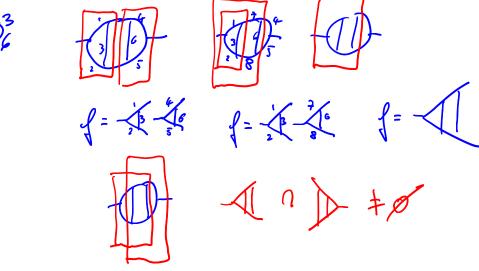
DIRK KREIMER, JANUARY 13 2021

1. Forests

It is useful to collect some notation first.

1.1. **Definitions.** For a 1PI superficially divergent graph Γ , we define a forest f to be a collection of 1PI proper superficially divergent sub-graphs $\Gamma_i \subset \Gamma$, $i \in \mathcal{I}_{\Gamma}^f$ for some index set \mathcal{I}_{Γ}^f , such that either they are disjoint: $\Gamma_i \cap \Gamma_j = \emptyset$, or contained in each other: $\Gamma_i \subset \Gamma_j$ or $\Gamma_j \subset \Gamma_i$. In particular, a forest f is a product of 1PI graphs: $f = \prod_i \gamma_i$. By Γ/f we denote the graph obtained by contracting the graphs γ_i to points in Γ .

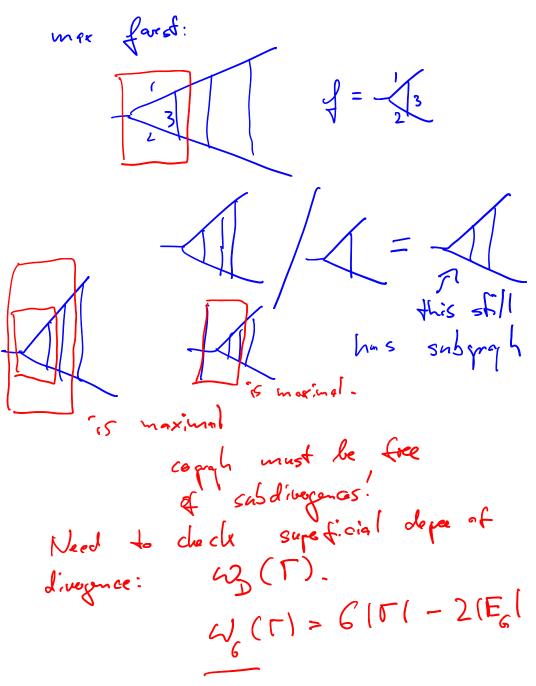


1

For a 1PI superficially divergent graph Γ , we define a maximal forest to be a forest and furthermore, we demand that $p_{\Gamma}^{f} := \Gamma / [\bigcup_{i \in \mathcal{I}_{\Gamma}^{f}} \Gamma_{i}]$ has no divergent sub-graph. We hence call the index set \mathcal{I}_{Γ}^{f} maximal for Γ . For $f \ni \Gamma_{i} \subset \Gamma$, each index set \mathcal{I}_{Γ}^{f} defines an index set \mathcal{I}_{i}^{f} of all forests strictly

contained in Γ_i , i.e. such that $\Gamma_j \subset \Gamma_i \ \forall j \in \mathcal{I}_i^f$.

We call a forest complete, if \mathcal{I}_{Γ}^{f} is maximal for Γ and \mathcal{I}_{i}^{f} maximal for each proper 1PI superficially divergent sub-graph Γ_i of Γ .



Each finite graph Γ has a finite number $|C(\Gamma)|$ of complete forests. Here, the set of all such complete forests is denoted by $C(\Gamma)$. Examples are below.

Such complete forests are in one-to-one correspondence with decorated rooted trees where the set of decorations p_v (at vertices v) is given by 1PI superficially divergent graphs free of sub-divergences,

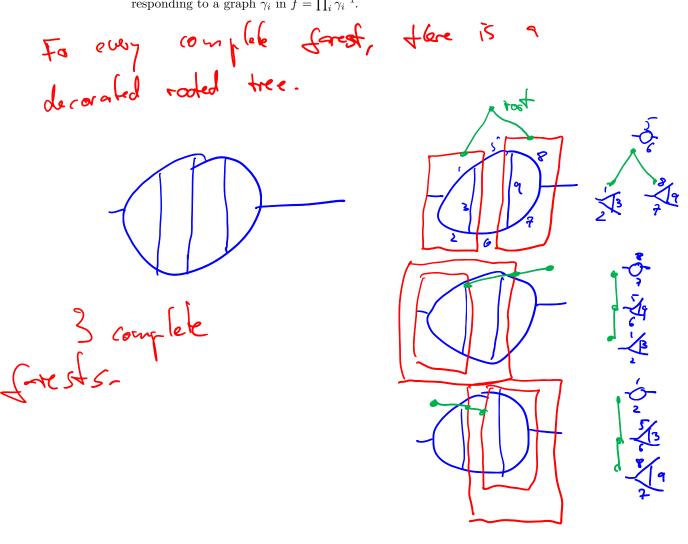
(1)
$$p_v := \Gamma_i / \cup_{j \in \mathcal{I}_i^f} \Gamma_j.$$

all comp

From now on, we write in obvious abuse of notation $T \in C(\Gamma)$ for such a decorated rooted tree.

Note that the power set $P_E(T)$ of edges E(T) of such a tree T gives all possible cuts c at the tree T: any $c \in P_E(T)$ defines, for a connected tree T, a union of connected components T - c obtained by removing the edges c, with $R^c(T)$ the unique component containing the root of T, and $P^c(T)$ the union of the remaining components. We have $\bigcup_{T \in C(\Gamma)} 2^{E(T)}$ as the set of all cuts available altogether, and denote by (c, T) an element of this set.

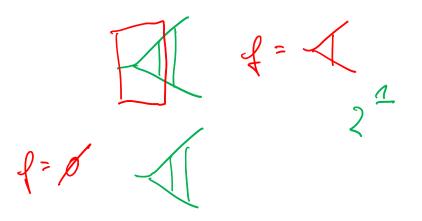
 $P^{c}(T)$ corresponds to a forest of Γ , with each of its connected components corresponding to a graph γ_{i} in $f = \prod_{i} \gamma_{i}^{-1}$.



 $^{{}^{1}}c \to P^{c}(T)$ furnishes a surjective map F from $\cup_{T \in C(\Gamma)} 2^{E(T)}$ to the forests f of Γ . The set of pre-images $f_{c} = F^{-1}(f)$ gives a partition of $\cup_{T \in C(\Gamma)} 2^{E(T)}$ which is a bijection with the forests of Γ .

After having determined the set $C(\Gamma)$, all (non-empty) forests of Γ are in bijection with (non-empty) sets f_c of some cuts (c, T). We describe them as follows.

with (non-empty) sets f_c of some cuts (c, T). We describe them as follows. If we let |T| be the number of vertices of a tree T, a tree T allows for $2^{|T|} - 1$ cuts including the empty one. For a graph Γ , this gives us $\sum_{T \in C(\Gamma)} 2^{|T|} cuts c$. By construction, a forest $f = \prod_i \gamma_i$ of a graph Γ assigns to a graph the product $(\Gamma/f) \prod_i \gamma_i$. We have $|C(\Gamma/f)| \prod_i |C(\gamma_i)|$ cuts c_i corresponding to the same forest, and let f_c be the set of cuts (c, T) which correspond to the same forest f. We often notate a cut (c, T) using T with marked edges, and notate the union f_c then as a sum of such trees. We have $\sum_{T \in C(\Gamma)} 2^{|T|} = \sum_f |f_c|$ by construction².

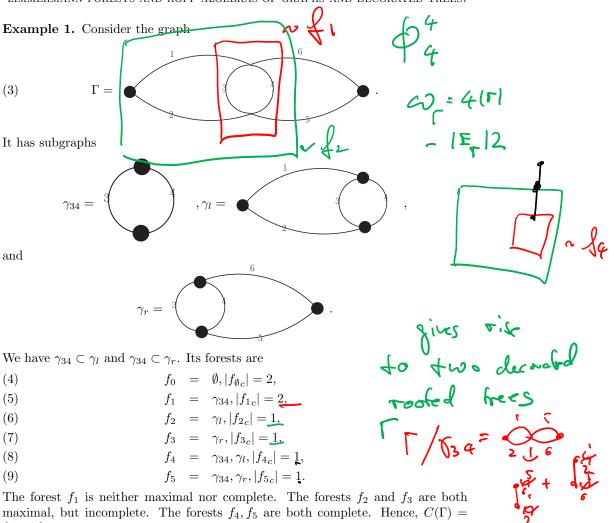


²The cardinality $|f_c|$ of f_c gives the number of sectors in f and Γ/f .

We can hence label the forests of a graph Γ by subsets of edges on some of the trees $T\in C(\Gamma)$:

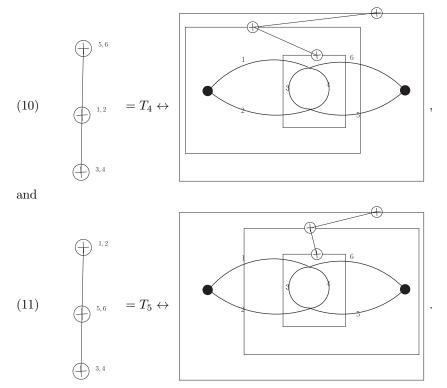
(2)
$$\sum_{f} = \sum_{T \in C(\Gamma)} \sum_{c \in f_c} = \sum_{T \in C(\Gamma)} \sum_{c \in P_E(T)}.$$

Furthermore, we identify the empty forest (of Γ) with Γ and write \sum_{f}^{\emptyset} when we include it in the sum. If we allow forests also to contain Γ itself, we double the sum of forests and write $\sum_{[f]}$ for the corresponding sum.



 $\{f_4, f_5\}$ is a two-element set.

If we add the graph Γ itself to the forests, we double the set, for each f_i , we now have f_i and $f_i \cup \Gamma$. The decorated trees T_4, T_5 are complete forests. They are given as:



We can find the decorations by shrinking all graphs in the subforests of a given forest: we assign to the two maximal complete forests two rooted trees, the root corresponding to the vertex at the outermost box 3 .

³Also, we can describe those trees as $T_4 := (((3,4),1,2),5,6)$ and $T_5 := (((3,4),5,6),1,2)$, where we indicate the tree structure by bracket configurations and decorations by the edge labels of the corresponding primitive graphs. If we notate forests in trees by square brackets $[\ldots]$ corresponding to cuts, then the correspondences are as follows: $f_0 \leftrightarrow (((3,4),1,2),5,6) +$ $(((3,4),5,6),1,2), f_1 \leftrightarrow (([3,4],1,2),5,6) + ((([3,4],5,6),1,2), f_2 \leftrightarrow ([(3,4),1,2],5,6), f_3 \leftrightarrow$ $([(3,4),5,6],1,2), f_4 \leftrightarrow (([[3,4],1,2],5,6), f_5 \leftrightarrow (([[3,4],5,6],1,2).$ The forests corresponding to $f_i \cup \Gamma$ are then notated by replacing the outermost (\ldots) pair of brackets by $[\ldots]$

DIRK KREIMER, JANUARY 13 2021

1.2. Hopf structures. We summarize the relevant Hopf algebra structures as follows.

1.2.1. For trees. For the free commutative algebra of decorated rooted trees H_{Dec} (typically, decorations are provided by either the graphs p_v or their set of edge labels) we have a co-product Δ_T defined by

(12)
$$\Delta_T \circ B^p_+(\cdot) = B^p_+(\cdot) \otimes 1 + (\mathrm{id} \otimes B^p_+) \Delta_T,$$

and an antipode given by

(13)
$$S(T) = -T - \sum_{c \in P_E(T)} (-1)^{|c|} P^c(T) R^c(T),$$

where $R^{c}(T)$ contains the root with decoration p and $P^{c}(T)$ are the other trees in $T-c. B^p_+$ are Hochschild 1-cocycles. We let shad : $H_{\text{Dec}} \to H_{\emptyset}$ be the map which forgets decorations.

10

$$\begin{array}{c} \text{HAMMAN FORESTS ADS HOFT DIGERRAS OF CRAPPS AND DECORATES THESE } \\ \text{ILMERNANN FORESTS ADS HOFT DIGERRAS OF CRAPPS AND DECORATES THESE } \\ \text{I.2. For graphs. For graphs we have a Hopf algebra of graphs H_{T} with co-product $(1 - M_{C}) = \Gamma \otimes (1 + 1 \otimes \Gamma + \sum_{i \in T} \sqrt{\gamma \otimes \Gamma/\gamma_i} + \sum_{$$$

We need a well-known lemma:

Lemma 2. Let id_{Aug} be the identity map $Aug \rightarrow Aug$ in the augmentation ideal. We have

(17)
$$\operatorname{id}_{\operatorname{Aug}} = \sum_{j=1}^{\infty} \sigma^{\star j} =: \sum_{j=1}^{\infty} \sigma_j.$$

Note that the sums terminate when applied to any element of finite degree in the Hopf algebra. Hopf algebras ${\cal H}$ allow for a co-radical filtration

(18)
$$\mathbb{QI} = H^{(0)} \subset H^{(1)} \cdots \subset H^{(n)} \subset \cdots \subset H.$$

The maps σ_j vanish on elements in the Hopf algebra which are in $H^{(k)}$, k < j, and the coradical filtration is defined by the kernels of σ_j : elements in $H^{(k)}$ vanish when acted upon by $\sigma_j, \forall j > k$.

$$\int e A_{H_{eT}} \qquad id_{A_{eff}} (f) = f$$

$$= \nabla (f) + \nabla * \nabla (f) + \nabla * \nabla * \nabla (f) + \dots$$

$$= \int - \cdot \int - (f - \cdots) + (\nabla \otimes \nabla) (\cdot \otimes f + f \otimes \cdot)$$

$$= \int - \cdot \int - (f - \cdots) + (\nabla \otimes \nabla) (\cdot \otimes f + f \otimes \cdot)$$

$$= \int \cdot \cdot \cdot (f - \cdots) \otimes (f -$$

 $\begin{aligned} & \left(\int (\overline{\nabla} \otimes \overline{\nabla}) \left(\int (\overline{\nabla} \otimes \overline{\Delta}) \right) \right) = \left(\int \overline{\nabla} \otimes \overline{\nabla} \right) \left(\int (\overline{\nabla} \otimes \overline{\Delta}) \right) = \left(\int \overline{\nabla} \otimes \overline{\nabla} \right) \left(\int \overline{\nabla} \otimes \overline{\Delta} \right) = \left(\int \overline{\nabla} \otimes \nabla \otimes \overline{\nabla} \otimes \overline{\nabla} \otimes \overline{\nabla} \otimes \overline{\nabla} \otimes \nabla$ T₂

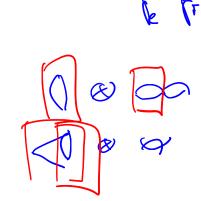
forest corresponds to the identity map of a graph Γ , we can write for forests

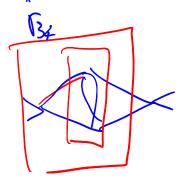
(19)
$$\emptyset = \sum_{j=1}^{\infty} \bar{\sigma_j}.$$

The following gives an example for the maps $\bar{\sigma}_j,$ acting on the graph Γ of Example 1.

Example 3.

Note the multiplicity two generated in two terms in $\bar{\sigma}_2 = \bar{\sigma}_1 \star \bar{\sigma}_1$ in line (21), coming from the fact that the subgraphs γ_2, γ_3 and the cograph Γ/γ_1 are acted upon by $\bar{\sigma}_1$ with the same results. η





On Nouday: Ferman rales. Eitle n \$4, or \$6 scalar field th. i) para metrically t in momentum space ii) a i) ve nerd two polynomials. first Symanzik p. fo Yr Second Φr (with namses) with out masses. q How de you pour rence malizalility voing moteties of de 1 de 2 ×3 Ex. $\cdots \qquad \left\{ \begin{array}{c} \mathcal{P} \\ \mathcal{A}_{1} + \mathcal{A}_{2} \end{array} \right\} (\mathcal{A}_{3} + \mathcal{A}_{4}) + \mathcal{A}_{5} \mathcal{A}_{4} \\ \mathcal{A}_{1} + \mathcal{A}_{2} \end{array} \right\}$ P Those woblen when Azity > ~