ZIMMERMANN FORESTS AND HOPF ALGEBRAS OF GRAPHS
AND DECORATED TREES

DIRK KREIMER, JANUARY 13 2021

1. FORESTS
It is useful to collect some notation first.

1.1. Definitions. For a 1PI superficially divergent graph I', we define a forest f to
be a collection of 1PI proper superficially divergent sub-graphs I'; C T, i € Ilf for

some index set If; such that either they are disjoint: I'; N T'; = @, or contained in
each other: I'; C I'; or I'; C I';. In particular, a forestﬁ""lra’pﬂz‘c of 1PI graphs:
f =117 By T'/f we denote the graph obtained by contracting the graphs 7; to
points in I'.
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For a 1PI superficially divergent graph I', we define a maximal forest to be a
forest and furthermore, we demand that pIJ: := I'/[U; 7+ ] has no djvergent sub-
graph. We hence call the index set Ilf maximal for I'. fa%ﬂf

For f 5 T; C T, each index set Ilf defines an index set Iif of all forests strictly
contained in I';, i.e. such that I'; C I'; Vj € Iif.

We call a forest complete, if I{: is maximal for I and Iif maximal for each proper
1PI superficially divergent sub-graph I'; of T'.
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Each finite graph I" has a finite number |C'(T")| of complete forests. Here, the set
of all such complete forests is denoted by C(I"). Examples are below.

Such complete forests are in one-to-one correspondence with decorated rooted
trees where the set of decorations p, (at vertices v) is given by 1PI superficially
divergent graphs free of sub-divergences,

(1) Py ‘= Fz/ UjEIlf Fj.
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From now on, we write in obvious abuse of notation 7' € C(I") for such a deco-
rated rooted tree.

Note that the power set Pg(T) of edges E(T) of such a tree T' gives all possible
cuts ¢ at the tree T: any ¢ € Pg(T) defines, for a connected tree T', a union of
connected components T' — ¢ obtained by removing the edges ¢, with R¢(T) the
unique component containing the root of 7', and P¢(T') the union of the remaining
components. We have UTEC(F)2E (T) as the set of all cuts available altogether, and
denote by (¢, T) an element of this set.

P¢(T) corresponds to a forest of I', with each of its connected components cor-
responding to a graph v; in f =[], v "
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e P¢(T) furnishes a surjective map F' from UTeC(F)QE(T) to the forests f of I". The set of
pre-images f. = F~1(f) gives a partition of UTGC(F)QE(T) which is a bijection with the forests
of T".
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After having determined the set C(T"), all (non-empty) forests of I' are in bijection
with (non-empty) sets f. of some cuts (¢, T). We describe them as follows.

If we let |[T| be the number of vertices of a tree 7', a tree T' allows for_QE" l
cuts including the empty one. For a graph I', this gives us > cq(p 2ITH cuts c.
By construction, a forest f = [].~; of a graph I' assigns to a graph the product
(T/f)IL; vi- We have |C(T'/f)| ], |C(v:)| cuts ¢; corresponding to the same forest,
and letfbe the set of cuts (¢,T) which correspond to the same forest f.

We often notate a cut ﬁ&g;) using T' with marked edges, and notate the union
fe then as a sum of such trees. We have } 7o 21Tl = >op 1 fel by construction?.
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2The cardinality |fe| of fc gives the number of sectors in f and I'/f.
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We can hence label the forests of a graph I' by subsets of edges on some of the
trees T € C(T'):

(2) ZZZZZ

TeC(T) cEfe TeC(T) cePg(T)
z\» ——n—
Furthermore, we identify the empty forest (of T') with T' and write Z 5 When we
include it in the sum. If we allow forests also to contain I' itself, we double the sum

of forests and write E[ g) for the corresponding sum.
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Example 1. Consider the % \ 49 Af'

1 6

3) = 4‘9 = 4—(r)
C
It has subgraphs v £ )/ —- l E T l 2,
Y34 =
| /] 4
and ?’
6
Vr = .
Q6\\»6 v

We have 734 C ~; and 734 C ;. Its forests are 4_0 i‘ LI s q aue-(;'ﬂ
(4) fo = 0,lfol =2,
(5) fi = malficdl =2 voogc ee ‘A*{_S
(6) fo = wlfel =1 v T
(7) fo = lfad =1 . r/& s OOG° ‘
(8) fo = wouwlfadl =1 2L 5{
(9) f5 = 34,Vr, |f5c| = ]; \‘4?/ + ISA‘/
The forest fi is neither maximal nor complete. The forests fo and f3 are both x < G
maximal, but incomplete. The forests f4, f5 are both complete. Hence, C(T") = ?’

{f4, f5} is a two-element set.
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If we add the graph T itself to the forests, we double the set, for each f;, we now
have f; and f; UT.
The decorated trees Ty, Ts are complete forests. They are given as:
P
N =

T

5,6
1 l 6

\ J —
(10) Ga 12 =T, < Q_’% s

and
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We can find the decorations by shrinking all graphs in the subforests of a given
forest: we assign to the two maximal complete forests two rooted trees, the root
corresponding to the vertex at the outermost box 3.

3Also, we can describe those trees as Ty := (((3,4),1,2),5,6) and Ts := (((3,4),5,6),1,2),
where we indicate the tree structure by bracket configurations and decorations by the edge
labels of the corresponding primitive graphs. If we notate forests in trees by square brackets
[-..] corresponding to cuts, then the correspondences are as follows: fo < (((3,4),1,2),5,6) +
(((3,4),5,6),1,2), f1 < (([3,4],1,2),5,6) + (([3,4],5,6),1,2), f2 < ([(3,4),1,2],5,6), f3 <>
(1(3,4),5,6],1,2), fa < ([[3,4],1,2],5,6), f5 <> ([[3,4],5,6],1,2). The forests corresponding to
fi UT are then notated by replacing the outermost (...) pair of brackets by [...]
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1.2. Hopf structures. We summarize the relevant Hopf algebra structures as fol-
lows.

1.2.1. For trees. For the free commutative algebra of decorated rooted trees Hpec
(typically, decorations are provided by either the graphs p, or their set of edge
labels) we have a co-product Ar defined by

(12) ApoBY()=Bi()®1+(id® BY)Ar,

and an antipode given by

(13) S(T)=-T— Y (~1PYT)RY(T),
cePp(T)

where R¢(T') contains the root with decoration p and P¢(T") are the other trees in
T — c. BY are Hochschild 1-cocycles. -
We let shad : Hpec — Hp be the map which forgets decorations.
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1.2.2. For graphs. For graphs we have a Hopf algebra%aphs Hr with co-product

(14) AgT)=T@1+1@T+ > v&TL/y, (_ ,\),,qua e
gL ¢
where vy is a disjoint union y = U;7; of 1PI graphs which are superﬁmally 1ve1gnt. S(:,,'_ 4/
The antipode is given by - Yo
2 R £~
(15) =T = s ffr/y £ {1
\\_/_\C//
We have a Hopf algebra homomorphism p : Hr — Hpe given by p(l) = ZTeC( T 6’

and with

(16) lp® plAg = Arp. i
~ e —
For any Hopf algebra H € (HDeC,HF) we_let P be the projection into the hug-

mentation ideal. We sef.a:= Sx P =m H(S ® ,_)A which vanishes on scalars
For the Hopf algebra of graphs one has o(T) = Zf( DYTFT/f).
\_/
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We need a well-known lemma:

Lemma 2. Let idayg be the identity map Aug — Aug in the augmentation ideal.

We have
a7 \t e =3 0 =3
— = H

Note that the sums terminate when applied to any element of finite degree in
the Hopf algebra. Hopf algebras H allow for a co-radical filtration

(18) Ql=HO® cHD...c H™ ... c H.

The maps o; vanish on elements in the Hopf algebra which are in H ®) k< j,
and the coradical filtration is defined by the kernels of o;: elements in H*) vanish
when acted upon by o;,Vj > k.
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ZIMMERMANN FORESTS AND HOPF ALGEBRAS OF GRAPHS AND DECORATED TREE$3 %(\,(5 L
Now any map o, above corresponds to a finite sum over forests d;. As the empty {_
. . = %
forest corresponds to the identity map of a graph I', we can write for forests |\

(19) ' 0= iaj

Al
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The following gives an example for the maps 7, acting on the graph I' of Example

v QO[> <>
(20) O O <@>/
&y <—§> + g> + 0

@) 2> 2<Jd>|
(22) o3¢ <@>+<@> J@ Q/@Q/ ~

N S
Note the multiplicity two generated in fwo terms in d» = d1 x4 in line (21), coming ( ,
from the fact that the subgraphs 72,3 and the cograph I'/v; are acted upon by &3

with the same results. 1 A\ >Q/
R
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