in the
Grothendieck ring.

The equalities (37) and (38) are proved similarly by eliminating of the
variable from the system and stratifying by the vanishing or non-vanishing
of the coefficients. See, for example, [Sch2].

Proposition 3.2
Let G be a graph with hG ≥ 2. Then, the following holds:

1) For some c(G) ∈ K0(V ark)

[ZG] = c(G)L2. (40)
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2) For some b(G) ∈ K0(V ark) and for any edge e1

[ϕ1
G,ϕG,1] = b(G)L. (41)

3) For some d(G) ∈ K0(V ark) and for any edges e1, e2

[ϕ1,2
G ] = d(G)L. (42)

Proof. The proof goes by induction on NG. The statements can be easily
verified for graphs with NG ≤ 3. Assume that for all graphs with NG < M
both parts (1) – (3) were proved. Consider the case NG =M ≥ 4. We start
with the class of ZG and eliminate the first variable by use of Lemma 3.1,
part 1) :

[ZG] = [ϕ1α1 +ϕ1] = [ϕ1,ϕ1]L+ LN−1 − [ϕ1]. (43)

If e1 is a self-loop, then ϕ1 = 0. Otherwise, ϕ1 itself a dual graph poly-
nomial: ϕ1 = ϕG′ for G′ = G//1 with NG′ = NG − 1 < M , hence
[ϕ1] = c(G′)L2 by the induction hypothesis. If part (2) holds for NG =M ,
then part (1) also holds. Indeed,

[ZG] = b(G)L · L+ LNG−1 + c(G′)L2 = (b(G) + c(G′) + LNG−3)L2. (44)

Now we prove part (2).
Both ϕ1 and ϕ1 are linear in the variable α2. Lemma 3.1, part 2) allows

us to get rid of α2 on V(ϕ1,ϕ1):

[ϕ1,ϕ1] = [ϕ12α2 +ϕ1
2,ϕ

2
1α2 +ϕ12] =

[ϕ12,ϕ1
2,ϕ

2
1,ϕ12]L+ [ϕ1

2ϕ
2
1 −ϕ

12ϕ12]− [ϕ12,ϕ2
1]. (45)

If e2 is a self-loop, then both ϕ12 and ϕ2
1 are zero polynomials and the

divisibility holds trivial. If e1 and e2 form a 2-cycle, then ϕ12 = 0 and
[ϕ2

G,1] = [ϕG′] for G′ = G\1//2 the last graph has again hG ≥ 2 and
the divisibility follows from part (1), or has hG = 1 and the situation is
easy to verify manually. Otherwise, for e1 and e2 in more general position,
[ϕ12

G ,ϕ
2
G,1] = [ϕ1

G′ ,ϕG′,1] with G
′ = G\2, it is divisible by L by the induc-

tion hypothesis. By the first Dodgson identity, [ϕ1
2ϕ

2
1 −ϕ

12ϕ12] = [ϕ1,2].
If part (3) is proved, then

b(G) := [ϕ12,ϕ1
2,ϕ

2
1,ϕ12] + d(G′)− b(G′). (46)

It remains to prove part (3).
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Consider an edge e3. If ϕ1,2 is independent of α3, then V(ϕ1,2) and
divisibility is clear. Otherwise, we use Lemma 3.1 for α3:

[ϕ1,2] = [ϕ13,23α3 ±ϕ1,2
3 ] = LN−3 − [ϕ13,23] + [ϕ13,23,ϕ1,2

3 ]L. (47)

Since ϕ13,23
G = ϕ1,2

G′ for G′ = G\3, using the induction hypothesis, one
computes

d(G) = LN−4 − d(G′) + [ϕ13,23,ϕ1,2
3 ]. (48)

This concludes the proof.

Remark 3.3
As mentioned above, the equations for [ϕG] similar to that one in the propo-
sition above give us equations for [ϕG]q since point-counting functor factors
through K0(V ark) (or just by repeating all the steps). For example, under
same conditions as in the proposition, q2|[ϕG]q and q|[ϕ1

G,ϕG,1]q.

After the remark above, we are allowed to make the following definition.

Definition 3.4
Let G be a graph with hG ≥ 2. Define the c2 invariant in dual parametric
space:

c2(G)
dual := [ZG]q/q

2 mod q. (49)

This c2 invariant is the essential part the point-counting function, and, sim-
ilar to c2(G) in (2), it satisfies many good properties. The most interesting
of them is the coincidence of cdual2 (G) and c2(G) on the log-divergent graphs,
see Theorem 1.1 and Theorem 5.3.

There is a more concrete description of the element c(G) from Proposi-
tion 3.2, if one has a cycle of length ≤ 3. The most interesting case is when
it is a cycle of length 3, a triangle.

Let G be a graph with a triangle formed by the edges e1, e2, e3. By
Example 2.15, the dual graph polynomial ϕG takes a form

ϕG = g0(α1α2+α2α3+α1α3)+(g2+g3)α1+(g1+g3)α2+(g1+g2)α3+g123.
(50)

together with the connecting identity

g0g123 = g1g2 + g2g3 + g1g3. (51)

Proposition 3.5
In the notation above, one has

[ZG] = LNG−1 − L2[g0, g1, g2, g3] + L3[g0, g1, g2, g3, g123]. (52)
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Proof. Since the formulas are identical to the case of the graph hypersur-
face ΨG (but for 3-valent vertex), one can just repeat the proof of Propo-
sition 23 in [BrSch]. The proof is based of a geometrical argument on a
related particular A2-fibration.

Proposition 3.6
Let G be a graph with a triangle formed by e1,e2,e3 with hG ≥ 3, NG ≥ 4.
Then

[ZG] ≡ [ϕ13,23,ϕ1,2
3 ]L2 mod L3. (53)

As a consequence,

[ZG]q ≡ q2[ϕ1,2
3 ,ϕ13,23]q mod q3, (54)

Proof. The proof is analogues to Lemma 24 in [BrSch], and identical to
the part of the proof of Proposition 19 in [D4].

Remark 3.7
After c2 invariant cdual2 (G) is defined, Proposition 3.6 gives a starting point
for the denominator reduction game similar to that one for computation of
c2(G) in φ

4 theory, see, for example, [BrSch]. The set of graphs, for which
this process will be applicable and give a concrete answer c2(G) = ±1 or
0, dually denominator reducible graphs, need not to coincide with the set of
denominator reducible graphs.

Computing the number of rational points, we are also going to use the
following vanishing statement called the Chevalley-Warning theorem. This
vanishing helps to get rid of many summands in the formulas coming later.

Theorem 3.8
Let f1, . . . , fk ⊂ Z[x1, . . . , xn] be polynomials and assume that the degrees

di := deg fi satisfy
∑k

1 di < n. Then, for the number of Fq-rational points
of the variety given by the intersection of the hyperplanes V(fi) in An, the
following congruence holds

[f1, . . . , fk]q ≡ 0 mod q. (55)

Proof. The classical Chevalley-Warning statement was for k = 1 and q = p.
This was generalized to arbitrary prime power q = pm by Katz in [Ka]. The
general case easily follows by induction on k.
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The relevant to Feynman graphs case is the case of a log-divergent graph:
NG = 2nG. For the further statements on log-divergent graphs, we need to
understand that the situation NG > 2nG is ”degenerate” for the point-
counting function for ϕG, more precisely, for the c2 invariant.

Proposition 3.9
Let G be a graph with NG > 2nG. Assume G has a triangle (resp. G has
a double edge or a self-loop and nG ≥ 1). Then the following congruences
hold

[ZG]g ≡ 0 mod q3, (56)

[ϕ1,ϕ1]q ≡ 0 mod q2, (57)

where e1 is in the triangle (resp. double edge or self-loop).

Proof. The cases of a double edge and a self-edge are trivial. Now, let
e1, e2 and e3 be the edges forming a triangle in G. By Proposition 3.6,
[ZG]q ≡ q2[ϕ1,2

3 ,ϕ13,23]q mod q3. Now we are going to use Chevalley-
Warning theorem. For this, we have to understand the degrees of the ap-
pearing polynomials. The degree of the dual graph polynomial is equal to
number of vertices minus 1, degϕG = nG. By the first Dodgson identity,
degϕi,j = degϕi. One computes degϕ1,2

3 = nG−1 and degϕ13,23 = nG−2,
both polynomials depend on NG − 3 variables. Since NG > 2nG, we may
apply Chevalley-Warning theorem to V(ϕ1,2

3 ,ϕ13,23) and get

[ϕ1,2
3 ,ϕ13,23]q ≡ 0 mod q. (58)

The first statement follows.
For the second congruence, consider again the elimination of α1 by

Lemma 3.1:

[ZG]q = [ϕ1α1 +ϕ1]q = q[ϕ1,ϕ1]q + qNG−1 − [ϕ1]q. (59)

Since ϕ1
G = ϕG′ for G′ = G//1 and NG′ > 2nG′ > 1 (or nG′ = 1 and the

situation is trivial). By the first statement, [ZG]q ≡ [ϕ1]q ≡ 0 mod q3.
Now (59) implies q2|[ϕ1,ϕ1]q.

In [D4], it was proved that the c2 invariant respects dualization (the
coefficients of q2 for [ZG] and for ΨG coincide) for any log-divergent graph
G with hG ≥ 3 under the assumption that G is duality admissible.
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Definition 3.10
A log-divergent graph G with nG ≥ 3 (and N = NG = 2nG edges) is called
duality admissible if

[ϕJ
I ]q ≡ 0 mod q3 (60)

for any I, J ⊂ E(G) with |J | > |I| ≥ 0, |I| ≤ nG − 3.

In the proof of the main result in [D4], the situation is symmetric under
the interchange ΨG ↔ ϕG. The vanishing corresponding to (60) for ΨG

is served by the statement similar to Proposition 3.9 for a graph G with
NG > 2hG since such a graph always has vertex of valency at most 3. The
situation for ϕG is surprisingly more complicated since the girth of a (even
log-divergent) graph is unbounded.

By the Proposition 3.9 above , we know the divisibility of the point-
counting functions for the sub-quotient graphs [ϕJ

I ]|q
3 in the definition

above as long as we have a cycle of length at most 3. In the next sec-
tion we prove that the congruence (60) also holds in the case when we do
not have a triangle, but have a 4-face.

4 A 4-face formula

In the previous section we have discussed several computational facts about
the graphs with a cycles of length ≤ 3. There are also graphs with girth4,
that is, all their cycles are of length ≥ 4. Some of these graphs are relevant
to this Feynman integrals subject, for example, known to give a counter-
examples to the Kontsevich conjecture on the polynomiality of the point-
counting function [ΨG]q, see [D2] or [Sch]. On the other hand, we may meet
such graphs when we are going to check the vanishing conditions (60) for
all subgraphs while proving the duality admissibility for certain G.

In this section we try to study a graph G with a 4-face in the similar
way and with similar techniques as for the triangle case before.

Consider a graph G with a 4-face formed by the edges e1, . . . , e4, with
e1 and e3 opposite. What one can try do immediately is to start to reduce
the first 2 variables by Lemma 3.1 and get

[ZG] = LN−2 − [ϕ1] + [ϕ12,ϕ1
2,ϕ

2
1,ϕ12]L

2 + [ϕ1,2]L− [ϕ12,ϕ2
1]L. (61)

The formula works for all graphs and the most complicated pies in the sum
on the right is V(ϕ12,ϕ1

2,ϕ
2
1,ϕ12), the intersection of 4 hypersurfaces. This

is also the obstruction for reducing the third variable in general. In the case
G having a triangle formed by the edges e1,e2 and e3, one has a precise
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formula for ϕG, see (32) in Example 2.15. Using this, one derives [ZG] ≡
[ϕ1,2,ϕ13,23] mod L3, see Proposition 3.6. For the 4-face situation, we do
not have the concrete formula for ϕG and, a priory, no such congruence.
Nevertheless, we try to do our best, to understand the structure of ϕG and
to prove some vanishing results similar to Proposition 3.9.

We chose the orientation of the 4-face of G and orient the edges e1, . . . , e4
in the corresponding direction. Now we orient the other edges of G and
build the matrix LG to fix the signs of the Dodgson polynomials. The
contraction of the edges e1, . . . , e4 leads to the contraction of a self-loop,
hence ϕ1234 = 0. We also know that ϕ123

4 = ϕijk
t for {i, j, k, t} = {1, 2, 3, 4}.

Similarly to Example 2.15, the Jacobi identity (17) implies the vanishing of
the corresponding 4× 4 matrix. The first row implies

ϕ1,1 = ϕ1,2 −ϕ1,3 +ϕ1,4. (62)

Expanding these polynomials in α2, α3 and α4, one gets

Ψ123
4 α2α3 +ϕ124

3 α2α4 +ϕ134
2 α3α4 +ϕ12

34α2 +ϕ13
24α3 +ϕ14

23α4 +ϕ1
234 =

(ϕ134,234α3α4 +ϕ13,23
4 α3 +ϕ14,24

3 α4 +ϕ1,2
34 )− (−ϕ124,234α2α4 −ϕ12,23

4 α2+

ϕ14,34
2 α4 +ϕ1,3

24 ) + (ϕ123,234α2α3 −ϕ12,24
3 α2 −ϕ13,34

2 α3 +ϕ1,4
23 ) (63)

We derive ϕ123
4 = ϕ123,234, ϕ12

34 = ϕ
12,23
4 −ϕ12,24

3 , ϕ1
234 = ϕ

1,2
34 −ϕ1,3

24 +ϕ1,4
23 .

For unifying the notation, define

a := ϕijk
t , ci,j := (−1)i−j−1ϕi,j, bij := (−1)rbϕki,it

j , (64)

where rb = (k − t) if (k − i)(t − i) > 0, and rb = (k − t − 1) otherwise.
Analysing similarly the other rows of the matrix, we finally obtain

ϕijk,ijt = a = ϕijk
t ,

ϕij
kt = bik + bit,

ϕi
jkt = ci,j + ci,k + ci,t,

(65)

for all {i, j, k, t} = {1, 2, 3, 4}. The polynomials are also related by Dodgson
identities. Applying the formula before (33) to the case G′ = G\t, we get
in Z[α]

(bit)
2 ≡ ϕij

ktϕ
ik
jt mod a. (66)

Now we return to formula (61).

To get (partial) control on the class of V(ϕ12,ϕ1
2,ϕ

2
1,ϕ12), we are going

to stratify this intersection further by reducing with respect to the next 2
variables using Dodgson identities and the identities from (65).
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Theorem 4.1
Let G be a graph with a 4-face bounded by the edges e1, . . . , e4, where e1
and e3 be opposite edges. Then

[ϕ12,ϕ1
2,ϕ

2
1,ϕ12] ≡ [ϕ12,34]− [a,ϕ12,34]+

[a, b13]− [a, b14] + [a,ϕ12
34ϕ

34
12] mod L. (67)

Proof. Recall the formula for eliminating of one variable α = α1 from
the set of polynomials f1, . . . , fk ∈ Z[α1, . . . , αn] linear in this variable,
fi = f 1

i α + fi,1 :

[f1, . . . , fn] = [fα
1 , f1,α, . . . , f

α
n , fn,α]L+

[[f1, f2]α, . . . , [f1, fn]α]− [fα
1 , . . . , f

α
n ]

n−2
∑

k=1

([fα
1 , f1,α . . . , f

α
k , fk,α, [fk+1, fk+2]α, . . . , [fk+1, fn]α]

− [fα
1 , f1,α . . . , f

α
k , fk,α]). (68)

see [BSY], Proposition 29.
Here and later, for two polynomials f and g linear of αi, we denote by
[f, g]αi

= [f, g]i the resultant with respect to αi:

[f, g]i := ±(f igi − fig
i). (69)

We apply formula (68) to the polynomials

fa = ϕ12, fb = ϕ1
2, fc = ϕ

2
1 fd = ϕ12 (70)

for the variable α = α3. Then we get

[ϕ12,ϕ1
2,ϕ

2
1,ϕ12] = [fa, fb, fc, fd] = [f 3

a , fa3, f
3
b , fb3, f

3
c , fc3, f

3
d , fd3]L

+
(

S1 + S2 + S3

)

−
(

[f 3
a , f

3
b , f

3
c , f

3
d ] + [f 3

a , fa3] + [f 3
a , fa3, f

3
b , fb3]

)

, (71)

where
S1 =

[

[fa, fb]3, [fa, fc]3, [fa, fd]3
]

,

S2 =
[

f 3
a , fa3, [fb, fc]3, [fb, fd]3

]

,

S3 =
[

f 3
a , fa3, f

3
b , fb3, [fc, fd]3

]

.

(72)

Each of the three summands in the last brackets of (71) is divisible by L.
Indeed, the variety V(f 3

a , f
3
b , f

3
c , f

3
d ) ⊂ AN−2 is the cone over the variety de-

fined by the same equations but in AN−3(no α3), thus L|[f
3
a , f

3
b , f

3
c , f

3
d ]. Now

[f 3
a , fa3] = [ϕ123,ϕ12

3 ] = [ϕ3
G′,ϕG′,3] for G

′ = G//12, so L|[f 3
a , fa3] by Propo-

sition 3.2. For the last summand [f 3
a , fa3, f

3
b , fb3] = [ϕ123,ϕ12

3 ,ϕ
13
2 ,ϕ

1
23]
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we are going to use the triangle formula from Example 2.15 for the graph
G′ := G//1 with edges e2, e3, e4 forming a triangle. In the notation with gi
but with indices i = 2, 3, 4, we have

[ϕ23
G′ ,ϕ2

G′,3,ϕ
3
G′,2,ϕG′,23] = [g0, g0α3 + (g3 + g4), g0α3 + (g2 + g3),

(g2 + g4)α3 + g234] = [g0, g3 + g4, g2 + g3, (g2 + g4)α3 + g234]. (73)

The connecting identity (33) takes the form g0g234 = g2(g3+g4)+g3g4, thus
the vanishing of g3 + g4 on V(g0) implies the vanishing of both summands
g3 and g4. Analogously,

[g0, g2 + g3] = [g0, g2, g3]. (74)

It follows now that all the terms in the brackets (73) become independent
of α3. As a consequence, it gives us a cone over a variety in AN−3, thus the
class is divisible by L.

Finally, we derive the following congruence from (71):

[ϕ12,ϕ1
2,ϕ

2
1,ϕ12] ≡

(

S1 + S2 + S3

)

mod L (75)

with Si given by (72). Now we will work with these 3 summands separately
and then will show that they sum up to 0 mod L. For simplicity, we list
here the involved polynomials:

[fa, fb]3 = ϕ123ϕ1
23 −ϕ

12
3 ϕ

13
2 = (ϕ12,13)2 = (aα + b14)

2,

[fa, fc]3 = ϕ123ϕ2
13 −ϕ

12
3 ϕ

23
1 = (ϕ12,23)2 = (aα + b24)

2,

[fc, fd]3 = ϕ23
1 ϕ123 −ϕ

2
13ϕ

3
12 = (ϕ2,3

1 )2,

[fb, fd]3 = ϕ13
2 ϕ123 −ϕ

3
12ϕ

1
23 = (ϕ1,3

2 )2,

[fb, fc]3 = ϕ13
2 ϕ

2
13 −ϕ

23
1 ϕ

1
23,

[fa, fd]3 = ϕ123ϕ123 −ϕ
12
3 ϕ

3
12.

(76)

The coefficient of α2 in the expansion of the first Dodgson identity
ϕ1

3ϕ
3
1 −ϕ

13ϕ13 = (ϕ1,3)2 in α2 gives

ϕ12
3 ϕ

3
12 +ϕ

1
23ϕ

23
1 −ϕ123ϕ123 −ϕ

13
2 ϕ

2
13 = −2ϕ12,23ϕ1,3

2 . (77)

Similarly, for the expansion in α1 of the Dodgson identity for the pair of
edges e2 and e3 implies

ϕ12
3 ϕ

3
12 +ϕ

2
13ϕ

13
2 −ϕ123ϕ123 −ϕ

23
1 ϕ

1
23 = 2ϕ12,13ϕ2,3

1 . (78)

The sum of the two equalities above reads

ϕ12
3 ϕ

3
12 −ϕ

123ϕ123 = ϕ
12,13ϕ2,3

1 −ϕ12,23ϕ1,3
2 . (79)
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It follows that [fa, fd]3 ∈ Z[α] is in the ideal generated by ϕ12,13 and ϕ12,23.
Thus, using (76), one computes

S1 = [[fa, fb]3, [fa, fc]3, [fa, fd]3] = [ϕ12,13,ϕ12,23] =

[aα4 + b14, aα4 + b24] = [aα4 + b14, b
2
4 − b14]. (80)

Similar to Lemma 2.7, by use of the classical Plüker identity, we can derive
the following identity on the minors of LG in (6):

detLG(1, 2, 3, 4)− detLG(1, 2, 1, 3) + detLG(1, 2, 2, 3) = 0. (81)

The expansion in α4 gives

ϕ12,34 = b24 − b14. (82)

After the elimination of α4 by (35), the equalities (80) and (82) imply

S1 ≡ [ϕ12,34]− [a,ϕ12,34] mod L. (83)

Now we are going to compute S2:

S2 = [f 3
a , fa3, [fb, fc]3, [fb, fd]3] = [a,ϕ12

34, [fb, fc]3,ϕ
1,3
2 ]. (84)

We use again the equalities (77) and (78) and now subtract instead of
adding. We immediately get

[fb, fc]3 = [ϕ13
2 ϕ

2
13 −ϕ

23
1 ϕ

1
23] = ϕ

12,13ϕ2,3
1 +ϕ12,23ϕ1,3

2 . (85)

It follows that

S2 = [a,ϕ12
34,ϕ

1,3
2 ,ϕ12,13ϕ2,3

1 ] = [a,ϕ12
34,ϕ

1,3
2 , (aα4 + b14)ϕ

2,3
1 ]

= [a,ϕ12
34, b

4
2α4 +ϕ1,3

24 , b
1
4ϕ

2,3
1 ]. (86)

The last term of the last brackets disappears, this follows from (66): b14
vanishes on V(a,ϕ12

34). By (35), eliminating α4, one now computes

S2 ≡ [a,ϕ12
34]− [a,ϕ12

34, b
4
2] mod L. (87)

The third summand of (75), S3, takes the form

S3 = [f 3
a , fa3, f

3
b , fb3, [fc, fd]3] = [a,ϕ12

34,ϕ
13
24,ϕ

1
23,ϕ

2,3
1 ] =

[a,ϕ12
34,ϕ

13
24,ϕ

14
23α4 +ϕ1

234, b
4
1α4 +ϕ2,3

14 ]. (88)
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We claim that ϕ14
23 lies in the ideal generated by a,ϕ12

34,ϕ
13
24. Indeed, ϕ

14
23 =

b12+b
1
3 and, by (74), b12 vanishes on V(a,ϕ13

24) while b
1
3 vanishes on V(a,ϕ12

34).
Thus only the last polynomial in (88) depends on α4. One computes

S3 ≡ [a,ϕ12
34,ϕ

13
24,ϕ

1
234]− [a,ϕ12

34,ϕ
13
24,ϕ

1
234, b

4
1] mod L. (89)

Consider the equation similar to (79) but for the collection of edges (e1, e2, e4)
instead of (e3, e1, e2):

ϕ24
1 ϕ

1
24 −ϕ

124ϕ124 = ϕ
14,24ϕ1,2

4 −ϕ12,24ϕ1,4
2 . (90)

Each of the appearing polynomials depends on α3. A consideration of the
constant coefficient gives

ϕ24
13ϕ

1
234 − aϕ1234 = b43ϕ

1,2
34 − b23ϕ

1,4
23 . (91)

Consider the variety Z = V(a,ϕ12
34,ϕ

13
24) ⊂ ANG−4 and let Y = Z\Z∩V(b41).

Since the vanishing of ϕ12
34 implies b13 = 0 and the vanishing of ϕ13

24 implies
b12 = 0 on V(a) by (66), one gets alsoϕ14

23 = b12+b
1
3 = 0 on V(a). Hence, again

by (66), b43 vanishes on Z. The equation (91) now implies ϕ24
13ϕ

1
234 = 0 on Z.

Since ϕ24
13 = b41+b

4
3, and b

4
3 = 0 while b41 6= 0 on Y , one derives Y ∩V(ϕ1

234)
∼=

Y . Thus S3 = [V(a,ϕ12
34,ϕ

13
24,ϕ

1
234)\V(a,ϕ

12
34,ϕ

13
24,ϕ

1
234, b

4
1)] = [Y ]. One

computes

S2 + S3 ≡ ([a,ϕ12
34] + [a,ϕ12

34,ϕ
13
24])

− ([a,ϕ12
34, b

4
2] + [a,ϕ12

34,ϕ
13
24, b

4
1]) mod L. (92)

For the third summand, one uses the equality (b42)
2 ≡ ϕ14

23ϕ
34
12 mod a in

(66) and gets

[a,ϕ12
34, b

4
2] = [a,ϕ12

34,ϕ
14
23ϕ

34
12] = [a,ϕ12

34,ϕ
14
23] + [a,ϕ12

34,ϕ
34
12]

− [a,ϕ12
34,ϕ

14
23,ϕ

34
12]. (93)

Similarly,

[a,ϕ12
34,ϕ

13
24, b

4
1] = [a,ϕ12

34,ϕ
13
24,ϕ

24
13ϕ

34
12] = [a,ϕ12

34,ϕ
13
24,ϕ

24
13]+

[a,ϕ12
34,ϕ

13
24,ϕ

34
12]− [a,ϕ12

34,ϕ
13
24,ϕ

24
13,ϕ

34
12]. (94)

The last summands of (93) and (94) coincide. Indeed, ϕ12
34 = 0 = ϕ13

24

on V(a) imply ϕ23
14 = 0 since e1, e2, e3 form a triangle in G//4, and also

ϕ23
14 = 0 = ϕ34

12 imply ϕ24
13 = 0 in the triangle e2, e3, e4 in G//1. One derives

[a,ϕ12
34,ϕ

13
24,ϕ

24
13,ϕ

34
12] = [a,ϕ12

34,ϕ
13
24,ϕ

34
12] = [a,ϕ12

34,ϕ
13
24,ϕ

24
13]

= [a,ϕ12
34,ϕ

14
23,ϕ

34
12]. (95)
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Hence,

S2 + S3 ≡ [a,ϕ12
34] + [a,ϕ12

34,ϕ
13
24]− [a,ϕ12

34,ϕ
14
23]

− [a,ϕ12
34,ϕ

34
12] mod L. (96)

The first summand on the right hand side is divisible by L by Proposition 3.2
applied to [ϕ3

G′,ϕG′,3] for G
′ = G\4//{1, 2}. Similarly, the second summand

on the right hand side of the equality

[a,ϕ12
34,ϕ

13
24] = [a,ϕ12

34] + [a,ϕ13
24]− [a,ϕ12

34ϕ
13
24] (97)

is divisible by L. Using the equality (66), one gets

[a,ϕ12
34,ϕ

13
24] ≡ −[a,ϕ12

34ϕ
13
24] ≡ −[a, b14] mod L. (98)

The same thing can be done with [a,ϕ12
34,ϕ

14
23] in (96). One can also do the

step (97) for [a,ϕ12
34,ϕ

34
12]. The congruence (96) now implies

S2 + S3 ≡ [a, b13]− [a, b14] + [a,ϕ12
34ϕ

34
12] mod L. (99)

By (75) and (83), we finally get the desired formula

[ϕ12,ϕ1
2,ϕ

2
1,ϕ12] ≡ S1 + S2 + S3 ≡ [ϕ12,34]− [a,ϕ12,34]

+ [a, b13]− [a, b14] + [a,ϕ12
34ϕ

34
12] mod L. (100)

What we mean a 4-face formula is just the ability to express the class
[ZG] mod L3 in the formula (61) by use of classes of the intersections of
up to 3 hypersurafaces, after Theorem 4.1. It is possible to write down a
more concrete formula on the level of point-counting function for, say, log-
divergent graphs, but this does not lead to new results. Nevertheless, the
very important application of the technique above is the following result:

Proposition 4.2
Let G be a graph with NG ≥ 2nG and assume it has a 4-face. Let e1 and e2
be two adjacent edges of a 4-cycle bounding this face. Then

[ϕ12,ϕ1
2,ϕ

2
1,ϕ12]q ≡ 0 mod q. (101)
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Figure 1: From G to G′.

Proof. Denote by e3 and e4 the two other edges of the named 4-cycle going
in the natural ordering. Consider a graphG′ to be the following modification
of G : we delete 4 first edges, introduce 2 new edges es and et instead, and
identify 2 vertices as shown on Figure 1.
It has NG−2 edges es, et, e5, e6, . . . , eNG

and nG′ = nG−1. One immediately
sees that

ϕ12
G,34 = ϕ

s
G′,t and ϕ34

G,12 = ϕ
t
G′,s. (102)

Using the first Dodgson identity for I = {a}, J = {b}, one gets

V(a,ϕ12
G,34ϕ

34
G,12)

∼= V(ϕst
G′,ϕs

G′,tϕ
t
G′,s)

∼= V(ϕst
G′ ,ϕs,t

G′). (103)

Since the point-counting functor factors through the Grothendieck ring, (67)
implies the following congruence:

[ϕ12,ϕ1
2,ϕ

2
1,ϕ12]q ≡ [ϕ12,34]q − [a,ϕ12,34]q+

[a, b13]q − [a, b14]q + [ϕst
G′,ϕs,t

G′ ]q mod q. (104)

One computes the degrees:

deg bij = degϕ12,34
G′ = degϕs,t

G′ = nG−2, deg a = degϕst
G′ = nG−3. (105)

Since all of the varieties in (104) are considered to be in ANG−4, and NG ≥
2nG, Chevalley-Warning theorem implies the vanishing of all the summands
on the right hand side. Hence

[ϕ12,ϕ1
2,ϕ

2
1,ϕ12]q ≡ 0 mod q. (106)
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Proposition 4.2 gives us some control on [ϕ12,ϕ1
2,ϕ

2
1,ϕ12]q, this can help to

compute cdual2 (G). Returning to Formula (61), we also want to ”understand”
the summand [ϕ1,2]q in this sense.

Lemma 4.3
Let G be a graph with NG > 2nG having a 4-face. Let e1 and e2 be two
adjacent edges bounding this 4-face. Then

[ϕ1,2]q ≡ 0 mod q2. (107)

Proof. By Lemma 3.1, we can get rid of the variables α3 and α4 :

[ϕ1,2] = [ϕ13,23α3 +ϕ1,2
3 ] = LN−3 − [ϕ13,23] + L[ϕ13,23,ϕ1,2

3 ]

= LN−3 − [ϕ13,23] + L2[ϕ134,234,ϕ13,23
4 ,ϕ14,24

3 ,ϕ1,2
34 ]

+ L[ϕ134,234ϕ1,2
34 −ϕ13,23

4 ϕ14,24
3 ]− L[ϕ134,234,ϕ14,24

3 ]. (108)

Applying the first Dodgson identity again (just to get a nicer form) and
then appling the Chevalley-Warning theorem, we obtain

[ϕ134,234ϕ1,2
34 −ϕ13,23

4 ϕ14,24
3 ]q ≡ [ϕ13,24ϕ14,23]q ≡ 0 mod q (109)

since we are dealing with a product of total degree 2(nG − 2) = 2nG − 4 of
NG − 4 variables and NG > 2nG by the assumption. Next, the application
of the Chevalley-Warning theorem also implies

[ϕ134,234,ϕ14,24
3 ]q ≡ 0 mod q. (110)

By Lemma 3.1, we compute

[ϕ13,23]q = [ϕ134,234α4 +ϕ13,23
4 ]q = qNG−4 − [ϕ134,234]q

+ q[ϕ134,234,ϕ13,23
4 ]q ≡ 0 mod q2, (111)

here we have again used the Chevalley-Warning vanishing for the last sum-
mand and also Proposition 3.2, part (1) for V(ϕ134,234). Now (108) together
with (109)-(111) imply the desired congruence.

Now we are ready to prove the main theorem about the structure of
[ZG]q in the 4-face case.

Theorem 4.4
Let G be a graph with NG > 2nG. Assume G has a 4-face. Then

[ZG]q ≡ 0 mod q3. (112)

26



Proof. The equality (61) in the Grothendieck ring implies the correspond-
ing equality for the point-counting functions:

[ZG]q = qNG−2− [ϕ1]q+q
2[ϕ12,ϕ1

2,ϕ
2
1,ϕ12]q+q[ϕ

1,2]q−q[ϕ12,ϕ2
1]q. (113)

The graph G′ = G//1 has a triangle formed by the edges e2, e3, e4, and one
has NG′ > 2nG′ . By Proposition 3.9,

[ϕ1
G]q = [ϕG′] ≡ 0 mod q3. (114)

The variety V(ϕ12,ϕ2
1) is isomorphic to V(ϕ1

G′ ,ϕG′,1) for G
′′ = G//2. The

graph G′′ has a triangle formed by the edges e1, e3, e4, it satisfies NG′′ >
2nG′′ . Proposition 3.9 is again applicable:

[ϕ12
G ,ϕ

2
G,1]q ≡ [ϕ1

G′′ ,ϕG′′,1]q ≡ 0 mod q. (115)

By Proposition 4.2 and Lemma 4.3, one also has

[ϕ1,2]q ≡ q[ϕ12,ϕ1
2,ϕ

2
1,ϕ12]q ≡ 0 mod q2. (116)

The substitution of (114) – (116) into (113) implies the statement.

We can also derive a short formula for the c2 invariant in the case G
being log-divergent. This is what we call a 4-face formula for cdual2 (G).

Theorem 4.5
Let G be a log-divergent graph (NG = 2nG) with a 4-face bounded by the
edges e1, . . . , e4. Then

cdual2 (G) ≡ −[ϕ13,24,ϕ14,23]q mod q. (117)

Proof. By (101), we know the congruence [ϕ12,ϕ1
2,ϕ

2
1,ϕ12]q ≡ 0 mod q

for a log-divergent graph G. Thus, (113) yields

[ZG]q ≡ q[ϕ1,2]q − [ϕ1]q − q[ϕ12,ϕ2
1]q mod q. (118)

Since [ϕ12,ϕ2
1]q = [ϕ1

G′ ,ϕG′,1]q for G′ = G//2, a graph with a triangle

and NG′ > 2nG′, Proposition 3.9 implies [ϕ12,ϕ2
1]q ≡ 0 mod q. Similarly,

[ϕ1]q ≡ 0 mod q2.
In the proof of Lemma 4.3, the only term in the right hand side of (108)

that survives mod q for a log-divergent G is the term from (109). Thus,

[ZG]q ≡ q2[ϕ13,24ϕ14,23]q ≡ −q2[ϕ13,24,ϕ14,23]q mod q3. (119)

The formula above is, up to a sign, independent of the numeration of the 4
edges. This can be easily shown using (16).
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5 Girth 5 and Conclusion

Recall that girth(G) is the minimal n such that each cycle of G is of length
≥ n. In general, girth (G) is unbounded. Even if we restrict to φ4 or to
log-divergent graphs, it is not very difficult to construct examples of graphs
of any given girth.

To establish that a graph is duality admissible (see Definition 3.10), one
needs to check the vanishing condition:

[ϕG′]q ≡ 0 mod q3 (120)

for all sub-quotient graphs G′ = G\I//J for any I, J ⊂ E(G) with |J | >
|I| ≥ 0, |I| ≤ nG−3. If G′ has a cycle of length at most 3, then the vanishing
follows from Proposition 3.9 since NG′ = NG−|I|−|J | > 2(nG−|J |) = nG′ .
If G′ does not have a triangle, but does have a cycle of length 4, then we
again obtain the congruence (120) by Theorem 4.4. On the other side, if
the minimal cycle in the graph G′ is on length ≥ 4, we cannot prove the
congruence. The absence of a 3-face and 4-face is an obstruction to our
methods. We need to estimate the minimal NG for which this situation can
occur.

A nice (and most physically interesting) situation is the case when a
graph G is log-divergent in φ4 theory. That is, it is obtained from the 4-
regular graph Ĝ (all the vertices are 4-valent) after deletion of one of the
vertices. The graph Ĝ is called the completion of G. There is an interest-
ing arithmetic conjecture about the graphs with the same completion, see
Conjecture 4 in [BrSch].

We recall a well-known result of Robertson, [R]:

Theorem 5.1 (Robertson)
There is a 4-regular graph with girth = 5 and 19 vertices. It is the unique
(up to isomorphism) graph with these properties among all graphs with less
than 20 vertices.

Let R̂ be the Robertson’s graph above. Then the corresponding R is a
log-divergent graph of girth(G) = 5. It is a graph with minimal NR with
these conditions. It has hG = nG = 17, NG = 34. What we need is a slightly
different thing.

Lemma 5.2
Let G be a graph with 3 ≤ nG ≤ 17 and with NG > 2nG. Then girth (G) <
5.
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Proof. The proof is done with the help of a computer. To optimize the
brute force, one can start similarly to the proof from [R]. Assume that
there exists such a graph with girth 5. If G has a 5-valent vertex v, one
can consider the arcs (paths) of length 2 from v. The endpoints (k up to
nG − 5) should be mutually different and they are connected by NG − k− 5
edges. One has several possibilities and can find a contradiction in a few
steps. Now when all the vertices are up to 4-valent, we proceed with a small
exhaustive search on a PC.

We are ready to state our main theorem.

Theorem 5.3
Let G be a log-divergent graph with 3 ≤ hG ≤ 18 loops. Then G is duality
admissible.

Proof. Consider any relevant sub-quotient graph G′ := G\I//J , see the
Definition 3.10. Then G′ has nG′ ≤ nG − 1 = hG − 1 ≤ 17 and NG′ > 2nG′

edges. Now Lemma 5.2 implies that G′ has a cycle of length at most 4.
As was already explained above, under this assumption Proposition 3.9 or
Theorem 4.4 provide the needed congruence

[ZG′]q ≡ 0 mod q3. (121)

This concludes the proof.

As a consequence, we finally get

Theorem 5.4
Let G be a log-divergent graph with 3 ≤ hG ≤ 18. Then all the c2 invariants
in all four different representations of the Feynman period coincide:

c2(G)
mom
q = c2(G)q = c2(G)

dual
q = c2(G)

pos
q . (122)

This follows from the results of [D4]. This is again an indication that c2
invariant is a good discrete analogue to the Feynman period. The range of
hG is more than enough and covers all physically relevant graphs.

Nevertheless, Theorem 4.4 also proves the equality (122) for a larger set
of graphs, since the graphs of girth 5 occur rather rare. We formulate the
result as a combinatorial sufficient condition.
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Theorem 5.5
Let G be a graphs with hG ≥ 3. If each sub-quotient graph γ = G\I//J ,
where I, J ⊂ E(G), |J | > |I| ≥ 0, |I| ≤ nG−3, has a loop of length at most
4, then all 4 c2 invariants coincide.

I believe that there exists a 5-face formula or even n-face formula with the
similar meaning: even for a log-divergent graph with a big girth, the most
complicated summand [ϕ12,ϕ1

2,ϕ
2
1,ϕ12]q can be killed mod q, and, after

(118), the c2 invariant c
dual
2 can be computed naturally by the corresponding

step of the denominator reduction while the total contribution of the other
summands is zero.
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