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1. Introduction

In my master thesis, I will discuss the β function of quantum electrodynamics,
which is given by the photonic propagator, or vacuum polarization. The computa-
tion, which will be done to two loops, can be utilized in different ways. Here, we
are showing dimensional regularization in momentum space, the standard textbook
approach and the subject matter in most quantum field theory courses, and the
computation using the Corolla polynomial, a graph polynomial which Dirk Kreimer
has decribed in great detail in [1] and [2]. Even though quantum electrodynamics to
two loops is nothing new, the computations are important because they enable the
testing of new methods, in this case the transition from scalar to gauge amplitudes
using the Corolla differential. Dimensional regularization in momentum space is
very straight-forward and comparatively easy to follow, but has its mathematical
stumbling blocks. The computation using the Corolla polynomial is a lot more rig-
orous and also has a lot more potential.
Doing the computations, a lot of help has come from [3], lecture notes from a QED
and QCD lecture with a lot of detailed computations. During the traditional com-
putations, we are going to use dimensional regularization, a technique in which the
dimension of space-time, D, is altered by shifting it by a small value ε to D = 4−2ε
in order to isolate the poles of the amplitudes at D = 4. During this thesis, we will
encounter single and double poles in ε.
In the first part of the thesis, the β function and renormalization in general are
explained. After that, a short remark to the Ward identities is made. Next, the
computation of the one-loop and the two-loop graphs contributing to vacuum polar-
ization in done first in momentum space, then using the Corolla approach. At last,
the results are discussed. In the appendix, the computation of traces of γ matrices
and the one-loop master formula for dimensional regularization with a lot of ex-
plicit results is found, as well as the derivation of an important formula for two-loop
computations, called the triangle relation, and the Feynman rules for QED.

1.1. The β-function

When dealing with quantum field theories, one usually uses a perturbative expansion
of graphs for the computations, which are completed to a fixed order of perturba-
tion, normally given by the loop order, or first Betti number, of a graph. However,
perturbation theory bares some problems and cannot be the only approach to a
complete quantum field theory.
Let us consider an amplitude involving momenta of order q, for example the vacuum
polarization of quantum electrodynamics. Its n-loop contribution contains the per-
turbation parameter, the fine-structure constant α, to the n-th power, αn. There are
also up to n factors of ln

(
q2

m2
e

)

. Consequently, perturbation theory has its limitations

when α
∣
∣
∣ln
(
q2

m2
e

)∣
∣
∣ becomes large, even though α by itself might be small, which is the

case in quantum electrodynamics. By introducing some scale µ, a renormalization
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Chapter 1 Introduction

point is fixed and this point defines the renormalized coupling. The introduction of
this renormalization scale leads to the appearance of logarithms ln

(
E
µ

)

, so pertur-
bation theory is bound to break down whenever E ≫ µ or E ≪ µ, even though the
coupling constant might still be small at that energy.
To find remedy, one could think about introducing not a constant, but a “sliding”
renormalization scale µ, which is not related to the particle masses in a fixed way.
One could choose µ to be of the same magnitude as the energy E of the process in
question, and thereby taking away the possible harm of the ln

(
E
µ

)

terms. As long as
the coupling constants gµ defined at this sliding scale µ remain small, perturbation
theory is still possible. [4]

1.1.1. The renormalization group

Think about the coupling constants defined at a given scale µ. Using perturbation
theory, one could derive the physical amplitudes and from them the coupling con-
stants at a new scale µ + dµ. One would get a differential equation to integrate,
which relates the coupling constants at different scales. The method of the renor-
malization group can also give insight on the asymptotic behaviour at very high or
very low energies, even though the coupling constants might not be small enough at
these scales to use perturbation theory anymore. In fact, it turns out that in order
to perform calculations at some energy E, one must first eliminate the degrees of
freedom of much higher energy.
One very intuitive way to do this is by simply using a finite cut-off. This goes along
with ensuring that the physical quantities in the thoery remain cut-off-independent,
eventually leading to having to introduce an infinite amount of interaction types
allowed by the theory. Obviously, using a cut-off is not very convenient for renor-
malizable theories, especially because it violates Lorentz invariance.
In order to get around the large logarithms mentioned above, one needs to find an
adequate way of defining renormalized coupling constants and operators. Renor-
malization group methods do exactly that.[4]

Renormalization group equations

Presume there is a coupling constant gµ which depends on a sliding scale µ, but not
on the masses of the particles in the theory. In ordner to calculate gE at a given
energy E, it would be of no help to use perturbation theory, since we are interested
in the results where perturbation theory no longer holds. Instead, we proceed as
follows: First, we understand the discrete steps where gµ may be calculated in terms
of the renormalized coupling gR as long as µ

m
is small enough, i.e. not much larger

than unity. gµ′ can be computed in terms of gµ just as long as µ′

µ
is small enough.

Following these steps, one eventually reaches gE. Next, we go from discrete to
continuous calculations.
From dimensional analysis we can derive that the relation between any two couplings
gµ and gµ′ is of the form

gµ′ = G

(

gµ,
µ′

µ
,
m

µ

)

(1.1)

2



Chapter 1 Introduction

Now, we differentiate both sides with respect to µ′ and then set µ′ = µ. We get the
following differential equation

d

dµ′
gµ′

∣
∣
∣
∣
∣
µ′=µ

=
1

µ

∂

∂f
G

(

gµ, f,
m

µ

)∣
∣
∣
∣
∣
f=1

where we have written f := µ′

µ
and used the chain rule for the derivative on the

right-hand side. Bringing the µ to the other side and renaming µ′ = µ yields

µ
d

dµ
gµ =

∂

∂f
G

(

gµ, f,
m

µ

)∣
∣
∣
∣
∣
f=1

=: β

(

gµ,
m

µ

)

. (1.2)

There is no zero mass singularity, so for µ≫ m, Eq. (1.2) becomes

µ
d

dµ
gµ = β (gµ, 0) ≡ β (gµ) (1.3)

which is referred to as the Callan-Symanzik equation.
In order to calculate gE, one would integrate Eq. (1.3), where an initial value µi = M
has to be chosen such that it is large enough to neglect masses m compared with
µ for µ ≥ M , but also small enough to avoid large logarithms ln

(
M
m

)

which would
not allow the use of perturbation theory. Then we can calculate gM by using the
conventional renormalized coupling constant gR. As long as β(g) does not vanish
between GM and GE , we can formally write

ln
(
E

M

)

=

gE∫

gM

dg

β(g)
. (1.4)

Please note that the results derived do not depend on pertubative methods. How-
ever, perturbation theory may and will be used to produce results for the functions
G and β. This is independent of the derivation of the formulas.[4]

Renormalizing operators

When renormalizing an operator O, for example a field, one intoduces on N -factor,

(O)R = N (O)O (1.5)

N (O) is chosen in such a way that N (O)F (p) becomes finite at a chosen renormal-
ization point, where F (p) is a divergent factor in the matrix elements of O(p). For

example, one could define (O)R in such a way that N (O)F (0)
!

= 1. This, however,
leads to an infrared singularity.
To avoid singularities due to branch cuts, one option is to calculate off-shell matrix
elements of operators since branch cuts lie on the real axis. For example, if a particle
with momentum p decays into several particles with masses mi, then there will be
a branch cut on the positive real p2-axis for p2 ≥ (

∑

imi)
2. There is no singularity

if the initial particle has mass M <
∑

imi because then, p2 = M2 is off the cut.
Problematically, for massless theories, the value of p2 and the branch point at which
the cut starts both meet at the origin, resulting in a singularity. Therefore, it might
make sense to analyze off-shell matrix elements. Then, we need to consider the
N -factors that appear in the definition of the renormalized operators whose matrix

3



Chapter 1 Introduction

elements are finite. These N -factors can be defined in a way that the correction
factors resulting from divergent subgraphs all cancel when the operator has zero
momentum, or if a field is on its mass shell, or in any other convenient way. As
discussed above, the formula for the N -factor holds zero-mass singularities which
will result in large logarithms at energies E ≫ m, and we will try to fix this problem
by introducing a sliding scale µ. The matrix elements of the renormalized operator
will read

Oµ = N (O)
µ O . (1.6)

The correction factor due to divergent subgraphs containing operatorO are cancelled
at a renormalization point which has energy scale µ, brought about by N (O)

µ .[4]

1.1.2. The β-function of quantum electrodynamics

In electrodynamics, two renormalization constants turn out to be dependent on

just one function, referred to as Z3 for historical reasons. Z
− 1

2
3 renormalizes the

electromagnetic field, whereas Z
1
2
3 renormalizes the electric charge of the electron,

eR = Z
1
2
3 e. Please note that this is a very special case and that in general, each

renormalized function carries an independent renormalization constant.
Naturally, one defines the renormalized electric charge and the renormalized elec-
tromagnetic field at a sliding scale µ such that

eµ = N (A)−1
µ e = Z

− 1
2

3

1

N
(A)
µ

eR . (1.7)

Aνµ = N (A)
µ Aν = Z

1
2
3 N

(A)
µ AνR . (1.8)

Then, eµ times the field N (A)
µ Aν renormalized at scale µ is independent of the choice

of µ,

eµA
ν
µ = eRA

ν
R . (1.9)

Please note that in this notation, ν denotes a Lorentz index whereas µ represents
the sliding scale.
We see (for example in [4]) that for small eµ, eµ increases when µ increases. However,
the asymptotic behaviour is still unknown and cannot be explored using perturbation
theory.

Asymptotic behaviour of the β-function

Using the methods of the renormalization group, one finds that there are several
possible behaviours of the β-function for large couplings, connected to the behaviour
of gµ for large µ. The following analysis deals with theories with only one coupling
constant. For a discussion on a theory with more than one coupling constant, please
refer to .
In theories like φ4-theory or quantum electrodynamics, the β-function for small g is
positive, so µ d

dµ
gµ ≥ 0 for small g. Quantum chromodynamics, on the other hand,

has β(g) < 0 for small g. [4]
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Chapter 1 Introduction

1.1.3. Ward-Takahashi identities

A more graphical approach

In order to get a feeling for the Ward-Takahashi identities, imagine an amplitude
for some QED process which involves an external photon, which we will assign
momentum k. As we know, the amplitude M can be written in the form

M(k) = ǫµ(k)Mµ(k)

where M is a Fourier-transformed correlation function. Let us take a close look at
the diagram with an external photon line. This diagram is a contribution to the
amplitude M(k), which consists of all diagrams with the external-leg structure of
M(k). If that photon line is removed, we obtain a simpler diagram which is part of a
simpler amplitude, call it M0. Next, we can reinsert the photon at any point allowed
by the Feynman rules, the results are always contributions to M(k). If one sums
over all diagrams that contribute to M0 (that is, over all graphs with the external
leg structure of M0), and then sums over all possible insertion places for the photon
line, the result is M(k).
The Feynman rules of QED only allow for one type of vertex, namely a photon
coupling to a fermion and an antifermion. Therefore, a new external photon can
only be attached on a fermionic line. This line can either be part of a closed loop,
or part of a fermion running through the graph.
If the electron runs between external points, and the electron propagators
have momenta, say, p, p1 = p + q1, p2 = p1 + q2, . . . , p

′ = pn−1 + qn, the qn are the
momenta of the other photons coupling to the fermion line, and there are n vertices,
that gives us n + 1 insertion points.
For an insertion after the ith vertex, the momentum for any electron propagators pj
with j ≥ i is increased by k.
If we contract the new vertex with kµ, we can rewrite the expression as

−iekµγ
µ = −ie

(

(/pi + /k)− (/pi)
)

In the integrand corresponding with the amplitude, the vertex will be multiplied
with the two adjacent propagators, from the left and right, respectively.

i

/pi + /k
(−ie/k)

i

/pi
= e

(

i

/pi
−

i

/pi + /k

)

Thus, when writing down the entire integrand, we will encounter terms like

k

qi+1
qi

= . . .




i

/pi+1
+ /k



 γλi+1

(

i

/pi
−

i

/pi + /k

)

γλi




i

/pi−1



 γλi−1 . . .

Now, if we sum over all terms given by inserting the photon in all n + i possible
spots, every term but the very first and last will cancel due to the changing signs.
This corresponds to the graphical expression

∑

insertion
points

kµ










µ

k

q

p










= e










q − k

p

−

q

p+ k










5



Chapter 1 Introduction

If the photon attaches to an internal electron loop, then the very “first” term
and the very “last” term will cancel because they are identical, so there will be
no contribution. Thus, the diagrams in which a photon is attached along a closed
fermion loop add up to zero when summing over all diagrams.
Since all external fermion lines must be running through, there is always an even
number of external fermionic legs. Say, the amplitudeM(k) has 2n external fermions,
the incoming ones labeled with momenta pi, the outgoing ones labeled with momenta
qi. Then the amplitude M0 is short one external photon γ(k), but is otherwise iden-
tical to M(k). Now, to extract kµM

µ(k), we need to sum over all diagrams which
give a contribution to M0, and then sum over positions at which the photon could
be inserted, and do this for each of these diagrams. The result is

kµM
µ(k; p1, . . . , pn; q1, . . . , qn) = (1.10)

= e
∑

i

(

M0(p1, . . . , pn; q1, . . . , qi − k, . . . )−M0(p1, . . . , pi + k, . . . ; q1, . . . , qn)
)

Eq. (1.10) is called the Ward-Takahashi identity for correlation functions.
The simplest case, namely the n = 1 case, is a nice example:

kµ ·










µ

k

p+ k

p










= e










p

p

−

p + k

p + k










(1.11)

The propagators we see on the right-hand side of Eq. (1.11) are the exact electron
propagators S(p) and S(p+ k), given by

S(p) =
i

/p− Σ(p)

where Σ(p) is the sum of all 1PI graphs contributing to the electronic propagator
(the self-energy).
We rewrite the full three-point function as a product of full fermionic propagators
and an amputated scattering function whose vertex is denoted by Γµ(p+k, p). Then,
we multiply with the inverse propagators from the left and right, respectively.

S(p+ k)
(

− iekµΓµ(p+ k, p)
)

S(p) = e
(

S(p)− S(p+ k)
)

⇒ −ikµΓµ(p+ k, p) =e
(

S−1(p+ k)− S−1(p)
)

(1.12)

Eq. (1.12) is also sometimes referred to as Ward-Takahashi identity. This iden-
tity gives us the opportunity to retrieve a general relation between renormalization
factors:

Γµ(p+ k, p)→ Z−1
1 γµ as k → 0

Let Z2 be the residue of the pole in S(p):

S(p) ∼
iZ2

/p

6



Chapter 1 Introduction

Setting p near mass shell and expanding Eq. (1.12) about k = 0 gives to first order:

−iZ−1
1 /k = −iZ−1

2 /k

⇒ Z1 = Z2

This relation is also sometimes called the Ward-Takahashi identity. Anyway it guar-
antees the exact cancellation of infinite rescaling factors in the electronic scattering
amplitude. Because of the Ward-Takahashi identity, it suffices to compute the pho-
ton propagator in order to obtain the β function of quantum electrodynamics. [5]

A more analytic approach

The previous derivation of the Ward-Takahashi identity was rather graph-oriented,
in this paragraph we will try a more analytic approach. Recall that in gauge theory,
the Lagrangian density L (involving some matter fields ψl and the bosonic field Aµ)
is invariant under a global gauge transformation,

ψl → eiqlαψl , α = const.

Because of this invariance, there must exist a current which is conserved (a Noether
corrent):

∃Jµ =− i
∑

l

∂L

∂(∂µψl)
qlψl

∂µJ
µ = 0

A Noether current always comes with a Noether charge:

Q :=
∫

d3xJ0

Q is time-independent ([Q,H ] = 0), translation-invariant ([~P ,Q] = 0), and invariant
under homogeneous Lorentz transformations ([Jµν , Q] = 0). Furthermore, Q acting
on the true vacuum state ψ0 must be proportional to the vacuum again, Qψ0 = q0ψ0.
Because of Lorentz invariance, we can require that 〈ψ0 |Jµψ0〉 = 0 and therefore
Qψ0 = 0.
Q acting on a one-particle state ψ~p,σ,n, where ~p denotes its momentum, σ its spin,
and n the kind of particle in the state, must give the same state again with the
same momentum, spin, and Lorentz transformation properties: Qψ~p,σ,n = q(n)ψ~p,σ,n.
q(n) is independent of ~p and σ. We call q(n) the electric charge of the one-particle
state, where that charge is nothing more than the quantum number associated with
the conserved current.
The canonical commutation relations are:

[

J0(~x, t), ψl(~y, t)
]

= −qlψl(~y, t)δ
(3)(~x, ~y)

[Q,ψl(~y, t)] = −qlψl(~y, t)

But even more so, we can define some F to be a (local) function of the fields, field
derivatives, and their adjoints, and the canonical commutation relations give

[Q,F (y)] = −qFF (y)

7



Chapter 1 Introduction

with qF the sum of all ql of the fields and field derivatives minus the sum of all ql of
the adjoints. Therefore,

〈ψ0 |[Q,F (y)]|ψ~p,σ,n〉 ⇒ 〈ψ0 |F (y)|ψ~p,σ,n〉
(

qF − q(n)

)

= 0

Consequently, qF = q(n) as long as 〈ψ0 |F (y)|ψ~p,σ,n〉 6= 0.
This condition takes care that momentum space Green functions that involve F will
have poles at the corresponding one-particle state values for the respective ψ~p,σ,n.
Thus, for a one-particle state, where F = ψl, we have qF = ql.
We call ql the electric charge. However, this need not be the physical electric charge.
ql is a parameter in the Lagrangian L, but the condition that L be invariant unter
the global gauge transformation ψl → eiqlαψl does not fix the overall scale of the
ql. So what is the physical charge? Well, the physical electric charge describes the
response of a matter fields to a given renormalized electromagnetic field Aµ. The
scale of the ql is fixed as soon as we require that this renormalized electromagnetic
field shall appear in the matter Lagrangian LM , namely in the linear combinations
resulting from the local gauge transformation, the covariant derivative (∂µ−iqlAµ)ψl,
such that for our conserved Noether current, Jµ = δLM

δAµ
holds.

Still, the renormalized electromagnetic field does not equal the bare field, and neither
do the physical and the bare charge.

Aµ 6= AµB , ql 6= qBl

Let us take a close look at the simplest form the Lagrangian can take.

L = −
1

4
(∂µABν − ∂νABµ)(∂µAB

ν − ∂νAB
ν) + LM

(

ψl, [∂µ − iqBlABµ]ψl
)

• Aµ, the renormalized electromagnetic field, is the complete propagator with

pole at p2 = 0 with unit residue: Aµ = Z
− 1

2
3 AB

µ

• ql is the physical response of charged particles to the renormalized electromag-

netic field Aµ (and not AB
µ): ql = Z

1
2
3 qBl

It is obvious that the relation between the bare charge and renormalized charge is
achieved by the use of the same scaling constant for all particles!
So, charge renormalization results merely from radiative corrections to the prop-
agator of the photon. As a consequence, there appear numerous cancellations
among other radiative corrections to the propagators and electromagnetic vertices
of charged particles. These cancellations are called the Ward idendities. [6]
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2. Textbook Approach

In this chapter, we are going to compute the one- and two-loop contributions to the
photon propagator of quantum electrodynamics. For now, the standard textbook
approach, in which the Feynman rules of QED are written down and the integrals
are solved using dimensional regularization, is executed. At the end of the thesis,
both approaches will be evaluated.
Regardless of the loop number, the ansatz for the amplitude is always the same.

2.1. Ansatz for the Amplitude

Regardless of the number of γ matrices in the trace, or of the number of loop
momenta to be integrated out, the Feynman amplitude is of the form

ΦΓ =
∫

dDk̄IΓ

where IΓ denotes the Feynman integrand of the graph Γ, D is the dimension of
space time, and k̄ is used as an abbreviation for all loop momenta. Dimensional
analysis shows that ΦΓ is quadratically divergent, but it is also known that the
photon propagator is transversal, or in other words: It is possible to extract a factor
(q2gµν − qµqν) from the expression, where q is the external momentum, and µ and
ν are the Lorentz indices of the vertices the external photons couple to. These two
factors of q which can be extracted leave a scalar expression F (q2) which is only
logarithmically divergent! [7]

ΦΓ = (q2gµν − qµqν)F (q2) (2.1)

The problem is reduced to finding the function F (q2) since the overall structure of
the amplitude is already known. In order to achieve this, contract both sides of
Eq. (2.1) with gµν and solve for F (q2):

gµνΦΓ = 3q2F (q2)

⇒ F (q2) =
1

3q2
gµνΦΓ (2.2)

Therefore, it suffices to compute not ΦΓ, but a much easier expression, namely
gµνΦΓ. The result for ΦΓ can then be read off using Eq. (2.1).

Remark Since F (q2) is logarithmically divergent, a simple subtraction at some

reference scale q2 = µ2 will be necessary. Therefore, the notation F
(
q2

µ2

)

will also
be used. It indicates that the subtraction would already have taken place.
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Chapter 2 Textbook Approach

2.2. The One-Loop Graph

Let us start this chapter by computing the one-loop photon propagator of abelian
gauge theory, also known as quantum electrodynamics, the traditional way we learn
it in every introductory quantum field theory course. We take the graph

q q
µ ν

k + q

k

and write down its unrenormalized Feynman integrand according to the Feynman
rules of QED (see Chapter D), and integrate the expression using dimensional reg-
ularization. We use the standard Feynman slash notation, where /y ≡ γµy

µ. The
Feynman integrand of is given by

I = −Tr

(

ieγµi
/k + /q

(k + q)2
ieγνi

/k

k2

)

= −e2 Tr (γµγαγνγβ)
(k + q)αkβ

(k + q)2k2

The loop momentum of the only loop is k, so there will be a D-dimensional integra-
tion of the Feynman integrand over k. The Feynman amplitude of yields

Φ := Φ( ) =
∫

dDk I

Because the incoming and outgoing photons are only attached to the vertices at µ
and ν, Eq. (2.1) yields that Φ( ) is of the following form:

Φ( ) =
(

q2gµν − qµqν
)

F

(

q2

µ2

)

where subtraction at q2 = µ2 is understood. Keeping Eq. (2.2) in mind and com-
puting the contraction of the integrand with gµν , we get

gµνI = −e2 Tr (γµγαγ
µγβ)

(k + q)αkβ

(k + q)2k2

= 2e2 Tr (γαγβ)
(k + q)αkβ

(k + q)2k2

= 8e2 (k + q) · k

(k + q)2k2

= 8e2 k
2 + k · q

(k + q)2k2

⇒ gµνΦ = 8e2
∫

k2 + k · q

(k + q)2k2
dDk (2.3)

In the second line, we use the γ matrix identity γµγαγ
µ = −2γα. In the third line,

we used the trace identity Tr
(

γαγβ
)

= 4gαβ.
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Chapter 2 Textbook Approach

In order to solve Eq. (2.3), one uses a trick by splitting the sum and rewriting k · q
using Eq. (A.4). After that, all summands are in a form that allow the use of the
one-loop Master integral for dimensional regulariz ation, cf. Eq. (B.2), and Chapter
B in general.

gµνΦ = 4e2
∫ k2 + (k + q)2 − q2

(k + q)2k2
dDk

= 4e2
(

M(0, 1, D, q2) +M(1, 0, D, 0)− q2M(1, 1, D, q2)
)

(2.4)

= −4e2q2M(1, 1, D, q2)

= −4e2(q2)
D
2

−1Γ̃1,1
D

Eq. (B.8)⇒ = −4e2(q2)
D
2

−1
Γ2
(
D
2
− 1

)

Γ
(

3− D
2

)

Γ(D − 2)
·

1

2− D
2

Eq. (B.9)⇒ = −4e2(q2)1−ε
(

1

ε
+O(1)

)

(2.5)

In the second line, we used the master integral. Because of the properties of the
master integral, M(0, β,D, q2) = M(α, 0, D, q2) ≡ 0, two of the three terms in
Eq. (2.4), vanish. In the last line, we used dimensional regularization where we set
D = 4− 2ε.
Let us continue the computation of the full contribution to the amplitude, since
Eq. (2.5) still has a pole at ε→ 0. Without subtraction at some reference momentum
µ, we would get

Eq. (2.2) ⇒ F (q2) = −
4

3
e2(q2)

−ε
(

1

ε
+O(1)

)

= −
4

3
e2
[

1− ε ln (q2) +O(ε2)
] (1

ε
+O(1)

)

and the expression would diverge when the limit ε→ 0 were to be taken. However,
when the subtraction at q2 = µ2 is acted out, we get

F

(

q2

µ2

)

= −
4

3
e2

[
(

1− ε ln (q2) +O(ε2)
)

−
(

1− ε ln (µ2) +O(ε2)
)
] (

1

ε
+O(1)

)

= −
4

3
e2

[

−ε ln

(

q2

µ2

)

+O(ε2)

] (
1

ε
+O(1)

)

=
4

3
e2

[

ln

(

q2

µ2

)

+O(ε)

]
(

1 +O(ε)
)

⇒ lim
ε→0

F

(

q2

µ2

)

=
4

3
e2 ln

(

q2

µ2

)

The coefficient 4
3

of the function F
(
q2

µ2

)

is the one-loop β function of quantum
electrodynamics.
We have computed the one-loop β function of QED using the standard physics
approach with subtraction and dimensional regularization. However, this approach
is very weak on a mathematical level because it is not very rigorous, especially
because integrals are written down that are non-existent because they diverge. To
gain a more general knowledge of the structure of the β function, let us have a look
at a more combinatorical level in Chapter 3.
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Chapter 2 Textbook Approach

2.3. The Two-Loop Graphs

For the two-loop graphs, the application of Feynman rules proves slightly more
tricky than in the one-loop case. A lot of the computations can be attributed to the
one-loop computations, but there are a few subtleties to be taken into account that
we did not have to pay attention to before.
Because we are going to use dimensional regularization, we will need to rethink our
use of γ matrices in traces and contractions in D instead of 4 dimensions. We did
not have to do that before because the pole we encountered in Section 2.2 was only
of order ε.
The Clifford algebra demands that {γµ, γν} = 2gµν be fulfilled at all times. It is con-
ventional to choose Tr (I) = 4 (and not D), but is is only a matter of choice because
the trace of Unity may be any smooth function of D which satisfies Tr (I)|D=4 = 4.
For contractions of γ matrices, we use [7]

γργµγ
ρ = (2−D)γµ (2.6)

γργµγνγσγ
ρ = (D − 6)γσγνγµ − 2(D − 4)

(

gµνγσ − gµσγν + gνσγµ
)

(2.7)

Keep in mind that even though Tr (I) = 4, gµνg
µν = D = 4− 2ε during our compu-

tations.

The Feynman integrals of the two-loop graphs contain a trace of eight γ matrices
and contractions with several momenta. There are two independent loop-momenta
which are integrated out, one for each loop.

2.4. The Graph with a Fermionic Subgraph

In this section, the one-particle irreducible1 two-loop graphs of the graphical ex-
pansion of the vacuum polarization will be taken into account where the divergent
(one-loop) subgraph, , is inserted into one fermionic edge of the one-loop photon
propagator, . We are facing two graphs of the kind

Γ =

q q
µ

ρ

ν

σ

q + k

k

k + l

k

l

The second graph would have the fermionic subgraph inserted in the upper fermionic
line. Since there are two fermionic edges, there are exactly two possible insertion
places. However, both graphs produce the same results when computing their am-
plitudes, which will be shown later in Section 2.4.3.
According to the Feynman rules of QED (see Chapter D), the Feynman integrand

1One-particle irreducible (1PI) means that the graph will not fall apart into two disjoint graphs
if any one internal edge is removed.
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Chapter 2 Textbook Approach

of is given by

I = −Tr

(

ieγµi
/k + /q

(k + q)2
ieγνi

/k

k2
ieγσi

/k + /l

(k + l)2
ieγρi

/k

k2

)

i
gρσ − ξ l

µlν

l2

l2

=: Ig − ξI l (2.8)

Obviously, the amplitude of is the sum of two independent parts due to the
internal photon propagator which depends on the gauge parameter ξ. This did not
appear in the one-loop case because there was no internal photon line. The value
of ξ depends on the choice of gauge. Very common are the Feynman gauge, ξ = 0,
where half the computation is obsolete, and the Landau gauge, ξ = 1, where the
internal photon propagator becomes transveral. We will see that this is quite a nice
choice for quantum electrodynamics because it will dispose of subdivergences: All
graphs will only have simple poles in the dimensional regularization parameter ε.
As discussed in Section 2.1, the amplitude is given by the transversality of the
photon, and a scalar function, F

(
q2

µ2

)

. To determine F
(
q2

µ2

)

, one contracts

Eq. (2.8) with gµν .
In the next subsections, we are going to compute the amplitudes Ig and I l , with

Ig = −ie4
Tr
{

γµγαγνγβγσγδγ
σγη

}

(k + q)αkβ(k + l)δkη

(k + q)2(k2)2l2(l + k)2
(2.9)

I l = −ie4
Tr
{

γµγαγνγβγσγδγργη
}

(k + q)αkβ(k + l)δkηlσlρ

(k + q)2(k2)2(l2)2(l + k)2
(2.10)

2.4.1. The gµν part

Let us start the computation of the amplitude of the gauge-independent part, Ig .
Take Eq. (2.9) and use the identity γµγνγ

µ = (2−D)γν (see Eq. (2.6)).

Ig = −ie4(2−D)
Tr
{

γµγαγνγβγδγη
}

(k + q)αkβ(k + l)δkη

(k + q)2(k2)2l2(l + k)2

In Eq. (A.3), the trace of the six γ matrices is given. The trace and the momenta in
the numerator are contracted using mathematica (cf. Chapter E). Next, the result
is contracted with gµν.

gµνI = −4ie4(D − 2)2
k2
(

(k · l) + (k · q)− (q · l)
)

+ 2(k · l)(k · q) + (k2)
2

(k + q)2(k2)2l2(l + k)2

(2.11)

Now, rewriting the scalar products using Eq. (A.4) yields

gµνI = −2ie4(D − 2)2

(

(k + q)2 − q2
)(

(l + k)2 − l2
)

+ (k2)
2
− 2k2 q · l

(k + q)2(k2)2l2(l + k)2
(2.12)

Note that the scalar product q · l has not been rewritten because there is no factor
(l ± q)2 in the denominator.
According to Chapter B, the integral will vanish if there is only one factor with
k or l in the denominator, regarless of its power. This means that every term in
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Chapter 2 Textbook Approach

Eq. (2.12) which contains a factor l2 or (l + k)2 can be omitted because its integral
will vanish.2 This leaves us with

gµνI = −2ie4(D − 2)2 k2 − 2 l · q

(k + q)2k2l2(l + k)2

So, our final integral is

gµνΦg =
∫∫

dDk dDl gµνI (2.13)

= −2ie4(D − 2)2
∫∫

dDk dDl
k2 − 2 qµl

µ

(k + q)2k2l2(l + k)2

= −2ie4(D − 2)2







∫
dDk

(k + q)2

∫
dDl

l2(l + k)2
− 2

∫
dDk

(k + q)2k2
qµ

∫

dDl
lµ

l2(l + k)2

]






= −ie4
(

Ig,1 + Ig,2
)

(2.14)

Ig,1 is simply solved using the master formula for one-loop graphs, as in Chapter
B. It yields

Ig,1 = 2(D − 2)2
∫

dDk

(k + q)2

∫
dDl

l2(l + k)2

= 2(D − 2)2
∫

dDk

(k + q)2
M(1, 1, D, k2)
︸ ︷︷ ︸

=Γ̃1,1
D

(k2)
D
2

−2

= 2(D − 2)2Γ̃1,1
D

∫
dDk

(k + q)2(k2)2−D
2

︸ ︷︷ ︸

=M(1,2−D
2
,D,q2)

= 2(D − 2)2Γ̃1,1
D Γ̃

1,2−D
2

D (q2)
D−3

In Section B.2.5, we find the results for Γ̃1,1
D Γ̃

1,2−D
2

D . First, we insert the result in
terms of D, in the next line we have set the space-time dimension D to its regularized
value D = 4− 2ε.

Ig,1 = 2(D − 2)2(q2)
D−3 Γ3

(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
·

1

(3−D)
(

3D
2
− 4

)

= 2(2− 2ε)2(q2)
1−2εΓ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
·

1

2ε
·

1

(−1 + 2ε)(2− 3ε)

=
(

8 +O(ε)
)

(q2)
1−2ε

) (

−
1

4ε
+O(1)

)

(2.15)

= (q2)
1−2ε

(

−
2

ε
+O(1)

)

(2.16)

The solving of Ig,2 is a little bit more tricky. The second integrand has a Lorentz
index, so we cannot blindly use the master integral as we did before. However,

2In the future, instead of referencing Chapter B every time we use it, we will simply call this the
“properties of the master integral”.
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Chapter 2 Textbook Approach

because of this Lorentz index, the integral must be a four-vector which is then
contracted with qµ. Since l is the loop momentum in this case and it is integrated
out, the result cannot be dependent on lµ, only on kµ, and a scalar function of k2.
So we make the ansatz

∫

dDl
lµ

l2(l + k)2

!
= kµF (k2) . (2.17)

In order to obtain F (k2), we contract Eq. (2.17) with kµ and solve for F (k2), using
Eq. (A.4).

F (k2) =
1

k2

∫

dDl
l · k

l2(l + k)2

=
1

2k2

∫

dDl
(l + k)2 − l2 − k2

l2(l + k)2

= −
1

2

∫

dDl
1

l2(l + k)2

= −
1

2
M(1, 1, D, k2) (2.18)

⇒
∫

dDl
lµ

l2(l + k)2
= −

kµ

2
M(1, 1, D, k2) (2.19)

Therefore, we get for Ig,2 :

Ig,2 = −4(D − 2)2
∫

dDk

(k + q)2k2
qµ

∫

dDl
lµ

l2(l + k)2

= −4(D − 2)2
∫

dDk

(k + q)2k2
qµ

(

−
1

2
kµM(1, 1, D, k2)

)

= 2(D − 2)2Γ̃1,1
D

∫

dDk
q · k

(k + q)2k2
(k2)

D
2

−2

= 2(D − 2)2Γ̃1,1
D ·

1

2

∫

dDk
(k + q)2 − k2 − q2

(k + q)2(k2)3−D
2

= −(D − 2)2Γ̃1,1
D

{

M
(

1, 2−
D

2
, D, q2

)

+ q2M
(

1, 3−
D

2
, D, q2

)}

= −(D − 2)2(q2)
D−3

{

Γ̃1,1
D Γ̃

1,2−D
2

D + Γ̃1,1
D Γ̃

1,3−D
2

D

}

In the fourth line, q · k was rewritten using Eq. (A.4) and all factors of k2 were put
in the denominator. Next, the (k + q)2 term was dropped since it would lead to
a vanishing integral due to the properties discussed above and in Chapter B. The
remaining integrals have been expressed using the one-loop master integral. Now,
using Section B.2.5 and Section B.2.6, the products of Γ functions need evaluation.

Ig,2 = −(2− 2ε)2(q2)
D−3

{

Γ̃1,1
D Γ̃

1,2−D
2

D
︸ ︷︷ ︸

=− 1
4ε

+O(1)

+ Γ̃1,1
D Γ̃

1,3−D
2

D
︸ ︷︷ ︸

= 1
2ε2 + 1

ε(
5
2

−γE)+O(1)

}

= (q2)
1−2ε

(

− 4 + 8ε+O(ε2)
)( 1

2ε2
+

1

ε

(
9

4
− γE

)

+O(1)
)

= (q2)
1−2ε

(

−
2

ε2
+

1

ε

(

− 5 + 4γE
)

+O(1)

)

(2.20)
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Chapter 2 Textbook Approach

Use Eq. (2.16) and Eq. (2.20) to solve Eq. (2.14):

gµνΦg = −ie4
(

Ig,1 + Ig,2
)

= −ie4(q2)
1−2ε

{(

−
2

ε

)

+
(

−
2

ε2
+

1

ε

(

− 5 + 4γE
))

+O(1)

}

= −4ie4(q2)
1−2ε

{

−
1

2ε2
+

1

ε

(

−
7

4
+ γE

)

+O(1)

}

(2.21)

The double and simple poles in ε have been isolated and everything else is finite
when the limit ε→ 0 is taken. Because of the double pole in ε, a simple subtraction
at some value q2 = µ2 seems insufficient. However, because of the Ward identities in
QED, for the sum of all graphs contributing to the two-loop expansion of the pho-
tonic amplitude a simple subtraction suffices. We saw about that at the beginning
of this chapter, when we learned that the quadratically divergent amplitude can
be separated into a factor gµνq

2 − qµqν and a logarithmically divergent function F ,
which we have computed here, thus a simple subtraction must be enough. Bear in
mind that this accounts for the sum of all graphs alone, not for every single graph.
In Section 2.6.2, the subtractions for the graphs in the Landau gauge and for the
sum of all two-loop graphs in an arbitrary gauge take place.

2.4.2. The lµlν part

Basically, we are going to repeat the same computation for the gauge-dependent
part of the photon propagator. The amplitude is given by Eq. (2.10):

I l = −ie4
Tr
{

γµγαγνγβγσγδγργη
}

(k + q)αkβ(k + l)δkηlσlρ

(k + q)2(k2)2(l2)2(l + k)2

=: −ie4
num(I l )

den(I l )
(2.22)

The trace is computed using mathematica (cf. Chapter E) and the contractions,
including the contraction with gµν , is also done this way. The result is

gµνnum(I l ) = 2(D − 2)(k2)
2
[

−(k + q)2 + l2 − 2l · q + q2
]

+ 8k2(k + l)2
[

(k + q)2 + l · q − q2
]

+

+ 4
[

(k + l)2
]2 [

−(k + q)2 + q2
]

+ 4(k + l)2
[

(k + q)2l2 − l2q2
]

Because of the form of the denominator,

den(I l ) = (k + q)2(k2)
2
(l2)

2
(l + k)2

and because of the property of the one-loop master integral of dimensional regular-
ization, Eq. (B.2), that the integral will vanish if one of the exponents is zero or
a negative integer, not all terms in gµνnum(I l ) survive the integration. In fact,

since there are three factors with k in den(I l ), but only two factors with l, any

term involving (l2)
2

or (l + k)2 will lead to a vanishing integral and can therefore
be omitted. Moreover, the term (k2)

2
(k + q)2 will also yields a vanishing integral

because it will leave only one term with k in the denominator.

16



Chapter 2 Textbook Approach

The resulting amplitude, with all terms leading to vanishing integrals omitted, is

gµνI l = −2(D − 2)ie4 (k2)
2
l2 + (k2)

2
q2 − 2(k2)

2
l · q

(k + q)2(k2)2(l2)2(l + k)2

= −2(D − 2)ie4 l2 + q2 − 2l · q

(k + q)2(l2)2(l + k)2

⇒ gµνΦl = −2(D − 2)ie4
∫∫

dDk dDl
l2 + q2 − 2l · q

(k + q)2(l2)2(l + k)2

=: −ie4
{

I l,1 + I l,2 + I l,3
}

(2.23)

Compute the three integrals:

I l,1 = 2(D − 2)
∫∫

dDk dDl

(k + q)2l2(l + k)2

= 2(D − 2)
∫

dDk

(k + q)2
M(1, 1, D, k2)

= 2(D − 2)Γ̃1,1
D M

(

1, 2−
D

2
, D, q2

)

= 2(D − 2)Γ̃1,1
D Γ̃

1,2−D
2

D (q2)
D−3

(2.24)

The result for Γ̃1,1
D Γ̃

1,2−D
2

D can be found in Section B.2.5. We get for I l,1 :

I l,1 = 2(D − 2)(q2)
D−3 Γ3

(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
·

1

(3−D)
(

3D
2
− 4

) (2.25)

= 2(2− 2ε)
︸ ︷︷ ︸

=4+O(1)

(q2)
1−2ε

(

−
1

4ε
+O(1)

)

= (q2)
1−2ε

(

−
1

ε
+O(1)

)

(2.26)

Next is the second integral:

I l,2 = 2(D − 2)q2
∫∫

dDk dDl

(k + q)2(l2)2(l + k)2

= 2(D − 2)q2
∫∫ dDk

(k + q)2
M(1, 2, D, k2)

= 2(D − 2)q2Γ̃1,2
D M

(

1, 3−
D

2
, D, q2

)

= 2(D − 2)(q2)
D−3

Γ̃1,2
D Γ̃

1,3−D
2

D

17
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The result for Γ̃1,2
D Γ̃

1,3−D
2

D is written down in Section B.2.11. It yields:

I l,2 = 2(D − 2)(q2)
D−3 Γ3

(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(
D
2
− 2

)

(4−D)
(2.27)

= 2(2− 2ε)(q2)
1−2ε

(

−
1

2ε2
+

1

ε

(

−
3

2
+ γE

)

+O(1)

)

= (4− 8ε)(q2)
1−2ε

(

−
1

2ε2
+

1

ε

(

−
3

2
+ γE

)

+O(1)

)

= (q2)
1−2ε

(

−
2

ε2
+

1

ε
(−4 + 4γE) +O(1)

)

(2.28)

Last, but not least, compute I l,3 . In order to avoid an integral similar to the one
encountered in Section 2.4.1 with lµ in the numerator, the k integration will be
performed first. In order to do that, there will be a shift k → k̃ = k − q. This is
unproblematic because the master integral is translation invariant.

I l,3 = −4(D − 2)
∫

dDl
l · q

(l2)2

∫
dDk

(k + q)2(k + l)2

= −4(D − 2)
∫

dDl
l · q

(l2)2

∫
dDk̃

(k̃)2
(

k̃ + (l − q)
)2

= −4(D − 2)
∫

dDl
l · q

(l2)2M
(

1, 1, D, (l− q)2
)

= −4(D − 2)Γ̃1,1
D

∫

dDl
l · q

(l2)2[(l − q)2]2−D
2

Eq. (A.5) is used to simplify the scalar product in the numerator.

I l,3 = −4(D − 2)Γ̃1,1
D ·

1

2

∫

dDl
l2 + q2 − (l − q)2

(l2)2(l − q)22−D
2

= −2(D − 2)Γ̃1,1
D







∫
dDl

l2[(l − q)2]2−D
2

+ q2
∫

dDl

(l2)2[(l − q)2]2−D
2

−
∫

dDl

(l2)2[(l − q)2]1−D
2







= −2(D − 2)Γ̃1,1
D

{

M
(

1, 2−
D

2
, D, q2

)

+ q2M
(

2, 2−
D

2
, D, q2

)

−M
(

2, 1−
D

2
, D, q2

)}

= −2(D − 2)(q2)
D−3

{

Γ̃1,1
D Γ̃

1,2−D
2

D + Γ̃1,1
D Γ̃

2,2−D
2

D − Γ̃1,1
D Γ̃

2,1−D
2

D

}

(2.29)

The results for Γ̃1,1
D Γ̃

1,2−D
2

D , Γ̃1,1
D Γ̃

2,2−D
2

D , and Γ̃1,1
D Γ̃

2,1−D
2

D can be found in Section B.2.5,
Section B.2.8, and Section B.2.7, respectively. Summed up, the resulting term is

I l,3 = −2(2− 2ε)(q2)
1−2ε





(

−1

4ε

)

+

(

−1

2ε2
+

1

ε

(

−
3

2
+ γE

))

−

(

−1

2ε
+

1

ε

(

−
9

4
+ γE

))




= (q2)
1−2ε

(
−2

ε
+O(1)

)

(2.30)
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Inserting Eq. (2.26), Eq. (2.28), and Eq. (2.30) in Eq. (2.23), we get

gµνI l = −ie4
(

I l,1 + I l,2 + I l,3
)

= −ie4(q2)
1−2ε





(

−
1

ε

)

+

(

−
2

ε2
+

1

ε
(−4 + 4γE)

)

+

(

−2

ε

)

+O(1)





= −4ie4(q2)
1−2ε

(

−
1

2ε2
+

1

ε

(

−
7

4
+ γE

)

+O(1)
)

(2.31)

Obviously, Eq. (2.31) looks not only very similar to Eq. (2.21), but is in fact identical.
As indicated above, the gauge parameter ξ can be chosen to be ξ = 1 (Landau gauge)
which abolishes the poles, leaving the amplitude finite. The explicit computation is
to be found in Section 2.6.

2.4.3. The Second Graph

As discussed at the very beginning of this section, there is a second graph with a
subgraph inside the other fermionic propagator, namely:

Γ′ =

q q
µ

ρ

ν

σ
k + l

k

q + k

k

l (2.32)

Of course, it is possible to compute the Feynman integrand of and see that it is
the same as . On the other hand, this is actually obvious because the direction
of fermionic edges is arbitrary as long as it is consistent in every vertex. The upper
and the lower leg are not in any way distinguished from each other, or weighted in a
certain way, other than the arbitrary labeling done by us, so that it should make no
difference in which fermionic line the subgraph appears as long as it is the same
subgraph both times. Consequently, when all contributing amplitudes are summed
up, it suffices to multiply Eq. (2.21) by two.

19



Chapter 2 Textbook Approach

2.5. The Graph with a Vertex Subgraph

Compared to , the second graph contributing to the two-loop photonic amplitude,
namely the graph

Γ =

q q
µ

σ

ν

ρ

lk

q + k q + l

k − l
(2.33)

yields some problems. It has two superficially divergent subgraphs, but these two
subgraphs are not a forest: Neither are they disjoint, nor does any one contain
the other completely. In Section 2.4, one divergent subgraph was nested inside
the other, so the problem could be reduced to nested one-loop problems. Now, the
divergencies are overlapping, which means that we will not be successfull by referring
to one-loop computations alone. A quite helpful formula, the triangle relation, is
derived in Chapter C.
As in Section 2.1, the ansatz to follow when computing the Feynman amplitude
Φ =

∫

dDk dDl I is to assume that the propagator can only be a function of
the momentum of the external line, q, and on the two Lorentz indices of the two
vertices to which external lines are attached, µ and ν. Contraction with gµν yields
this function.

F

(

q2

µ2

)

=
1

3q2
gµνΦ (2.34)

We need to determine gµνΦ in order to find F (q2) and, thus, Φ .
The Feynman rules of QED give the Feynman integrand for Eq. (2.33)

I = −Tr

{

ieγµi
/k

k2
ieγρi

/l

l2
ieγνi

/l + /q

(l + q)2
ieγσi

/k + q

(k + q)2

}

i

(

gρσ − ξ (k−l)ρ(k−l)σ

(k−l)2

)

(k − l)2

= −ie4 Tr
{

γµγαγργβγνγδγσγη
}kαlβ(l + q)δ(k + q)η

k2(k + q)2l2(l + q)2

(

gρσ − ξ (k−l)ρ(k−l)σ

(k−l)2

)

(k − l)2

=:
(

Ig − ξIkl
)

(2.35)

2.5.1. The gµν part

At first, we compute

Ig = −ie4
Tr
{

γµγαγργβγνγδγ
ργη

}

kαlβ(l + q)δ(k + q)η

k2(k + q)2l2(l + q)2(k − l)2
(2.36)

The use of Eq. (2.7) in Eq. (2.36) as well as computing and contracting the trace
with mathematica (cf. Chapter E), and contracting the result with gµν (keeping in
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mind that gµνgµν = D), yields

gµνIg = −
4(2−D)ie4

k2(k + q)2l2(l + q)2(k − l)2
·



(D − 4)

[

q2(k · l) + l2(k · q) + k2
(

(l · q) + l2
)
]

+

+ 4
(

(k · q) + (k · l)
)(

(k · l) + (l · q)
)





:= −4ie4
num

(

gµνIg
)

den
(

gµνIg
)

The numerator is multiplied out and the scalar products are replaced using Eq. (A.4)
or, in the case of k·l, the similar relation Eq. (A.5) which we need in order to produce
(k − l)2 instead of (k + l)2.
The numerator of the result is

num
(

gµνIg
)

= (D − 2)(k − l)2
(

k2 + l2 + (k + q)2 + (l + q)2
)

+

+

(

−
D2

2
+ 3D − 4

)
(

k2(l + q)2 + l2(k + q)2
)

+ (2−D)
[

(k − l)2
]2

+

+ (2−D)
(

l2(l + q)2 + k2(k + q)2
)

+ (2−D)
(

k2l2 + (k + q)2(l + q)2
)

+

+ (D − 2)q2
(

k2 + l2 + (k + q)2 + (l + q)2
)

+
(

1

2
(D − 8)(D − 2)

)

q2(k − l)2+

+ (2−D)(q2)
2

(2.37)

One can easily see that the result is invariant under exchange of k ↔ l and under
simultaneous exchange of k ↔ k+ q and l ↔ l+ q. This is obvious from the labeling
of the graph: It is completely arbitrary which loop momentum runs through which
cycle, and whether the q is carried inside the upper or the lower half circle. Because
of this symmetry, Eq. (2.37) can be simplified since several terms will give the same
results.

num
(

gµνIg
)

= 4(D − 2)(k − l)2(k + q)2 + 2

(

−
D2

2
+ 3D − 4

)

k2(l + q)2+

+ (2−D)
[

(k − l)2
]2

+ 2(2−D)l2(l + q)2 + 2(2−D)(k + q)2(l + q)2+

+ 4(D − 2)q2(k + q)2 +
1

2
(D − 8)(D − 2)q2(k − l)2 + (2−D)(q2)

2

(2.38)

Taking the denominator into account,

den
(

gµνIg
)

= k2(k + q)2l2(l + q)2(k − l)2 , (2.39)

it is obvious that there are several terms in Eq. (2.38) leading to vanishing integrals.
First of all, observe that there are two terms in Eq. (2.39) with k but no l, two terms
with l but no k, and one term mixing the two. A (k − l)2 in the numerator deletes
this mixing term and the integral falls apart into two one-loop integrals. Therefore,
any term in Eq. (2.38) which includes (k − l)2 and one other inverse propagator
makes the integral vanish since there are no higher powers than 1 on any of the
propagators in Eq. (2.39). This is due to the property of the one-loop master inte-
gralM(α, β,D, q2), which vanishes at α = 0 or β = 0. But even the terms without
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(k − l)2 may lead to vanishing integrals if there are more than one term including
k (or l, respectively). Thus, the term l2(l + q)2 in Eq. (2.38) may be omitted. Not
as easily spotted, but equally vanishing are the terms (k+ q)2(l+ q)2, because they
will leave a denominator k2l2(k − l)2, which, after the first integration of, say, l,

yields (k2)
3−D

2 , but no (k + q)2, so the property of M(α, β,D, q2) makes the term
negligible since one of the two exponents is zero, regardless of the value of the other.
The remaining terms are the ones that might give an actual, non-vanishing contri-
bution to the amplitude.
The numerator leads to the following integrand.

num
(

gµνIg
)

=
(

(D − 2)(4−D)k2(l + q)2 + (2−D)
[

(k − l)2
]2

+

+(4D − 8)q2(k + q)2 +
1

2
(D − 8)(D − 2)q2(k − l)2 + (2−D)(q2)

2
)

⇒ gµνIg = −4ie4

(

(D − 2)(4−D)

(k + q)2l2(k − l)2
+

(2−D)(k − l)2

k2(k + q)2l2(l + q)2
+

(4D − 8)q2

k2l2(l + q)2(k − l)2
+

+
1

2

q2(D − 8)(D − 2)

k2(k + q)2l2(l + q)2
+

(q2)
2
(2−D)

k2(k + q)2l2(l + q)2(k − l)2

)

Now of course, the amplitude is computed by the integration over the loop momenta,
in this case l and k. We will write down the integrals, even though they might not
exist (yet). Some of these integrals do diverge, but we will understand the written-
down integral as nothing more than something we have written down. We will think
about the meaning later, namely in Section 2.6. First, let us examine the amplitude
and its poles without thinking about how to get rid of them.

⇒ gµνΦg = −4ie4

(

(D − 2)(4−D)
∫∫

dDl dDk

(k + q)2l2(k − l)2
+

+ (2−D)
∫∫

dDl dDk
(k − l)2

k2(k + q)2l2(l + q)2
+

+ (4D − 8)q2
∫∫

dDl dDk

k2l2(l + q)2(k − l)2
+

+
1

2
(D − 8)(D − 2)q2

∫∫
dDl dDk

k2(k + q)2l2(l + q)2
+

+(2−D)(q2)
2
∫∫

dDl dDk

k2(k + q)2l2(l + q)2(k − l)2

)

(2.40)

=: −4ie4
(

Ig,1 + Ig,2 + Ig,3 + Ig,4 + Ig,5
)

(2.41)

There are five different integrals. Of these, only Ig,5 cannot be solved using one-loop
techniques. Since we are already familiar with the master integral for the one-loop
case, we start with the computation of the first four integrals. Then, for Ig,5 , we
will refer to Chapter C.
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Compute the first contribution to the amplitude:

Ig,1 = (D − 2)(4−D)
∫

dDk

(k + q)2
M(1, 1, D, k2)

= (D − 2)(4−D)Γ̃1,1
D M

(

1, 2−
D

2
, D, q2

)

= (D − 2)(4−D)Γ̃1,1
D Γ̃

1,2−D
2

D (q2)
D−3

Eq. (B.16)⇒ = (q2)
D−3

(D − 2)(4−D)
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
·

1

(3−D)
(

3D
2
− 4

)

Eq. (B.17)⇒ = (q2)
1−2ε

(2− 2ε)(2ε)
(

−
1

4ε
+O(1)

)

= O(1) at ε→ 0

Obviously, the integral itself has a pole, but due to the multiplication with (4−D),
this pole is cancelled and the term is finite. On account of the subtraction at q2 = µ2

which we are going to execute later on, the value of the finite integral is not of our
concern because it will cancel.
Continue with the next integral.

Ig,2 = (2−D)
∫∫

dDl dDk
k2 + l2 − 2(k · l)

k2(k + q)2l2(l + q)2

= −2(2−D)
∫

dDk
kµ

k2(k + q)2

︸ ︷︷ ︸

=− qµ

2
M(1,1,D,q2)

∫

dDl
lµ

l2(l + q)2

︸ ︷︷ ︸

=−
qµ

2
M(1,1,D,q2)

=
D − 2

2
q2M2(1, 1, D, q2)

=
D − 2

2
(q2)

D−3
(

Γ̃1,1
D

)2

Eq. (B.12)⇒ =
D − 2

2
(q2)

D−3 Γ4
(
D
2
− 1

)

Γ2
(

3− D
2

)

Γ2(D − 2)
·

1
(

2− D
2

)2

Eq. (B.13)⇒ = (q2)
1−2ε2− 2ε

2

(
1

ε2
+

4− 2γE
ε

+O(1)
)

= (q2)
1−2ε

(1− ε)
(

1

ε2
+

4− 2γE
ε

+O(1)
)

= (q2)
1−2ε

(
1

ε2
+

1

ε

(

3− 2γE
)

+O(1)
)

(2.42)
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Carry on with Ig,3 :

Ig,3 = (4D − 8)q2
∫

dDl

l2(l + q)2
M(1, 1, D, l2)

= (4D − 8)q2Γ̃1,1
D M

(

1, 3−
D

2
, D, q2

)

= (q2)
D−3

(4D − 8)Γ̃1,1
D Γ̃

1,3−D
2

D

Eq. (B.18)⇒ = (q2)
D−3

(4D − 8)
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
(

2− D
2

) ·
1

(D − 3)

Eq. (B.19)⇒ = (q2)
1−2ε

(8− 8ε)
(

1

2ε2
+

1

ε

(
5

2
− γE

)

+O(1)
)

= (q2)
1−2ε

(
4

ε2
+

1

ε

(

16− 8γE

)

+O(1)
)

(2.43)

The last integral easily solved with one-loop techniques is Ig,4 :

Ig,4 =
1

2
(D − 8)(D − 2)q2M2(1, 1, D, q2)

Eq. (B.12)⇒ =
1

2
(D − 8)(D − 2)(q2)

D−3 Γ4
(
D
2
− 1

)

Γ2
(

3− D
2

)

Γ2(D − 2)
·

1
(

2− D
2

)2

Eq. (B.13)⇒ = (q2)
1−2ε

(−2− ε)(2− 2ε)
(

1

ε2
+

4− 2γE
ε

+O(1)
)

= (q2)
1−2ε

(
−4

ε2
+

1

ε

(

− 14 + 8γE
)

+O(1)
)

(2.44)

For the last integral, Ig,5 , we need to utilize the triangle relation, Eq. (C.12), derived
in Chapter C.

Ig,5 = (2−D)(q2)
2
∫∫

dDl dDk

k2(k + q)2l2(l + q)2(k − l)2

Eq. (C.12)⇒ = (2−D)
2(q2)

2

D − 4

{
∫∫

dDl dDk

k2(k + q)2(l2)2(l + q)2
−
∫∫

dDl dDk

(k + q)2(l2)2(l + q)2(k − l)2

}

24



Chapter 2 Textbook Approach

Solve the integrals separately:

∫∫ dDl dDk

k2(k + q)2(l2)2(l + q)2
=M(1, 1, D, q2) · M(1, 2, D, q2)

= (q2)
D−5

Γ̃1,1
D Γ̃1,2

D

Eq. (B.14)⇒ = (q2)
D−5 Γ4

(
D
2
− 1

)

Γ2
(

3− D
2

)

Γ2(D − 2)
·

1
(

2− D
2

) ·
1

(
D
2
− 2

) · (D − 3)

Eq. (B.15)⇒ = (q2)
−1−2ε

(
−1

ε2
+

1

ε
(−2 + 2γE) +O(1)

)

∫∫
dDl dDk

(k + q)2(l2)2(l + q)2(k − l)2
=
∫

dDl

(l2)2(l + q)2
M
(

1, 1, D, (l + q)2
)

= Γ̃1,1
D M

(

2, 3−
D

2
, D, q2

)

= (q2)
D−5

Γ̃1,1
D Γ̃

2,3−D
2

D

Eq. (B.24)⇒ = (q2)
D−5 Γ3

(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(

2− D
2

)
1

(
D
2
− 2

)

3D
2
− 5

(D − 3)

Eq. (B.25)⇒ = (q2)
−1−2ε

(

−
1

ε2
+

1

ε
(−2 + 2γE) +O(1)

)

⇒ Ig,5 ∝
1

D − 4

(

O(1)
)

Because the factor (D − 4) in the denominator gives another pole once the limit
D → 4 is taken, the actual value of the O(1) term suddenly becomes relevant. So
we need to expand the products of Γ functions in Section B.2.4 and Section B.2.9
to O(ε2), not just to O(ε).

Γ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
= 1 + (3− 2γE)ε+

(

9− 6γE + 2γ2
E −

π2

6

)

ε2 +O(ε3)

⇒
∫∫

dDl dDk

k2(k + q)2(l2)2(l + q)2
= (q2)

−1−2ε
(
−1

ε2
+

1

ε
(−2 + 2γE)+

(

−4 + 4γE − 2γ2
E +

π2

6

)

+O(ε)

)

Γ4 (1− ε) Γ2 (1 + ε)

Γ2(2− 2ε)
= 1 + (4− 2γE)ε+

(

12− 8γE + 2γ2
e −

π2

6

)

ε2 +O(ε3)

⇒
∫∫

dDl dDk

(k + q)2(l2)2(l + q)2(k − l)2
= (q2)

−1−2ε
(

−
1

ε2
+

1

ε
(−2 + 2γE) +

+

(

−4 + 4γE − 2γ2
E +

π2

6

)

+O(ε)

)

⇒ Ig,5 ∝
1

D − 4

(

O(ε)
)

∝ O(1)

Obviously, Ig,5 is finite and therefore, plays no role for the amplitude.

Of the five integrals necessary for Φg , two are finite and only three need regular-
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ization. Insert the results in Eq. (2.41):

gµνΦg = −4ie4
(

Ig,2 + Ig,3 + Ig,4
)

= −4ie4(q2)
1−2ε







(

1

ε2
+

1

ε

(

3− 2γE − 2 ln (π)
)
)

+

(

4

ε2
+

1

ε

(

16− 8γE − 8 ln (π)
)
)

+

(

−4

ε2
+

1

ε

(

− 14 + 8γE + 8 ln (π)
)
)

+O(1)







= −4ie4(q2)
1−2ε







1

ε2
+

1

ε

(

5− 2γE − 2 ln (π)
)

+O(1)






(2.45)

2.5.2. The (k − l)µ(k − l)ν part

Last, but not least, the gauge-dependent part of Φ needs to be computed.

Ikl = −Tr
{

γµγαγργβγνγδγσγη
}kαlβ(l + q)δ(k + q)η

k2(k + q)2l2(l + q)2

(k − l)ρ(k − l)σ

[(k − l)2]2

=: −ie4
num(Ikl )

den(Ikl )

As before, the trace of the eight γ matrices and the contraction with the respective
momenta as well as with gµν is done using mathematica (cf. Chapter E). The result
is

gµνnum(Ikl ) = 4

{

2(D − 2)
(

(k2)
2
l2 + k2(l2)

2
+ k2

[

(l + q)2
]2

+ l2
[

(k + q)2
]2
)

+ 2(2−D)
(

(k2)
2
(l + q)2 + (l2)

2
(k + q)2

)

+

+ 2(2−D)q2
(

k2(l + q)2 + l2(k + q)2
)

+ q2
(

k2 − l2
) (

(k + q)2 − (l + q)2
)

−

−
(

k2l2
[

(l + q)2 + (k + q)2
]

+ (k + q)2(l + q)2
[

k2 + l2
])

+

+ (k − l)2
(

2k2l2 − k2(l + q)2 − l2(k + q)2
)
}

(2.46)

But which of these terms survive the integration? As we know, integrals vanish as
soon as one of the two exponents α or β in M(α, β,D, q2) is zero or a negative
integer. Therefore, if a certain mometum (k or l) appears in only one term in
the denominator of an expression, the integral vanishes. Since (k − l)2 appears
quadratically in the denominator, but not in Eq. (2.46), we will always keep at least
one factor (k− l)2 in the denominator. Therefore, all terms involving k2 and (k+q)2

as well as all terms involving l2 and (l + q)2 yield vanishing integrals because they
will cancel all terms involving these momenta in the denomintator, except (k − l)2,
which is only one factor, but we need two in order forM(α, β,D, q2) not to vanish.
Moreover, some terms may allow a first integration, but vanish during the integration
over the second momentum, as is the case with terms involing (k− l)2, (l+ q)2 and
(k + q)2, and also (k − l)2, l2 and k2. Additionally, the term (k2)

2
l2 vanishes, since
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the integration over l produces a new exponent for the (k + q)2 term, and the (k2)
2

leaves k2 in the denominator with an exponent of −1, which produces a zero due
to the properties of the one-loop master integral. Of course, the same is true for
k2(l2)

2
.

Because of the symmetry of the graph and the arbitrariness of the labeling of the
internal momenta, gµνnum(Ikl ) is invariant under exchange of k ↔ l and under
simultaneous exchange of k ↔ k + q and l ↔ l + q, as discussed in Section 2.5.1.
With these simplifications, Eq. (2.46) can be reduced to

gµνnum(Ikl ) = 4ie4
{

2(D − 2)(k2)
2
(l + q)2 + (2−D)q2k2(l + q)2 + (2−D)k2(l + q)2(k − l)2

}

⇒ gµνΦkl = −4ie4

{

(2D − 4)
∫∫

dDl dDk
k2

(k + q)2l2[(k − l)2]2
+

+ (2−D)q2
∫∫ dDk dDl

(k + q)2l2[(k − l)2]2
+

+(2−D)
∫∫

dDk dDl

(k + q)2l2(k − l)2

}

=: −4ie4
{

Ikl,1 + Ikl,2 + Ikl,3
}

(2.47)

Compute the integrals separately:

Ikl,1 = (2D − 4)
∫ dDk

(k2)−1(k + q)2
M(1, 2, D, k2)

= (2D − 4)Γ̃1,2
D M

(

1, 2−
D

2
, D, q2

)

= (q2)
D−3

(2D − 4)Γ̃1,2
D Γ̃

1,2−D
2

D

Eq. (B.26)⇒ = (q2)
D−3

(2D − 4)
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
·

1
(

3D
2
− 4

)

Eq. (B.27)⇒ = (q2)
1−2ε

(4− 4ε)
(

1

4ε
+O(1)

)

= (q2)
1−2ε

(
1

ε
+O(1)

)

(2.48)

The next integral is computed quite similarly:

Ikl,2 = (2−D)q2
∫ dDk

(k + q)2
M(1, 2, D, k2)

= q2(2−D)Γ̃1,2
D M

(

1, 3−
D

2
, D, q2

)

= (q2)
D−3

(2−D)Γ̃1,2
D Γ̃

1,3−D
2

D

Eq. (B.28)⇒ = (q2)
D−3

(2−D)
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(
D
2
− 2

)

(4−D)

Eq. (B.29)⇒ = (q2)
1−2ε

(−2 + 2ε)
(

−
1

2ε2
+

1

ε

(

−
3

2
+ γE

)

+O(1)
)

= (q2)
1−2ε

(

1

ε2
+

1

ε

(

2− 2γE
)

+O(1)

)

(2.49)
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At last, we are about to finish the computation of integrals.

Ikl,3 = (2−D)
∫

dDk

(k + q)2
M(1, 1, D, k2)

= (2−D)Γ̃1,1
D M

(

1, 2−
D

2
, D, q2

)

= (q2)
D−3

(2−D)Γ̃1,1
D Γ̃

1,2−D
2

D

Eq. (B.16)⇒ = (q2)
D−3

(2−D)
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
·

1

(3−D)
(

3D
2
− 4

)

Eq. (B.17)⇒ = (q2)
1−2ε

(−2 + 2ε)
(

−
1

4ε
+O(1)

)

= (q2)
1−2ε

(
1

2ε
+O(1)

)

(2.50)

Now, using Eq. (2.48), Eq. (2.49), and Eq. (2.50) in Eq. (2.47), we find the solution
for gµνΦ :

gµνΦkl = −4ie4
{

Ikl,1 + Ikl,2 + Ikl,3
}

= −4ie4(q2)
1−2ε







(

1

ε

)

+

(

1

ε2
+

1

ε

(

2− 2γE − 2 ln (π)
)
)

+

(

1

2ε

)

+O(1)







= −4ie4(q2)
1−2ε

(

1

ε2
+

1

ε

(
7

2
− 2γE − 2 ln (π)

)

+O(1)

)

(2.51)

2.6. Renormalization of the two-loop photon

propagator

As the partial results for the amplitude are here, it is now time to combine the
gauge-dependent and gauge-independent parts of the two graphs to get the complete
amplitudes of the respective graphs, and then add the two in the way described in
Section 2.4.3 in order to get the full amplitude of the photon propagator, up to two
loops. Special attention will be paid to the results in the Landau gauge, ξ = 1.

2.6.1. The Amplitudes (unrenormalized)

For the Fermionic Subgraph We have successfully computed the gauge-dependent
and the gauge-independent contributions to the Feynman amplitude of , which
is also the amplitude of .

Eq. (2.21) : gµνΦg = −4ie4(q2)
1−2ε

{

−
1

2ε2
+

1

ε

(

−
7

4
+ γE

)

+O(1)
}

Eq. (2.31) : gµνΦl = −4ie4(q2)
1−2ε

(

−
1

2ε2
+

1

ε

(

−
7

4
+ γE

)

+O(1)
)
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Together with Eq. (2.8) and Eq. (2.2), let us combine the results to produce the
complete amplitude.

Eq. (2.2), Eq. (2.8) ⇒ F (q2) =
1

3q2

(

gµνΦg − ξgµνΦl
)

⇒ F (q2) = −
4

3
ie4(q2)

−2ε



(1− ξ)

(

−
1

2ε2
+

1

ε

(

−
7

4
+ γE

))

+O(1)





(2.52)

Obviously, for ξ = 1 (Landau gauge), not just the double pole in ε, but also the
simple pole in ε, hence the entire (divergent) expression disappears!

F (q2)
∣
∣
∣
∣
ξ=1

= 0 (2.53)

This is obvious once one considers that in the Landau gauge, the graph has an
amplitude which is identical to zero. Therefore, anytime this subgraph is inserted
into a cograph, the contribution vanishes (but only in the Landau gauge, of course).

For the Vertex Subgraph All parts for the amplitude Φ have been computed

Eq. (2.45) : gµνΦg = −4ie4(q2)
1−2ε

(
1

ε2
+

1

ε

(

5− 2γE
)

+O(1)
)

Eq. (2.51) : gµνΦl = −4ie4(q2)
1−2ε

(
1

ε2
+

1

ε

(
7

2
− 2γE

)

+O(1)
)

Next, we can put them all together to obtain the scalar function F (q2) of the entire
amplitude of .

F (q2) =
1

3q2
gµνΦ =

1

3q2

(

gµνΦg − ξgµνΦkl
)

= −
4

3
ie4(q2)

−2ε






(1− ξ)

(
1

ε2
+

1

ε

(

− 2γE
))

+
1

ε

(

5−
7

2
ξ
)

+O(1)







We find a loss of subdivergencies at ξ = 1, as expected!

F (q2)

∣
∣
∣
∣
ξ=1

= −
4

3
ie4(q2)

−2ε

(

3

2ε
+O(1)

)

= −2ie4(q2)
−2ε

(

1

ε
+O(1)

)

2.6.2. The Full Amplitude (renormalized)

In the Landau gauge

In order to control the pole in ε and in order to execute the limit ε → 0, we apply
a single subtraction at some value q2 = µ2 (the reference momentum) to the scalar
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function F (q2) of the amplitude of we computed in the Landau gauge above.

FR

(

q2

µ2

) ∣
∣
∣
∣
ξ=1

:= F (q2)
∣
∣
∣
∣
ξ=1
− F (µ2)

∣
∣
∣
∣
ξ=1

= −2ie4
(

1

ε
+O(1)

) (

(q2)
−2ε
− (µ2)

−2ε
)

= −2ie4
(

1

ε
+O(1)

)(

−2 ln

(

q2

µ2

)

ε+O(ε2)

)

= 4ie4

(

ln

(

q2

µ2

)

+O(ε)

)

ε→0
= 4ie4 ln

(

q2

µ2

)

(2.54)

To get from the second to the third line, the expansion of (q2)
−2ε

for small ε was
used: (q2)

−2ε
= 1− 2 ln (q2)ε+O(ε2).

With this result, we are finally able to write down the two-loop contribution to the
vacuum polarization of quantum electrodynamics in the Landau gauge:

ΦR
2

∣
∣
∣
∣
ξ=1

= 4ie4(q2gµν − qµqν) ln

(

q2

µ2

)

(2.55)

The “4” in Eq. (2.55) is the coefficient of the β function of quantum electrodynamics
to two loops! [8]

In an arbitrary gauge

In the next step, no gauge will be chosen. Instead, the gauge parameter ξ will be
left as it is. In order to regularize, we need the sum of all graphs contributing to
this loop order in the amplitude.

F2(q
2) =

1

3q2
gµνΦ2

=
1

3q2

(

2gµνΦ + gµνΦ
)

= 2F (q2) + F (q2)

= −
4

3
ie4(q2)

−2ε



(1− ξ)

(

−
1

ε2
+

1

ε

(

−
7

2
+ 2γE + 2 ln (π)

))

+

+

(

(1− ξ)
(

1

ε2
+

1

ε

(

− 2γE − 2 ln (π)
))

+
1

ε

(

5−
7

2
ξ
))

+O(1)





= −
4

3
ie4(q2)

−2ε
(

1

ε
+O(1)

)


(1− ξ)
(

−
7

2

)

+ 5−
7

2
ξ





= −
4

3
ie4(q2)

−2ε
(

1

ε
+O(1)

)

·
(

3

2

)

= −2ie4(q2)
−2ε

(
1

ε
+O(1)

)

(2.56)
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In order to get the renormalized amplitude, the often-discussed subtraction at the
reference momenta q2 = µ2 must be carried out one last time.

FR
2

(

q2

µ2

)

= F2(q2)− F2(µ2)

= −2ie4
(

1

ε
+O(1)

) (

(q2)
−2ε
− (µ2)

−2ε
)

= −2ie4
(

1

ε
+O(1)

)((

1− 2 ln (q2)ε+O(ε2)
)

−
(

1− 2 ln (µ2)ε+O(ε2)
))

= −2ie4
(

1

ε
+O(1)

)(

− 2 ln

(

q2

µ2

)

ε+O(ε2)

= 4ie4

(

ln

(

q2

µ2

)

+O(ε)

)

ε→0
= 4ie4 ln

(

q2

µ2

)

⇒ ΦR
2 = 4ie4(q2gµν − qµqν) ln

(

q2

µ2

)

(2.57)

It is clear that the result in the Landau gauge is the same as in an arbitrary gauge.
This is due to the fact that up to two loops, the β function of QED is independent
of the renormalization scheme and therefore also of the chosen gauge. Anyway, the
coefficient of the two-loop β function is 4.
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In this chapter, we will repeat the same computations, but this time using the Corolla
approach, a graph theoretical procedure using a polynomial of half-edges of the scalar
equivalent of the graphs. The key component of this thesis will be the computation
of the two-loop contribution to the β-function of quantum electrodynamics using
not the standard textbook approach, but this graph theoretical approach where one
utilizes three graph polynomials: The first and second Symanzik polynomials and
the Corolla polynomial. These polynomials appear in scalar field theory, but we will
see that it is possible to relate them to gauge theory.

3.1. Combinatorial Properties of Feynmal Graphs

3.1.1. Notation

In order for the use of the corolla polynomial and corolla differentials to be intro-
duced properly, some clarification of notation will be necessary first.
A graph Γ will be perceived as a set of vertices and edges, and each edge connecting
two vertices will be regarded as a set of two half-edges.
Let Γ be a connected graph.

• Denote by V Γ the set of vertices of Γ.

• Denote by EΓ the set of edges of Γ.

– Let EΓ
int be the set of internal edges of Γ.

– Let EΓ
ext be the set of external edges of Γ.

– Then, EΓ
int ∩E

Γ
ext = ∅ and EΓ

int ∪E
Γ
ext = EΓ.

Introduce an orientation on Γ and call s(e) (the source of edge e) the vertex in which
e starts, and call t(e) (the target of edge e) the vertex towards which e is directed.
Of course, s(e), t(e) ∈ V Γ.
Let us not allow for tadpoles (edges which begin and end in the same vertex). As
a consequence, each edge with its orientation can be regarded as an oriented set of
two distinct vertices: s(e) and t(e) cannot be identical. However, more than one
edge can be adjacent to a vertex v. Call n(v) the set of edges adjacent to v ∈ V Γ,
and let its cardinality |n(v)| be the number of edges adjacent to v, called the valence
of v. If all vertices of a graph Γ have the same valence m, |n(v)| = m ∀v ∈ V Γ, then
the graph itself is called m-valent.[1]
Next, half-edges are introduced. Each internal edge will be considered a pair of two
half-edges. To be more precise, a half-edge is a pair of a vertex with its adjacent
edge.

• Denote by HΓ the set of half-edges (v, e), with e ∈ n(v), of Γ.
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• Let cor (v) ≡ ∪e∈n(v)(v, e) be the set of all half-edges incident to vertex v ∈ V Γ,
and call it the corolla at v.

• Let Dv be the sum of all half-edge variables of half-edges in cor (v), v ∈ V Γ.

• Let CΓ be the set of all cycles in Γ. Note that we do not restrict this to
independent cycles (circuits), but all cycles.

• If Γ is 3-regular (all vertices in Γ have valence 3), and if C is a cycle in CΓ,
then there is a unique edge vC of Γ for every vertex of C such that vC is not
in C. The half-edge (v, vC) will be denoted by av,vC .

Example Consider the graph

1

4

3

5

2

6a1

3

2

b
4

5

6

c
9

8

7

The bigger numbers indicate decoration of edges, the smaller numbers represent dec-

oration of half-edges, and the letters indicate decoration of vertices. The arrows

clarify the orientation of the edges. The vertices and edges are:

V = {a, b, c}

E = {e1, e2, e3, e4, e5, e6}

E
ext

= {e1, e2, e3}

E
int

= {e4, e5, e6}

Then, for example, s(e4) = b and t(e4) = a because e4 is oriented from b to a. Take

vertex a:

n(a) = e1, e4, e5 ⇒ |n(a)| = 3

But not just a, all vertices are 3-valent. Therefore, the entire graph is 3-valent.

The half-edges are given by

H =
{

(a, e1), (a, e4), (a, e5), (b, e4), (b, e3), (b, e6), (c, e6), (c, e2), (c, e5)
}

= {h1, h2, h3, h4, h5h6, h7, h8, h9}

⇒ cor (a) = {h1, h2, h3} , cor (b) = {h4, h5, h6} , cor (c) = {h7, h8, h9}

Da = h1 + h2 + h3 , Db = h4 + h5 + h6 , Dc = h7 + h8 + h9
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There is only one loop in the graph, namely that given by the internal edges and the

vertices. Note how the edges e1, e2, and e3 and therefore the half-edges h1, h5, and

h8 are not in the cycle, even though their adjacent vertices are.

C = {a, b, c, e4, e5, e6}

(a, aC) = h1 = aa,e1

(b, bC) = h5 = ab,e3

(c, cC) = h8 = ac,e2

3.1.2. The Symanzik Polynomials

Looking at a graph Γ and using power counting, one can directly obtain the degree
of divergence of the Feynman integral associated with Γ by applying the Feynman
rules. Moreover, in scalar field theories, such as φ3

6 theory or φ4
4 theory, the Feyn-

man integrand IΓ can be acquired just by observing the graph, using the Symanzik
polynomials. The scalar Feynman integrand is of the form

IΓ =

exp

(

−
φΓ

ψΓ

)

ψ
D
2

Γ

, (3.1)

where D denotes the dimension of space time, and ψ and φ denote the first and
second Symanzik polynomials, respectively. These polynomials are of combinatorial
nature and, among other things, dependent on the first Betti number of Γ. One way
to express them is to assign an edge variable Ae to every edge e ∈ EΓ

int and define

ψΓ =
∑

T

∏

e/∈T

Ae (3.2)

φΓ =
∑

T1∪T2

Q(T1)Q(T2)
∏

e/∈T1∩T2

Ae

For the first Symanzik polynomial, ψΓ, the sum is over all spanning trees T of the
graph Γ, meaning v ∈ T ∀ v ∈ Γ[0] and T is simply-connected. For the second
Symanzik polynomial, φΓ, the sum is over all spanning two-forests T1 ∪T2, meaning
T1∩T2 = ∅, v ∈ T1∪T2 ∀v ∈ Γ[0] and Ti is simply-connected, i ∈ {1, 2}. Furthermore,
Q(Ti) denotes the momentum flowing through Ti. Since it is not always obvious or
can be confusing what momenta flow though the Ti, there is an alternative way to
write down the second Symanzik polynomial, using the Pfaffian determinant of a
matrix relating to the graph:

φΓ = |N |Pf (Γ) =
∑

T1∪T2




∑

e/∈T1∪T2

τ(e)ξe





2
∏

e/∈T1∪T2

Ae (3.3)

with τ(e) =







+1 if e is oriented from T1 → T2

−1 if e is oriented from T2 → T1

0 else

Here, the ξi denote the edge momenta of the edge ei und τ(e) refers to the orienta-
tion of e.
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has one loop, therefore its first Symanzik polynomial will be of first degree in
the Ai, and the second Symanzik polynomial on one degree higher, namely second
degree. Since and are 1PI two-loop graphs, their first Symanzik polynomial
φΓ will be of second degree in the Ai and the second Symanzik polynomial φΓ of
third degree. The measure of integration includes all two edge variables Ai for the
one-loop graph and all five edge variables Ai for the two-loop graphs. Recall that
only internal edges get equipped with an edge variable. [2][9]

Example Take the graph from the other example:

1

4

3

5

2

6a1

3

2

c
4

5

6

b
9

8

7

There are three spanning trees and three spanning two-forests: A spanning tree is

two out of the three internal edges, and a spanning two-forest is an internal edge

and the vertex it does not touch.

T ∈
{

, ,
}

=
{

{e5, e6}, {e4, e5}, {e4, e6}
}

T1 ∪ T2 ∈
{

, ,
}

=
{

{a} ∪ {e6}, {b} ∪ {e4}, {c} ∪ {e5}
}

Therefore, the first and second Symanzik polynomials are given by

ψ =
∑

T

∏

e/∈T

Ae

= A4 + A5 + A6

φ =
∑

T1∪T2




∑

e/∈T1∪T2

τ(e)ξ2
e





2
∏

e/∈T1∪T2

Ae = A4 + A5 + A6

= (ξ5 − ξ4)
3A4A5 + (ξ6 − ξ5)

2A5A6 + (ξ4 − ξ6)
2A4A6

Sometimes, not the Symanzik polynomials, but their dual, the Kirchhoff polyno-
mials, are used.
Our goal will be to set the dimension of spacetime D = 4, even though φ3 theory is
renormalizable in D = 6 dimensions. We will use D = 4 here because we are aiming
at quantum electrodynamics, which is renormalizable in D = 4 dimensions.

Unfortunately, the Symanzik polynomials only provide the Feynman integrand for
scalar field theories. An analogous method for gauge theories is not available at this
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point. Finding such an easy rule to obtain the Feynman integrand for gauge theory
graphs, on the other hand, is of high interest, and recent progress will be discussed
in this thesis.

3.1.3. The Corolla Polynomial

It is time to introduce the most important graph polynomial of this thesis, the
corolla polynomial. Remember that for a 3-valent graph, for every vertex in any
cycle, there is a unique half edge which is not part of the cycle. We define

Cn =
∑

C1,...,Cn∈CΓ
Cjpairwise disjoint









n∏

j=1

∏

v∈C

av,vC




∏

v/∈C1∪···∪Cn

Dv





The alternating series

C =
∑

n≥0

(−1)nCn

is called the corolla polynomial. Because every finite graph has a finite number of
cycles, this series is actually a well-defined sum. It is also strictly positive, despite
the alternating sign.[1][2]
For our purposes, only the n = 0 and n = 1 monomials are of interest:

C0 =
∑

v∈V Γ

Dv

C1 =
∑

C∈CΓ





(
∏

v∈C

av,vC

)
∏

v/∈C

Dv





Example Take the graph

Γ =
1

a

2

3

b
4

• The set of edges is given by EΓ = {e1, e2, e3, e4}, where EΓ
ext

= {e1, e4} and

EΓ
int

= {e2, e3}.

• The set of vertices is given by V Γ = {a, b}.

• The set of half-edges is given by HΓ =
{

(a, e1), (a, e2), (a, e3), (b, e3), (b, e2), (b, e4)
}

≡

{h1, h2, h3, h4, h5, h6}. Note that there is the same orientation at each vertex.

• There is only one cycle in this graph, namely C = {(e2, e3)}. For reasons of

shortness, only the edges are used in order to identify the cycle, but neverthe-

less, the vertices a and b are part of the cycle, too.
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With these information given, the first two Corolla monomials are given by

C0
Γ =

∏

v∈{a,b}

Dv = DaDb = (h1 + h2 + h3)(h4 + h5 + h6)

C1
Γ =

∏

v∈{a,b}

av,vC = aa,e1ab,e4 = h1h6

Since there is only one cycle in Γ, there are no more Corolla monomials. The

Corolla polynomial is complete as of CΓ = C0
Γ − C

1
Γ.

The Corolla Differential

In order to get from scalar field theory to gauge theories, the Corolla polynomial
has the very nice property that it can be transformed into a differential operator,
and this differential operator acting on the scalar Feynman integrand creates the
integrand for gauge theory.
C0 creates bosonic self-interactions. It is therefore not used when one wants to create
QED amplitudes, because QED is an abelian gauge theory with no self-interactions
of the photon. However, the gluon of QCD does interact with itself. Hence, C0 will
be used in order to create some of the necessary QCD graphs. C1 will create abelian
properties, such as fermionic lines and photon-fermion-antifermion vertices, and also
ghosts, depending on the differential operator that is being used. Therefore, C1 is
important for both QED and QCD.[2]

The Corolla Differential for Fermionic Lines

In order to create fermions, the Corolla polynomial will be turned into a Corolla
differential by carrying out the following substitution for the half-edge variables h:

h→ Df(h) =




1

Ae(h+)

∂

∂ξe(h+)µ(h+)

γµ(h+)γµ(h) −
1

Ae(h−)

∂

∂ξe(h−)µ(h−)

γµ(h)γµ(h−)





(3.4)

In Eq. (3.4), the notations h+ and h− refer to the ordering on the oriented graph.
In a three-valent vertex v, for any half-edge h adjacent to v, there is one unique
half-edge h− preceding and one unique half-edge h+ succeeding h, relative to the
orientation on the graph and on the vertex. The ξi refer to the edge momenta.
For example, ξe(h+) is the momentum in the edge e(h+), which is the edge of the
half-edge h+ which follows h. [2]

3.2. The One-Loop Graph

3.2.1. The Corolla Differential

Now that it comes down to an actual computation, we need a decorated graph. We
use the same labeling as in the example above, but also denote the half-edges by
smaller numbers.
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Γ =
1

a
1

2

3

2

3

b
6

5

4

4

In order to transform a scalar graph into a gauge theory graph, one must rewrite
the Corolla polynomial using the Corolla differentials, as indicated in Eq. (3.4).
In this case, where we regard the photon propagator with one fermion loop, this
is quantum electrodynamics, an abelian gauge theory; hence one uses the Corolla
monomial of degree one. It is given by

C1 =
∏

v∈C

av,vC = h1h6

In order to create fermions, the substitution discussed in Eq. (3.4) for the half-edge
variables h must be carried out.

Df(h1) =
1

A2

∂

∂ξ2µ2

γµ2γµ1 −
1

A3

∂

∂ξ3µ3

γµ1γµ3

Df(h6) =
1

A3

∂

∂ξ3µ3

γµ3γµ4 −
1

A2

∂

∂ξ2µ2

γµ4γµ2

The result for the Corolla differential of degree one is

C1
(

h→ Df(h)
)

=

(

1

A2

∂

∂ξ2µ2

γµ2γµ1 −
1

A3

∂

∂ξ3µ3

γµ1γµ3

)

·

(

1

A3

∂

∂ξ3µ3

γµ3γµ4 −
1

A2

∂

∂ξ2µ2

γµ4γµ2

)

=
1

A2A3

(

∂2

∂ξ2µ2
∂ξ3µ3

Tr γµ2γµ1γµ3γµ4 +
∂2

∂ξ3µ3
∂ξ2µ2

Tr γµ1γµ3γµ4γµ2

)

+ nonlinear terms

=
1

A2A3

Tr (γµ1γµ3γµ4γµ2)

(

∂2

∂ξ2µ2
∂ξ3µ3

+
∂2

∂ξ3µ3
∂ξ2µ2

)

(3.5)

=
4 (gµ1µ3gµ4µ2 − gµ1µ4gµ3µ2 + gµ1µ2gµ3µ4)

A2A3

(

∂2

∂ξ2µ2
∂ξ3µ3

+
∂2

∂ξ3µ3
∂ξ2µ2

)

In the second line of Eq. (3.5), we simply wrote down “nonlinear terms” for all terms
with an A2

i in the denominator because these terms are neglected and do not have
to be given explicitely. In the third line, we have used cyclicity of the trace, and in
the forth line the trace identity in four dimensions for the trace of four γ matrices
(cf. Eq. (A.2)).

3.2.2. The Scalar Integrand

The scalar integrad of the one-loop propagator in φ3
6 theory is formally given by

Eq. (3.1).
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The First Symanzik Polynomial The first Symanzik polynomial requires the sum
over all trees of the graph. A tree is a set of edges that is simply-connected and
touches all vertices of the graph. In the case of , the internal edge e2 is one tree
and the internal edge e3 is another one. There are no more trees.

T ∈
{

,
}

=
{

{e2}, {e3}
}

Therefore, using Eq. (3.2), the first Symanzik polynomial of is given by

ψ = A2 + A3

The Second Symanzik Polynomial We use the definition of the second Symanzik
polynomial given by Eq. (3.3), the Pfaffian determinant, defined as follows:

Eq. (3.3) ⇒ |N |Pf =
∑

T1∪T2




∑

e/∈T1∪T2

τ(e)ξe





2
∏

e/∈T1∪T2

Ae

Recall that τ(e) is +1 if e is oriented from T1 to T2, −1 if it is oriented from T2 to
T1, and 0 otherwise. There is only one two-forest, namely the disjoint set of only
the two vertices.

T1 ∪ T2 =
{ }

=
{

{a} ∪ {b}
}

We have decided to declare T1 to be vertex a and T2 to be vertex b. Thus, e2 is
oriented from T1 to T2 and e3 is oriented from T2 to T1. The assignment of T1 and
T2 as well as the orientation of the edges is arbitrary.

|N |Pf =
(

τ(2)ξ2 + τ(3)ξ3

)2
A2A3 = (ξ2 − ξ3)

2 A2A3

The scalar integrand is given by[2]

I =
1

2

exp

(

−
(ξ2 − ξ3)

2A2A3

A2 + A3

)

(A2 + A3)2
(3.6)

3.2.3. From the Scalar to the Abelian Gauge Amplitude

Applying the Corolla differential Eq. (3.5) to the scalar integrand Eq. (3.6) will
produce the integrand for the gauge amplitude.

IQED =
Tr (γµ1γµ3γµ4γµ2)

2A2A3

(

∂2

∂ξ2µ2
∂ξ3µ3

+
∂2

∂ξ3µ3
∂ξ2µ2

) exp

(

−
(ξ2 − ξ3)

2A2A3

A2 + A3

)

(A2 + A3)2

=
Tr (γµ1γµ3γµ4γµ2)

A2A3(A2 + A3)2

(

∂2

∂ξ2µ2
∂ξ3µ3

)

exp

(

−
(ξ2 − ξ3)

2A2A3

A2 + A3

)

=
Tr (γµ1γµ3γµ4γµ2)

A2A3(A2 + A3)2

(

∂

∂ξ2µ2

)

+ 2(ξ2 − ξ3)
µ3

A2A3

A2 + A3
exp

(

−
(ξ2 − ξ3)

2A2A3

A2 + A3

)



= 2 Tr (γµ1γµ3γµ4γµ2)

(

gµ2µ3

(A2 + A3)3
exp

(

−
q2A2A3

A2 + A3

)

− 2qµ3qµ2
A2A3

(A2 + A3)4
exp

(

−
q2A2A3

A2 + A3

))

(3.7)
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In the last line, we have replaced ξ2 − ξ3 by q in order to prevent the term from
getting too lengthy. The next step would be to contract the trace with the terms on
its right, but first, let us inspect the scaling behaviour of the two terms, considering
that integration over dA2 dA3 is intended.
The scaling behaviour of the integrand will tell us a lot about possible divergencies.
Let us rescale the Ai by a factor λ, so we replace Ai → λAi and dAi → λ dAi and
see what happens:

gµ2µ3

(A2 + A3)3
exp

(

−
q2A2A3

A2 + A3

)

dA1 dA2 →
gµ2µ3

λ3(A2 + A3)3
exp

(

−
q2λ2A2A3

λ(A2 + A3)

)

λ2 dA1 dA2

∼
1

λ
(3.8)

qµ3qµ2
A2A3

(A2 + A3)4
exp

(

−
q2A2A3

A2 + A3

)

→ qµ3qµ2
λ2A2A3

λ4(A2 + A3)4
exp

(

−
q2λ2A2A3

λ(A2 + A3)

)

λ2 dA1 dA2

∼ 1 (3.9)

As we see, the metric tensor term scales like 1
λ
, whereas the four-momenta term

is scale invariant. The scaling invariance shows that the four-momenta term is
logarithmically divergent. The metric tensor term, however, does not scale as nicely.
The 1

λ
behaviour points towards quadratic divergence. This could be a problem for

the integration, so let us try to rewrite the term.

Gµ2µ3 := gµ2µ3

∫∫

R
2
+

e
−q2 A2A3

A2+A4

(A2 + A3)3
dA2 dA3 (3.10)

We substitute A2 = a2A3, dA2 = A3 da2. The integral of the metric tensor term
then yields:

Gµ2µ3 = gµ2µ3

∫∫

R
2
+

e
−q2 a2A3

1+a2

A2
3(1 + a2)3

da2 dA3

Next, partially integrate with respect to A3:

Gµ2µ3 = gµ2µ3







−
∫ ∞

0
da2

e
−q2 a2A3

1+a2

A3(1 + a2)3

∣
∣
∣
∣
∣

∞

A3=0

− q2
∫∫

R
2
+

a2

A3(1 + a2)4
e

−q2 a2A3
1+a2 da2 dA3







The first term vanishes due to renormalization conditions, so only the second term
remains. Now, we resubstitute.

Gµ2µ3 = −q2gµ2µ3

∫∫

R
2
+

A2A3

(A2 + A3)4
e

−q2 A2A3
A2+A3 dA2 dA3

This integrand has a similar structure as the four-momenta term in Eq. (3.7). Put
the two terms back together:

ΦQED = −2 Tr (γµ1γµ3γµ4γµ2)
(

q2gµ2µ3 + 2qµ2qµ3

) ∫∫

R
2
+

A2A3

(A2 + A3)4
exp

(

−q2 A2A3

A2 + A3

)

dA2 dA3
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The next step is to compute the contraction of the trace with the factor (q2gµ2µ3 + 2qµ2qµ3).
As above, the trace of four γ matrices is given in Eq. (A.2). The result of the con-
traction is:

ΦQED = −8(q2gµ1µ4 − qµ1qµ4)
∫∫

R
2
+

A2A3

(A2 + A3)4
e

−q2 A2A3
A+2+A3 dA2 dA3

As expected, we see that the result is transversal.
It is finally time to integrate over the Feynman parameters A2 and A3. In order to
do that, a substitution is carried out:

A2 → a2t

A3 → a3t

dA2 dA3 → t dt dΩ2(a2, a3)

The integral over dΩ2(a2, a3) is over the projective space P2 and t is integrated
from c to ∞. In fact, t should actually be integrated from 0 to ∞, but the integral
diverges at the lower boundary, so it is replaced by a small c and the limit c→ 0 is
to be taken after a regularization has taken place.

IQED = −8(q2gµ1µ4 − qµ1qµ4)
∫

P2

dΩ2(a2, a3)
a2a3

(a2 + a3)4

∞∫

c

dt
e

−tq2 a2a3
a2+a3

t

As stated above, the integration over t diverges as the lower limit approaches zero.
For non-zero c, this integral is known as the (negative of the) exponential integral,
−Ei(c). Let us look at its expansion for small c:

−

∞∫

c

dt t−1e
−tq2 a2a3

a2+a3 = γE + ln (c) + ln
(

q2 a2a3

a2 + a3

)

+O(c) (3.11)

The first term is the Euler-Mascheroni-constant, γE. It is independent of c or the
momentum, q2. The second term, the logarithm of c, is the diverging actor in this
expression. However, it is independent of q2 or any other observable! Therefore, a
simple subtraction at some momentum q2 = µ2 would get rid of the divergence and
render the integral finite. After taking the limit c → 0, only the third term would
survive, in the form of − ln

(
q2

µ2

)

.
The regularized integral then is:

IQED

reg
= 8(q2gµ1µ4 − qµ1qµ4) ln

(

q2

µ2

)
∫

P2

dΩ2(a2, a3)
a2a3

(a2 + a3)4

dΩ2(a2, a3) can be written as a2 da3 − a3 da2. The projective space, over which we
integrate, is scaling invariant, so it is possible to set one of the integration variables
to a constant and then integrate the other from 0 to ∞. Let us set a2 = 1 and
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therefore da2 = 0 and integrate partially with respect to a3.

IQED

reg
= 8(q2gµ1µ4 − qµ1qµ4) ln

(

q2

µ2

) ∞∫

0

da3
a3

(1 + a3)4

= 8(q2gµ1µ4 − qµ1qµ4) ln

(

q2

µ2

)





−

1

3

a3

(1 + a3)3

∣
∣
∣
∣
∣

∞

0
︸ ︷︷ ︸

=0

+
1

3

∞∫

0

da3

(1 + a3)3

︸ ︷︷ ︸

= 1
6







=
4

3
(q2gµ1µ4 − qµ1qµ4) ln

(

q2

µ2

)

(3.12)

The factor 4
3

is the coefficient of the one-loop β function.

3.3. The Two-Loop Graphs: From Graph Theory to

the Integrand

Before we get into the details of the graphs and , we will work out graph
theoretical properties in order to investigate the integrand and the associated am-
plitude.

The Scalar Integrand The Feynman integrand IΓ of a scalar graph Γ in D dimen-
sions is given through the first and second Symanzik polynomials. In contrast to
our notation above, we will also include the measure of integration as part of the
integrand.

IΓ =

exp

(

−
φΓ

ψΓ

)

ψΓ

D
2

∧

i

dAi (3.13)

The QED Integrand Now comes the interesting part! We will make the trans-
formation from the scalar integrand to the abelian gauge integrand by applying
derivatives on IΓ with repect to the momenta ξi of the internal edges ei. The spe-
cific form of the derivatives is given by the corolla polynomial.
The integrand of quantum electrodynamics for the graphs and (with the
respective ψΓ and φΓ) is obtained by

IQED
Γ =

1

A1

∂

∂ξ1µ1

1

A2

∂

∂ξ2µ2

1

A3

∂

∂ξ3µ3

1

A4

∂

∂ξ4µ4

IΓ Tr (γµaγµ2γµdγµ3γµcγµ4γµbγµ1)
︸ ︷︷ ︸

=:TrΓ

∧

i

dAi

=
1

A1A2A3A4

∂4

∂ξ1µ1
∂ξ2µ2

∂ξ3µ3
∂ξ4µ4

IΓ TrΓ

∧

i

dAi

=:
∂1234IΓ

A1A2A3A4
TrΓ

∧

i

dAi (3.14)

The trace will be dealt with separately. For now, let us investigate the four-fold
derivative. In slight abuse of notation, call Eq. (3.14) with the trace left-out IQED

Γ

as well.
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There are three types of expressions emerging from it. Introduce the following
notation (the first of which has already been used in Eq. (3.14)):

∂1234 :=
∂4

∂ξ1µ1
∂ξ2µ2

∂ξ3µ3
∂ξ4µ4

φΓ
i :=

∂φΓ

∂ξiµi

φΓ
ij :=

∂φΓ
i

∂ξjµj

Use this in order to compute the derivative needed for Eq. (3.14):

∂4IΓ = −
φΓ

4

ψ3
Γ

exp

(

−
φΓ

ψΓ

)

dA1 ∧ · · · ∧ dA5

∂34IΓ =

{

−
φΓ

34

ψ3
Γ

+
φΓ

3φ
Γ
4

ψ4
Γ

}

exp

(

−
φΓ

ψΓ

)

dA1 ∧ · · · ∧ dA5

∂234IΓ =

{

φΓ
2φ

Γ
34φ

Γ
2φ

Γ
23 + φΓ

3φ
Γ
24

ψ4
Γ

−
φΓ

2φ
Γ
3φ

Γ
4

ψ5
Γ

}

exp

(

−
φΓ

ψΓ

)

dA1 ∧ · · · ∧ dA5

∂1234IΓ =

{

φΓ
12φ

Γ
34 + φΓ

23φ
Γ
14 + φΓ

13φ
Γ
24

ψ4
Γ

−

−
φΓ

1φ
Γ
2φ

Γ
34 + φΓ

1φ
Γ
3φ

Γ
24 + φΓ

1φ
Γ
4φ

Γ
23 + φΓ

2φ
Γ
3φ

Γ
14 + φΓ

2φ
Γ
4φ

Γ
13 + φΓ

3φ
Γ
4φ

Γ
12

ψ5
Γ

+

+
φΓ

1φ
Γ
2φ

Γ
3φ

Γ
4

ψ6
Γ

}

exp

(

−
φΓ

ψΓ

)

dA1 ∧ · · · ∧ dA5 (3.15)

=: ĨΓ1 + ĨΓ2 + ĨΓ3

The three terms have different degrees of divergence. Firstly, the degrees of diver-
gence will be determined. This is independent of the choice which one of the two
graphs is considered. Secondly, the φΓ

i and φΓ
ij will be computed explicitely in order

to see which ones vanish. Of course, the results are different for the two graphs and
will we dealt with in the repective sections.

Degrees of Divergence

In order to determine the degrees of divergence in Eq. (3.14), we investigate the
scaling behaviour of the three different terms found in Eq. (3.15). We will substutite
A1 = t and Ai = t · ai for the Ai for which i 6= 1. The degree of divergence will be
visible in the power of t. Keep in mind that ψΓ is a second-degree polynomial in the
Ai and φΓ is a third-degree polynomial.

ψΓ → t2 (a2a4 + a3 + a2a3 + a4 + a3a5 + a2a5 + a5 + a4a5) =: t2 · ψ̄Γ

φΓ → t3
(

q2
1a2a4a5 + q2

2a3a5

)

=: t3 · φ̄Γ

dA1 ∧ · · · ∧ dA5 → t4 dt ∧ da2 ∧ · · · ∧ da5 (3.16)

The last line is not obvious at first. Keep in mind that the wedge product is an-
tisymmetric, so dt ∧ dt = 0. Therefore, when the measures of integration for the
Ai, i 6= 1, are substituted to give t dai + ai dt, all dts can be dropped since every
term is multiplied with dA1 = dt. The only surviving terms come from the four
t dai, i ∈ {2, 3, 4, 5}, hence the factor t4.
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The Quadratically Divergent Part Using the substitutions from above, the first
part of Eq. (3.15) becomes (neglecting the trace as we agreed to do)

IΓ1 :=
ĨΓ1

A1A2A3A4

→
t6
(

φ̄Γ
12φ̄

Γ
34 + φ̄Γ

23φ̄
Γ
14 + φ̄Γ

13φ̄
Γ
24

)

t4a1a2a3a4 · t8
(

ψ̄4
Γ

) exp

(

−t
φ̄Γ

ψ̄Γ

)

t4 dt ∧ da2 ∧ · · · ∧ da5

=
1

t2
·
φ̄Γ

12φ̄
Γ
34 + φ̄Γ

23φ̄
Γ
14 + φ̄Γ

13φ̄
Γ
24

a1a2a3a4ψ̄
4
Γ

exp

(

−t
φ̄Γ

ψ̄Γ

)

dt ∧ da2 ∧ · · · ∧ da5

The power −2 of the t determines that IΓ1 is quadratically divergent. Still, only
the t−2 and the exponential function depend on the integration variable t. The
integral from 0 to ∞ diverges at the lower boundary. However, by replacing the
lower boundary by some small number c and writing down the limit c→∞, we can
easily perform partial integration with respect to t:

lim
c→0

∞∫

c

exp
(

−t φ̄Γ

ψ̄Γ

)

t2
dt = boundary terms−

φ̄Γ

ψ̄Γ

lim
c→0

∞∫

c

exp
(

−t φ̄Γ

ψ̄Γ

)

t
dt

The boundary terms vanish due to renormalization conditions. It is true that the

integral limc→0

∞∫

c

exp

(

−t
φ̄Γ
ψ̄Γ

)

t
dt still diverges, but only logarithmically. It has an

expansion for small c (cf. Eq. (3.11)):

lim
c→0

∞∫

c

exp
(

−t φ̄Γ

ψ̄Γ

)

t
dt = −γE − ln (c)− ln

(

φ̄Γ

ψ̄Γ

)

+O(c) (3.17)

The pole in c does not depend on any measurable quantity. Therefore, a single
subtration at q2 = µ2 renders Eq. (3.17) finite, if q is the external momentum of the
graph and µ is some reference momentum. It can also be shown that

ln

(

φ̄Γ

ψ̄Γ

)

− ln

(

φ̄Γ

ψ̄Γ

)∣
∣
∣
∣
q2=µ2

= ln

(

q2

µ2

)

+ const.

and thus

lim
c→0






∞∫

c

exp
(

−t φ̄Γ

ψ̄Γ

)

t
dt−

∞∫

c

exp
(

−t φ̄Γ

ψ̄Γ

)

t
dt

∣
∣
∣
∣
∣
∣
q2=µ2




 = − ln

(

q2

µ2

)

(3.18)

⇒ lim
c→0

∞∫

c

exp
(

−t φ̄Γ

ψ̄Γ

)

t2
dt =

φ̄Γ

ψ̄Γ

ln

(

q2

µ2

)

To summarize, the quadratically divergent IΓ1 can be transformed into a vanishing
boundary term and a logarithmically divergent part which can be rendered finite us-
ing a single subtraction at a reference momentum q2 = µ2. The remaining integrand
is

IΓ
∗
1 = ln

(

q2

µ2

)

φ̄Γ

ψ̄Γ

φ̄Γ
12φ̄

Γ
34 + φ̄Γ

23φ̄
Γ
14 + φ̄Γ

13φ̄
Γ
24

a1a2a3a4ψ̄
4
Γ

da2 ∧ · · · ∧ da5

The asterisk indicates that the subtraction at q2 = µ2 has been carried out.

45



Chapter 3 Corolla Approach

The Logarithmically Divergent Part Carrying out the substitution indicated
above in Eq. (3.16) results in

IΓ2 :=
ĨΓ2

A1A2A3A4

→ −
t9
(

φ̄Γ
1 φ̄

Γ
2 φ̄

Γ
34 + · · ·+ φ̄Γ

3 φ̄
Γ
4 φ̄

Γ
12

)

t4a1a2a3a4 · t10
(

ψ̄5
Γ

) exp

(

−t
φ̄Γ

ψ̄Γ

)

t4 dt ∧ da2 ∧ · · · ∧ da5

= −
1

t
·
φ̄Γ

1 φ̄
Γ
2 φ̄

Γ
34 + · · ·+ φ̄Γ

3 φ̄
Γ
4 φ̄

Γ
12

a1a2a3a4ψ̄5
Γ

exp

(

−t
φ̄Γ

ψ̄Γ

)

dt ∧ da2 ∧ · · · ∧ da5

= −
exp

(

−t φ̄Γ

ψ̄Γ

)

t
dt ∧

φ̄Γ
1 φ̄

Γ
2 φ̄

Γ
34 + · · ·+ φ̄Γ

3 φ̄
Γ
4 φ̄

Γ
12

a1a2a3a4ψ̄
5
Γ

da2 ∧ · · · ∧ da5

As shown in Eq. (3.18) in the previous paragraph, this logarithmically divergent
t-integration yields a logarithm once a single subtration at a reference momentum
q2 = µ2 is taken.

⇒ IΓ
∗
2 = ln

(

q2

µ2

)

φ̄Γ
1 φ̄

Γ
2 φ̄

Γ
34 + · · ·+ φ̄Γ

3 φ̄
Γ
4 φ̄

Γ
12

a1a2a3a4ψ̄
5
Γ

da2 ∧ · · · ∧ da5

The Convergent Part The last piece of Eq. (3.14) substitutes to

IΓ3 :=
ĨΓ3

A1A2A3A4

→
t12φ̄Γ

1 φ̄
Γ
2 φ̄

Γ
3 φ̄

Γ
4

t4a1a2a3a4 · t12
(

ψ̄6
Γ

) exp

(

−t
φ̄Γ

ψ̄Γ

)

t4 dt ∧ da2 ∧ · · · ∧ da5

=
φ̄Γ

1 φ̄
Γ
2 φ̄

Γ
3 φ̄

Γ
4

a1a2a3a4ψ̄6
Γ

exp

(

−t
φ̄Γ

ψ̄Γ

)

dt ∧ da2 ∧ · · · ∧ da5

There is no power of t here, the t-integration only affects the exponential term. The
term is convergent! Therefore, it does not depend on external momenta or other
observables, and will cancel once a substitution is used for regularization. IΓ3 can
be omitted!

3.4. The Two-Loop Graph with Vertex Subgraph

As we have seen in Section 3.3, we definitely need the first and second Symanzik
polynomials. Let us write them down. In order to do that, use the following deco-
ration of lines:

e4

b
e1

a

e2

d

e3

ce5

(3.19)

Remember that through each internal line ei, there is a momentum ξi running in
the direction indicated by the arrows. This is a scalar graph (without charges), so
the arrows do not indicate charge flow.
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3.4.1. The Spanning Trees and Spanning Two-Forests

As defined above in Section 3.1.2, a spanning tree T of a graph Γ is a set of vertices
and edges from Γ such that V Γ = V T and T is simply-connected (without loops).

has eight spanning trees.

T ∈
{

, , , , , , ,
}

Since all vertices in V are in V T , we simplify notation by only giving the edges
in the spanning tree, even though spanning trees are technically sets of vertices and
edges.

T ∈
{

{e1, e3, e5}, {e2, e4, e5}, {e1, e4, e5}, {e2, e3, e5}, {e1, e2, e4}, {e1, e3, e4}, {e2, e3, e4}, {e1, e2, e3}
}

Similar to a spanning tree, which is a simply-connected set of edges on a graph
which touches all vertices, a spanning two-forest T1 ∪ T2 of a graph Γ is a disjoint
set of two simply-connected sets T1 and T2 of edges of Γ such that the union T1 ∪T2

touches all vertices. Again, the vertices are technically also part of the spanning
two-forest, but are not explicitely stated here since they are obviously given by the
edges in T1 and T2.

has two spanning two-forests.

T1 ∪ T2 ∈
{

,
}

=
{

{e1} ∪ {e3}, {e2} ∪ {e4}
}

3.4.2. The First and Second Symanzik Polynomial

To obtain the first Symanzik polynomial ψΓ of a graph Γ, equip every internal edge
ei with an edge variable Ai. ψΓ is given by the sum over all spanning trees T of Γ
where all edge variables Ai which are not in T are multiplied.

ψΓ =
∑

T

∏

e/∈T

Ae

⇒ ψ = A2A4 + A1A3 + A2A3 + A1A4 + A3A5 + A2A5 + A1A5 + A4A5

The second Symanzik polynomial φΓ of a graph Γ has various definitions (cf. Section
3.1.2). Here, we will be using the definition as a Pfaffian determinant. It is a sum
over all spanning two-forests, where the edge momenta ξi (with their orientations on
the graph) which are not in the two-forest are added, squared and multiplied with
the edge variables Ai of the edges not in the two-forest.

φΓ = |N |Pf (Γ) =
∑

T1∪T2




∑

e/∈T1∪T2

τ(e)ξe





2
∏

e/∈T1∪T2

Ae

with τ(e) =







+1 if e is oriented from T1 → T2

−1 if e is oriented from T2 → T1

0 else

⇒ φ = (ξ2 − ξ4 + ξ5)2 A2A4A5 + (−ξ1 + ξ3 − ξ5)
2 A1A3A5

=: q2
1A2A4A5 + q2

2A1A3A5

We have renamed the linear combinations of internal momenta in order to avoid
unnecessarily long expressions.
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3.4.3. The Derivatives

In Section 3.3, we have introduced φΓ
i and φΓ

ij as first and second derivatives of
the second Symanzik polynomial φΓ with repect to internal momenta ξiµi and ξjµj ,

respectively. It is time to compute these derivatives explicitely.

φ = q2
1A2A4A5 + q2

2A1A3A5

⇒ φ1 = −2q2
µ1A1A3A5

φ2 = 2q1
µ2A2A4A5

φ3 = 2q2
µ3A1A3A5

φ4 = −2q1
µ4A2A4A5

⇒ φ13 = −2gµ1µ3A1A3A5

φ24 = −2gµ2µ4A2A4A5

φ12 = φ14 = φ23 = φ34 = 0

In the last line, we see that four of the double derivatives vanish! That will shorten
the terms in Eq. (3.15) immensely. In fact, the quadratically and logarithmically
divergent parts of the integrand are now

I
1

= 4gµ1µ3gµ2µ4

exp
(

−
φ

ψ

)

ψ4
A2

5 dA1 ∧ · · · ∧ dA5

I ∗
1

= 4 ln

(

q2

µ2

)

gµ1µ3gµ2µ4a2
5

φ̄

ψ̄5
da2 ∧ · · · ∧ da5 (3.20)

I
2

= −8
qµ1

2 qµ3
2 gµ2µ4A1A3A

3
5 + qµ2

1 qµ4
2 gµ1µ3A2A4A

3
5

ψ

exp
(

−
φ

ψ

)

ψ5
dA1 ∧ · · · ∧ dA5

I ∗
2

= 8 ln

(

q2

µ2

)

qµ1
2 qµ3

2 gµ2µ4a3 + qµ2
1 qµ4

2 gµ1µ3a2a4

ψ̄5
da2 ∧ · · · ∧ da5 (3.21)

3.4.4. Re-Homogenization of the Polynomials

In Eq. (3.20) and Eq. (3.21), there are polynomials in the new edge variables ai
(remember that we substituted A1 = t and Ai = t · ai ∀i 6= 1), but the monomials
are not all of the same degree anymore, since the t integration (the A1 integration)
has already been performed. Particularly, the Symanzik polynomials in the new
edge variables, ψ̄ and φ̄ , are not homogeneous anymore. This is unfortunate,
since some nice properties can be seen in the first Symanzik polynomial if it is
written down in a homogeneous form. In order to “re-homogenize” the expressions
Eq. (3.20) and Eq. (3.21), we re-substitute:

ai →
Ai
A1

∀i ∈ {2, 3, 4, 5} (3.22)

dai →
dAi
A1
−
Ai dA1

A2
1

=
1

A2
1

(

A1 dAi −Ai dA1

)
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Then the substituted first and seconds Symanzik polynomials are resubstituted:

ψ̄ = a3 + a4 + a5 + a2a3 + a2a4 + a2a5 + a3a5 + a4a5

→
A3 + A4 + A5

A1
+
A2A3 + A2A4 + A2A5 + A3A5 + A4A5

A2
1

=
1

A2
1

(

A1A3 + A1A4 + A1A5 + A2A3 + A2A4 + A2A5 + A3A5 + A4A5

)

=
ψ

A2
1

(3.23)

φ̄ = −q2
1a2a4a5 + q2

2a3a5

→ −q2
1

A2A4A5

A3
1

+ q2
2

A3A5

A2
1

=
1

A3
1

(

q2
1A2A4A5 + q2

2A1A3A5

)

=
φ

A3
1

(3.24)

Of course, the ψ and φ in these expressions are the original first and second
Symanzik polynomials. This is obvious because the resubstitution (where ψ was

replaced with t2ψ̄ ≡ A2
1ψ̄ and φ with t3φ = A3

1φ ) has just been
reversed by setting ai → AiA

−1
1 . Still, it is important for the resubstitution of the

entire expressions Eq. (3.20) and Eq. (3.21).
The measure of integration also needs to be resubstituted as indicated above. We
find that

da2 ∧ · · · ∧ da5 =
1

A8
1

(

A1 dA2 − A2 dA1

)

∧ · · · ∧
(

A1 dA5 −A5 dA1

)

(3.25)

Since the wedge product is antisymmetric, dx∧ dy = − dy ∧ dx and dx ∧ dx = 0,
the wedges can be multiplied out and the vanishing terms can be omitted. The
result is

(

A1 dA2 −A2 dA1

)

∧ · · · ∧
(

A1 dA5 − A5 dA1

)

=

= A3
1

(

A1 dA2 dA3 dA4 dA5 −A2 dA1 dA3 dA4 dA5 + A3 dA1 dA2 dA4 dA5−

A4 dA1 dA2 dA3 dA5 + A5 dA1 dA2 dA3 dA4

)

=: A3
1 dΩ5 (3.26)

Using Eq. (3.22), Eq. (3.23), Eq. (3.24), and Eq. (3.26), the quadratically and loga-
rithmically divergent parts of the Feynman integrand for the graph Γ = are

I ∗
1

= 4 ln

(

q2

µ2

)

gµ1µ3gµ2µ4
φ

ψ5
A2

5 dΩ5 (3.27)

I ∗
2

= 8 ln

(

φ

ψ

)

qµ1
2 qµ3

2 gµ2µ4A1A3 + qµ2
1 qµ4

1 gµ1µ3A2A4

ψ5
A3

5 dΩ5 (3.28)

49



Chapter 3 Corolla Approach

3.4.5. The Subgraph Structure

It is worthwile to examine the subgraph structure of the graph Γ = . As we
know, its reduced coproduct is not zero, but shows the sub- and co-graph structure.

∆′
(

2 3

41
5

)

=
1

2
5 ⊗

3

4
+

4

3
5 ⊗

1

2
(3.29)

Since the lines are decorated, the two terms are actually different. Of course, for
undecorated graphs, we would get

∆′
( )

= 2 ⊗

If the first Symanzik polynomial is correct, then the sub- and co-graph structure
from Eq. (3.29) should be visible in ψ . More precisely, if the one-loop subgraph
in the left vertex should shrink to zero, that is if the edges e1, e2, and e5 have zero
length, then the first Symanzik polynomial should factorize into the two Symanzik
polynomials of the sub- and cograph and some other term of a higher order in the
shrinking quantity. To show this, substitute

Ai → xlai ∀ i ∈ {1, 2, 5}

in the first Symanzik polynomial:

ψ → xl
(

a1A3 + a1A4 + a2A3 + a2A4 + A3a5 + A4a5

)

+ x2
l

(

a1a5 + a2a5

)

= xl
(

a1 + a2 + a3

)(

A3 + A4

)

+ x2
l (a1 + a2)a5

This is equal to the product of the Symanzik polynomials of the sub- and co-graph
plus a term of higher order in xl, because

ψ
(

3

4
)

= A3 + A4

ψ




1

2
5



 = A1 + A2 + A5

⇒ ψ = xl ψ ψ +O
(

x2
l

)

The same is true for the subdivergence in the right vertex:

Ai → xrai ∀ i ∈ {3, 4, 5}

⇒ ψ → xr
(

A1a3 + A1a4 + A1a5 + A2a3 + A2a4 + A2a5

)

+ x2
r

(

a3a5 + a4a5

)

= xr
(

A1 + A2

)(

a3 + a4 + a5

)

+ x2
r

(

a3 + s4

)

a5

ψ
(

1

2
)

= A1 + A2

ψ




4

3
5



 = A3 + A4 + A5

⇒ ψ = xr ψ ψ +O
(

x2
r

)
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3.5. The Two-Loop Graph with Fermionic Subgraph

In the same way as in Section 3.4, we are going to compute the Feynman integrand
for the gauge theory graph corresponding to the scalar graph . We use the
following labeling of lines:

e5 e1

b e4

a
e3

c

e2

d

3.5.1. The Spanning Trees and Spanning Two-Forests

The spanning trees of this graph are:

T ∈
{

, , , , , , ,
}

=
{

{e1, e3, e4}, {e1, e3, e5}, {e2, e3, e4}, {e2, e3, e5}, {e1, e2, e3}, {e1, e2, e4}, {e1, e2, e5}
}

The spanning two-forests are:

T1 ∪ T2 ∈
{

, , ,
}

=
{

{e1} ∪ {e3}, {e2} ∪ {e4}, {e2} ∪ {e5}
}

3.5.2. The First and Second Symanzik Polynomial

Consequently, the first and second Symanzik polynomials are given by

ψ =
∑

T

∏

e/∈T

Ae

= A2A5 + A2A4 + A1A5 + A1A4 + A4A5 + A3A5 + A3A4 (3.30)

φ = |N |Pf ( ) =
∑

T1∪T2




∑

e/∈T1∪T2

τ(e)ξe





2
∏

e/∈T1∪T2

Ae

= (−ξ2 + ξ4 − ξ5)
2A2A4A5 + (−ξ1 + ξ3)

2A1A3(A4 + A5)

=: q2
1A2A4A5 + q2

2A1A3(A4 + A5) (3.31)

Again, the linear combination of internal momenta ξi has been renamed in order to
keep the expressions short.

3.5.3. The Derivatives

Compute the first and second derivatives of φ as defined in Section 3.3. Since
only four out of the five internal edges will become fermionic edges, we will only need
four derivatives. In our case, the edge e5 stays bosonic. This choice is arbitrary, we
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might as well have chosen e4.

φ1 = −2qµ1
2 A1A3(A4 + A5)

φ2 = −2qµ2
1 A2A4A5

φ3 = 2qµ3
2 A1A3(A4 + A5)

φ4 = 2qµ4
1 A2A4A5

φ13 = −2gµ1µ3A1A3(A4 + A5)

φ24 = −2gµ2µ4A2A4A5

φ12 = φ14 = φ23 = φ34 = 0

In the same way as for , four out of the six double derivatives vanish. This leaves
Eq. (3.15) as short as

I
1

= 4gµ1µ3gµ2µ4

exp
(

−
φ

ψ

)

ψ4
A5(A4 + A5) dA1 ∧ · · · ∧A5

I ∗
1

= −4gµ1µ3gµ2µ4
φ̄

ψ̄
ln

(

q2

µ2

)

a5(a4 + a5) da2 ∧ · · · ∧ da5

I
2

= −8
exp

(

−
φ

ψ

)

ψ5

(

qµ1
2 qµ3

2 gµ2µ4A1A3 + qµ2
1 qµ4

1 gµ1µ3A2A4

)

A5(A4 + A5) dA1 ∧ · · · ∧A5

I ∗
2

= −8 ln

(

q2

µ2

)

qµ1
2 qµ3

2 gµ2µ4a3(a4 + a5) + qµ2
1 qµ4

1 gµ1µ3a2a4a5

ψ̄5
a5(a4 + a5) da2 ∧ · · · ∧ da5

3.5.4. Re-Homogenization of the Polynomials

Again, in the same way as in Eq. (3.22), it is helpful to transform the first and
second Symanzik polynomials back into a homogeneous form. This also works out
as easily as above: The measure of integration is the same as seen in Eq. (3.25) and
Eq. (3.26), and the Symanzik polynomials become the old polynomials from before:

ψ̄ = a2a5 + a2a4 + a4a5 + a3a5 + a3a4 + a4 + a5

→
A2A5 + A2A4 + A4A5 + A3A5 + A3A4

A2
1

+
A4 + A5

A1

=
A2A5 + A2A4 + A4A5 + A3A5 + A3A4 + A1A4 + A1A5

A2
1

=
ψ

A2
1

(3.32)

φ̄ = q2
1a2a4a5 + q2

2a3(a4 + a5)

→
q2

1A2A4A5

A3
1

+
q2

2A3(A4 + A5)

A2
1

=
q2

1A2A4A5 + q2
2A1A3(A4 + A5)

A3
1

=
φ

A3
1

(3.33)
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This gives the re-homogenized expressions:

I ∗
1

= −4gµ1µ3gµ2µ4
φ̄

ψ
ln

(

q2

µ2

)

A5(A4 + A5) dΩ5 (3.34)

I ∗
2

= −8 ln

(

q2

µ2

)

qµ1
2 qµ3

2 gµ2µ4A1A3(A4 + A5) + qµ2
1 qµ4

1 gµ1µ3A2A4A5

ψ5
A5(A4 + A5) dΩ5

(3.35)

3.5.5. The Subgraph Structure

The graph is not primitive, but has a subgraph, namely . Therefore, the
reduced co-product is

∆′ ( ) = ⊗ (3.36)

However, since the residue of the subgraph is not a vertex, but a two-point func-
tion, the labeling of the edges becomes tricky when decorating the cograph. Since
the subgraph is shrunk to a point, it becomes a two-point vertex, in a manner of
speaking. Therefore, Eq. (3.36) should be decorated in the following way:

∆′





2

3
4

1
5



 =
4

5
⊗

13

2
(3.37)

What is the first Symanzik polynomial of the cograph? Well, its three spanning
trees are each two of the three edges, respectively. It has three internal edges, and
since ψ is given by the product over all edges not in a spanning tree, summing over
all spanning trees, the first Symanzik polynomial is given by

ψ = A1 + A2 + A3

If the subgraph shrinks to a point, the first Symanzik polynomial of the original
graph should resemble that of the cograph, plus something of a higher order in the
parameter that is shrinking. In order to verify this, we substitute the edge variables
Ai of the subgraph by xai and then let x approach zero.

A4 → xa4

A5 → xa5

⇒ ψ → xA2a5 + xA2a4 + x2a4a5 + xA3a5 + xA3a4 + xA1a4 + xa1A5

= x(a4 + a5)(A1 + A2 + A3) + x2a4a5

= xψ ψ +O
(

x2
)

(3.38)
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4. Conclusion

For the one-loop case, both computational methods give the same result for the
coefficient of the β function, 4

3
. The methods are completely different: In the mo-

mentum space calculations, the graph is drawn with wiggly lines for the photons and
oriented lines for the electrons, and the Feynman rules for QED (see Chapter D)
are used to transition from the drawing to an integrand. Then, the loop momenta
are stubbornly integrated out using dimensional regularization. In the end, a simple
subtracting suffices to control the logarithmic divergence. This was only possible
because a transversal factor q2gµν − qµqν could be extracted from the quadratically
divergent integral which reduced the level of divergence by two. So one could argue,
it was necessary to know about the properties of external photons to be transver-
sal. On the other hand, during the Corolla computation, transversality was never
presupposed. Transversality is a result of the computation. This shows how much
deeper transversality of the photons is deep-seated in the theory. It is not an as-
sumption made by us, but a property of the theory.
For the two-loop case, the result is the well-known 4 (cf. [8]), which could be con-
firmed in this thesis. However, it was not possible during the time-span of working
on this thesis to compute the amplitude with the Corolla approach, this still needs
to be done. However, we have derived the integrand and analyzed its structure. We
have seen the expected properties, namely the factorization of the first Symanzik
polynomial into co- and subgraph.
As already implied in the introduction, dimensional regularization is not the most
mathematically rigorous method. It centers around the poles at space-time dimen-
sion D = 4, as its main purpose is to distort the space-time dimension just a bit by
making it D = 4−2ε, where ε has a small positive real part. However, a non-integer
space-time dimension has no physical interpretation. Moreover, the goal of quantum
field theory is to find non-perturbative methods because the asymptotic behaviour
of the β function is not determined yet. The Corolla polynomial and differential
help understand the underlying structure a lot better and they show the connection
between scalar field theory and gauge theory.
It would be helpful to develop a good, clever implementation of the Corolla compu-
tations needed for higher orders than just two loops. It would pose a further test
to the method and maybe it could even offer better methods than the ones already
at use. The lengthiness of the computations has created some problems during the
development of this thesis and the integrals, however nicely derived, are not more-
easily solved than the ones when doing dimensional regularization in momentum
space. However, due to the analysis of the structure of the Symanzik polynomials,
it can be assumed that the computations, however not complete, are correct, and
that the Corolla approach portrays a very promising method for the computation
of gauge theory amplitudes.
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A. γ traces and scalar products

A.1. γ traces

Throughout this work, we need to evaluate traces involving γ matrices. These
are representations of a Clifford algebra, therefore they obey the anticommutator
relation {γµ, γν} = 2gµν . This is all we need to know about γ matrices in order
to compute their traces. We also make use of the fact that the trace is cyclic,
Tr {ABC} = Tr {BCA} = Tr {CAB}, and linear.

Trace of two γ matrices This computation is rather simple and short. We use
the anticommutator once and cyclicity of the trace.

Tr
{

γµγν
}

= Tr
{

2gµν − γνγµ
}

= Tr
{

2gµν
}

− Tr
{

γνγµ
}

= Tr
{

2gµν
}

− Tr
{

γµγν
}

⇒ Tr
{

γµγν
}

= Tr
{

gµν
}

= gµν Tr
{

I

}

= 4gµν (A.1)

Note that we have used Tr
{

I

}

= 4. This is true even in D 6= 4 dimensions because
the trace of unity may be any smooth function which equals 4 at D = 4.

Trace of four γ matrices This computation is a bit longer than Eq. (A.1), but it
uses the same basic steps. One permutes the γ matrix on the very left to the very
right and then uses cyclicity of the trace to bring it back to the left.

Tr
{

γµγαγνγβ
}

= 2gµα Tr
{

γνγβ
}

︸ ︷︷ ︸

=4gνβ

−Tr
{

γαγµγνγβ
}

= 8gµαgνβ −
(

2gµν Tr
{

γαγβ
}

− Tr
{

γαγνγµγβ
})

= 8gµαgνβ − 8gµνgαβ +
(

2gµβ Tr
{

γαγν
}

− Tr
{

γαγνγβγµ
})

= 8 (gµαgνβ − gµνgαβ + gµβgαν)− Tr
{

γαγνγβγµ
}

︸ ︷︷ ︸

=Tr

{

γµγαγνγβ

}

⇒ Tr
{

γµγαγνγβ
}

= 4 (gµαgνβ − gµνgαβ + gµβgαν) (A.2)

Trace of six γ matrices One works out the trace of six γ matrices in the exact
same way, by permuting the one on the far left to the very right, applying the anti-
commutation relation of the Clifford algebra, and known traces of four γ matrices.
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Chapter A γ traces and scalar products

Since the computation is comparably lengthy, we will only present the result here.

Tr
{

γµγαγνγβγδγη
}

=4
{

gµα (gνβgδη − gνδgβη + gνηgβδ)−

− gµν (gαβgδη − gαδgβη + gαηgβδ) +

+ gµβ (gανgδη − gαδgνη + gαηgνδ)−

− gµδ (gανgβη − gαβgνη + gαηgνβ) +

+ gµη (gανgβδ − gαβgνδ + gαδgνβ)
}

(A.3)

A.2. Scalar products

When computing the Feynman amplitude of a graph Γ from the Feynman rules,
there will be terms encountered that have the form a · b, where a and b are four-
momenta. Since the denominator of such expressions only contains squares of such
four-momenta, it is helpful and necessary to rewrite scalar products in the two
following manners, depending on whether one prefers the expression (a + b)2 or
(a− b)2 to show up in the rewritten form:

a · b =
1

2

(

(a+ b)2 − a2 − b2
)

(A.4)

a · b =
1

2

(

a2 + b2 − (a− b)2
)

(A.5)
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B. The Master Integral

The one-loop master integral for dimensional regularization is given by

M
(

α, β,D, q2
)

:=
∫

dDk

(k2)α [(k + q)2]β
(B.1)

= (q2)
D
2

−α−βΓ
(
D
2
− α

)

Γ
(
D
2
− β

)

Γ
(

α + β − D
2

)

Γ(α)Γ(β)Γ(D − α− β)
(B.2)

=: (q2)
D
2

−α−β
Γα,βD (B.3)

The abbriviation Γα,βD is just for short-hand notation. Γ(x) denotes the Gamma
function with the usual properties, Γ(x + 1) = xΓ(x), Γ(1) = 1. We note that
because of the poles of Γ(x) at x = 0, M(0, β,D, q2) = M(α, 0, D, q2) ≡ 0.

B.1. Derivation

In order to derive the result for M, we need to introduce a few identities. The
first one is a rather complicated-looking expression for some u−ρ. Take the integral
representation for the Γ function:

Γ(ρ) =

∞∫

0

e−AAρ
dA

A

The measure of integration, dA
A

, is invariant under rescaling, so we set A = ua and
get

Γ(ρ) =

∞∫

0

e−ua(ua)ρ
da

a

= uρ
∞∫

0

e−uaaρ
da

a

⇒ u−ρ =
1

Γ(ρ)

∞∫

0

e−uaaρ
da

a
(B.4)

Next, we take the D dimensional Gaussian integral,

∫

dDk e−Xk2

=
(
π

X

)D
2

(B.5)

but the space-time dimension only makes sense in real life, so to speak, if it is a
positive integer. However, when we integrate in a complex-dimensional spacetime,
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Chapter B The Master Integral

we use Eq. (B.5) as a definition for the complex measure.
Now, the integral we are looking to compute is the following:

∫
dDk

(2π)
D
2

1

[k2]α[(k + q)2]β
(B.6)

This integral, in which α, β, and D can be complex numbers, is crucial for QFT.
We use Eq. (B.4) in order to rewrite the integrand of Eq. (B.6).

∫
dDk

(2π)
D
2

1

[k2]α[(k + q)2]β
=

1

Γ(α)Γ(β)

∫
dDk

(2π)
D
2

∞∫∫

0

dA dB

AB
e−k2A−(k+q)2BAαBβ

=
1

Γ(α)Γ(β)

∫
dDk

(2π)
D
2

∞∫∫

0

dA dBAα−1Bβ−1e−(A+B){k2+2kq B
A+B

+q2 B
A+B}

Using translation invariance of the k integration and completing the square in the
exponent, and in the next step performing the k integration, the expression becomes

∫
dDk

(2π)
D
2

1

[k2]α[(k + q)2]β
=

1

Γ(α)Γ(β)

∫

dDk̄

∞∫∫

0

dA dBAα−1Bβ−1e
−(A+B)

{

k̄2+q2 AB

(A+B)2

}

=
1

Γ(α)Γ(β)

∞∫∫

0

dA dBAα−1Bβ−1 1

(A+B)
D
2

e−q2 AB
A+B

(subst. B = Ab) → =
1

Γ(α)Γ(β)

∞∫∫

0

dA dbAα+β−1 bβ−1

A
D
2 (1 + b)

D
2

e−q2a B
1+B

(subst. A = a
1 + b

bq2
) → = (q2)

D
2

−α−β 1

Γ(α)Γ(β)

∞∫∫

0

da db
1 + b

b

(

a
1 + b

b

)α+β−D
2

−1
bβ−1

(1 + b)
D
2

e−a

The a integration yields another Γ function:

∫

dDk
1

[k2]α[(k + q)2]β
= (q2)

D
2

−α−β 1Γ
(

α + β − D
2

)

Γ(α)Γ(β)

∞∫

0

db

(

1 + b

b

)α+β−D
2 bβ−1

(1 + b)
D
2

(subst. b′ =
b

1 + b
) → = (q2)

D
2

−α−βΓ
(

α + β − D
2

)

Γ(α)Γ(β)

1∫

0

db′ (1− b′)
D
2

−β−1(b′)
D
2

−α−1

(B.7)

Eq. (B.7) is the integral representation of the B (beta) function. (Not the β function
of some QFT, however, but the Euler integral of first kind.)

B(x, y) =

1∫

0

dt (t)x−1(1− t)y−1

=
Γ(x)Γ(y)

Γ(x+ y)

⇒
∫

dDk
1

[k2]α[(k + q)2]β
= (q2)

D
2

−α−βΓ
(

α + β − D
2

)

Γ(α)Γ(β)
B
(
D

2
− α,

D

2
− β

)

= (q2)
D
2

−α−βΓ
(
D
2
− α

)

Γ
(
D
2
− β

)

Γ
(

α + β − D
2

)

Γ(α)Γ(β)Γ(D − α− β)

This is the result Eq. (B.2). [10]
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Chapter B The Master Integral

B.2. Some important expicit results

In this master thesis, we will encounter several explicit values for α and β which
yield different results for Γα,βD . In this section, we demonstrate the calculations in
order to keep computations to a minimum throughout the actual thesis.

B.2.1. α = 1, β = 1

Γ1,1
D =

Γ2
(
D
2
− 1

)

Γ
(

2− D
2

)

Γ(1)Γ(1)Γ(D − 2)

=
Γ2
(
D
2
− 1

)

Γ
(

2− D
2

)

Γ(D − 2)

=
Γ2
(
D
2
− 1

)

Γ
(

3− D
2

)

Γ(D − 2)
·

1

2− D
2

(B.8)

=
Γ2 (1− ε) Γ (1 + ε)

Γ(2− 2ε)
·

1

ε

=
1

ε
+O(1) (B.9)

B.2.2. α = 1, β = 2

Γ1,2
D =

Γ
(
D
2
− 1

)

Γ
(
D
2
− 2

)

Γ
(

3− D
2

)

Γ(1)Γ(2)Γ(D − 3)

=
Γ2
(
D
2
− 1

)

Γ
(

3− D
2

)

Γ(D − 3)
·

1
D
2
− 2

(B.10)

=
Γ2 (1− ε) Γ (1 + ε)

Γ(1− 2ε)
·

1

−ε

= −
1

ε
+O(1) (B.11)

Since this thesis deals with two-loop computations, there will be two terms Γα,βD
and Γα

′,β′

D . Some of the Γ functions cancel due to this multiplication. Therefore, it
is a lot more sensible to look at products of Γα,βD .
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Chapter B The Master Integral

B.2.3. α = 1, β = 1, α′ = 1, β ′ = 1

(

Γ1,1
D

)2
=

Γ4
(
D
2
− 1

)

Γ2
(

2− D
2

)

Γ2(D − 2)

=
Γ4
(
D
2
− 1

)

Γ2
(

2− D
2

)

Γ2(D − 2)

=
Γ4
(
D
2
− 1

)

Γ2
(

3− D
2

)

Γ2(D − 2)
·

1
(

2− D
2

)2 (B.12)

=
Γ4 (1− ε) Γ2 (1 + ε)

Γ2(2− 2ε)
·

1

ε2

=
(

1 + (4− 2γE)ε+O(ε2)
) 1

ε2

=
1

ε2
+

4− 2γE
ε

+O(1) (B.13)

B.2.4. α = 1, β = 1, α′ = 1, β ′ = 2

Γ̃1,1
D Γ̃1,2

D =
Γ3
(
D
2
− 1

)

Γ
(
D
2
− 2

)

Γ
(

2− D
2

)

Γ
(

3− D
2

)

Γ(D − 2)Γ(D − 3)

=
Γ4
(
D
2
− 1

)

Γ2
(

3− D
2

)

Γ2(D − 2)
·

1
(

2− D
2

) ·
1

(
D
2
− 2

) · (D − 3) (B.14)

=
Γ4 (1− ε) Γ2 (1 + ε)

Γ2(2− 2ε)
·
−1

ε2
· (1− 2ε)

=
(

1 + (4− 2γE)ε+O(ε2)
) −1

ε2
(1− 2ε)

=
−1

ε2
+

1

ε
(−2 + 2γE) +O(1) (B.15)

B.2.5. α = 1, β = 1, α′ = 1, β ′ = 2− D
2

Γ1,1
D Γ

1,2−D
2

D =
Γ2
(
D
2
− 1

)

Γ
(

2− D
2

)

Γ(D − 2)
·

Γ
(
D
2
− 1

)

Γ (D − 2) Γ (3−D)

Γ
(

2− D
2

)

Γ
(

3D
2
− 3

)

=
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
·

1

(3−D)
(

3D
2
− 4

) (B.16)

=
Γ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
·

1

2ε
·

1

(−1 + 2ε)(2− 3ε)

=
(

1 +O(ε)
)

·
1

2ε
·
(

−
1

2
+O(ε)

)

= −
1

4ε
+O(1) (B.17)
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B.2.6. α = 1, β = 1, α′ = 1, β ′ = 3− D
2

Γ1,1
D Γ

1,3−D
2

D =
Γ2
(
D
2
− 1

)

Γ
(

2− D
2

)

Γ(D − 2)
·

Γ
(
D
2
− 1

)

Γ (D − 3) Γ (4−D)

Γ
(

3− D
2

)

Γ
(

3D
2
− 4

)

=
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
(

2− D
2

) ·
1

(D − 3)
(B.18)

=
Γ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
·

1

2ε2
·

1

(1− 2ε)

=
(

1 + (3− 2γE)ε+O(ε2)
)

·
1

2ε2
·
(

1 + 2ε+O(ε2)
)

=
1

2ε2
+

1

ε

(
5

2
− γE

)

+O(1) (B.19)

B.2.7. α = 1, β = 1, α′ = 2, β ′ = 1− D
2

Γ1,1
D Γ

2,1−D
2

D =
Γ2
(
D
2
− 1

)

Γ
(

2− D
2

)

Γ(D − 2)
·

Γ
(
D
2
− 2

)

Γ (D − 1) Γ (3−D)

Γ
(

1− D
2

)

Γ
(

3D
2
− 3

)

=
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(
D
2
− 2

)

(4−D)
·

(D − 2)
(

1− D
2

)

(3−D)
(

3D
2
− 4

) (B.20)

=
Γ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
·
−1

2ε2
·

(2− 2ε)(−1 + ε)

(−1 + 2ε)(2− 3ε)

=
(

1 + (3− 2γE)ε+O(ε2)
)

·
−1

2ε2
·
(

1 +
3

2
ε+O(ε2)

)

=
(

1 + (3− 2γE)ε+O(ε2)
)

·
(

−
1

2ε2
−

3

4ε
+O(1)

)

= −
1

2ε2
+

1

ε

(

−
9

4
+ γE

)

+O(1) (B.21)

B.2.8. α = 1, β = 1, α′ = 2, β ′ = 2− D
2

Γ1,1
D Γ

2,2−D
2

D =
Γ2
(
D
2
− 1

)

Γ
(

2− D
2

)

Γ(D − 2)
·

Γ
(
D
2
− 2

)

Γ (D − 2) Γ (4−D)

Γ
(

2− D
2

)

Γ
(

3D
2
− 4

)

=
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(
D
2
− 2

)

(4−D)
(B.22)

=
Γ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
·
−1

2ε2

=
(

1 + (3− 2γE)ε+O(ε2)
)

·
−1

2ε2

= −
1

2ε2
+

1

ε

(

−
3

2
+ γE

)

+O(1) (B.23)
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B.2.9. α = 1, β = 1, α′ = 2, β ′ = 3− D
2

Γ1,1
D Γ

2,3−D
2

D =
Γ2
(
D
2
− 1

)

Γ
(

2− D
2

)

Γ(D − 2)
·

Γ
(
D
2
− 2

)

Γ (D − 3) Γ (5−D)

Γ
(

3− D
2

)

Γ
(

3D
2
− 5

)

=
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(

2− D
2

)
1

(
D
2
− 2

)

3D
2
− 5

(D − 3)
(B.24)

=
Γ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
·
−1

ε2
·

1− 2ε

1− 3ε

=
(

1 + (3− 2γE)ε+O(ε2)
)

·
−1

ε2
·
(

1− ε+O(ε2
)

= −
1

ε2
+

1

ε
(−2 + 2γE) +O(1) (B.25)

B.2.10. α = 1, β = 2, α′ = 1, β ′ = 2− D
2

Γ1,2
D Γ

1,2−D
2

D =
Γ
(
D
2
− 1

)

Γ
(
D
2
− 2

)

Γ
(

3− D
2

)

Γ(D − 3)
·

Γ
(
D
2
− 1

)

Γ (D − 2) Γ (3−D)

Γ
(

2− D
2

)

Γ
(

3D
2
− 3

)

=
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·

(

2− D
2

)

(
D
2
− 2

)

(4−D)
·

(D − 3)

(3−D)
(

3D
2
− 4

)

=
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(4−D)
·

1
(

3D
2
− 4

) (B.26)

=
Γ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
·

1

2ε
·

1

(2− 3ε)

=
(

1 +O(ε)
)

·
1

2ε
·
(

1

2
+O(ε)

)

=
1

4ε
+O(1) (B.27)

B.2.11. α = 1, β = 2, α′ = 1, β ′ = 3− D
2

Γ1,2
D Γ

1,3−D
2

D =
Γ
(
D
2
− 1

)

Γ
(
D
2
− 2

)

Γ
(

3− D
2

)

Γ(D − 3)
·

Γ
(
D
2
− 1

)

Γ (D − 3) Γ (4−D)

Γ
(

3− D
2

)

Γ
(

3D
2
− 4

)

=
Γ3
(
D
2
− 1

)

Γ(5−D)

Γ
(

3D
2
− 4

) ·
1

(
D
2
− 2

)

(4−D)
(B.28)

=
Γ3 (1− ε) Γ (1 + 2ε)

Γ(2− 3ε)
·
−1

2ε2

=
(

1 + (3− 2γE)ε+O(ε2)
)

·
−1

2ε2

= −
1

2ε2
+

1

ε

(

−
3

2
+ γE

)

+O(1) (B.29)
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C. The triangle relation

Whenever a subgraph with three external momenta appears in a graph, it is no
longer possible to relate the graph to the one-loop master formula because this only
works for propagator-like subgraphs. In Section 2.5, we encounter the graph (see
Eq. (2.33) ):

q q

q + lq + k

k l

k − l

which has two subgraphs,

q
k − l

q + l
q + k

l

k

and
q

k − l

q + k
q + l

k

l

, (C.1)

but neither does one contain the other completely, nor are they disjoint. Therefore
one cannot rely on the forest formula, which would effectively make it possible to
reduce the problem to one-loop computations.
In general, a graph like the one above in Eq. (2.33), will give an integral of the form

It(α, β, δ, ζ, η,D, q
2) =

∫∫
dDk dDl

(k2)α [(k + q)2]β (l2)δ [(l + q)2]ζ [(l − k)2]η
. (C.2)

This would correspond to the graph

ζβ

α δ

η

where the labels denote the exponents of the propagators on the respective edge.
One can easily see that if η = 0, It would simply be the product of two one-loop
master formulae,

It(α, β, δ, ζ, η,D, q
2)
∣
∣
∣
η=0

= M(α, β,D, q2) ·M(δ, ζ,D, q2) . (C.3)

Also, if one of the other exponents is zero, for example α, It would give two one-loop
master integrals where one is nested in the other one.
The cases where one of the exponents vanishes are feasible without further knowledge
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other than that of the one-loop master formula. It would be useful to relate the
general case, in which all exponents are positive, to cases where one of the exponents
is reduced.
In order to derive such a formula using integration by parts, one utilizes the fact that
the integral of a total derivative vanishes if the function vanishes at the endpoints.
Take, for example, the integration in l.

∫

dDl
∂

∂lµ
F (l, . . . ) = 0

In this case, the derivative acts on the µth component in l, erasing the integral. More
generally, one could sum over all µ which would still result in zero.

∫

dDl
∑

µ

∂

∂lµ
F (l, . . . ) = 0 (C.4)

Since all functions we are dealing with are scalar functions, we contract with the
momentum of the internal photon in order to get a scalar result. The integral still
vanished because the integrand is still a total derivative and all three exponents in
F (l, . . . ) are at least quadratic in l, so the product of F (l, . . . ) and k − l will still
fall fast enough at the endpoints.
For reasons of clarity, ignore the k-part of the integration for the moment. This
also makes α and β obsolete, so we define the function Ĩt to be the l-integration
part of the entire integral, It, and with contraction, derivatio and summation as in
Eq. (C.4) understood.

Ĩt(δ, ζ, η,D, (q+ k)2) :=
∫

dDl
∂

∂lµ

(

(k − l)µF (l, . . . )
)

= 0 (C.5)

with F (l, . . . ) =
1

(l2)δ [(l + q)2]ζ [(l − k)2]η

We execute the derivatives:

∂

∂lµ
(l − k)µ = D (C.6)

(l − k)µ
∂

∂lµ

1

(l2)δ
= (l − k)µ

−δ

(l2)δ+1
(2lµ)

= −δ

(

(l − k)2 − k2

(l2)δ+1
+

1

(l2)δ

)

(C.7)

(l − k)µ
∂

∂lµ

1

[(l + q)2]ζ
= (l − k)µ

−ζ

[(l + q)2]ζ+1 (2(l + q)µ)

= −ζ

(

(l − k)2 − (k + q)2

[(l + q)2]ζ+1 +
1

[(l + q)2]ζ

)

(C.8)

(l − k)µ
∂

∂lµ

1

[(l − k)2]η
= (l − k)µ

−η

[(l − k)2]η+1 (2(l − k)µ)

= −
2η

[(l − k)2]η
(C.9)
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Eq. (C.2) then results in

0 =
∫∫

dDl dDk
{

(D − δ − ζ − 2η)F (α, β, δ, ζ, η) (C.10)

+ δ
(

F (α− 1, β, δ + 1, ζ, η)− F (α, β, δ + 1, ζ, η − 1)
)

+ ζ
(

F (α, β − 1, δ, ζ + 1, η)− F (α, β, δ, ζ + 1, η − 1)
)}

⇒
∫∫

dDl dDk F (α, β, δ,ζ, η) = (C.11)

1

D − δ − ζ − 2η

∫∫

dDl dDk
{

δ
(

F (α, β, δ + 1, ζ, η − 1)− (F (α− 1, β, δ + 1, ζ, η)
)

+ ζ
(

F (α, β, δ, ζ + 1, η − 1)− (F (α, β − 1, δ, ζ + 1, η)
)}

where F (α, β, δ, ζ, η) denotes the integrand of Eq. (C.2). Due to the interchangeabil-
ity of k and l in the integration (Eq. (C.2)), It is invariant under (α↔ β)∧ (δ ↔ ζ)
and (α ↔ δ) ∧ (β ↔ ζ). So for the case α = β = δ = ζ = η = 1, as needed in
Section 2.5.1, the triangle relation Eq. (C.11) gives

F (1, 1, 1, 1, 1) =
1

D − 4

{

F (1, 1, 2, 1, 0)− F (0, 1, 2, 1, 1) + F (1, 1, 1, 2, 0)
︸ ︷︷ ︸

=F (1,1,2,1,0)

−F (1, 0, 1, 2, 1)
︸ ︷︷ ︸

=F (0,1,2,1,1)

}

=
2

D − 4

{

F (1, 1, 2, 1, 0)− F (0, 1, 2, 1, 1)
}

. (C.12)

67



D. Feynman Rules of QED

Quantum electrodynamics is an abelian gauge theory. Therefore, there are no boson-
boson interactions, and there is only one fermion if the theory is massless. In a Feyn-
man diagram, the fermion propagator is denoted by a straight line with an arrow
which indicates charge flow. The boson of QED is the photon, a spin-1 boson, de-
noted by a wavy line. The only possible interaction is a photon-fermion-antifermion
vertex. To translate from the diagram to the (unrenormalized) Feynman integrand,
one starts at a vertex or fermionic line of choice and starts writing down the terms
corresponding to the vertices or lines one encounters, while proceding against the
direction of the arrows. The corresponding expressions are:

q
µ ν ←→ i

gµν − ξ q
µqν

q2

q2

k
←→ i

1

/k
= i

/k

k2

µ ←→ ieγµ

←→ −1

The Dirac-slash notation /q is short for /q = γµq
µ. In the tree-level vertex expression,

e is the electric charge of the fermion. The internal photonic propagator is dependent
on the gauge as ξ can be chosen freely. The Feynman gauge is ξ = 0, where the
analytic expression for the photonic progator gets rather short. The Landau gauge
is ξ = 1, with a transversal photon. Because of the Ward identities, in QED all
subdivergencies of higher-loop graphs vanish if the Landau gauge is being used.
The last lines indicates that for every closed fermion loop, the expression needs to
be multiplied with −1.[10]
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E. Mathematica Code

In[1]:= << HighEnergyPhysics`FeynCalc`

Loading FeynCalc from /u/grauel/.Mathematica/Applications/HighEnergyPhysics

FeynCalc 8.2.0 For help, type ?FeynCalc, open FeynCalcRef8.nb or visit www.feyncalc.org

Loading FeynArts, see www.feynarts.de for documentation

Loop::shdw :

Symbol Loop appears in multiple contexts 9FeynArts`, HighEnergyPhysics`FeynCalc`Loop`=; definitions

in context FeynArts` may shadow or be shadowed by other definitions. �

FeynAmp::shdw :

Symbol FeynAmp appears in multiple contexts 9FeynArts`, HighEnergyPhysics`FeynCalc`FeynAmp`=;

definitions in context FeynArts` may shadow or be shadowed by other definitions. �

FeynAmpList::shdw :

Symbol FeynAmpList appears in multiple contexts 9FeynArts`, HighEnergyPhysics`FeynCalc`FeynAmpList`=;

definitions in context FeynArts` may shadow or be shadowed by other definitions. �

PropagatorDenominator::shdw : Symbol PropagatorDenominator appears in

multiple contexts 9FeynArts`, HighEnergyPhysics`FeynCalc`PropagatorDenominator`=;

definitions in context FeynArts` may shadow or be shadowed by other definitions. �

FeynAmpDenominator::shdw : Symbol FeynAmpDenominator appears in

multiple contexts 9FeynArts`, HighEnergyPhysics`FeynCalc`FeynAmpDenominator`=;

definitions in context FeynArts` may shadow or be shadowed by other definitions. �

GaugeXi::shdw :

Symbol GaugeXi appears in multiple contexts 9FeynArts`, HighEnergyPhysics`FeynCalc`GaugeXi`=;

definitions in context FeynArts` may shadow or be shadowed by other definitions. �

NonCommutative::shdw : Symbol NonCommutative appears in

multiple contexts 9FeynArts`, HighEnergyPhysics`FeynCalc`NonCommutative`=;

definitions in context FeynArts` may shadow or be shadowed by other definitions. �

Optional::opdef : The default value for the optional argument a : f s_. : F S V T U SV contains a pattern. �

Optional::opdef : The default value for the optional argument a : f s_. : F S V T U SV contains a pattern. �

Global`PolarizationVector::shdw : Symbol PolarizationVector appears

in multiple contexts 9Global`, HighEnergyPhysics`FeynCalc`PolarizationVector`=;

definitions in context Global` may shadow or be shadowed by other definitions. �

Global`DiracSpinor::shdw :

Symbol DiracSpinor appears in multiple contexts 9Global`, HighEnergyPhysics`FeynCalc`DiracSpinor`=;

definitions in context Global` may shadow or be shadowed by other definitions. �

Global`DiracTrace::shdw :

Symbol DiracTrace appears in multiple contexts 9Global`, HighEnergyPhysics`fctools`DiracTrace`=;

definitions in context Global` may shadow or be shadowed by other definitions. �

FeynArts 3.7 patched for use with FeynCalc

FeynArts 3.7 patched for use with FeynCalc

In[2]:= H* Computation of the gΜΝ-part of the graph with one-loop subgraph in a fermionic leg *L

In[3]:= argumentFG = H2 - DL *

DiracGamma@LorentzIndex@ΜDD.DiracGamma@LorentzIndex@ΑDD.DiracGamma@LorentzIndex@ΝDD.

DiracGamma@LorentzIndex@ΒDD.DiracGamma@LorentzIndex@∆DD.DiracGamma@LorentzIndex@ΗDD

Out[3]= H2 - DL ΓΜ.ΓΑ.ΓΝ.ΓΒ.Γ∆.ΓΗ

In[4]:= traceFG = DiracTrace@argumentFG, DiracTraceEvaluate ® TrueD;
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In[5]:= term = Contract@traceFG, FourVector@k + q, LorentzIndex@ΑDDD;

In[6]:= term = Contract@term, FourVector@k, LorentzIndex@ΒDDD;

In[7]:= term = Contract@term, FourVector@l + k, LorentzIndex@∆DDD;

In[8]:= term = Contract@term, FourVector@k, LorentzIndex@ΗDDD;

In[9]:= term = term �. MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDD ®

D � 4 * MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDD;

In[10]:= gterm = Contract@term, MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDDD;

In[11]:= Simplify@gtermD

Out[11]= 4 HD - 2L2 Ik2 Hk × l + k ×q - l ×qL + 2 k × l k ×q + k22M

In[12]:= gterm = gterm �. Contract@FourVector@k, LorentzIndex@ΜDD,

FourVector@l, LorentzIndex@ΜDDD ® 1 � 2 * HKL^2 - K^2 - L^2L;

In[13]:= gterm = gterm �. Contract@FourVector@k, LorentzIndex@ΜDD,

FourVector@q, LorentzIndex@ΜDDD ® 1 � 2 * HKQ^2 - K^2 - Q^2L;

In[14]:= gterm =

gterm �. Contract@FourVector@k, LorentzIndex@ΜDD, FourVector@k, LorentzIndex@ΜDDD ® K^2;

In[15]:= gterm =

gterm �. Contract@FourVector@l, LorentzIndex@ΜDD, FourVector@l, LorentzIndex@ΜDDD ® L^2;

In[16]:= gterm =

gterm �. Contract@FourVector@q, LorentzIndex@ΜDD, FourVector@q, LorentzIndex@ΜDDD ® Q^2;

In[17]:= gterm = Expand@gtermD

Out[17]= 2 D2 K4 - 4 D2 K2 l ×q + 2 D2 KL2 KQ2 - 2 D2 KL2 Q2 - 2 D2 KQ2 L2 + 2 D2 L2 Q2 - 8 D K4 + 16 D K2 l ×q - 8 D KL2 KQ2 +

8 D KL2 Q2 + 8 D KQ2 L2 - 8 D L2 Q2 + 8 K4 - 16 K2 l ×q + 8 KL2 KQ2 - 8 KL2 Q2 - 8 KQ2 L2 + 8 L2 Q2

In[18]:= Simplify@gtermD

Out[18]= 2 HD - 2L2 IK4 - 2 K2 l ×q + IKL2 - L2M IKQ2 - Q2MM

In[19]:= H* Computation of the lΜlΝ-

part of the graph with one-loop subgraph in a fermionic leg *L

In[20]:= argumentFL = DiracGamma@LorentzIndex@ΜDD.DiracGamma@LorentzIndex@ΑDD.

DiracGamma@LorentzIndex@ΝDD.DiracGamma@LorentzIndex@ΒDD.DiracGamma@LorentzIndex@ΣDD.

DiracGamma@LorentzIndex@∆DD.DiracGamma@LorentzIndex@ΡDD.DiracGamma@LorentzIndex@ΗDD

Out[20]= ΓΜ.ΓΑ.ΓΝ.ΓΒ.ΓΣ.Γ∆.ΓΡ.ΓΗ

In[21]:= traceFL = DiracTrace@argumentFL, DiracTraceEvaluate ® TrueD;

In[22]:= term = Contract@traceFL, FourVector@k + q, LorentzIndex@ΑDDD;

In[23]:= term = Contract@term, FourVector@k, LorentzIndex@ΒDDD;

In[24]:= term = Contract@term, FourVector@l + k, LorentzIndex@∆DDD;

In[25]:= term = Contract@term, FourVector@k, LorentzIndex@ΗDDD;

In[26]:= term = Contract@term, FourVector@l, LorentzIndex@ΣDDD;

In[27]:= term = Contract@term, FourVector@l, LorentzIndex@ΡDDD;

In[28]:= term = term �. MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDD ®

D � 4 * MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDD;

In[29]:= gterm = Contract@term, MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDDD;

2   ftsem.nb
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In[30]:= gterm

Out[30]= 4 D k2 l2 k ×q + 8 D k2 k × l l ×q + 4 D k2 l2 l ×q - 16 D k × l2 k ×q - 8 D l2 k × l k ×q + 4 D k22
l2 - 8 D k2 k × l2 - 4 D k2 l2 k × l - 16 k2 l2 k ×q -

16 k2 k × l l ×q - 16 k2 l2 l ×q + 8 k2 l2 Hk ×q + l ×qL + 32 k × l2 k ×q + 16 l2 k × l k ×q - 16 k22
l2 + 16 k2 k × l2 + 8 k2 l2 Ik × l + k2M

In[31]:= gterm = gterm �. Contract@FourVector@k, LorentzIndex@ΜDD,

FourVector@l, LorentzIndex@ΜDDD ® 1 � 2 * HKL^2 - K^2 - L^2L;

In[32]:= gterm = gterm �. Contract@FourVector@k, LorentzIndex@ΜDD,

FourVector@q, LorentzIndex@ΜDDD ® 1 � 2 * HKQ^2 - K^2 - Q^2L;

In[33]:= gterm =

gterm �. Contract@FourVector@k, LorentzIndex@ΜDD, FourVector@k, LorentzIndex@ΜDDD ® K^2;

In[34]:= gterm =

gterm �. Contract@FourVector@l, LorentzIndex@ΜDD, FourVector@l, LorentzIndex@ΜDDD ® L^2;

In[35]:= gterm =

gterm �. Contract@FourVector@q, LorentzIndex@ΜDD, FourVector@q, LorentzIndex@ΜDDD ® Q^2;

In[36]:= gterm = Expand@gtermD

Out[36]= -2 D K4 KQ2 - 4 D K4 l ×q + 2 D K4 L2 + 2 D K4 Q2 + 4 D K2 KL2 KQ2 + 4 D K2 KL2 l ×q - 4 D K2 KL2 Q2 -

2 D KL4 KQ2 + 2 D KL4 Q2 + 2 D KL2 KQ2 L2 - 2 D KL2 L2 Q2 + 4 K4 KQ2 + 8 K4 l ×q - 4 K4 L2 - 4 K4 Q2 -

8 K2 KL2 KQ2 - 8 K2 KL2 l ×q + 8 K2 KL2 Q2 + 4 KL4 KQ2 - 4 KL4 Q2 - 4 KL2 KQ2 L2 + 4 KL2 L2 Q2

In[37]:= Simplify@gtermD

Out[37]= -2 HD - 2L IK4 IKQ2 - L2 - Q2M + 2 K2 KL2 IQ2 - KQ2M + 2 IK4 - K2 KL2M l ×q + KL2 IKL2 - L2M IKQ2 - Q2MM

In[38]:= H* Computation of the gΜΝ-part of the graph with one photon running across *L

In[39]:= argumentBG = DiracGamma@LorentzIndex@ΜDD.

DiracGamma@LorentzIndex@ΑDD.HHD - 6L * DiracGamma@LorentzIndex@∆DD.

DiracGamma@LorentzIndex@ΝDD.DiracGamma@LorentzIndex@ΒDD + 2 * H4 - DL *

HDiracGamma@LorentzIndex@ΒDD * MetricTensor@LorentzIndex@ΝD, LorentzIndex@∆DD -

DiracGamma@LorentzIndex@ΝDD * MetricTensor@LorentzIndex@ΒD, LorentzIndex@∆DD +

DiracGamma@LorentzIndex@∆DD *

MetricTensor@LorentzIndex@ΝD, LorentzIndex@ΒDDLL.DiracGamma@LorentzIndex@ΗDD

Out[39]= ΓΜ.ΓΑ.IHD - 6L Γ∆.ΓΝ.ΓΒ + 2 H4 - DL I-ΓΝ gΒ ∆ + Γ∆ gΒ Ν + ΓΒ g∆ ΝMM.ΓΗ

In[40]:= traceBG = DiracTrace@argumentBG, DiracTraceEvaluate ® TrueD;

In[41]:= term = Contract@traceBG, FourVector@k, LorentzIndex@ΑDDD;

In[42]:= term = Contract@term, FourVector@l, LorentzIndex@ΒDDD;

In[43]:= term = Contract@term, FourVector@l + q, LorentzIndex@∆DDD;

In[44]:= term = Contract@term, FourVector@k + q, LorentzIndex@ΗDDD;

In[45]:= term = term �. MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDD ®

D � 4 * MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDD;

In[46]:= gterm = Contract@term, MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDDD;
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In[47]:= gterm

Out[47]= -4 D2 l2 k ×q - 4 D2 k2 l ×q - 4 D2 q2 k × l - 4 D2 k2 l2 - 8 D k × l Hk × l + k ×qL + 8 D l2 k ×q +

8 D l2 Ik ×q + k2M + 8 D k2 l ×q - 16 D k ×q l ×q + 8 D Ik ×q + k2M l ×q - 8 D l ×q Hk × l + k ×qL - 8 D k × l Hk × l + l ×qL -

8 D k ×q Hk × l + l ×qL + 8 D k2 Il ×q + l2M + 8 D k ×q Il ×q + l2M + 24 D q2 k × l + 8 D k2 l2 - 16 k × l k ×q +

32 k × l Hk × l + k ×qL - 16 l2 Ik ×q + k2M - 16 k × l l ×q - 16 Ik ×q + k2M l ×q + 32 l ×q Hk × l + k ×qL + 32 k × l Hk × l + l ×qL +

32 k ×q Hk × l + l ×qL - 16 k2 Il ×q + l2M - 16 k ×q Il ×q + l2M - 16 q2 k × l - 16 k × l Ik × l + k ×q + l ×q + q2M - 16 k × l2

In[48]:= gtermsim = Simplify@gtermD

Out[48]= -4 HD - 2L Ik × l IHD - 4L q2 + 4 k ×q + 4 l ×qM + HD - 4L k2 Il ×q + l2M + k ×q IHD - 4L l2 + 4 l ×qM + 4 k × l2M

In[49]:= gterm = gterm �. Contract@FourVector@k, LorentzIndex@ΜDD,

FourVector@q, LorentzIndex@ΜDDD ® 1 � 2 * H-K^2 - Q^2 + KQ^2L;

In[50]:= gterm = gterm �. Contract@FourVector@l, LorentzIndex@ΜDD,

FourVector@q, LorentzIndex@ΜDDD ® 1 � 2 * H-L^2 - Q^2 + LQ^2L;

In[51]:= gterm = gterm �. Contract@FourVector@k, LorentzIndex@ΜDD,

FourVector@l, LorentzIndex@ΜDDD ® 1 � 2 * HL^2 + K^2 - KL^2L;

In[52]:= gterm =

gterm �. Contract@FourVector@k, LorentzIndex@ΜDD, FourVector@k, LorentzIndex@ΜDDD ® K^2;

In[53]:= gterm =

gterm �. Contract@FourVector@l, LorentzIndex@ΜDD, FourVector@l, LorentzIndex@ΜDDD ® L^2;

In[54]:= gterm =

gterm �. Contract@FourVector@q, LorentzIndex@ΜDD, FourVector@q, LorentzIndex@ΜDDD ® Q^2;

In[55]:= gterm = Expand@gtermD

Out[55]= -2 D2 K2 LQ2 + 2 D2 KL2 Q2 - 2 D2 KQ2 L2 + 4 D K2 KL2 - 4 D K2 KQ2 - 4 D K2 L2 + 12 D K2 LQ2 + 4 D K2 Q2 - 4 D KL4 +

4 D KL2 KQ2 + 4 D KL2 L2 + 4 D KL2 LQ2 - 20 D KL2 Q2 + 12 D KQ2 L2 - 4 D KQ2 LQ2 + 4 D KQ2 Q2 - 4 D L2 LQ2 +

4 D L2 Q2 + 4 D LQ2 Q2 - 4 D Q4 - 8 K2 KL2 + 8 K2 KQ2 + 8 K2 L2 - 16 K2 LQ2 - 8 K2 Q2 + 8 KL4 - 8 KL2 KQ2 -

8 KL2 L2 - 8 KL2 LQ2 + 32 KL2 Q2 - 16 KQ2 L2 + 8 KQ2 LQ2 - 8 KQ2 Q2 + 8 L2 LQ2 - 8 L2 Q2 - 8 LQ2 Q2 + 8 Q4

In[56]:= gterm = gterm �. 8KL^2 ® 0, l^2 * LQ^2 ® 0, k^2 * KQ^2 ® 0, k^2 * l^2 ® 0, KQ^2 * LQ^2 ® 0<

Out[56]= -2 D2 K2 LQ2 - 2 D2 KQ2 L2 - 4 D K2 KQ2 - 4 D K2 L2 + 12 D K2 LQ2 + 4 D K2 Q2 - 4 D KL4 +

12 D KQ2 L2 + 4 D KQ2 Q2 - 4 D L2 LQ2 + 4 D L2 Q2 + 4 D LQ2 Q2 - 4 D Q4 + 8 K2 KQ2 + 8 K2 L2 -

16 K2 LQ2 - 8 K2 Q2 + 8 KL4 - 16 KQ2 L2 - 8 KQ2 Q2 + 8 L2 LQ2 - 8 L2 Q2 - 8 LQ2 Q2 + 8 Q4

In[57]:= H* Computation of the Hk-lLΜHk-lLΝ-part of the graph with one photon running across *L

In[58]:= argumentBKL = DiracGamma@LorentzIndex@ΜDD.DiracGamma@LorentzIndex@ΑDD.

DiracGamma@LorentzIndex@ΡDD.DiracGamma@LorentzIndex@ΒDD.DiracGamma@LorentzIndex@ΝDD.

DiracGamma@LorentzIndex@∆DD.DiracGamma@LorentzIndex@ΣDD.DiracGamma@LorentzIndex@ΗDD

Out[58]= ΓΜ.ΓΑ.ΓΡ.ΓΒ.ΓΝ.Γ∆.ΓΣ.ΓΗ

In[59]:= traceBKL = DiracTrace@argumentBKL, DiracTraceEvaluate ® TrueD;

In[60]:= term = Contract@traceBKL, FourVector@k, LorentzIndex@ΑDDD;

In[61]:= term = Contract@term, FourVector@l, LorentzIndex@ΒDDD;

In[62]:= term = Contract@term, FourVector@l + q, LorentzIndex@∆DDD;

In[63]:= term = Contract@term, FourVector@k + q, LorentzIndex@ΗDDD;

In[64]:= term = Contract@term, FourVector@k - l, LorentzIndex@ΡDDD;

4   ftsem.nb
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In[65]:= term = Contract@term, FourVector@k - l, LorentzIndex@ΣDDD;

In[66]:= term = term �. MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDD ®

D � 4 * MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDD;

In[67]:= gterm = Contract@term, MetricTensor@LorentzIndex@ΜD, LorentzIndex@ΝDDD;

In[68]:= gterm = Expand@gtermD

Out[68]= -8 D k2 l2 q2 - 4 D k22
l ×q + 8 D k2 l ×q2 - 4 D k2 l2 k ×q + 8 D k2 k × l l ×q - 8 D k2 k ×q l ×q - 4 D k2 l2 l ×q +

4 D k2 q2 k × l - 4 D l2
2

k ×q + 8 D l2 k ×q2 + 8 D l2 k × l k ×q - 8 D l2 k ×q l ×q + 4 D l2 q2 k × l - 4 D k22
l2 - 4 D k2 l2

2
+

8 D k2 l2 k × l + 16 k2 l2 q2 + 8 k22
l ×q - 16 k2 l ×q2 + 8 k2 l2 k ×q - 16 k2 k × l l ×q + 16 k2 k ×q l ×q + 8 k2 l2 l ×q -

8 k2 q2 k × l + 8 l2
2

k ×q - 16 l2 k ×q2 - 16 l2 k × l k ×q + 16 l2 k ×q l ×q - 8 l2 q2 k × l + 8 k22
l2 + 8 k2 l2

2
- 16 k2 l2 k × l

In[69]:= gterm = gterm �. Contract@FourVector@k, LorentzIndex@ΜDD,

FourVector@l, LorentzIndex@ΜDDD ® 1 � 2 * Hl^2 + k^2 - KL^2L;

In[70]:= gterm = gterm �. Contract@FourVector@k, LorentzIndex@ΜDD,

FourVector@q, LorentzIndex@ΜDDD ® 1 � 2 * HKQ^2 - k^2 - q^2L;

In[71]:= gterm = gterm �. Contract@FourVector@l, LorentzIndex@ΜDD,

FourVector@q, LorentzIndex@ΜDDD ® 1 � 2 * HLQ^2 - l^2 - q^2L;

In[72]:= gterm =

gterm �. Contract@FourVector@k, LorentzIndex@ΜDD, FourVector@k, LorentzIndex@ΜDDD ® k^2;

In[73]:= gterm =

gterm �. Contract@FourVector@l, LorentzIndex@ΜDD, FourVector@l, LorentzIndex@ΜDDD ® l^2;

In[74]:= gterm = Expand@gtermD

Out[74]= 2 D k4 LQ2 - 2 D k4 q2 + 2 D k4 q2 - 2 D k2 KL2 LQ2 + 2 D k2 KL2 q2 - 2 D k2 KL2 q2 - 2 D k2 KQ2 l2 - 2 D k2 KQ2 LQ2 +

2 D k2 KQ2 q2 - 2 D k2 l2 LQ2 + 4 D k2 l2 q2 - 4 D k2 l2 q2 + 2 D k2 LQ4 - 2 D k2 LQ2 q2 - 2 D KL2 KQ2 l2 +

2 D KL2 l2 q2 - 2 D KL2 l2 q2 + 2 D KQ4 l2 + 2 D KQ2 l4 - 2 D KQ2 l2 LQ2 - 2 D KQ2 l2 q2 - 2 D l4 q2 +

2 D l4 q2 + 2 D l2 LQ2 q2 - 4 k4 LQ2 + 4 k4 q2 - 4 k4 q2 + 4 k2 KL2 LQ2 - 4 k2 KL2 q2 + 4 k2 KL2 q2 + 4 k2 KQ2 l2 +

4 k2 KQ2 LQ2 - 4 k2 KQ2 q2 + 4 k2 l2 LQ2 - 8 k2 l2 q2 + 8 k2 l2 q2 - 4 k2 LQ4 + 4 k2 LQ2 q2 + 4 KL2 KQ2 l2 -

4 KL2 l2 q2 + 4 KL2 l2 q2 - 4 KQ4 l2 - 4 KQ2 l4 + 4 KQ2 l2 LQ2 + 4 KQ2 l2 q2 + 4 l4 q2 - 4 l4 q2 - 4 l2 LQ2 q2

In[75]:= Expand@%D

Out[75]= 2 D k4 LQ2 - 2 D k4 q2 + 2 D k4 q2 - 2 D k2 KL2 LQ2 + 2 D k2 KL2 q2 - 2 D k2 KL2 q2 - 2 D k2 KQ2 l2 - 2 D k2 KQ2 LQ2 +

2 D k2 KQ2 q2 - 2 D k2 l2 LQ2 + 4 D k2 l2 q2 - 4 D k2 l2 q2 + 2 D k2 LQ4 - 2 D k2 LQ2 q2 - 2 D KL2 KQ2 l2 +

2 D KL2 l2 q2 - 2 D KL2 l2 q2 + 2 D KQ4 l2 + 2 D KQ2 l4 - 2 D KQ2 l2 LQ2 - 2 D KQ2 l2 q2 - 2 D l4 q2 +

2 D l4 q2 + 2 D l2 LQ2 q2 - 4 k4 LQ2 + 4 k4 q2 - 4 k4 q2 + 4 k2 KL2 LQ2 - 4 k2 KL2 q2 + 4 k2 KL2 q2 + 4 k2 KQ2 l2 +

4 k2 KQ2 LQ2 - 4 k2 KQ2 q2 + 4 k2 l2 LQ2 - 8 k2 l2 q2 + 8 k2 l2 q2 - 4 k2 LQ4 + 4 k2 LQ2 q2 + 4 KL2 KQ2 l2 -

4 KL2 l2 q2 + 4 KL2 l2 q2 - 4 KQ4 l2 - 4 KQ2 l4 + 4 KQ2 l2 LQ2 + 4 KQ2 l2 q2 + 4 l4 q2 - 4 l4 q2 - 4 l2 LQ2 q2

In[76]:= gterm = gterm �. 8k^2 * KQ^2 ® 0, l^2 * LQ^2 ® 0, k^2 * l^2 * KL^2 ® 0, KQ^2 * LQ^2 * KL^2 ® 0<;

In[77]:= gterm

Out[77]= 2 D k4 LQ2 - 2 D k4 q2 + 2 D k4 q2 - 2 D k2 KL2 LQ2 + 2 D k2 KL2 q2 - 2 D k2 KL2 q2 + 4 D k2 l2 q2 - 4 D k2 l2 q2 + 2 D k2 LQ4 -

2 D k2 LQ2 q2 - 2 D KL2 KQ2 l2 + 2 D KL2 l2 q2 - 2 D KL2 l2 q2 + 2 D KQ4 l2 + 2 D KQ2 l4 - 2 D KQ2 l2 q2 -

2 D l4 q2 + 2 D l4 q2 - 4 k4 LQ2 + 4 k4 q2 - 4 k4 q2 + 4 k2 KL2 LQ2 - 4 k2 KL2 q2 + 4 k2 KL2 q2 - 8 k2 l2 q2 + 8 k2 l2 q2 -

4 k2 LQ4 + 4 k2 LQ2 q2 + 4 KL2 KQ2 l2 - 4 KL2 l2 q2 + 4 KL2 l2 q2 - 4 KQ4 l2 - 4 KQ2 l4 + 4 KQ2 l2 q2 + 4 l4 q2 - 4 l4 q2
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