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1. Forests

It is useful to collect some notation first.

1.1. Definitions. For a 1PI superficially divergent graph Γ, we define a forest f to

be a collection of 1PI proper superficially divergent sub-graphs Γi ⊂ Γ, i ∈ If
Γ for

some index set If
Γ , such that either they are disjoint: Γi ∩ Γj = ∅, or contained in

each other: Γi ⊂ Γj or Γj ⊂ Γi. In particular, a forest f is a product of 1PI graphs:
f =

�
i γi. By Γ/f we denote the graph obtained by contracting the graphs γi to

points in Γ.
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For a 1PI superficially divergent graph Γ, we define a maximal forest to be a

forest and furthermore, we demand that pfΓ := Γ/[∪i∈If
Γ
Γi] has no divergent sub-

graph. We hence call the index set If
Γ maximal for Γ.

For f � Γi ⊂ Γ, each index set If
Γ defines an index set If

i of all forests strictly

contained in Γi, i.e. such that Γj ⊂ Γi ∀j ∈ If
i .

We call a forest complete, if If
Γ is maximal for Γ and If

i maximal for each proper
1PI superficially divergent sub-graph Γi of Γ.
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Each finite graph Γ has a finite number |C(Γ)| of complete forests. Here, the set
of all such complete forests is denoted by C(Γ). Examples are below.

Such complete forests are in one-to-one correspondence with decorated rooted
trees where the set of decorations pv (at vertices v) is given by 1PI superficially
divergent graphs free of sub-divergences,

(1) pv := Γi/ ∪j∈If
i
Γj .
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From now on, we write in obvious abuse of notation T ∈ C(Γ) for such a deco-
rated rooted tree.

Note that the power set PE(T ) of edges E(T ) of such a tree T gives all possible
cuts c at the tree T : any c ∈ PE(T ) defines, for a connected tree T , a union of
connected components T − c obtained by removing the edges c, with Rc(T ) the
unique component containing the root of T , and P c(T ) the union of the remaining
components. We have ∪T∈C(Γ)2

E(T ) as the set of all cuts available altogether, and
denote by (c, T ) an element of this set.

P c(T ) corresponds to a forest of Γ, with each of its connected components cor-
responding to a graph γi in f =

�
i γi

1.

1c → P c(T ) furnishes a surjective map F from ∪T∈C(Γ)2
E(T ) to the forests f of Γ. The set of

pre-images fc = F−1(f) gives a partition of ∪T∈C(Γ)2
E(T ) which is a bijection with the forests

of Γ.
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After having determined the set C(Γ), all (non-empty) forests of Γ are in bijection
with (non-empty) sets fc of some cuts (c, T ). We describe them as follows.

If we let |T | be the number of vertices of a tree T , a tree T allows for 2|T |

cuts including the empty one. For a graph Γ, this gives us
�

T∈C(Γ) 2
|T | cuts c.

By construction, a forest f =
�

i γi of a graph Γ assigns to a graph the product
(Γ/f)

�
i γi. We have |C(Γ/f)|�i |C(γi)| cuts ci corresponding to the same forest,

and let fc be the set of cuts (c, T ) which correspond to the same forest f .
We often notate a cut (c, T ) using T with marked edges, and notate the union

fc then as a sum of such trees. We have
�

T∈C(Γ) 2
|T | =

�
f |fc| by construction2.

2The cardinality |fc| of fc gives the number of sectors in f and Γ/f .
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We can hence label the forests of a graph Γ by subsets of edges on some of the
trees T ∈ C(Γ):

(2)
�

f

=
�

T∈C(Γ)

�

c∈fc

=
�

T∈C(Γ)

�

c∈PE(T )

.

Furthermore, we identify the empty forest (of Γ) with Γ and write
�∅

f when we
include it in the sum. If we allow forests also to contain Γ itself, we double the sum
of forests and write

�
[f ] for the corresponding sum.
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Example 1. Consider the graph

(3) Γ =

1

2

3 4

5

6

.

It has subgraphs

γ34 = 3 4
, γl =

1

2

3 4
,

and

γr = 3 4

5

6

.

We have γ34 ⊂ γl and γ34 ⊂ γr. Its forests are

f0 = ∅, |f∅c| = 2,(4)

f1 = γ34, |f1c| = 2,(5)

f2 = γl, |f2c| = 1,(6)

f3 = γr, |f3c| = 1,(7)

f4 = γ34, γl, |f4c| = 1,(8)

f5 = γ34, γr, |f5c| = 1.(9)

The forest f1 is neither maximal nor complete. The forests f2 and f3 are both
maximal, but incomplete. The forests f4, f5 are both complete. Hence, C(Γ) =
{f4, f5} is a two-element set.
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If we add the graph Γ itself to the forests, we double the set, for each fi, we now
have fi and fi ∪ Γ.

The decorated trees T4, T5 are complete forests. They are given as:

(10)

5, 6

1, 2

3, 4

= T4 ↔

1

2

3 4

5

6

3

,

and

(11)

1, 2

5, 6

3, 4

= T5 ↔

1

2

3 4

5

6

3

.
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We can find the decorations by shrinking all graphs in the subforests of a given
forest: we assign to the two maximal complete forests two rooted trees, the root
corresponding to the vertex at the outermost box 3.

3Also, we can describe those trees as T4 := (((3, 4), 1, 2), 5, 6) and T5 := (((3, 4), 5, 6), 1, 2),

where we indicate the tree structure by bracket configurations and decorations by the edge
labels of the corresponding primitive graphs. If we notate forests in trees by square brackets

[. . .] corresponding to cuts, then the correspondences are as follows: f0 ↔ (((3, 4), 1, 2), 5, 6) +

(((3, 4), 5, 6), 1, 2), f1 ↔ (([3, 4], 1, 2), 5, 6) + (([3, 4], 5, 6), 1, 2), f2 ↔ ([(3, 4), 1, 2], 5, 6), f3 ↔
([(3, 4), 5, 6], 1, 2), f4 ↔ ([[3, 4], 1, 2], 5, 6), f5 ↔ ([[3, 4], 5, 6], 1, 2). The forests corresponding to

fi ∪ Γ are then notated by replacing the outermost (. . .) pair of brackets by [. . .]
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1.2. Hopf structures. We summarize the relevant Hopf algebra structures as fol-
lows.

1.2.1. For trees. For the free commutative algebra of decorated rooted trees HDec

(typically, decorations are provided by either the graphs pv or their set of edge
labels) we have a co-product ΔT defined by

(12) ΔT ◦Bp
+(·) = Bp

+(·)⊗ 1 + (id⊗Bp
+)ΔT ,

and an antipode given by

(13) S(T ) = −T −
�

c∈PE(T )

(−1)|c|P c(T )Rc(T ),

where Rc(T ) contains the root with decoration p and P c(T ) are the other trees in
T − c. Bp

+ are Hochschild 1-cocycles.
We let shad : HDec → H∅ be the map which forgets decorations.
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1.2.2. For graphs. For graphs we have a Hopf algebra of graphs HΓ with co-product

(14) ΔG(Γ) = Γ⊗ 1 + 1⊗ Γ+
�

γ⊂Γ

γ ⊗ Γ/γ,

where γ is a disjoint union γ = ∪iγi of 1PI graphs which are superficially divergent.
The antipode is given by

(15) S(Γ) = −Γ−
�

f

(−1)|f |γf ⊗ Γ/γf .

We have a Hopf algebra homomorphism ρ : HΓ → HDec given by ρ(Γ) =
�

T∈C(Γ) T

and with

(16) [ρ⊗ ρ]ΔG = ΔT ρ.

For any Hopf algebra H ∈ (HDec, HΓ) , we let P be the projection into the aug-
mentation ideal. We set σ := S � P ≡ mH(S ⊗ P )Δ, which vanishes on scalars QI.
For the Hopf algebra of graphs, one has σ(Γ) =

�∅
f (−1)|f |f(Γ/f).
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We need a well-known lemma:

Lemma 2. Let idAug be the identity map Aug → Aug in the augmentation ideal.
We have

(17) idAug =
∞�

j=1

σ�j =:
∞�

j=1

σj .

Note that the sums terminate when applied to any element of finite degree in
the Hopf algebra. Hopf algebras H allow for a co-radical filtration

(18) QI = H(0) ⊂ H(1) · · · ⊂ H(n) ⊂ · · · ⊂ H.

The maps σj vanish on elements in the Hopf algebra which are in H(k), k < j,

and the coradical filtration is defined by the kernels of σj : elements in H(k) vanish
when acted upon by σj , ∀j > k.
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Now any map σj above corresponds to a finite sum over forests σ̄j . As the empty
forest corresponds to the identity map of a graph Γ, we can write for forests

(19) ∅ =

∞�

j=1

σ̄j .
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The following gives an example for the maps σ̄j , acting on the graph Γ of Example
1.

Example 3.

σ̄1 :
1

2

3 4

5

6

−
1

2

3 4

5

6

− 1

2

3 4

5

6

− 1

2

3 4

5

6

+
1

2

3 4

5

6

+
1

2

3 4

5

6

,(20)

σ̄2 :
1

2

3 4

5

6

+
1

2

3 4

5

6

+
1

2

3 4

5

6

−2
1

2

3 4

5

6

− 2
1

2

3 4

5

6

,(21)

σ̄3 :
1

2

3 4

5

6

+
1

2

3 4

5

6

.(22)

Note the multiplicity two generated in two terms in σ̄2 = σ̄1�σ̄1 in line (21), coming
from the fact that the subgraphs γ2, γ3 and the cograph Γ/γ1 are acted upon by σ̄1

with the same results.
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.


